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Abstract

Pentaerythritol tetranitrate reductase (PETNR) is a lavoenzyme possessing a broad substrate speciicity and is a member 

of the Old Yellow Enzyme family of oxidoreductases. As well as having high potential as an industrial biocatalyst, PETNR 

is an excellent model system for studying hydrogen transfer reactions. Mechanistic studies performed with PETNR using 

stopped-low methods have shown that tunneling contributes towards hydride transfer from the NAD(P)H coenzyme to the 

lavin mononucleotide (FMN) cofactor and fast protein dynamics have been inferred to facilitate this catalytic step. Herein, 

we report the near-complete 1H, 15N and 13C backbone resonance assignments of PETNR in a stoichiometric complex with 

the FMN cofactor in its native oxidized form, which were obtained using heteronuclear multidimensional NMR spectroscopy. 

A total of 97% of all backbone resonances were assigned, with 333 out of a possible 344 residues assigned in the 1H–15N 

TROSY spectrum. This is the irst report of an NMR structural study of a lavoenzyme from the Old Yellow Enzyme family 

and it lays the foundation for future investigations of functional dynamics in hydride transfer catalytic mechanism.

Keywords Pentaerythritol tetranitrate reductase · Flavoenzyme · Flavin mononucleotide · Backbone resonance assignment · 

Transverse relaxation optimized spectroscopy

Biological context

Pentaerythritol tetranitrate reductase (PETNR, EC 1.6.99.1) 

is a monomeric lavoenzyme that possesses a broad sub-

strate speciicity and is a member of the Old Yellow Enzyme 

(OYE) family of oxidoreductases (Toogood et al. 2010). 

PETNR was originally isolated from an Enterobacter cloa-

cae PB2 strain that was thriving on soil contaminated with 

explosives by exploiting nitrate esters as metabolic nitrogen 

sources (French et al. 1996). The catalytic cycle of PETNR 

has been thoroughly investigated using stopped-low tech-

niques (Khan et al. 2002, 2005; Basran et al. 2003) and it 

is understood that the reaction chemistry takes place via 

a bi–bi ping–pong mechanism, with NADPH as the pre-

ferred coenzyme (NADH also supports catalysis, but in a 

less eicient manner). The irst catalytic step, described as 

the reductive half-reaction, consists of the formation of a 

charge-transfer complex upon NAD(P)H binding, which 

enables subsequent hydride transfer from the nicotinamide 

ring C4 atom of NAD(P)H to the N5 atom of oxidized FMN 

 (FMNox). The second step of the reaction, the oxidative half-

reaction, is represented by hydride transfer from the N5 atom 

of reduced FMN to an α,β-unsaturated substrate and, in some 

cases, additional proton transfer from a solvent molecule. 

The speciic biological role of PETNR is unknown, as for all 

members of the OYE family of oxidoreductases (Williams 

and Bruce 2002). However, whilst the biological substrate 

has yet to be discovered, many studies have unveiled the pro-

miscuous nature of PETNR, as it catalyzes the reduction of a 

wide variety of α,β-unsaturated compounds, often with high 

speciicity and enantioselectivity towards desired products 

(Toogood et al. 2011). PETNR acts as an ene-reductase, by 

reducing 2-cyclohexenone and several steroids to their corre-

sponding alkanes, but also catalyzes the reduction of cyclic 

triazines, various explosives (e.g. pentaerythritol tetranitrate 

and trinitrotoluene) and nitrate esters (e.g. nitroglycerin). 
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Several mutagenesis studies have highlighted the versatil-

ity of PETNR in the asymmetric reduction of C=C bonds, 

leading to an increased interest in understanding the physical 

basis of the catalytic power of this enzyme (Mueller et al. 

2010; Fryszkowska et al. 2011; Toogood et al. 2011).

As well as having high potential to be used in biocatalytic 

processes, PETNR is an excellent model system for study-

ing hydride transfer reactions. Previous kinetic studies have 

revealed that quantum mechanical tunneling contributes to 

the enzymatic hydride transfer step from NAD(P)H to the 

FMN cofactor, as the reaction manifests elevated kinetic 

isotope efects (Basran et al. 2003). Moreover, fast protein 

dynamics have been inferred to contribute to catalysis from 

various temperature and pressure dependence studies, cou-

pled with the use of diferent isotopic labeling strategies 

(Pudney et al. 2009, 2013; Longbotham et al. 2016). How-

ever, the diference in reactivity of PETNR towards NADPH 

and NADH is still not clearly understood and the role of fast 

protein dynamics in catalytic events requires an atomistic 

description of the enzyme, as kinetic data alone cannot pin-

point or speciically isolate time-resolved structural changes. 

