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Abstract

Sediment fingerprinting estimates sediment source contributions directly from river

sediment. Despite being fundamental to the interpretation of sediment fingerprinting

results, the classification of sediment sources and its impact on the accuracy of source

apportionment remain underinvestigated. This study assessed the impact of source

classification on sediment fingerprinting based on diffuse reflectance infrared Fourier

transform spectrometry (DRIFTS), using individual, source‐specific partial least‐

squares regression (PLSR) models. The objectives were to (a) perform a model sensi-

tivity analysis through systematically omitting sediment sources and (b) investigate

how sediment source‐group discrimination and the importance of the groups as actual

sources relate to variations in results. Within the Aire catchment (United Kingdom),

five sediment sources were classified and sampled (n = 117): grassland topsoil in three

lithological areas (limestone, millstone grit, and coal measures); riverbanks; and street

dust. Experimental mixtures (n = 54) of the sources were used to develop PLSR

models between known quantities of a single source and DRIFTS spectra of the mix-

tures, which were applied to estimate source contributions from DRIFTS spectra of

suspended (n = 200) and bed (n = 5) sediment samples. Dominant sediment sources

were limestone topsoil (45 ± 12%) and street dust (43 ± 10%). Millstone and coals

topsoil contributed on average 19 ± 13% and 14 ± 10%, and riverbanks 16 ± 18%.

Due to the use of individual PLSR models, the sum of all contributions can deviate

from 100%; thus, a model sensitivity analysis assessed the impact and accuracy of

source classification. Omitting less important sources (e.g., coals topsoil) did not

change the contributions of other sources, whereas omitting important, poorly‐

discriminated sources (e.g., riverbank) increased the contributions of all sources. In

other words, variation in source classification substantially alters source apportion-

ment depending on source discrimination and source importance. These results will

guide development of procedures for evaluating the appropriate type and number

of sediment sources in DRIFTS‐PLSR sediment fingerprinting.
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1 | INTRODUCTION

Sediment occurs naturally in rivers across the world. Yet excessive

sediment is damaging to the ecological and biochemical state of river

systems and causes increased water treatment and infrastructural

maintenance costs (Béjar, Gibbins, Vericat, & Batalla, 2017; Grove,

Bilotta, Woockman, & Schwartz, 2015; Jones et al., 2012; Kemp, Sear,

Collins, Naden, & Jones, 2011; Selbig, Bannerman, & Corsi, 2013; Tay-

lor & Owens, 2009). Sediment in a river generally originates from the

upstream channel and catchment through processes of soil erosion

(Rickson, 2014); geomorphic processes (e.g., bank erosion and land-

slides; Vanmaercke, Ardizzone, Rossi, & Guzzetti, 2016); and other

landscape disturbances (e.g., cattle trampling, vehicle combustion, road

construction; Bilotta, Brazier, & Haygarth, 2007; Rossi et al., 2013;

Vercruysse, Grabowski, & Rickson, 2017). Therefore, identification

and quantification of the different “origins” of river sediment (i.e., sed-

iment sources) are essential to improve scientific understanding of

sediment transport processes (Fryirs & Brierley, 2013; Grabowski &

Gurnell, 2016) and develop targeted sediment management solutions

(Collins et al., 2017).

One approach to investigate sediment sources is sediment finger-

printing, which estimates sediment source contributions directly from

the river sediment (Collins et al., 2017; Collins & Walling, 2004; Davis

& Fox, 2009; Mukundan, Walling, Gellis, Slattery, & Radcliffe, 2012;

Owens et al., 2016; Walling, 2013). Sediment fingerprinting requires

classifying potential sediment sources within the catchment (based

on attributes such as land cover and geology) and selecting source‐

specific sediment properties (i.e., the fingerprint) to develop statistical

models that describe the relationship between sediment properties of

river sediment and sediment source contributions (Davis & Fox, 2009;

Walling, 2013).

