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Miniature Triple-Mode Dielectric Resonator Filters
Mustafa S. Bakr, Student, IEEE, Ian C. Hunter, Fellow, IEEE, and Wolfgang Bsch, Fellow, IEEE

Abstract—In this paper, a new class of triple-mode microwave
filters is presented. These devices use the degenerate pair of the
HE11δ mode and the single TM01δ mode in dielectric-loaded
cavities with unloaded Q-factor of 3000-5000 and reasonable
spurious-free window. The proposed structure is obtainable in
less than one quarter of the physical volume of equivalent
TEM filters. A finite element method solver for electromagnetic
structures (HFSS) is used to study the main properties of this res-
onator. Fundamental design rules for triple-mode bandpass filters
with controllable finite transmission zeros are presented. Design
examples of bandpass filters with finite transmission zeros on
the high or low or both sides of the passband are demonstrated.
Measured results demonstrate excellent performance.

Index Terms—Finite transmission zeros, miniaturisation,
triple-mode, triplets, and filters.

I. INTRODUCTION

TRIPLY degenerate resonances (triple-mode) occur in

structures where symmetry exists in three dimensions,

e.g., cubical and spherical structures [1]–[4]. Another approach

to the design of triple-mode filters was reported in [5] where

higher-order modes were utilised to obtain triply degenerate

resonances in waveguide filters; thus, significant size reduc-

tion. Similar approach was reported in [6], [7] where higher-

order modes were used to obtain triply degenerate resonances

in dielectric resonator filters. In [8], the cavity geometry was

optimised to design triple-mode filters in dielectric-loaded

cavities using the degenerate pair of the TE11 mode and the

single TM01 mode. Traditionally, perturbation methods are

required to provide enough coupling between the degenerate

modes, i.e., tuning screws or coupling elements, and constitute

the filter response. This might degrade the resonator quality

factor and increase the design complexity due to the lack

of independent control of each resonant frequency and the

spurious couplings between the multi-modes. In [9], parallel

coupled resonator approach was used to design triple-mode

dielectric resonator filters without inter-resonator couplings;

thus, simplifying the filter design complexity.

Multi-mode resonators provide the possibility to implement

elliptic and pseudoelliptic filter response with minimum num-

ber of resonators; therefore, further size reduction [10]. Finite
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(a) (b)

Fig. 1. Triple-mode dielectric resonator (a) 3D view (b) Cross section view.

transmission zeros are commonly generated by introducing

multiple paths in the structure, i.e., couplings between non-

adjacent resonators. This might lead to complex, sensitive

and poor temperature stability designs. For instance, when

finite transmission zeros are generated close to the passband

edge, the direct and cross coupling values can be comparable

which might not be realisable in practice. Another example

is when the cross-coupling values are so small compared

to direct couplings. This can lead to very sensitive designs.

Alternatively, nonresonating nodes can be used to generate

finite transmission zeros in dual- and triple-mode cavities as

reported in [11]. Frequency tuning mechanisms with indepen-

dent control of each resonance and all inter-cavity couplings

are usually required in filter design. This can be a daunting

task in multi-mode filters due to the appearance of some

spurious couplings between resonances; thus, increasing the

design complexity and cost.

In [12], a new class of triple-mode dielectric resonator filters

is described that is suitable for base-station applications in less

than one quarter of the physical volume of equivalent TEM

filters. The proposed resonator consists of a ceramic puck that

is placed inside a metallic housing where the bottom surface

of the ceramic puck is in contact with the metallic housing. Its

geometry was optimised to obtain three non-degenerate modes

at the fundamental frequency, i.e., the degenerate pair of the

HE11 mode and the single TM01 mode; thus, significant size

reduction. In addition, tuning screws or coupling elements at

defined angles were not required to constitute the triple-mode

response; thus, greatly simplifying the filter structure, cost and

complexity. Finite transmission zeros were generated on the

low side of the passband. A prototype hardware was designed,

fabricated and measured to validate the proposed approach.