Herein, we report the near-complete, sequence-speciic 1H, 
15NH, 13Cα, 13Cβ and 13Cƍ backbone resonance assignments 

of PETNR in the PETNR:FMNox complex. The assignments 

provide a basis for further structural and functional stud-

ies by NMR spectroscopy, enabling more complex dynamic 

studies that can advance our understanding of enzymatic 

hydride transfer reactions.

Methods and experiments

All reagents were of analytical grade and were purchased 

from Sigma-Aldrich (UK), except for 15NH4Cl and 2H2O 

(> 99.9% purity), which were procured from Goss Scientiic 

Ltd. (UK) and 2H7,
13C6-D-glucose (> 98% purity), which was 

purchased from Cambridge Isotope Laboratories (USA).

Recombinant PETNR is expressed and puriied as a 

tight non-covalently bound PETNR:FMNox complex. A 

pBlueScript II SK(+) plasmid encoding the pONR1 gene 

was used for PETNR overexpression. The 2H,13C,15N-

labeled PETNR:FMNox complex (40 kDa) was expressed 

Fig. 1  1H–15N TROSY 

spectrum of 1 mM uni-

formly 2H,13C,15N-labeled 

PETNR:FMNox complex in 

50 mM potassium phosphate 

bufer (pH 7.0), recorded at 

298 K on an 800 MHz spec-

trometer. The full spectrum 

(a) and two expansions of the 

crowded regions (b) are shown. 

The assignment of the backbone 

amide resonances are indicated 

by sequence number and residue 

type
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in JM109 E. coli cells grown in 100% 2H2O modiied mini-

mal media, using 15NH4Cl and 2H7,
13C6-D-glucose as nitro-

gen and carbon sources, respectively. Cells were incubated 

at 37 °C with shaking at 200 rpm, until  OD600nm = 0.8–1.0, 

after which the temperature was lowered to 25 °C and 

PETNR overexpression was induced by the addition of 

0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). 

Cells were grown for a further 24 h before being harvested 

by centrifugation (6000 rpm for 15 min at 4 °C). All purii-

cation steps, which include ainity chromatography using 

a Mimetic Orange 2 column followed by Source 15Q anion 

exchange chromatography, were performed at 4 °C, as pre-

viously described (French et al. 1996; Barna et al. 2001). 

A inal yield of approximately 70 mg pure PETNR per liter 

of cell culture was obtained.

Following puriication, back exchange to amide protium 

atoms in the 2H,13C,15N-labeled PETNR:FMNox complex 

was promoted by mild destabilization using guanidine 

hydrochloride (GuHCl) as a denaturing agent, followed 

by rapid protein refolding. Partial unfolding of PETNR 

was initiated by mixing the sample (0.25 mM) in a 1:1 

ratio with 1.5 M GuHCl solution in 50 mM potassium 

phosphate buffer (pH 7.0), followed by incubation at 

room temperature for 120 min. Refolding of PETNR was 

achieved by rapid 30-fold dilution into 50 mM potassium 

phosphate bufer (pH 7.0), under vigorous stirring. The 

resulting sample was iltered using a 0.2 μm ilter-syringe 

to remove any precipitates, bufer-exchanged (to remove 

GuHCl) and concentrated using a Vivaspin 20 concentra-

tor (10 kDa MWCO, Sigma-Aldrich, UK). The concen-

tration of the PETNR:FMNox complex was estimated by 

measuring the FMN-speciic absorbance peak at 464 nm 

(ε = 11.3 mM−1  cm−1).

All NMR experiments were conducted with samples 

containing 1 mM 2H,13C,15N-labeled PETNR:FMNox com-

plex in 50 mM potassium phosphate bufer (pH 7.0) sup-

plemented with 1 mM  NaN3, 10% (v/v) 2H2O for the deute-

rium lock and 0.5% (v/v) trimethylsilyl propanoic acid (TSP) 

for chemical shift referencing. The samples (300 μL) were 

centrifuged for 10 min at 13,000 rpm before being trans-

ferred to 5-mm Shigemi tubes (Sigma-Aldrich, UK). All 

NMR experiments were recorded at 298 K on an 800 MHz 

Bruker Avance III spectrometer running TopSpin version 

3.2, equipped with a 5-mm 1H/13C/15N TCI cryoprobe and 

a Z-ield gradient coil. The backbone resonance assignment 

of PETNR was achieved using standard Bruker 1H–15N 

TROSY and TROSY-based 3D HNCA, HNCACB, HN(CO)