Therefore, classification of potential sediment sources within the

studied area is the foundation on which the statistical approach to

sediment fingerprinting is based (Pulley, Foster, & Collins, 2017). The

results of sediment fingerprinting are only useful if the sediment

source classification is a good representation of the actual river sedi-

ment, that is, if all dominant sediment sources are correctly identified

and included into the statistical modelling (Collins & Walling, 2004;

Davis & Fox, 2009; Haddadchi, Ryder, Evrard, & Olley, 2013; Koiter,

Owens, Petticrew, & Lobb, 2013). Yet although uncertainty in many

aspects of the analytical process of sediment fingerprinting has been

more explicitly quantified in recent research (Collins, Walling, Webb,

& King, 2010; Cooper, Krueger, Hiscock, & Rawlins, 2014; Koiter

et al., 2013; Laceby et al., 2017), for example, by using Bayesian

uncertainty estimation frameworks (e.g. Cooper, Krueger, et al.,

2014; Moore & Semmens, 2008; Nosrati, Govers, Semmens, & Ward,

2014) or Markov Chain Monte Carlo algorithms (e.g., Collins et al.,

2010; Palazón, Gaspar, Latorre, Blake, & Navas, 2015; Wilkinson,

Olley, Furuichi, Burton, & Kinsey‐Henderson, 2015), important

uncertainties remain concerning the impact of source classification

on sediment fingerprinting results (Collins et al., 2017; Davis &

Fox, 2009; Haddadchi et al., 2013; Laceby & Olley, 2015; Mukundan

et al., 2012; Owens et al., 2016).

To this end, research has investigated the possibility of classifying

potential sediment sources more objectively using cluster analysis to
distinguish statistically significant source groups (Walling &

Woodward, 1995; Walling, Woodward, & Nicholas, 1993); select

source groups based on the similarity between source material and

river sediment (Pulley, Foster, & Collins, 2017); and test the effect of

multiple source‐group configurations and different composite finger-

print properties (Pulley & Collins, 2018). However, this type of

research is mainly focussed on traditional sediment fingerprinting

techniques based on a single mass balance equation combining all

classified sources (Carter, Owens, Walling, & Leeks, 2003; Collins &

Walling, 2004; Walling & Woodward, 1995). Approaches based on a

mass balance equation are constrained by the boundary condition

that the sum of all source contributions must add up to 100%, even

if there might be a source missing in the classification. Contrarily,

sediment fingerprinting using individual, source‐specific statistical

models can theoretically be used to assess whether all important

sediment sources are indeed identified (i.e., if all individually estimated

source contributions sum up to approximately 100%). For example,

experimental mixtures of sediment sources (i.e., mixtures of known

quantities of the classified sources) can be used to calibrate source‐

specific regression models (i.e., regression between known quantities

of a source in the mixtures and sediment properties of suspended

sediment, SS), so that each regression model individually estimates

the relative contribution (%) of one source. A sum of the estimated

source contributions close to 100% can then be interpreted as an

indication that all dominant sediment sources were correctly identified

(Legout et al., 2013; Poulenard et al., 2009; Poulenard et al., 2012).

However, different model uncertainties are associated with the

regression models, so that it remains uncertain to what extent the

deviation from 100% is caused by these model uncertainties or to

the initial classification of sediment sources (i.e., whether a source

might be missing or redundant).

To the authors' knowledge, no study has explicitly tested the

impact of source classification on source apportionment using

individual, source‐specific regression models and thus tested the

hypothesis that individual models produce representative source

apportionments. Therefore, this study assesses the impact of source

classification on sediment fingerprinting, based on diffuse reflectance

infrared Fourier transform spectrometry (DRIFTS) using individual,

source‐specific partial least‐squares regression (PLSR) models. To this

end, the specific objectives are to (a) perform a model sensitivity

analysis by systematically omitting sediment sources from the

classification and (b) investigate how sediment source‐group discrimi-

nation and the importance of the groups as actual sources relate to

variations in results.
2 | METHODS

2.1 | Study area

The study was applied to the River Aire catchment, upstream of the

City of Leeds (United Kingdom). The River Aire has a total catchment

area of 879 km2 (690 km2 upstream of Leeds), with a mean annual

water discharge of 15 m3 s−1 entering the city and a mean rainfall of

1,018 mm year−1 (1961–2017). The geology of the catchment is



3404 VERCRUYSSE AND GRABOWSKI
Carboniferous with the lower reaches defined by the coal measures

(31%; siltstone, mudstone, and sandstone) and an area in the middle

with millstone grit (46%; sandstone), and the higher part of the

catchment is mainly characterised by limestone and shale formations

(23%; British Geological Survey, 2016; Figure 1). The soils in the Aire

catchment are predominantly poorly draining loamy and clayey soils.