However, the operation mechanism of the proposed resonator,

control of finite transmission zeros, and higher-order filters

were not discussed.

In this paper, The operation mechanism of the triple-mode

dielectric resonator filter reported in [12] is explained sup-

ported by field components calculations. The generation and

control of finite transmission zeros is explained. Fundamental



2

design rules of triple-mode bandpass filters are presented

followed by design examples showing the control of centre

frequency, bandwidth and location of finite transmission ze-

ros. Two filters, a three-pole bandpass filter with two finite

transmission zeros on the low side, and a six-pole bandpass

filter with four finite transmission zeros on the low side,

were designed, fabricated and tested to verify the validity

and potential of the proposed resonator. Measured results

demonstrate excellent performance.

II. HE-TM TRIPLE MODE DIELECTRIC RESONATOR

FILTERS

A. Fundamental Design Rules

The approach used in this work is to use a dielectric-loaded

cavity which support a single TE01δ mode at its fundamental

frequency, i.e., the dielectric puck is suspended in the middle

of the metallic cavity. The geometrical dimensions of the

cavity and the position of the dielectric puck are adjusted

to support triple-mode resonances, i.e., HE11δ and TM01δ

modes, at the fundamental frequency as shown in Fig. 6. This
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Fig. 2. Mode chart of the triple-mode structure as a function of the ratio of
cavity diameter (D) to the cavity height (L) where D = 30 mm.
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Fig. 3. Unloaded Q chart of the triple-mode structure as a function of the
ratio of the cavity diameter (D) to the cavity height (L) where D = 30 mm.

enables fourfold size reduction compared with equivalent TEM

filters, i.e., air-filled coaxial filters with comparable Q-factor,

and good spurious performance. First, a puck suspended in the

middle of a metallic housing was moved down towards the

base of the housing. Thus, TE01δ moves up in frequency and

HE11δ moves down in frequency. When the puck is in contact

with the base of the housing, HE11δ is the fundamental

frequency. The poor spurious window can be improved by

the optimal choice of puck/cavity dimensions as well as re-

shaping the puck. Finally, the top flat surface of the metallic

housing was moved down. The effect of reducing the cavity

height is to drive the TM01 mode down in frequency while not

significantly affecting the other modes and spurious window

(Fig. 2). However, it does reduce the Q-factor of the resonator,

in particular of the TM01 mode (Fig. 3). It is also noted that

the E field of the three resonances is maximum near the top

flat surface of the resonator where the E field intensity of

the TM01 mode is significantly larger than the HE11 mode

(Fig. 6). This drives the TM01 mode down in frequency

and facilities strong couplings between the three resonances,
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Fig. 4. Mode chart of the triple-mode structure as a function of the ratio of
the cavity diameter (D) to the puck diameter (d) where D = 30 mm.
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Fig. 5. Unloaded Q chart of the triple-mode structure as a function of the
ratio of the cavity diameter (D) to the puck diameter (d) where D = 30 mm.
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which is required for base-station filters. Likewise, the effect

of adjusting the resonator diameter, where the cavity diameter

is defined as D = 30 mm, is presented in Fig. 4. Increasing

the resonator diameter drives the first three resonances down

in frequency. The unloaded Q-factor of the HE11 mode is

significantly improved. It is noticed that the Q-factor of the

TM01 mode is reasonably constant for small cavity to puck

diameter ratio (D/d) as depicted in Fig. 5. The mode and

unloaded Q-factor charts are used to design bandpass filters

using the proposed resonator as the basic building block.

B. Field Components

A finite element method field simulator (HFSS) was used to

study the E and H field patterns of the first three resonances

of the proposed triple-mode dielectric resonator. Fig. 6 shows

the E field intensity of the first three resonances (HE11 and

TM01) with/without the presence of the input/output probes.

