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Abstract. Deterministic differential Tomographic SAR (D-TomoSAR) model, based

on geometrical derivations and the assumption of accurate phase calibration, is widely

employed for spatially locating and temporally monitoring the point-like scatterers in

the past. In this work, we model phase miscalibration effects of the extended scatters

caused by partial correlation, i.e., the decorrelation effects from temporal and spatial

changes as well as the residual atmospheric and deformation effect after preprocessing.

Starting from the origin of 4-D SAR focusing, correlation of target is analysed, and

a statistical D-TomoSAR model accounting for partial correlation effects is proposed.

Based on the proposed model, a simulator for D-TomoSAR stack is designed using the

Cholesky decomposition. Moreover, a linear minimum mean square error (LMMSE)

estimator based on the proposed model is developed for height and deformation velocity

estimation of extended scatterer. Reconstruction results with both simulated data and

real data acquired by TerraSAR-X/Tandem-X sensors are provided to demonstrate the

effectiveness of the proposed model.

1. Introduction

Nowadays, many high resolution synthetic aperture radar (SAR) sensors are available

in orbits, such as the COSMO-SKYMED constellation with a high revisit frequency

and TerraSAR-X/Tandem-X (a pair of cooperating satellites) capable of acquiring

interferometric data simultaneously on a single orbit. As a result, development of

multi-image SAR coherent combination techniques is of great interest to improve the

estimation performance for various target properties.

Tomographic sythetic aperture radar (TomoSAR) is a technique based on coherent

SAR data combination for 3-D SAR imaging [1–5]. Multi-pass acquisitions or

simultaneous acquisitions with slight difference in perspective are stacked to synthesize

an array along the elevation direction. The TomoSAR technique allows one to profile
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the scattering power at different heights, and hence can not only locate a single scatterer

more accurately but also separate the interfering scatterers within the same azimuth-

range pixel more effectively [6–8]. However, it does not take into account the movements

of possible scatterers. For this reason, differential SAR tomography (D-TomoSAR) or

4-D SAR imaging have been proposed to jointly estimate multiple scatterer elevations

and velocities [9, 10].

The state-of-the-art D-TomoSAR signal model is deterministic with the assumption

of accurate phase calibration, that is, absence of residual effect after preprocessing of D-

TomoSAR [6, 7, 11]. However, on one hand, the acquisition rate associated with current

systems is fixed on a monthly basis, and hence, the collection of data useful for 4-D

imaging commonly requires temporal spans at the order of years. On the other hand,

spatial difference in look angle will also lead to variation of the scatterer response.

Thus, the coherence of targets is reduced [12]. Therefore, the decorrelation effects

from temporal and spatial diversity can result in changes of focusing scattering between

multiple acquisitions. As a result, only the reflectivity of point-like scatterers, whose

phases are stable, could be estimated effectively with the deterministic model [8, 13].

Thus, the capability of D-TomoSAR is limited to urban areas and man-made objects

where there are many point-like scatterers [8].

To expand the 4D deterministic model’s application, several methods are developed

to alleviate the decorrelation effects. For example, the small baseline subsets are adopted

to reduce the spatial decorrelation effect [14, 15], at the cost of a low elevation and

deformation resolution, or some kind of coherent averaging is performed over different

sub-images of the same scene, which unfortunately results in an azimuth-range resolution

loss [16]. However, there are still some uncompensated phase and random phase noise

resulting from the spatial and temporal decorrelation. Therefore, the deterministic

model is not realistic for the 4D SAR focusing.

Subsequently, some statistical models are presented to model the residual effects.

Ignoring deformation of scatterers, a statistical TomoSAR model accounting for

decorrelation effects of extended scatterers was studied by Gini et al. [16]. However, the

model is not applicable to the point-like scatters and at the cost of spatial resolution

due to the employment of multilook estimators. After the temporal decorrelation model

proposed by Rocca [17], Fornaro et al. [11] introduced a set of parameters accounting

for the residual atmospheric effect and the temporal effect of target reflectivity into

the deterministic TomoSAR model, and then applied the linear minimum mean square

error (LMMSE) estimator to the model, which ignores the spatial decorrelation effect.

Subsequently, Pauciullo et al. [18] proposed the concept of coherence space for scatterer

detection of 3-D SAR, while ignoring the residual disturbance from atmospheric delay

in order to derive the analytical expression of the detector.

