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Abstract 

Fibre steering is involved in the development of non-conventional variable 

stiffness laminates (VSL) with curvilinear paths as well as in the lay-up of 

conventional laminates with complex shapes. Manufacturability is generally 

overlooked in design and, as a result, industrial applications do not take 

advantage of the potential of composite materials. This work develops a design 

for manufacturing (DFM) tool for the introduction in design of the manufacturing 

requirements and limitations derived from the fibre placement technology. This 

tool enables the automatic generation of continuous fibre paths for 

manufacturing. Results from its application to a plate with a central hole and an 

aircraft structure – a windshield front fairing – are presented, showing good 

correlation of resulting manufacturable paths to initial fibre trajectories. The 

effect of manufacturing constraints is assessed to elucidate the extent to which 

the structurally optimal design can be reached while conforming to existing 

manufacturing specifications. 
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1 Introduction 

Fibre-reinforced composites are traditionally designed by stacking plies built 

with a discrete set of constant fibre orientation angles: 0°, ±45° and 90° [1]. 

These designs do not take full advantage of the potential of composite materials 

[1–3]. Performance improvements can be driven by the lay-up of curvilinear 

fibres [4,5], which benefits from a better stress distribution and an expanded 

design space [6,7]. Automated Fibre Placement (AFP) offers the capability of 

steering individual fibre tows over the surface of a laminate [1,5,8–10]. Due to 

the variation of stiffness properties associated with the continuous change in 

fibre orientation of a layer, these structures were termed as variable stiffness 

laminates (VSL) [11]. 

Design and manufacturing of composite structures are interdependent [12]. AFP 

presents a set of limitations that will affect the manufacturability and quality of 

designed variable stiffness laminates, such as minimum steering radius 

(smallest radius of the fibres that can be laid without significant defects, like 

local fibre buckling or ply wrinkling), minimum cut length (shortest length a tow 

can be laid in a controlled manner), and gaps and overlaps (defects introduced 

when a course, set of tows laid up in one machine pass, is not laid parallel to an 

adjacent one). For instance, tow kinking and wrinkling is noticed in the cylinders 

manufactured by Blom et al. [13] and Wu et al. [14]. Gaps and overlaps are 

observed in the cylindrical shells manufactured by Wu et al. [14] and the flat 
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plates manufactured by Tatting and Gürdal [15]. Recently, a new manufacturing 

technology called continuous tow shearing (CTS) has been developed, avoiding 

gaps and overlaps at the expense of thickness variation [16,17]. 

This type of non-conventional laminates shows an increasing interest from the 

specialised literature. An extensive review on design optimisation methods can 

be found in Ghiasi et al. [18] and Sabido et al. [19]. Design approaches include 

aligning the fibres with the principal stress trajectories and load paths [4,20–24] 

and using lamination parameters to find the optimal stiffness distribution [6,25–

40], which is followed by a retrieval of fibre orientations step [6,31,32]. These 

methods result in an optimal fibre angle distribution, where continuity of the 

distribution is not guaranteed and manufacturing constraints are difficult to 

impose. Discontinuities between neighbouring elements are noticed in the 

optimal fibre orientations in the work of [6,41,42]. The manufacturing of such 

designs with curvilinear fibres is not possible [42], and post-processing would 

be required [43]. For instance, introducing constraints to ensure continuity of 

fibre orientations could alleviate this issue [28,42,44,45]. 

In addition, to overcome this issue, many authors have employed a functional 

parametrisation to represent the fibre paths. This approach typically consists of 

optimising a reference path, and then, a ply is created by replicating this path, 

either by shifting the reference path in a specified direction (usually x- or y- axis) 

or by placing adjacent courses parallel to one another. The former leads to the 

occurrence of gaps and overlaps between adjacent courses, which may affect 

the performance of the laminate [46]; while the latter will likely result in kinks as 

the radius of the tows decreases to remain parallel to the reference path. 
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Linearly varying fibre angles, introduced in [47], has been widely used in the 

research [5,9,15,46,48–55]. To overcome the reduced design space of a linear 

fibre path representation, non-linear variations of fibre angles have also been 

proposed, for example by means of Lagrangian polynomials [56–58], Lobatto-

Legendre polynomials [59,60], Bezier curves [17,61,62], splines [63,64], B-

splines surfaces [41], NURBS (Non-Uniform Rational B-Splines) [65], and 

Lagrangian interpolation functions applied to a manufacturing mesh [66,67]. 

This method reduces the number of design variables an ease the consideration 

of manufacturing constraints while modelling continuous paths. However, the 

design space is limited due to the pre-specified set of possibilities [68]. A 

streamline analogy, also known as a fluid flow analogy, has been employed to 

compute continuous fibre paths from discrete fibre angles [4,21,23,31,59,69,70].  

Other manufacturing features are considered in design, such as minimum 

curvature radius [12,32,66–68,71–75] and minimum cut length [13]. For 

laminate analysis, studies have been conducted on capturing the influence of 

as-manufactured geometry and features such as gaps, overlaps, tow-drops and 

variable thickness for the analysis of VSL, by means of 3D FE models [48,76–

83], analytical methods [84] and experimental tests [13,81,85–87]. A review 

focused on analysis methods for buckling, failure and vibration was published 

by Ribeiro et al. [88] and on design for manufacturing by [89]. 