It is apparent that the three resonances are orthogonal and

uncoupled to each other without any perturbation, such as

input/output probes, corner cuts, tuning screws and etc. It is

also significant that the axial E field of the three resonances

is maximum near the top of the ceramic puck. This facili-

tates the relatively strong inter-resonator couplings that are

required for base-station filters. The field pattern of the first

three resonances is relatively constant along the axis of the

dielectric. Thus, the resonator resonant frequency is largely

determined by the dielectric constant and the diameter of the

puck, while it is relatively less dependent on the height of

the puck. The unloaded Q-factor of the resonator is mainly

determined by the height of the puck and the separation of

the puck from the metallic housing. It is also interesting to

notice that the presence of the input/output probes is similar

to introducing perturbations and breaking the degeneracy of

the resonator. This is due to the fact that the E field of

the first three resonances is strong in the small gap between

the the puck and the cavity, in particular the TM01, and the

fact that the three resonances exhibit different polarisations.

This enables the design of triple-mode filters without the

need to introduce any extra circuits to break degeneracy and

provide inter-resonator couplings. Thus, reducing the design

complexity and cost. Table I shows the resonant frequency

of the first four resonances with/without the presence of

the input/output probes. It is apparent that the first three

resonances are perturbed in the presence of the input/output

probes. This is similar to introducing a discontinuity at 45◦ in

degenerate dual-mode resonators, e.g. TE11, and provide the

required inter-resonator coupling.

TABLE I
THE FIRST FOUR RESONANT MODES WITH/WITHOUT THE PRESENCE OF

INPUT/OUTPUT PROBES

Mode fr (GHz) without in-
put/output probes

fr (GHz) with in-
put/output probes

HE11 2.38 2.37

HE11 2.38 2.4

TM01 2.38 2.43

Spurious 3.05 3.05

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Fig. 6. E field patterns of the triple-mode dielectric resonator (a) Without
perturbation, (b) Perturbation (input/output probes); Top and side view of the
first three resonances (c, e, g, i, k, and m) TM01 and HE11 of case a, and
(d, f, h, j, l, and n) TM01 and HE11 of case b.
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C. Coupling Scheme

As explained earlier, the required inter-resonator couplings

can be simply realised by introducing a proper input/output

coupling configuration without the need for any extra coupling

elements. The strength of input to resonator couplings, named

Ri1, Ro2, Mi3, and Mo3 in Fig. 7, is mainly controlled

by adjusting the height of the input/output probes and the

separation of the probes and puck. The sign of couplings

is determined by choosing the proper type of input/output

configuration, i.e. capacitive or inductive. The inter-resonator

couplings between the TM01 and the HE11, named M23,

exist in the presence of the input/output probes, Fig. 7(a). The

internal coupling between the degenerate pair of the HE11

resonances, named M12, is negligible due to the symmetry of

the structure and the fact that no discontinuity is introduced to

perturb the degeneracy of the HE11 resonance. Fig. 7 shows

the coupling diagram and coupling matrix of the proposed

triple-mode dielectric resonator filter. The resonator can be

modelled as two cascaded triplets. This enables the realisation

of finite transmissions zeros as will be shown in the next

section. The input to resonator coupling coefficients can be

determined from the filter group delay response as shown in

Fig. 8. It is apparent from the balanced group delay response

that the input probe excites two resonances at the same time.

This result agrees with the coupling scheme shown in Fig. 7.

(a) (b)

Fig. 7. (a) Cascaded triplets (b) Coupling matrix.
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Fig. 8. Group delay response of the probe coupling.

III. DESIGN EXAMPLES AND EXPERIMENTAL RESULTS

Based on the analysis presented earlier, four bandpass filters

are designed to show the potential of the proposed resonator.

The first design example shows a three-pole bandpass filter

with two transmission zeros on the low side. The second exam-

ple is a three-pole bandpass filter with one finite transmission

zero on both sides. The third design example is a triple-mode

bandpass filter with two finite transmission zeros on the high

side. Finally, the fourth design example is a six-pole bandpass

filter with four finite transmission zeros on the low side.