Taking the drawbacks of statistical TomoSAR models and deformation into

consideration, we propose a statistical D-TomoSAR model in which the spatial and

temporal decorrelation and residual effect after preprocessing of the extended and point-

like scatterers are simultaneously accounted for. In detail, starting from the origin of 4-D
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Figure 1. The preprocessing flowchart of D-TomoSAR technique.

SAR focusing, correlation of targets is analysed and the disturbances are introduced,

and then reasonable distributions are assumed to model the disturbances based on

the mathematical approximation and on the condition of satisfying the correlation

expressions. After that, a simulator for generating the repeated pass data with

realistic effects is designed based on the proposed model. With the study of statistical

characteristics of the signal model, the LMMSE estimator is designed to estimate the

elevations and mean deformation velocities of general scatterers. Simulation results on

simple pixels and complex scene are provided to demonstrate the effectiveness of the

proposed model.

2. Deterministic D-TomoSAR model

The conventional D-TomoSAR model does not consider deterministic phase

miscalibration after preprocessing (the preprocessing flowchart showing in Fig. 1 [6, 19])

and random scattering changes due to the temporal and spatial decorrelation effects [20].

Thus, after preprocessing, a generic pixel of the k-th high-resolution SAR image can be

modeled by the following double line integration [1, 8, 9, 21–23]

yk =

Smax
∫

Smin

Vmax
∫

Vmin

γ(s, v) exp(j2πξks+ j2πηkv)dsdv + wk (1)

where [Smin, Smax] and [Vmin, Vmax] are the elevation and velocity span along the

direction s and v respectively, j =
√
−1, wk is the additive noise including the effects of

clutters and thermal noise, γ(s, v) is the complex target backscattering at the elevation

position s and the velocity position v, ξk = 2b⊥k/λr and ηk = 2tk/λ are the spatial
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Figure 2. D-TomoSAR acquisition geometry.

and temporal frequency, respectively, λ and r are radar wavelength and the local

range respectively, b⊥k is the effective baseline vertical to the range direction of the

master antenna Sc as shown in Fig. 2, and tk is the observing time of the k-th SAR

image. Temporal and spatial baselines are defined with respect to a reference master

antenna. Fig. 2 shows the D-TomoSAR acquisition geometry in the range-elevation

plane orthogonal to the azimuth direction, where K views are collected at different

acquisition times. After uniform partition along the elevation direction as shown by the

red sector areas of Fig. 2, the pixel value of the k-th observation yk can be written as

a linear combination in its discrete form,

yk =
M
∑

m=1

N
∑

n=1

Φ(k,m, n)xmn + wk (2)

where Φ(k,m, n) = exp(j2πξksm + j2πηkvn) for k = 1, 2, · · · , K, m = 1, 2, · · · ,M and

n = 1, 2, · · · , N , sm and vn are the elevation and velocity of target, respectively, and

xmn is complex focusing of targets.

Subsequently, the K sets of differential tomographic SAR data can be modeled

linearly

y =
M
∑

m=1

N
∑

n=1

Φ(sm, vn)xmn +w (3)

where y with the size of K × 1 is the joint observations at the referred azimuth-range

cell, and Φ(sm, vn) is the steering vector at the elevation sm and velocity vn. Since the

clutter samples are weakly correlated, the cluttering effect can be embedded into the
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additive white noise contribution, and thus w is assumed to be zero-mean Gaussian

with a covariance matrix σ2
wI, where σ2

w is the intensity of additive noise and I is the

K ×K identity matrix.

3. Statistical D-TomoSAR model

With the current technology, the multi-baseline data are usually acquired on repeated

passes. Although the complex reflectivity of a target is strongly correlated among

different observations, they still suffer the multiplicative noise effects resulting from

three factors [11, 18, 20, 24, 25]:

• Temporal decorrelation of target reflectivity: change of vegetation cover and

topographic changes.

• Spatial decorrelation of target reflectivity: incident angle difference because of the

spatial baseline of multi-passes.

• Residual phase effect after preprocessing: the residual phase which is not compensated

completely at the preprocessing stage.