The upper part is characterised by raw oligo‐fibrous peats and

stagnohumic and stagnogley soils, and the lower and middle part by

brown earths and pelo‐stagnogley soils (Carter et al., 2003). Land

cover in the catchment is predominantly grassland (59%) and

urbanised area (25%), and the rest of the catchment is covered with

moorland (12%) and scattered arable land (4%; Morton et al., 2011).
2.2 | Sediment data

2.2.1 | Sediment source classification and sampling

In a previous sediment fingerprinting study in the upper reaches of the

River Aire, sediment sources were classified in two separate classifica-

tions: one based on land cover (arable land, grassland and woodland,

and urban) and another based on geology (limestone, millstone grit,

and coal measures; Carter et al., 2003). The study showed that the

contribution of arable and woodland upstream of Leeds were negligi-

ble. Therefore, both classifications were merged into five potential

sediment sources in this study: uncultivated grassland topsoil from

the limestone and shale area (“limestone,” L); millstone grit area

(“millstone,” M) and coal measures area (“coals,” C); eroding riverbanks

(“riverbank,” R); and urban street dust (“urban,” U; Figure 1).
FIGURE 1 Aire Catchment (United Kingdom; WWF, 2017), including loc
source sampling (land cover data: LCM2007, Morton et al., 2011)
Locations for source material sampling were identified based on

accessibility and guided by areas most prone to erosion based on

the revised universal soil loss equation (Renard, Foster, Weesies, &

Porter, 1991). A total of 117 source samples were taken, which

included three subsamples taken within 1 m2 at each soil sampling

location. Samples from grassland topsoils (21 locations × 3) and

subsoil samples from eroding riverbanks (12 locations × 3) were

collected using a nonmetallic trowel (Figure 1). For riverbank

sampling, locations were selected with public access to the river,

and only visibly eroding areas were sampled. For the topsoil samples,

the surface (top 5 cm) of the topsoil was sampled to ensure that

only the material likely to be eroded and transported to the river

was collected (Carter et al., 2003; Cooper, Krueger, et al., 2014;

Martínez‐Carreras et al., 2010; Pulley, Foster, & Antunes, 2015).

Street dust samples (18 samples) were collected along road drains

using a dustpan and brush (or trowel when wet; Cooper, Krueger,

et al., 2014; Pulley et al., 2015).
2.2.2 | Fine river sediment sampling

Between June 2015 and March 2017, SS samples (n = 200) were

collected with a depth‐integrating SS sampler during individual

precipitation events at a single location in the river within the city

centre of Leeds (Figure 1). The median particle size of SS in the River

Aire ranges between 5.2 and 13.3 μm (Carter, Walling, Owens, &

Leeks, 2006; Walling et al., 2003). Additionally, to investigate the

contribution of sediment sources to the fine, mobile sediment along
ations for suspended sediment, channel bed sediment, and sediment
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the profile of the river, five grab (i.e., bed sediment, BS) samples were

taken by removing surficial fine sediment off the channel bed using a

metal bucket that was scraped along the surface of the bed in the

middle of the river (between June 16 and 18, 2016; Figure 1).
2.3 | Sediment fingerprinting

The sediment fingerprinting technique applied in this study is based on

the approach developed by Poulenard et al. (2009), which uses

DRIFTS to identify sediment source fingerprints. The approach

consists of three steps: (a) analysis of sediment samples with DRIFTS;

(b) sediment source discrimination; and (c) development of statistical

regression models to estimate source contributions to the SS. Further-

more, an additional fourth step was added in this study to test the

sensitivity of the regression models to source classification.
2.3.1 | DRIFTS analysis of sediment samples

BS and sediment source samples were wet sieved to retain the

<63 μm fraction to reduce the effect of particle size variations on

source attribution and spectral distortion (Laceby et al., 2017;