A. Filters with Two Finite Transmission Zeros on the Low Side

(a) (b)

Fig. 9. (a) Triple-mode DR filter with inductive coupling configuration (b)
Its coupling matrix.

As a design example, a three-pole bandpass filter was

designed and fabricated with a 20 mm diameter and 10 mm

height of ceramic puck with permittivity of 44 and loss

tangent of 4 × 10−5 in a cylindrical copper cavity with

internal dimensions of 30 mm diameter and 11.35 mm height

with electrical conductivity of 4× 107 S/m. The fundamental

frequency was 2.5 GHz with unloaded Q-factor of 3800. The

first spurious mode happened 650 MHz above the fundamental

frequency. Fig. 9 shows a photo of the 3D model of the

triple-mode dielectric resonator filter with inductive coupling

configuration and its calculated coupling matrix. The resonator

is synthesised as two cascaded triplets. The individual cou-
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Fig. 10. EM simulation versus coupling matrix frequency response with two
finite transmission zeros on the lower side.

plings needed to design a three-pole bandpass filter may be

better understood by looking at the E field of each of the

first three resonances and the group delay response shown in
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Fig. 11. Photo of triple-mode bandpass filter with two finite transmission
zeros on the low side.

Fig. 6 & 8 respectively. The axial E field of the TM01 is

relatively constant and maximum near the top of the ceramic

puck. The input to resonator (TM01) coupling strength and

sign (Mi3 and Mo3) are mainly determined by adjusting the

height and type of the input/output probes. Similarly, the input

to resonator (HE11) coupling strength and sign (Ri1 and

Ro2) are mainly determined by adjusting the separation of

the input/output probes and puck as well as the coupling type,

i.e. capacitive or inductive. The filter bandwidth and location

of finite transmission zeros are determined by controlling

the strength and sign of the aforementioned couplings. The
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Fig. 12. EM simulation versus measured frequency response with two finite
transmission zeros on the lower side.

longitudinal grooves in the ceramic puck are introduced to

achieve the required Ri1 and Ro2 couplings and meet the

given specifications. A comparison between the simulation

and synthesised frequency response is shown in Fig. 10.

A prototype bandpass filter has been designed, fabricated

and measured to validate the proposed approach. The basic

specification was chosen as 50 MHz ripple bandwidth at 2.5

GHz centre frequency with insertion loss less than 0.17 dB

and out of band rejection of 25 dB at 2.46 GHz. A three pole

generalised Chebyshev filter with two finite transmission zeros

on the low side is required to meet the chosen specifications. A

photograph of the fabricated prototype is shown in Fig. 11. The

filter response was tuned using four metallic tuning screws.

The resonant frequencies of the HE11 modes were tuned using

two metallic screws from the side walls. Couplings from the

input to the first three resonances were adjusted using the

metallic screws that are placed on the top lid of the metallic

housing. A comparison between the simulation and measured

frequency response is shown in Fig. 12. In comparison to the

simulation result, the measured frequency response is slightly

shifted up in frequency by approximately 20 MHz. This shift

in frequency is believed to originate from inaccuracies due

to the tolerance in the dielectric constant of the used off-

the-shelf ceramic puck. The filter frequency response was
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Fig. 13. Measured frequency response of the triple mode filter with temper-
ature.

measured as a function of temperature in the range of 15 to

65 C◦. Fig. 13 shows the measured frequency response at two

temperature ranges, i.e. 15 and 65 C◦. The total frequency

deviation with temperature was only 0.4 MHz. In addition,

the three fundamental resonances seem to drift in the same

direction with temperature.