3.1. Correlation analysis of target

After the preprocessing of D-TomoSAR, the phase left for the m-th scatterer should be

(j2πξksm+ j2πηkvm) in the ideal case. However, there exists residual phase θk resulting

from uncompensated atmospheric delay and nonlinear deformation. The residual phases

between different acquisitions are usually assumed to be zero-mean, independent and

identically distributed (i.i.d.) with variance σ2
θ [26]. When [Smin, Smax] and [Vmin, Vmax]

in Eq. (1) are discretized withM andN uniform segments, the focusing of 4-D scattering

contributed by the patch (sm, vn) at the time of tk can be written by

xk (sm, vn) =

∫ sm+ ρs
2

sm−
ρs
2

∫ vn−
ρv
2

vn−
ρv
2

γ (s, v) ej2πξk(s−sm)+j2πηk(v−vn)+jθkdsdv, (4)

where γ (s, v) denotes the backscattering profile at elevation s and velocity v, ρs and ρv
are the discrete elevation and velocity interval of respective span.

When the backscattering profile γ(s, v) in Eq. (4) is assumed to be a white

complex random process in elevation and deformation velocity direction, the correlation

of backscattering profile is assumed as

E [γ (s1, v1) γ(s2, v2)
∗] =

σ2
x

ρsρv
δ(s1 − s2)δ(v1 − v2) (5)

where σ2
x denotes the mean intensity of patches with an area of ρs × ρv and δ(·) is

the continuous delta function. It is worth noting that δ̂(·) represents the discrete delta

function in this paper.

On the basis of Eq. (5), the correlation function of 4-D focusing can be written as

(detail derivation is shown in Appendix A)

E [xk1 (sm1 , vn1) xk2(sm2 , vn2)
∗] = σ2

x(µ
2
a)

1−δ̂(k1−k2)δ̂(sm1 − sm2)

·δ̂(vn1 − vn2)sinc(
2ρs△bk1k2

λr
)sinc(

2ρv△tk1k2
λ

)
(6)
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Figure 3. The equivalence analysis under the Tomo-SAR parameters of the

TerraSAR system. (a) sinc( 2ρs∆B
λr

) and exp(− 2π2ρ2

s
|∆B|2

3λ2r2
), (b) sinc( 2ρv∆T

λ
) and

exp(− 2π2ρ2

v
|∆T |2

3λ2 ). Parameters: off-nadir angle ξ = 23o, height of satellite H = 520Km,

height of target h = 0m, λ = 0.03125m.

where △bk1k2 = b⊥k1 − b⊥k2 , △tk1k2 = tk1 − tk2 , µa = exp(−σ2
θ). The terms sinc(·)

introduced in Eq. (6) represent the spatial decorrelation and temporal decorrelation,

and (µ2
a)

1−δ̂(k1−k2) represents the residual effects. Since sinc(x) ≈ 1− π2x2

6
≈ exp(−π2x2

6
)

for x → 0, under the condition of small interval ρs and ρv, sinc(
2ρs△bk1k2

λr
) and

sinc(
2ρv△tk1k2

λ
) are approximately equal to exp(−2π2ρ2s|△bk1k2|2

3λ2r2
) and exp(−2π2ρ2v|△tk1k2 |2

3λ2 ),

respectively, as shown in Fig. 3. Thus, Eq. (6) can be transferred to

E [xk1 (sm1 , vn1) xk2(sm2 , vn2)
∗] ≈ σ2

x(µ
2
a)

1−δ̂(k1−k2) · δ̂(sm1 − sm2)

·δ̂(vn1 − vn2) exp(−
2π2ρ2s|△bk1k2 |2

3λ2r2
− 2π2ρ2v|△tk1k2|2

3λ2 )
(7)

Based on the above analysis, we use the multiplicative factor ak = exp(−jθk) to

represent the residual phase effects, and introduce another two multiplicative factors

for 4-D scattering to account for the exponential term in Eq. (7). Mathematically,

dk(sm) = exp(−jνk(sm)) and τk(vn) = exp(−jϑk(vn)) resulting from spatial and

temporal decorrelation respectively are introduced to separate the scattering target xmn

from the decorrelated target xk (sm, vn)

xk (sm, vn) = akdk(sm)τk(vn)xmn (8)

According to Eq. (7), the correlation function of ak1 and ak2 is (µ2
a)

1−δ̂(k1−k2),

the correlation function of dk1(sm) and dk2(sm) is exp(−2π2ρ2s|△bk1k2 |2
3λ2r2

), and that of

τk1(vn) and τk2(vn) is exp(−
2π2ρ2v|△tk1k2 |2

3λ2 ). The common assumption that the temporal

decorrelation is of exponential decay [11, 17, 18, 27], is similar to ours, except that the

time constant of the coherence decay should be given firstly.
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3.2. Statistical model