Poulenard et al., 2009). All sediment and soil samples (SS, BS, and

sources) were then filtered on quartz fibre filters and oven‐dried for

2 hr at 105°C (Cooper, Krueger, et al., 2014; Pulley et al., 2015). The

filters containing sediment were scanned with DRIFTS using a Bruker

Vector 22 and a Perkin Elmer Spectrum Spotlight 200 spectrometer at

a 4 cm−1 resolution across the 4,000–400 cm−1 spectrum with 32

co‐added scans per spectrum. The data were processed using the

software provided by the manufacturer of the spectrometers. A mini-

mum of 20 mg of sediment was required on the filters to prevent

interference from the filter substrate.

The average spectra of the three subsamples of the soil material

were used for further analysis (Brosinsky, Foerster, Segl, & Kaufmann,

2014; Evrard et al., 2013; Poulenard et al., 2009; Poulenard et al.,

2012). Preprocessing techniques were applied to the DRIFTS spectra

to reduce additional noise. Mean‐centring and filtering using a

Savitzky–Golay algorithmwere applied, as a combination of those tech-

niques has been shown to improve results in similar studies (Cooper,

Rawlins, Lézé, Krueger, & Hiscock, 2014; Martínez‐Carreras et al.,

2010). To avoid CO2 interference in the area between 2,400 and

2,300 cm−1, only the ranges 3,800–2,400 cm−1 and 2,300–650 cm−1

were used for further statistical analysis (Poulenard et al., 2009).
2.3.2 | Sediment source discrimination

A general step in sediment fingerprinting is to compare the sediment

characteristics of the source material with the river sediment to test

whether sources can be discriminated between each other and the

river sediment and whether the sediment properties behave conserva-

tively (Collins et al., 2017). Poulenard et al. (2012) tested the conserva-

tive behaviour of DRIFTS properties by placing microporous bags with

source material in the river and found that the properties did not

change significantly after 2 weeks. Conservatism was not further

tested, but source material and river sediment were compared through

visual inspection of the DRIFTS spectra. Furthermore, a discriminant

analysis (DA) was performed on the source material.
Visual interpretation

The DRIFTS spectra were examined visually to assess any major

differences between the source samples as a geochemical indication

for discrimination. DRIFTS spectra of soils are controlled by the

differential reflectance and absorbance characteristics of sediment

properties and especially characterised by absorption peaks caused

by inorganic fractions such as clays, silica, and carbonates in combina-

tion with organic matter (Reeves III, 2012). Due to spectral distortions

and overlapping of absorption peaks, DRIFTS spectra cannot be used

to directly quantify the sediment composition without calibration with

quantitative reference. Therefore, inspection of the spectra was done

to provide semiquantitative information on differences in sediment

composition between sediment sources (Poulenard et al., 2012;

Reeves III, 2010). If calibration would be performed, source variability

ratios can be calculated to quantify the differences between property

concentrations between source groups (Pulley et al., 2015).

Discriminant analysis

Statistical techniques were then applied to test whether the source

samples can be statistically discriminated based on their respective

DRIFTS spectra. First, a principal component analysis (PCA) was

performed on the preprocessed DRIFTS spectra. Second, a DA based

on Mahalanobis distances was performed using the PCA scores as

input data (Poulenard et al., 2009; Stevens & Lopez, 2015).

Mahalanobis distances are expressed in standard deviations and

therefore provide a statistical measure to assess whether the DRIFTS

spectra of source samples are significantly different from each other.

Based on the results of the DA, sediment sources with sufficient

discriminatory power based on their respective DRIFTS spectra are

retained for analysis.
2.3.3 | Unmixing model development

To estimate sediment source contributions directly from the DRIFTS

spectra of SS and BS samples, statistical unmixing models were

calibrated with experimental mixtures. A total of 54 experimental

mixtures were prepared containing variable, known quantities of soil

from the sediment sources (Table 1). To do this, a reference sample

of each of the sources was created by mixing equal quantities of all

individual source samples, which was then used to create mixtures

containing different sources. The design of experimental mixtures

results in a multivariate regression problem between the

(preprocessed) DRIFTS spectra (X predictors) of the experimental

mixtures and the weight contributions of the sediment sources

(dependent Y variables). Spectral data are highly correlated and noisy,

containing much more variables than samples; hence, a simple

multivariate regression is not suitable. Therefore, PLSR was used

because it is better able to handle this type of data (Karaman et al.,

2013; Martens & Martens, 2000; Wold, Sjostrom, & Eriksson, 2001).