B. Filters with Balanced Shoulders

The basic specification for this filter was chosen as 20

MHz ripple bandwidth at 2.48 GHz centre frequency with

insertion loss less than 0.4 dB and out-of-band rejection of

25 dB at 2.45 GHz and 2.51 GHz. This requires the design

of balanced shoulder (elliptical response) filters. To locate the

finite transmission zeros on both sides, the sign of couplings

in one of the cascaded triplets can be altered. It is well-

known that each triplet is responsible for the location of one

finite transmission zero either on the low or high side. In

this design example, the sign of Mo3 coupling is changed

from - to +. To achieve this, the resonant frequency of the

TM01 mode is defined in the middle of the three fundamental

resonances. In addition, unlike the input probe, the output

probe is not grounded. Fig. 14 shows a photo of the 3D model

of the triple mode filter with inductive and capacitive coupling

configuration and its coupling matrix. A comparison between

the simulation and synthesised filter response is shown in

Fig. 15.
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(a) (b)

Fig. 14. (a) Triple-mode DR filter with inductive and capacitive coupling
configuration (b) Its coupling matrix.
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Fig. 15. EM simulation versus coupling matrix frequency response with one
finite transmission zero on each side.

C. Filters with Two Finite Transmission Zeros on the High

Side

(a) (b)

Fig. 16. (a) Triple-mode DR filter with capacitive coupling configuration (b)
Its coupling matrix.

In this design example, the basic specification was chosen

as 80 MHz ripple bandwidth at 2.5 GHz centre frequency with

insertion loss less than 0.17 dB and out-of-band rejection of

25 dB at 2.56 GHz. This requires the design of generalised

Chebyshev filter with two finite transmission zeros on the

high side. Capacitive input/output coupling probes are used

to change the sign of Ri1 and Ro2 couplings thus two finite

transmission zeros on the high side. Fig. 16 shows a photo

of the 3D model of the triple-mode resonator with capacitive

coupling configuration and its coupling matrix. The simulation

and synthesised frequency response are shown in Fig. 17. The

latter configuration can be combined with the triple-mode filter

shown in Fig. 9(a) to build contiguous diplexers.
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Fig. 17. EM Simulation versus coupling matrix frequency response with two
finite transmission zeros on the high side

D. Higher Order Filters

Fig. 18. A six-pole triple-mode dielectric resonator filter.

Higher-order filters are attainable by cascading the basic

building block of the triple-mode dielectric resonator. As a

design example, a six-pole bandpass filter with centre fre-

quency of 2.5 GHz, ripple bandwidth of 80 MHz, Q-factor

of 3600 and four finite transmission zeros on the low side

was designed, fabricated and tested. Fig. 18 shows a photo

of the 3D model of the six-pole filter. A comparison between

the simulation and synthesised frequency response is shown in

Fig. 19. A photograph of the fabricated prototype is shown in

Fig. 20. A comparison between the simulation and measured

frequency response is shown in Fig. 21. It is clear that the

measured frequency response is shifted up in frequency by

approximately 15 MHz. Again this shift is believed to be due

to the fact that the ceramic having a slightly lower dielectric

constant than the one assumed in the simulation.

IV. CONCLUSION

A new class of triple-mode dielectric resonator filters has

been described. They offer the advantages of significant size

reduction, less than one quarter of the physical volume of

equivalent TEM filters, reduced cost and design complexity.

The spurious free response of the proposed filter is good,

i.e., the first spurious mode happened 650 MHz above the

fundamental resonances. The proposed resonator can be im-

plemented as cascaded triplets enabling the design of bandpass
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Fig. 19. EM simulation versus coupling matrix frequency response with four
finite transmission zeros on the low side.

Fig. 20. Photo of a six-pole bandpass filter with four transmission zeros on
the low side.

filters with finite transmission zeros on either or both sides of

the passband. Prototype bandpass filters have been designed,

fabricated and tested validating the proposed approach. A de-

tailed study of these devices has been carried out to build filters

with high-orders, controllable centre frequency, bandwidth and

finite transmission zeros.
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