Introducing the multiplicative factors of Eq. (8) into Eq. (2), each pixel of the resulting

SAR image can be generally expressed as

yk =
M
∑

m=1

N
∑

n=1

akdk(sm)τk(vn)Φ(k,m, n)xmn + wk. (9)

As a consequence, for each pixel, the signal model with the K considered acquisitions

can be written as

y =
M
∑

m=1

N
∑

n=1

a⊙ dm ⊙ τ n ⊙Φ(sm, vn)xmn +w (10)

where ⊙ is the Hadamard product, and the vectors of multiplicative noise a = exp(−jθ),

dm = exp(−jνm) and τ n = exp(−jϑn) are extensions from the case with one pair of

images. Then, their corresponding correlation matrices can be expressed as

Ra = exp(−2σ2
θ) e · eT + [1− exp(−2σ2

θ)] I

Rd = exp(−2π2ρ2s△b⊙△b

3λ2r2
) (11)

Rτ = exp(−2π2ρ2v△t⊙△t

3λ2
)

where e is a vector with all one elements. When temporal and spatial decorrelations

as well as residual phase resulting from atmospheric and deformation are ignored, the

above statistical D-TomoSAR model (Eq. (10)) is then simplified to the deterministic

one (Eq. (3)).

To derive elevation and deformation velocity estimation algorithms for the

general model, the vectors of multiplicative noise should be modeled with reasonable

distributions. Given the exponential expressions in Eq. (11), here θ, νm and ϑn are

modeled by zero-mean real multivariate Gaussian distributions, with their correlation

matrices given by

Rθ = σ2
θI

Rν = σ2
νe · eT − 2π2ρ2s△b⊙△b

3λ2r2
(12)

Rϑ = σ2
ϑe · eT − 2π2ρ2v△t⊙△t

3λ2

where σ2
ν and σ2

ϑ are the variances of the elements of ν and ϑ, respectively. Here we select

the minimum variance value to ensure the covariance matrix to be positive semidefinite

σ2
ν =

2π2ρ2s · eT(△b⊙△b)e

3λ2r2

σ2
ϑ =

2π2ρ2v · eT(△t⊙△t)e

3λ2
. (13)

With the above choice of σ2
ν and σ2

ϑ, the mean vectors of dm and τ n are given by

µd = µde

µτ = µτe (14)
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Table 1. µy,Ra,Rd and Rτ in the extreme case of σ2

θ , ρs, ρv.

σ2

θ , ρs, ρv µy Ra,Rτ ,Rd

∞ 0 · e I

0
M
∑

m=1

N
∑

n=1

Φ(k,m, n)xmn eeT

where µd = exp(−σ2
ν) and µτ = exp(−σ2

ϑ).

Finally, the multiplicative vectors affecting different sources are assumed to be i.i.d..

In terms of the statistical characteristics for the whole observed signal for a given stack,

according to Eqs. (10), (11) and (14), the mean vector and correlation matrix are

calculated by

µy = µaµτµd

M
∑

m=1

N
∑

n=1

Φ(sm, vn)xmn (15)

Ry =
M
∑

m=1

N
∑

n=1

(

HmnxmnRcx
H
mnH

H
mn

)

+ σ2
wI (16)

where Hmn denotes the diagonal matrix obtained by diagonalizing the vector Φ(sm, vn)

for m = 1, 2, · · · ,M and n = 1, 2, · · · , N , and Rc is given by

Rc = Ra ⊙Rτ ⊙Rd. (17)

In the correlation matrix expression (Eq. (16)), in addition to temporal and spatial

decorrelations and residual phase effects, there also exist channel decorrelation from

Hmn and additive noise decorrelation from σ2
w.