However, structural optimisation has been the subject of a larger body of 

research works, where manufacturability is usually neglected. As a result, few 

examples exist of practical applications of curvilinear fibre laminates. Besides 

the design of variable stiffness laminates, fibre steering becomes necessary in 
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high-complexity structures. Frequently, fibre paths cannot follow the designed 

constant fibre orientation in a layer due to the part geometry (e.g. double 

curvature), which is dealt manually on a case-by-case basis. Hence, generic 

capabilities for the design of fibre-steered laminates and analysis of 

manufacturing features are required [89]. 

A design for manufacturing (DFM) software tool is described in this work that 

enables the automatic modelling of fibre paths considering manufacturing 

constraints of fibre placement technologies. It provides a novel approach to 

consider manufacturability of laminates requiring fibre steering. Also, each fibre 

path is modelled explicitly and controlled independently, providing higher 

flexibility than existing methods. Thus, it contributes to improve the applicability 

of advanced laminate designs with curvilinear fibres in industry. Algorithms to 

generate continuous paths from discrete angles and to adapt fibre paths to 

manufacturing specifications are presented in section 2.1 and 2.2, respectively. 

The procedures to analyse manufacturing features, such as curvature radius 

and gaps and overlaps are explained in section 3. This tool is applied to a flat 

plate with a hole designed with curvilinear fibres and to an aircraft component – 

a windshield front fairing – with conventional fibre in section 4. The paper is 

concluded in section 5. 

2 Tool to design variable stiffness laminates for 

manufacturing 

A software tool for manufacturing analysis and optimisation of fibre steering 

named FIPAM (Fibre Paths for Manufacturing) has been developed. It provides 
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a post-processing of the design configurations from structural optimisation prior 

to manufacturing. This tool enables the automatic generation of fibre paths (i.e., 

machine trajectories), imposing manufacturing requirements. It is integrated in 

CATIA V5, where each path is modelled individually considering constraints to 

ensure manufacturability.  

A two-step approach is proposed that takes as input a discrete fibre angle 

distribution resulting from structural optimisation, which is initially imported in 

the CAD environment where the algorithms for Design for Manufacturing are 

implemented. The method for structural optimisation of variable stiffness 

laminates was developed by Peeters et al. [68,74,90,91] and comprises an 

optimisation of the stiffness distribution using lamination parameters [12] and a 

posterior fibre angle retrieval and optimisation [68,74,90,91]. Structural 

approximations of the Finite Element (FE) response are used to reduce the 

required number of FE analyses [92]. The problem is solved using successive 

approximations, and convergence is guaranteed by introducing a damping 

function to achieve conservative approximations [93].  

In the first step, the input fibre angles, representative of fibre trajectories for a 

ply, are translated into continuous reference paths using interpolation 

algorithms (algorithm 1 in section 2.1). Subsequently, manufacturable fibre 

paths are generated approaching previously defined references, presented in 

algorithm 2 in section 2.2. An extension to the above algorithm to enable tow-

dropping within a ply is described in section 2.3. Constraints for gaps and 

overlaps, minimum turning radius, course width and curve smoothness are 

implemented in the process in order to ensure the suitability of resulting fibre 
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paths to fibre placement technologies and compliance with specific 

manufacturing requirements. The objective is to minimise the angle deviation 

from the optimal fibre angle distribution. Methods need to be implemented to 

analyse whether a laminate design comply with the constraints. For this 

purpose, an algorithm to compute the gaps and overlaps of the fibre path 

design of a ply has been developed (algorithm 3 in section 3.1) and a method to 

calculate the steering radius of curvature of a path is presented in section 3.2. 

The complete approach is summarised in Figure 1. 

A case study of a flat plate with a central hole optimised for stiffness is used in 

subsequent sections to describe the algorithms. Continuity constraints were 

imposed to the structural optimisation procedure. The loading condition was 

shear force (1N) at the top and bottom edges. The boundary conditions were: 

all sides were restricted to move in z-direction, the top and bottom edges were 

simply supported and have to stay straight, and the top left node is also 

constrained in the first (x) and second (y) directions. 

2.1 Modelling of continuous fibre paths 

The objective of this step is to generate continuous paths following the optimal 

discrete fibre orientations. The procedure starts by creating a linear segment 

from an input starting point. The direction of the segment is obtained by 

interpolation of the fibre angle at the point from the optimal fibre angle 

distribution. A benchmark of different interpolation methods (e.g. nearest 

neighbour, akima) motivated the selection of the Kriging method for its better 

estimate of the intermediate values and computation time. Ordinary Kriging was 
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implemented using the library of functions XonGrid Interpolation, with the power 

variogram defined as [94]: 

��ℎ��� = ℎ��� ; 		��
ℎ	1 ≤ � ≤ 1.99 (1) 

Where ℎ denotes the spatial distance between two random variables (data 

points, �� and ��), expressed by the equation: ℎ�� = ���, ��� = ��� − ���. 
The length of the segment (i.e. fineness of the discretisation) is a constant value 

given as input. The endpoint of the segment is the starting point for the 

consecutive segment, where a new value for the fibre angle is determined using 

the Kriging interpolant. This process is repeated iteratively until the segments 

reach the boundary of the part or ply. From the resulting polylines, splines are 

modelled and smoothed using CATIA commands (Spline and Curve Smooth) to 

comply with the minimum turning radius constraint. The details of the smoothing 

operation are included in Figure 2 and the analysis of curvature is further 

explained in section 3.2.  