CACB, HN(CA)CO and HNCO triple resonance experi-

ments (Gardner and Kay 1998). The 3D experiments were 

acquired using non-uniform sampling with a sine-weighted 

multidimensional Poisson Gap scheduling strategy (Hyberts 

et al. 2013). 1H chemical shifts were referenced relative to 

the internal TSP signal, whereas 15N and 13C chemical shifts 

were referenced indirectly using nuclei-speciic gyromag-

netic ratios (Markley et al. 1998). NMR data were processed 

using TopSpin software version 3.2 and analyzed using Ccp-

Nmr Analysis software version 2.4 (Vranken et al. 2005).

Resonance assignment and data deposition

Using conventional TROSY-based 3D heteronuclear experi-

ments, sequential backbone assignment of PETNR in the 

PETNR:FMNox complex was achieved to a great extent, 

with 97% of backbone amide groups successfully assigned 

(333 out of 344 non-proline residues) in the 1H–15N TROSY 

spectrum (Fig. 1). A similar degree of assignment (97%) 

was achieved for the corresponding 13Cα, 13Cβ and 13Cƍ reso-

nances: 354 out of all 364  Cα atoms, 320 out of all 330  Cβ 

atoms and 354 out of all 364 Cƍ atoms. The chemical shift 

assignments have been deposited in the Biological Mag-

netic Resonance Bank (BMRB: http://www.bmrb.wisc.edu/) 

under the accession number 27224.

The assignment extends the list of large molecular sys-

tems that have undergone essentially complete backbone 

assignment, at a time where limits are being pushed with 

studies of very large biological systems (Sprangers and Kay 

2007). The assignment of PETNR was facilitated by the wide 

dispersion and favorable line shape of the resonances in the 
1H–15N TROSY spectrum, attributed to the globular folded 

structure, isotopic labeling strategy and correlation time 

of the complex (21 ns). There are ten residues that remain 

Fig. 2  Cartoon representation of the crystal structure of the 

PETNR:FMNox complex [PDB: 5LGX (Kwon et  al. 2017)], high-

lighting the extent of backbone amide resonance assignments. 

Assigned residues are colored light orange (for α-helices and loops) 

and pale green (for β-strands), with unassigned residues shown in 

red and proline residues in purple. The non-covalently bound FMN 

cofactor is depicted as yellow sticks

http://www.bmrb.wisc.edu/
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unassigned in the 1H–15N TROSY spectrum (A2, G34, 

G115, H184, S206, E272, T273, D274, L275 and A276), 

which are mainly located in a mobile loop (E272–Y281), 

at the N-terminus and in other solvent-exposed regions of 

PETNR (Fig. 2). The E272–Y281 loop is located at the edge 

of the substrate-binding pocket of the active site, but is sol-

vent exposed in the PETNR:FMNox complex and residues 

T273–A284 have high temperature factors and limited sec-

ondary structure, as it has been observed from crystallo-

graphic data (Barna et al. 2001). Thus, both conformational 

exchange and solvent exchange are probably the source of 

signal attenuation beyond detection in the 1H–15N TROSY 

spectrum for residues E272, T273, D274, L275 and A276. 

Residue A2, located at the N-terminus, and residues G34, 

G115 and S206, located at the surface of PETNR, could 

not be assigned since their 1H–15N TROSY correlations are 

likely attenuated due to fast exchange with solvent. Resi-

due H184 is known to be involved in substrate coordination 

(Barna et al. 2001) and, in the absence of bound substrate, 

will probably be undergoing conformational exchange on the 

millisecond timescale.

An empirical prediction of the secondary structure ele-

ments of PETNR in the PETNR:FMNox complex was per-

formed by uploading the backbone 1HN, 15N, 13Cα, 13Cβ and 
13Cƍ chemical shift assignments to the TALOS-N webserver 

(Shen and Bax 2013). The results of the prediction are illus-

trated in Fig. 3, along with a comparison of the secondary 

structure present in the crystal form of the complex. The 

prediction derived from the NMR data is in very good agree-

ment with the crystallographic data, with all the speciic 

elements of the eight-stranded α/β barrel (TIM barrel) pre-

dicted accurately. The results provide high conidence in the 

assignments of the PETNR:FMNox complex.
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