As can be seen from Tab. 1, for ρs → ∞ or ρv → ∞ or σ2
θ → ∞, there is a fully

incoherent effect affecting the target, and the mean value of signal acquired from the

mn-th scatterer goes down to zero. Therefore, no useful information can be found from

the observations to reconstruct the scattering distribution in the elevation-velocity plane

with the given signal model. On the contrary, when ρs = 0, ρv = 0 and σ2
θ = 0, the

target is fully coherent with the same random disturbances for different acquisitions, and

then the statistical model is simplified to the deterministic one. It’s worth noting that

when the intervals of different observations are short and ρs = 0, the target appears like

a point, that is why the reflectivity of point-like scatterers could be estimated effectively

with the deterministic model [1, 2, 6, 8]. When the proposed model of Eq. (9) is applied

in the case of TomoSAR by ignoring the deformation, different from the model in [11],

the spatial decorrelation effect is added and the temporal correlation matrix is derived

by system parameters.
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4. Data simulator and LMMSE estimator

4.1. Data simulator

Since the repeated pass data are necessary for algorithm study and system analysis

of multi-baseline InSAR, a simulator to generate observed stacks is designed based on

the general model in Eq. (10). In principle, a, dm and τ n for the mn-th scatter

are generated successively from the corresponding phase vectors, which are modeled by

zero-mean real multivariate Gaussian distributions with their corresponding correlation

matrixes. Then, Φ(sm, vn) and xmn over w are deterministically and randomly given

by the parameters of targets sm, vn and SNRmn. Finally, the data are produced by

substituting the parameters into Eq. (10).

However, due to the superposition of sparse scatterers into one pixel, the number

of scatterers Ns is much less than M ×N . In order to simplify the generation process,

we adopt the following sparse model instead of Eq. (10),

y =
Ns
∑

m=1

exp (jφm)⊙Φ(sm, vm)xm +w (18)

where φm represents the phase vector of all multiplicative disturbances, that is,

φm = θ + ϑm + νm. Thus, φm is of zero-mean real multivariate Gaussian distribution,

with correlation matrix Rφm
= Rθ +Rϑm

+Rνm
, and the generation of θ, ϑm and νm

are reduced to the generation of φm. Due to the positive definite property of Rφm
, we

decompose it using the Cholesky decomposition, that is,

Rφm
= E

(

φmφ
H
m

)

= E
(

Vφ̄mφ̄
H
mV

H
)

= VE
(

φ̄mφ̄
H
m

)

VH = VVH
(19)

where V is the lower triangular matrix of the Rφm
Cholesky decomposition, φ̄m follows

a real white Gaussian distribution with zero mean and covariance matrix I.

Accordingly, φm is generated by the product of V and φ̄m. Then, Φ(sm, vm) and

xm over w are deterministically and randomly given by the parameters of targets sm, vm
and SNRm (m = 1 · · ·Ns). The data simulation flowchart of the multi-baseline InSAR

is shown in Fig. 4.

4.2. LMMSE estimator

Subsequently, we design a Bayesian estimator for the unknown reflectivity x =

[x1 · · · xMN ] in Eq. (10) based on the LMMSE approach. According to the Bayesian

Gauss-Markov Theorem [28], the estimation of reflectivity x̂ is given by

x̂ = Fy (20)

where F is an LMMSE filter matching the proposed model

F = RxyR
−1
y . (21)
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Figure 4. Data simulation flowchart of multi-baseline InSAR.

Table 2. Two groups of scatterers’ parameters.

Group 1 Group 2
scatterer

series s v SNR s v SNR

1 −30m 0mm/yr 10dB −15m −1.5mm/yr 8dB

2 10m 0mm/yr 10dB 15m 1.5mm/yr 12dB

With the zero-mean white Gaussian assumption and variance σ2
x for the true reflectivity

x, the cross-correlation matrix Rxy and autocorrelation matrix Ry in Eq. (21) are

calculated using Eqs. (15) and (16)

Rxy = σ2
xµaµτµdΦ

H (22)

Ry = σ2
xRc ⊙ (ΦΦH) + σ2

wI (23)

where σ2
θ in µa and Rc is set to the maximum residual phase error according to the

accuracy of phase compensation which is not more than 1 empirically, σ2
x over σ2

w is

proportional to SNR, ρs and ρv are less than their respective Rayleigh resolutions,

and the other parameters are obtained from the aforementioned equations according to

system parameters.