The accuracy of the curves (deviation from optimal angles) depends on the 

fineness of the discretisation (i.e. the length of the segments). Assuming the 

orientation of a segment to be always equal to the interpolated orientation at the 

starting point of this section introduces some inaccuracy to the generated curve. 

Alternatively, setting its orientation equal to the interpolated orientation of other 

point within the segment would also yield some deviation from optimal, as this 

issue is inherent to the discretisation approach.  
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However, this can be minimised by setting a sufficiently small segment length. 

Figure 3 shows an analysis of the effect of the segment length (normalised by 

the curve length for comparison) on both computation time and accuracy of the 

fibre path using two arbitrary starting points (Figure 3a) to generate a fibre path. 

Generally, a segment length of approximately 2% of the approximate total curve 

provides a good compromise between computation time (Figure 3b) and 

accuracy (Figure 3c). Further refinements of the segment length do not improve 

the accuracy. In addition, good accuracy is obtained as long as the segment 

length is lower than the distance between adjacent points from structural 

optimisation (mesh fineness of the FE used for structural analysis). The 

remaining deviations are due to: the accuracy of the Kriging interpolation, the 

fibre angle deviation between the direction of the centreline and the boundaries 

of the fibre path (a width of four tows has been considered — 25.4 mm), the 

difference between the optimal angles at the centreline and the path boundaries 

(only the centrelines of the fibre paths, which are the generated curves, follow 

the optimal fibre orientations). The impact of these factors depends on the curve 

features, as observed by the different slopes in the linear trend in Figure 3c. For 

example, the effect of the fibre angle deviation on parallel lines is accented in 

curves with higher curvature, which also indicates a higher variance of the 

optimal orientations between close points. 

The width of each course (machine pass) can be specified and the proportion 

between gap and overlap size (coverage) is controlled (Figure 4). The selection 

of next starting points is done iteratively based on the specified course width. 

Firstly, a point is chosen, which is contained in a parallel curve to the previous 
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path with an offset equal to the course width (the middle point by default). The 

proportion of gaps and overlaps between the original reference and the one 

created from the new starting point are computed (method further described in 

section 3.1). The position of the starting point is tuned until the required 

coverage is met (as guideline, less than five loops are enough for most curves). 

This procedure is summarised in algorithm 1. The ply design resulting from 

following the optimal angles may present large gaps and overlaps affecting the 

manufacturability of the laminate. For a single path, the location of the starting 

point along its length does not change the result aside from the effect of the 

segment length parameter, discussed earlier in this section. The selection of the 

initial starting point mainly influences the position of the resulting curves, but the 

general trajectories of the optimal discrete orientations are captured consistently 

through continuous paths, which are the input for the next step. For example, 

designs with different starting points do not produce intersecting curves. 

Algorithm 1 Modelling of continuous reference curves from discrete set of fibre orientations 
1. Select starting point 
2. Create segment following optimal angle at point 
3. Interpolate angle at end of segment 
4. Create new segment with the interpolated angle and the end of the previous segment 

as start point 
5. If curve is not finished (cover the surface) then go to 3 
6. Join the segments to create a polyline or store the points of start/end of segments to fit 

a curve. 
7. Curve fitting. Options: using the reference points as inputs, create cubic Bezier curves 

through two consecutive reference points, which are joined; create a general Bezier 
curve of n-degree using the reference points as control points; use the spline command 
of CATIA (creation of a NUPBS). 

8. Curve smoothing: measure minimum radius of curvature (section 3.2) and smooth the 
curve in case it does not comply with the minimum turning radius. 

9. Select next starting point and go to 2. The selection of the starting points is done 
iteratively, by choosing first a point contained in a parallel curve to the previous 
reference with an offset equal to the course width. The position of the starting point is 
tuned to comply with the defined proportion between gaps and overlaps. The method is 
as follows: 

a. Create continuous reference path (temporary) from chosen starting point. 
b. Analyse gaps and overlaps (algorithm 3 in section 3.1) between current curve 
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and previous one: max/min gap size (G_max and G_min) and max/min overlap 
size (O_max and O_min). 

c. Calculate coverage: ��� = (�_��� �_��!"#_��!)
#_��� �_��� ∙ 100 

d. Check if coverage matches constraints: 
If ( ����	– 	���_()*� > 	5	(tolerance	to	speed	up	convergence)) 

 {No compliance. Tune the distance (d) to the previous curve by creating a 
parallel from the current curve at a distance equal to: 

; = (���_()* − ���) ∙ (<_=>? + A_=>?)100  

Select a point on this new curve (by default the middle point) and go to (a) 
  Else 
     Remove temporary curves and Go to 2 (next reference path) 

2.2 Modelling of manufacture compliant fibre paths 

In a second step, new fibre paths for manufacturing are modelled approaching 

the previously defined paths. Choosing one curve as starting path, the method 

consists of defining a feasible region where the next path should be placed to 

comply with the specifications on course width, maximum gap and maximum 

overlap. The new path is created within this region trying to approach the 

trajectory of the closest reference curve from the first step. To create this 

manufacturable path, several equally distributed points are created on the 

current fibre path (initially, it is the starting path). The number of points or 

distance between points is defined at the beginning of the process. Distances 

are measured from these points to the target reference, normal to the current 

fibre path. The minimum distance to the target reference is used to calculate 

how many fibre paths would fit between the source current path and the target 

according to the course width. If there is no space between the current path and 

the target reference to create a path, then that reference is ignored and the next 

nearest reference is used. The feasible region where the fibre path must be 

contained to comply with the manufacturing constraints is defined by: a parallel 

curve to the current fibre path with a distance equal to the course width minus 
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the maximum overlap allowance, and a parallel offset of the course width plus 

the allowable gap (Figure 5). A set of control points (C_Pt) are generated by 

offsetting the points created on the current path at a distance normal to the path 

on the part surface (i.e. on the distance lines between current path and 

reference). These points must lie inside the feasibility region. For that purpose, 

the following formulas have been used (2): 

D�_E
(�) = F(A_=>? +<_=>?) ∙ ;(�) − ;_=�G;_=>? − ;_=�G
H + �I −<_=>?J ∙ KL ,

�M		 F;_=>? − ;_=�GK
NOH ≥ (A_=>? + <_=>?)J 

Q�_E
(�) = R;_=>? − ;_=�GK
NOH ∙ ;(�) − ;_=�G;_=>? − ;_=�G
H + �IS ∙ KL 	 ,

�M		 F;_=>? − ;_=�GK
NOH ≤ (A_=>?)J 

Q�_E
(�) = R;_=>? − ;_=�GK
NOH ∙ ( ;(�) − ;_=�G;_=>? − ;_=�G
H − 1) + �I + A_=>?S ∙ K	, <
ℎ)(��T) L 

(2) 

Where d_max and d_min denote the maximum and minimum distance between 

the current path and the reference, respectively; d(i) is the distance to the 

reference of the point(i) on the current path. G_max and O_max are the 

manufacturing constraints specified for maximum acceptable gaps and 

overlaps, respectively; ptbtw is the number of fibre paths that will be created 

between the current path and the reference; p is the path number; CW is the 

course width; and w	is a weight factor to decide whether giving more 

importance to the current path or the reference. The weight value is normally 

set to 1. Values lower than 1 will result in the fibre path closer to the reference 

and higher values result in a path closer to the current path. As generally gaps 
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are preferred over overlaps, the formulas prioritise the presence of gaps within 

the allowable limits; i.e. if possible, it will eliminate overlaps by using the 

maximum size of gaps permitted. Better fit to the reference curves (and hence, 

to the optimal fibre angles) is obtained by relaxing the manufacturing 

constraints. Figure 6 depicts an example of the approaching process to a 

straight line using different values for the maximum gap allowed.  

A spline is fitted through the calculated control points. The path smoothing 

algorithm described for the first step is also used here to ensure the created 

spline satisfies the constraint on minimum turning radius. A compromise 

between minimising angular deviation from the optimal trajectories and reducing 

gaps, overlaps and tow drop-offs is sought. The process is repeated until 

completion of the ply, using the new path as current path and the closest curve 

from the set of reference curves from the first step as new target to approach. 

The solution procedure is further explained in algorithm 2. Further details on the 

implementation of gap and overlap analysis and curvature analysis are provided 

in sections 3.1 and 3.2 respectively.  

Algorithm 2: Solution procedure to model fibre paths for manufacturing based on target 
approach method 

1. Input values: 

Set of reference curves 

Manufacturing constants: gap and overlap allowance, number of tows, tow width, gap 
between tows, minimum turning radius, maximum angle deviation allowed (optional) 

Settings: Accuracy of distance measurements (number of points on curve) and priority (in 
case not all constraints can be satisfied) 

2. Select starting path (= current path) 

3. Sort references according to distance to starting path and side with respect to it 

4. Define direction of movement (side) 

5. Find nearest reference. If Current path intersects reference (and intersections are not 
enabled) then, go to next reference; else, select that reference as target 

6. Measure minimum distance to target reference. Calculate Number of paths in between: 
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ptbtw= Round(d_min/CW). If ptbtw = 0, go to step 16; else: 

7. Calculate origin and end of current path where distances will be calculated. Distances are 
measured normal to current path 

8. Create points on current path equally distributed along the active segment 

9. Compute distances to reference measured normal to current path 

10. Create control points by offsetting the points on the current path along the distance lines 
between current path and reference using formulas described in (2) (objective: approach 
reference and stay in feasibility region) 

11. Fit a spline curve through the control points 

12. Split and extrapolate curve (fibre path) to cover the surface 

13. Check maximum curvature (section 3.2) and smooth new curve if necessary 

14. If maximum angle deviation constraint is used, constraints on gaps and overlaps may not 
be fulfilled. Analyse individual gaps/overlaps (algorithm 3 in section 3.1) between current 
path and new fibre path and tune position of fibre path if necessary to satisfy the constraint 
that is prioritised (either maximum gap or maximum overlap) 

15. Make Current path = new fibre path, and go to step 6 

16. Calculate if ply is completed. 

If reference = last reference on one side then, enable intersections (to ensure coverage of 
the ply) and go to step 5 

If Side has been completed then: select Starting path = Current path; change orientation 
(do the other side) and go to step 5 