5. Experiments

In this section, simulations on simple pixels and complex scene as well as real data

experiment are carried out to validate the practicality of the proposed statistical D-

TomoSAR model. The LMMSE estimator is employed for all the compared models,

where the LMMSE results of deterministic model and the extended D-TomoSAR model

from [11] are compared with the LMMSE results of the proposed model.
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Table 3. D-TomoSAR System parameters.

satellite off-nadir wavelength number

height angle ξ λ of images

520km 23o 0.03125m 27

Spatial baselines
temporal temporal

interval span regular case irregular case

32 days 7

3
years equal intervals uniform distributed

and baseline span is 300m in [-150m, 150m]

5.1. Simple pixels

First of all, two groups of simulated stacking data are generated corresponding to two

kinds of layover targets, whose parameters are listed in Tab. 2. Each kind of targets

is observed under the condition of repeated passes in cases of regular spatial baselines,

and irregular baselines with their irregularity following a uniform distribution. The

parameters are set close to the TerraSAR-X satellite [8]. All D-TomoSAR system

parameters are listed in Tab. 3. The signal-noise-ratio (SNR) is defined as

SNR = 10 lg(|x|2/σ2
w), (24)

where |x|2 is the intensity of the scatterers.

The LMMSE estimator is applied to the simulated data and the results are

shown in Figs. 5 and 6. In the first group of layover targets, two scatterers with no

deformations are set with σ2
θ = 0.16, elevation interval ∆s = 40m which corresponds

to 1.3595 times the elevation Rayleigh resolution, and SNR of two scatterers being

SNR1 = SNR2 = 10dB. As shown in Fig. 5, the elevation-velocity spectrums of two

close scatterers are separated and estimated by LMMSE under the extended model from

[11] and the proposed model, which demonstrates the effect of umcompensated phase.

In the second group of layover targets, two closer scatterers are set with σ2
θ = 0.09,

∆s = 30m and ∆v = 3mm/yr, which correspond to 1.0196 times the elevation Rayleigh

resolution and 0.5973 times the deformation velocity Rayleigh resolution, respectively,

SNR1 = 8dB and SNR2 = 12dB. It is observed from Fig. 6 that the LMMSE results of

the proposed model are more robust than those of other two models, which demonstrate

the effectiveness of the proposed spatial and temporal decorrelation effects. As expected

by comparing two groups of figures and both cases of regular and irregular baseline, the

sidelobe for the irregular case is higher than that of the regular one and the stronger

residual phase noise results in a higher sidelobe level.

5.2. Complex scene

Next, we validate the effectiveness of statistical D-TomoSAR model via 45 SAR images

generated by TerraSAR-X system parameters observed on an island digital elevation
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Figure 5. The estimated elevation-velocity spectrums of Group 1, where the red circles

represent the estimated positions by maximal detection, while the white asterisks

represent the true positions. The results of LMMSE under the condition of regular

sampling: (a) deterministic model; (b) the extended model; (c) the proposed model.

The results of LMMSE under the condition of irregular sampling: (d) deterministic

model; (e) the extended model; (f) the proposed model.

model (DEM). The DEM is shown in Fig. 7 (a), and the whole scene has a size of

2.25Km × 2.25Km. The 45 SAR images are observed without temporal difference. The

spatial resolution along azimuth-range direction is 3.30m × 2.04m. The multi-baselines

are regularly distributed with spatial interval 12m and a total span 528m. Fig. 7 (b)

shows one of the 45 SAR images. In order to facilitate the quantitative evaluation, 99

ground control points (GCPs) are placed evenly and shown in bright dots in Fig. 7 (b).

After preprocessing in Fig. 1, we applied the LMMSE estimator to the three

mentioned models. Then, the normalized elevation spectrum is obtained and the possible

elevation positions are found from the spectrum peaks. After the order of the model is

selected by the BIC criterion [29], the elevation is determined by the position of strong

peaks. Finally, the height profile of the whole image is obtained by elevation times the

sine of incidence angle.

Fig. 8 shows the height profiles estimated by the LMMSE estimator using the

three models in the azimuth-range plane. It is worth noting that when two scatterers
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Figure 6. The estimated elevation-velocity spectrums of Group 2, where the red circles

represent the estimated positions by maximal detection, while the white asterisks

represent the true positions. The results of LMMSE under the condition of regular

sampling: (a) deterministic model; (b) the extended model; (c) the proposed model.

The results of LMMSE under the condition of irregular sampling: (d) deterministic

model; (e) the extended model; (f) the proposed model.

are overlaid in one pixel only the point cloud of the stronger scatterer is shown. By

comparing the reconstructed results of Fig. 8 with truth height of Fig. 7 (a), it is

observed that all the three models are effective in reconstructing the height profile.