If all references have been used then, End 

2.3 Tow-dropping 

Tow-dropping is a technique used in the manufacture of composite laminates, 

where fibre tows are individually dropped at the boundary of other paths or ply 

sectors. The algorithms described in previous sections did not consider tow-

dropping. This implied that each fibre path would cover the whole ply or surface 

of the part, starting and ending outside its boundaries, regardless of any overlap 

with adjacent non-parallel paths. By dropping the tows, the number of overlaps 

can be reduced (tows are cut when overlapping other courses); thus, the fibre 

paths can be designed with a better fit to the theoretically optimal fibre angles, 

as adjacent courses are allowed more variability while still complying with the 

overlap size constraint. However, it creates resin-rich areas [76], triangular 

voids, likely to be the onset of early failure [48].  
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The way the tows are dropped at the interface of other courses or ply contours 

is defined by the desired coverage. Coverage of 100% will prevent the presence 

of gaps and 0% will do the same for overlaps. Any coverage different from 

100% will result in the appearance of triangular gaps in the ply. Implementing 

tow-dropping requires modelling fibre paths up to a fibre tow granularity level 

and considering the minimum cut length (MCL) constraint, as there cannot be 

tow lengths below the MCL value. The introduction of the MCL constraint may 

lead to additional overlaps (if a path longer than necessary is laid up) or gaps (if 

the path is not laid up). 

The algorithm estimates the number of tow-drops necessary for the input 

conditions and the list of fibre paths. The goal would be to minimise the number 

of drops as they represent discontinuities in the ply lay-up. This process is 

executed after the modelling of fibre paths for manufacturing (section 2.2). 

When the contours of two adjacent courses intersect, tows will be dropped. The 

decision whether to drop the tows from one path or the other can be defined in 

the input variables (variable named Dropping Strategy). The method also 

estimates the percentage of material waste with respect to the ply area. Material 

waste is caused by the ends of the tows that lay outside of the ply surface of the 

component. Every time a course does not end perpendicularly to the ply contour 

(courses are cut normal to the path trajectory), there will be material beyond the 

ply. Having a tow shorter than the MCL on the boundary of a ply will lead to 

additional material waste, as the course needs to be extended outside of the 

ply. 
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3 Analysis of manufacturing features of variable stiffness 

laminates 

For the implementation of manufacturing constraints in the algorithms discussed 

in section 2, tools to analyse these manufacturing features are required. 

Specifically, methods to compute the gaps and overlaps of a particular fibre 

path design and to calculate the minimum curvature radius are presented. 

3.1 Analysis of gaps and overlaps 

Gaps and overlaps are automatically modelled in CATIA, which enables an 

evaluation of this design constraint and a visual representation in the model. 

The inputs are the set of fibre paths defining the ply, the course width and the 

ply shape (boundary of the ply on the part). Gaps and overlaps are calculated 

between pairs of adjacent paths iteratively. The fibre paths represent the 

centrelines of the courses. Parallel lines are created to model the edges of the 

courses with a distance of half the course width from the input path. The 

intersections between the outer edge of one path and the inner edge of the 

other are computed and sorted. The regions delimited by two consecutive 

intersection points and the path edges define either a gap or an overlap. It 

depends on the side of the outer and inner edges of the pair of paths. Metrics 

are calculated for these regions: maximum size of the gap or overlap and area 

of the gap or overlap. The process is repeated until all gaps and overlaps have 

been estimated. The procedure is summarised in algorithm 3. 

Algorithm 3: Solution procedure to compute gaps and overlaps 
1. Sort fibre paths so that they are consecutive 
2. Select two adjacent paths to start 
3. Compute edges (boundaries) of the fibre paths 

o Create parallel path: Distance = CourseWidth/2 
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o Extend and split parallel with curvature continuity to cover the surface 
4. Compute intersection points of adjacent fibre path boundaries 
5. Sort intersection points 
6. Identify whether area limited by intersection points and path boundaries represents a gap 

or an overlap (if there is no intersection, the whole area between the boundaries will be 
either a gap or an overlap) 

7. Perform measures of the gap/overlap regions: area and maximum size.  
8. Select next two adjacent fibre paths and return to step 3 
9. Calculate total area, maximum and minimum values of gaps and overlaps of the ply and 

percentage of gaps/overlaps regarding the area of the surface 
10. Generate a text file with the results: global gap/overlap values for the ply and individual 

gap/overlaps for each pair of adjacent fibre paths 

3.2 Measure of radius of curvature 

The curvature (]) is mathematically expressed as (3): 

](
) = ‖_``(
)‖ = ‖a`(
)‖ (3) 

] is the curvature, _ is a curve parametrised by its arc length, and a is the 

derivative of _, which is a unit vector tangent to the curve. The radius of 

curvature is the inverse of the curvature. For curves on surfaces, further 

measures of curvature can be defined: the geodesic curvature (]b), the normal 

curvature (]!), and the geodesic torsion (τr). The normal curvature is the 

curvature of the curve projected onto the plane containing the curve's tangent T 

and the surface normal n; the geodesic torsion measures the rate of change of 

the surface normal around the curve's tangent; and the geodesic curvature is 

the curvature of the curve projected onto the surface's tangent plane [95]. The 

latter measures how far the curve is from being a geodesic (curve with zero 

geodesic curvature). These magnitudes are related by the Frenet formulas, 

where the curvature verifies the following relationships (4): 

]c(
) = ]!c(
) +	]bc(
)	;			_``(
) = ]!(
) ∙ d(
) + ]b(
) ∙ (d(
) × a(
)) (4) 
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For fibre placement, the interest lies in the geodesic curvature. This is the 

magnitude that defines the steering of the fibres. Thus, it is the value to which 

the constraint on maximum allowable curvature is applied. The normal 

curvature will measure the curvature of the surface in the direction of the 

curve’s tangent. This induces a deflection of the fibres in the out-of-plane 

direction, which does not represent an issue. The placement head is positioned 

normal to the surface during lay-up, although certain tilt angle between the head 

and laying surface is possible. 

For flat surfaces, it is apparent that, given a null value of the surface’s curvature 

(]! = 0), the curvature at any point on the curve is equal to the geodesic 

curvature (]b = ]). Indeed, the geodesic curvature is just the usual curvature 

but when the curve is restricted to lie on a surface. 

As explicit parametrisations of the curves are not available when modelling 

curves in CATIA, the concept of curvature has been implemented through its 

geometrical interpretation. For space curves, the given minimum radius of 

curvature would be the radius of the osculating circle to the curve, in agreement 

with equation (3), instead of the geodesic curvature. The geodesic curvature at 

a point P can be calculated by doing the orthogonal projection of the tangents to 

the curve of two infinitely close points (_�
f� and _�
f + ∆
�		∆
 → 0) onto the 

tangent plane to the surface, and measuring the angle between them (see 

Figure 7). To avoid instability of the measurements, ∆
 ≥ 0.001	==. The 

minimum curvature is estimated by getting the minimum value of a sufficiently 

fine partition of the curve. 
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4 Results 

4.1 Design of flat square plate with a hole 

The variable stiffness design of a plate with a circular cut-out loaded in tension 

and optimised for strength has been undertaken. The details of the structural 

optimisation are found in Peeters et al. [68]. The laminate is composed of 6 

independent plies. The laminate is assumed to be balanced and symmetric, 

leading to a total of 24 layers (thickness of 4.6 mm). The manufacturing 

constraints and design of the case study is described in Figure 8. 

The optimal fibre angle distribution is converted to continuous fibre paths in the 

first step. A segment length of 10 mm was used to create the paths. These 

reference paths represent the structurally optimal paths, or the closest the 

optimal fibre angle distribution can be matched by continuous curves. Then, 

paths for manufacturing are modelled obeying the constraints on maximum gap 

and overlap. Initially, tow-dropping is not allowed and a constraint to limit the 

maximum allowable angle deviation from optimal has not been imposed. 

Otherwise, the combination of constraints may not lead to a feasible solution. 

Results for the reference paths and paths for manufacturing are depicted in 

Table 1 and Figure 9, including the respective analysis of gaps (in green) and 

overlaps (in blue). The resulting maximum angle deviation is lower than 22° for 

all plies and the average angle deviation is inferior to 8°. Locally, large angle 

deviations are observed due to the small gap size allowed. 

To further analyse the relationship between maximum angle deviation from 

structural optimal and gaps/overlaps, the design of ply 4 has been revised 

introducing a constraint on maximum allowable angle deviation of 5°. 
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Considering that the optimised ply had a maximum angle deviation = 17.66°, 

larger gaps and overlaps than the manufacturing requirements will appear. Two 

alternative designs have been modelled: (i) without prioritising between gaps or 

overlaps; (ii) prioritising the gap constraint. The results are shown in Table 2. 

For comparison, it includes the results for the reference paths (that correspond 

to a 0° maximum deviation constraint) and the optimal paths when the 

constraint is not imposed. It shows the reduction of gaps and overlaps as the 

maximum allowable angle deviation constraint is relaxed. The gaps and 

overlaps of each design are modelled in Figure 10. When introducing a 

constraint of 5° maximum angle deviation, the manufacturing constraints cannot 

be satisfied. 

Lastly, the number of overlaps can be avoided by dropping tows. Figure 11 

shows the ply with the modelling of tows. A Minimum Cut Length (MCL) of 80 

mm and a tow-dropping coverage of 10% were applied. The first design (no 

priority between gaps and overlaps) requires a total of 11 tow-drops, while the 

second one (priority to meet the gap constraint) needs 27 tow-drops. The 

reference paths would require a total of 22 tow-drops to remove overlaps of up 

to 12 mm in size while still presenting large gaps. The fibre paths for 

manufacturing without imposing the maximum allowable angle deviation 

constraint do not require tow-dropping, as it has been designed without 

overlaps. The constraint on maximum allowable angle deviation is applied to the 

centreline of the path. The resulting maximum angle deviation is a couple of 

degrees higher than the imposed constraint due to the effect of the course width 

and optimal orientations at points far from the paths’ centreline. 
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4.2 Design of a windshield front fairing 

This structure has a double curved shape with reinforcement areas. It is an 

aircraft component designed with conventional straight orientations (0°, ±45° 

and 90°). Thus, a fibre path design for manufacturing should be provided for 0°, 

45° and 90° fibre orientations. Given the symmetry of the structure with respect 

to X-axis, the -45° ply design is obtained from the +45° ply by symmetry with 

respect to XZ plane. The location of the part in the aircraft is shown in Figure 

12. 