Subsequently, the relative accuracy is evaluated from the results of 99 GCPs, and the

number of effectively detected pixels in the whole SAR image is counted. The results

are listed in Tab. 4. It can be seen that the LMMSE under the proposed model is the

most accurate. Moreover, the number of effectively detected pixels under the statistical

model is the largest, which shows that the best reconstruction result has been achived

by our model for extended scatterers.

5.3. Real data

Finally, 20 passes real data acquired by the sensors of TerraSAR-X/Tandem-X, over

Terminal 3-E (T3-E) of the Beijing Capital International Airport, between 2012 and
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Figure 7. A complex scene. (a) The truth DEM; (b) one of the 45 SAR images.

0

20

40

60

80

100

120

140

160

(a)
0

20

40

60

80

100

120

140

160

(b)
0

20

40

60

80

100

120

140

160

(c)

Figure 8. LMMSE results of different model: (a) Deterministic model; (b) the

extended model; (c) the proposed model.

Table 4. Relative accuracy of 99 GCPs and comparison of the number of detected

pixels.

LMMSE based on Bic detector
Type of

model relative accuracy number of detected pixels

deterministic model 0.7743m 32891

extended model 0.5415m 32939

proposed model 0.5263m 32952

2014, are utilized for demonstration. Detailed information about the real data can be

found in [31]. One of the SAR intensity images is shown in Fig. 9 (a), where one

arbitrary overlayed pixel is chosen for validation. The selected pixel marked by the

red point is overlaid by the ground scatterer and eave scatterer. Fig. 9 (b) shows the

acquisition geometry of the selected pixel. The eave height relative to the ground is

about 27.7710m [31]. The LMMSE elevation-velocity spectrums of three models are

shown in Fig. 10. Table 5 lists the LMMSE results. It is observed that the result

of proposed model is the most accurate in terms of not only the height but also the

deformation velocity.
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Table 5. The estimated height and deformation velocity of two scatterers.

Type of model scatterer 1 (eave) scatterer 2 (ground)

deterministic model (56.7791m,-17.5mm/yr) (-4.2903m,19.9mm/yr)

extended model (27.8677m,-1.5mm/yr) (54.9238m,-17.5mm/yr)

proposed model (27.8677m,-1.5mm/yr) (0.0387m,2.7mm/yr)

 

(a)
 

(b)

Figure 9. T3-E of Beijing Capital International Airport. (a) TerraSAR-X intensity

image; (b) acquisition geometry of the red pixel.
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Figure 10. The LMMSE elevation-velocity spectrums of three models, where the

red circles represent the estimated positions by maximal detection: (a) Deterministic

model; (b) the extended model; (c) the proposed model.

6. Conclusion

Phase miscalibration resulting from the scattering changes from temporal and spatial

decorrelation effects as well as the residual effects after preprocessing is a primary factor

affecting the accuracy of elevation and deformation velocity in D-TomoSAR. In this

paper, the correlation of targets has been analysed theoretically according to the 4-D

imaging mechanism, and then a statistical model to account for phase miscalibration has

been proposed. Furthermore, a simulator for D-TomoSAR data generation is designed
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based on the proposed model, and an LMMSE estimator is derived to reconstruct the

scattering position in the elevation-velocity plane. Using the simulated stacking data

with realistic effects and SAR images observed by the TerraSAR-X/Tandem-X system,

the effectiveness of the proposed model was demonstrated by LMMSE estimation results.

In the future, we will consider using the statistical model for performance prediction

and system/algorithm design.
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Appendix A. Derivation of the Correlation Function

Based on Eqs. (4) and (5) and the definition of correlation function, the correlation

function of 4-D focusing can be derived:

E [xk1 (sm1 , vn1) xk2(sm2 , vn2)
∗]

= E [exp(jθk1 − jθk2)] ·

E







∫ sm1
+ ρs

2
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2
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+ ρv
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It is worth noting that once the interval division of the elevation direction is determined,

the elevation smi
and deformation vni

of the mini-th patch are determined for mi =

1, 2, · · · ,M , ni = 1, 2, · · · , N (i = 1, 2), and thus

δ(s1+sm1 , s2+sm2) = δ(s1, s2)δ̂(sm1 , sm2)

δ(v1 + vn1 , v2 + vn2) = δ(v1, v2)δ̂(vn1 , vn2)

for si ∈ (−ρs
2
, ρs

2
), vi ∈ (−ρv

2
, ρv

2
) (i = 1, 2). This is why δ̂(sm1 , sm2) and δ̂(vn1 , vn2)

appear in the third equation above.