The manufacturing constraints and case study are summarised in Figure 13. 

There is a minimum steering radius of 1000 mm, courses of 8 tows and a gap 

allowance of 2.5 mm. A constraint on maximum allowable angle deviation of ±3° 

must be satisfied. The objective is to provide a fibre path design complying with 

all the manufacturing constraints. If no feasible solution is possible within the 

available angle deviation, the compliance with the gap constraint is prioritised. 

The reference paths have been modelled with a segment length between 

interpolation steps (accuracy) of 10 mm. The number of overlaps of the 

reference paths represents the worst-case scenario, when no fibre angle 

deviations from the designed ply orientation are allowed. The fibre paths are 

modified for overlap minimisation using the allowed angle deviation of ±3°. The 

settings for the path modelling for manufacturing algorithm were: accuracy = 

250 points per path (number of control points, C_Pt,	per path) and weight = 1 

(parameter w	 in formula (2), section 2.2). The analysis of gaps and overlaps for 

the reference paths and the fibre paths for manufacturing are plotted in Figure 
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14. The results are presented in Table 3. The manufacturing optimisation 

enables a reduction of the overlap area with respect to the reference paths of 

26.3%, 57.3%, and 99.9% for 0°, 45° and 90° ply orientations, respectively. 

Furthermore, the maximum overlap size experiences a decrease of 4.7%, 

10.3% and 96.4% from the reference paths following constant angle 

orientations. The ±3° angle deviation freedom is proved insufficient to eliminate 

overlaps for 0° and 45° plies, which for the optimal paths reach sizes over 20 

mm, although the density of overlaps is significantly reduced. This lower area of 

overlaps will lead to fewer tow-drops if dropping tows is acceptable. For the 90° 

ply, the reference paths do not yield large overlaps and they can be completely 

eliminated with angle deviations below 3°. The gap area increases as a result of 

the objective to minimise overlaps, although in a much inferior proportion than 

the overlap area reduction, and, in every case, respecting the maximum 

allowable gap size constraint. The maximum size of overlaps does not show a 

substantial reduction. That can be explained by the accumulation of the ±3° 

angle deviation for subsequent paths. The ±3° are used to remove overlaps 

initially from the first paths, and then, as the new paths for manufacturing are 

already deviated that amount, no further deviation is allowed and the flexibility 

to modify the paths is constrained. From a global view of the ply, the density of 

overlaps and general size of overlaps between paths have improved 

considerably. However, high sizes can still appear locally between some 

individual adjacent paths. 
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5 Conclusions  

The potential of fibre steering is limited by current manufacturing constraints of 

fibre placement technologies and design specifications. A novel approach to 

automatically model fibre paths based on structurally optimised fibre angle 

distributions and considering manufacturing requirements is proposed. This 

approach enables to design variable stiffness laminates with curvilinear paths 

as well as conventional complex structures that require fibre steering. 

Algorithms are described that create continuous paths following a discrete fibre 

angle distribution and modify these fibre paths subject to constraints on gaps 

and overlaps, minimum steering radius, course width and minimum cut length. 

Each fibre path is modelled and controlled independently. The outcome is a set 

of manufacturable fibre paths. 

The algorithms have been successfully applied to design a series of structures 

with fibre steering for manufacturing by AFP. Complying with the specified 

manufacturing constraints and industrial specifications comes at the expense of 

fitness to the structurally optimal fibre angle distribution with the negative impact 

on the mechanical response. However, results show good correlation to the 

optimal fibre angle distribution. The design and manufacturing requirements are 

inputs that can be defined in the algorithms. With regard to the maximum 

allowable gap, maximum allowable overlap and maximum allowable angle 

deviation, only two out of three may be usually successfully imposed. The tool 

proposed in this research enables prioritising between these constraints. The 

algorithms are designed to minimise gaps, overlaps and angle deviation. 
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Therefore, solutions obtained will minimise the discrepancy with respect to 

those constraints not met for a particular case study. 

Overall, this tool improves the manufacturability of fibre-steered laminates by 

controlling gaps, overlaps and path curvature. Results are promising and 

indicate that high improvements in the manufacturability of variable stiffness 

laminates are possible through dedicated DFM methods and algorithms. As the 

manufacturing variables are captured in the design process, variance between 

designed and manufactured parts can be reduced. Future advances in the AFP 

technology and composite materials will help to foster the use of laminates with 

curvilinear fibres and extend their applicability, with special emphasis on the 

relaxation of the maximum steering constraint. 
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Figure 1. Approach for fibre path modelling for manufacturing, including for each step (boxes): 

input and output variables (left and right side of boxes), conditions and constraints applicable (in 

bold at top side of boxes), and enablers and algorithms used (in italic at bottom side of boxes). 

 



  

  

(a) Flowchart of procedure (b) Example of smoothing operation on a flat plate 

with a hole 

Figure 2. Curve smoothing approach to comply with minimum turning radius constraint 



  

33 

 

Figure 3. (a) Case study used and representation of modelled curves; (b) graph of the effect of 

refinement of interpolation on computation time; (c) graph of the effect of refinement on average 

angle deviation 
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(a) Coverage = 100% (b) Coverage = 50% (c) Coverage = 0% 

Figure 4. Generation of two reference curves on a plate with a hole with course width = 25.4mm 

and different input values for gap/overlap proportion (coverage) 

 

Figure 5. Process rationale to create fibre paths for manufacturing approaching reference 

curves 

 

Figure 6. Fibre paths to approach a straight line with different maximum allowable gaps and no 

overlaps 



  
 

Figure 7. Geometrical interpretation of curvature of a curve at point P 

 

Figure 8. Definition of case study for flat square plate with a hole: dimensions, design and 

manufacturing constraints 

    
(a) Ply 1: reference 

paths 
(b) Ply 1: paths for 

manufacturing 
(c) Ply 2: reference 

paths 
(d) Ply 2: paths for 

manufacturing 



  

    

(e) Ply 3: reference 
paths 

(f) Ply 3: paths for 
manufacturing 

(g) Ply 4: reference 
paths  

(h) Ply 4: paths for 
manufacturing 

    

(i) Ply 5: reference 
paths 

(j) Ply 5: paths for 
manufacturing 

(k) Ply 5: reference 
paths 

(l) Ply 5: paths for 
manufacturing 

Figure 9. Flat square plate with a hole: reference paths optimised for structures and paths 

optimised for manufacturing with gap and overlap analysis for each ply (green: gap and blue: 

overlap) 

  

(a) Maximum angle deviation (reference 
paths) 

(b) Maximum angle deviation = 5°, no priority 
between gap and overlap constraints 



  

  

(c) Maximum angle deviation = 5°, priority for 
gap constraint satisfaction 

(d) Maximum angle deviation = Not applied 

Figure 10. Gap and overlap analysis of different design solutions for ply 4 of flat square plate 

with a hole (gap: green and overlap: blue) 

 

 

(a) Tow-drops of reference paths. Number = 
22 tow-drops 

(b) Tow-drops of paths for manufacturing (max 
angle dev = 5°, and no priority between 

gap/overlap constraint). Number = 11 tow-
drops 



  

 

(c) Tow-drops of paths for manufacturing (max 
angle dev = 5°, and priority for compliance 

with gap constraint). Number = 27 tow-drops 

(d) Tow-drops of paths for manufacturing (max 
angle dev = not applied). Number = 0 tow-

drops 

Figure 11. Tow modelling of different design solutions with tow-dropping (coverage = 10% 

overlap; MCL= 80 mm) for ply 4 of flat square plate with a hole 

 
Figure 12. Location of windshield front fairing and axis system on aircraft 



   
Figure 13. Definition of case study for windshield front fairing: dimensions, design and 

manufacturing constraints 

  
(a) Ply 0°: reference paths (b) Ply 0°: manufacturing paths 

  
(c) Ply 45°: reference paths (d) Ply 45°: manufacturing paths 

  
(e) Ply 90°: reference paths (f) Ply 90°: manufacturing paths 

Figure 14. Gap and overlap analysis of reference paths and paths for manufacturing for 

windshield front fairing 
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Table 1. Flat square plate with a hole: Analysis of angle deviations of optimal paths for 

manufacturing 

  Ply 1 Ply 2 Ply 3 Ply 4 Ply 5 Ply 6 

Angle 

deviation 

Average (deg) 3.70 5.843 7.01 6.05 4.61 4.61 

Std deviation 

(deg) 
2.85 4.02 5.13 4.30 3.70 3.54 

Maximum 

value (deg) 
11.03 18.58 21.18 17.66 13.21 13.81 

Table 2. Analysis of results of ply 4 of flat square plate with a hole showing angle deviations, 

gaps and overlaps, and tow-drops that would be needed to remove the overlaps 

Case study Flat square plate with a hole 

Ply 4 

Constraint: maximum allowable angle deviation 
(deg) 0 5 5 

Not 
applied 
(>180) 

Additional conditions None None 
Priority for 

gap 
constraint 

None 

Maximum gap size (mm) 39.2 13.7 2.57 2.5 

Maximum overlap size (mm) 12.1 7.6 14.94 0.1 

Total gap area (%) 15.9 8.8 2.37 4.8 

Total overlap area (%) 7.0 2.8 18.91 0.01 

Average of angular deviation from optimal (deg) 0.96 3.3 3.92 6.05 

Maximum angular deviation from optimal (deg) 4.94 7.1 7.68 17.66 

Number of tow-drops to eliminate overlaps 22 11 27 0 

Are gap and overlap constraints met? NO NO NO YES 

Table 3. Analysis of results for the design of reference (Ref) and manufacturing (Mfg) fibre 

paths of windshield front fairing 

Case study Windshield front fairing 

Ply orientation (deg) 0 45 90 
Description Ref. 

Paths 
Mfg. 

Paths 
Ref. 

Paths 
Mfg. 

Paths 
Ref. 

Paths 
Mfg. 

Paths 
Constraint: maximum allowable 
angle deviation (deg) 

0 3 0 3 0 3 

Optimal starting path index --- 1 --- 29 --- 5 
Maximum overlap size (mm) 27.48 26.20 17.33 15.54 2.15 0.077 
Maximum gap size (mm) 2.58 2.498 2.59 2.54 2.56 2.56 
Total overlap area (%) 10.35 7.63 8.30 3.54 0.060 7.92E-5 
Total gap area (%) 0.65 0.91 0.90 1.59 1.79 2.17 

 