Five separate PLSR models were developed (i.e., one for each

source): PLSRL (limestone), PLSRM (millstone), PLSRC (coals), PLSRR

(riverbank), and PLSRU (urban street dust; Figure 2a). PLSR works by

maximising the covariance between two datasets based on the

respective scores (Stevens & Lopez, 2015). X‐scores (U) are computed

as linear combinations of the original X variables with a set of weights



TABLE 1 Set of experimental mixtures for PLSR‐model calibration

Topsoil

Riverbank
Street
dustLimestone Millstone Coals

Mix1 25% 25% 25% 25%

Mix2 25% 25% 25% 25%

Mix3 33% 33% 33%

Mix4 10% 20% 40% 30%

Mix5 40% 10% 20% 30%

Mix6 20% 40% 25% 15%

Mix7 10% 40% 20% 30%

Mix8 40% 10% 20% 30%

Mix9 20% 40% 25% 15%

Mix10 25% 25% 25% 25%

Mix11 25% 25% 25% 25%

Mix12 25% 25% 25% 25%

Mix13 20% 30% 30% 20%

Mix14 20% 30% 30% 20%

Mix15 60% 20% 20%

Mix16 30% 30% 40%

Mix17 50% 25% 25%

Mix18 20% 20% 60%

Mix19 20% 40% 40%

Mix20 40% 50% 10%

Mix21 80% 20%

Mix22 80% 20%

Mix23 10% 90%

Mix24 10% 90%

Mix25 75% 25%

Mix26 25% 75%

Mix27 100%

Mix28 10% 50% 40%

Mix29 80% 15% 5%

Mix30 60% 10% 30%

Mix31 10% 90%

Mix32 90% 10%

Mix33 10% 90%

Mix34 90% 10%

Mix35 100%

Mix36 10% 50% 40%

Mix37 85% 15%

Mix38 60% 15% 25%

Mix39 10% 90%

Mix40 90% 10%

Mix41 10% 90%

Mix42 90% 10%

Mix43 100%

Mix44 50% 40% 10%

Mix45 80% 10% 10%

Mix46 30% 40% 30%

Mix47 100%

Mix48 10% 50% 40%

Mix49 80% 10% 10%

Mix50 60% 10% 30%

(Continues)

TABLE 1 (Continued)

Topsoil

Riverbank
Street
dustLimestone Millstone Coals

Mix51 10% 90%

Mix52 90% 10%

Mix53 10% 90%

Mix54 90%

Note. PLSR: partial least squares regression.
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W so that X can be expressed in terms of scores, loadings, and resid-

uals. The Y dataset is also decomposed in scores (T) and loadings ( F ),

but in such a way that the covariance between the X‐scores U and

the Y‐scores T is maximised. As a result, X‐scores can serve as good

predictors of Y, so that a multivariate regression can be approached

with W * F as regression coefficients (Wold et al., 2001).

The mixture dataset was divided into two parts: 75% for calibra-

tion and 25% for validation. To randomly select the calibration set, a

Kennard–Stone sampling algorithm was used (Poulenard et al.,

2009). To avoid underfitting or overfitting of the model, the best com-

promise between the description of the calibration set and the model

predictive power was determined by identifying the appropriate num-

ber of PLSR components based on leave‐one‐out cross validation in

the calibration phase (Evrard et al., 2013; Poulenard et al., 2009;

Poulenard et al., 2012; Wold et al., 2001). The optimal number of com-

ponents is the number with the lowest root mean squared error

(RMSE) of cross validation (Martens & Martens, 2000; Poulenard

et al., 2009; Wold et al., 2001). Standard errors of prediction (RMSEP)

associated with the model estimates were calculated and expressed as

95% confidence intervals (CIs; Legout et al., 2013; Martínez‐Carreras,

Krein, et al., 2010; Poulenard et al., 2012).
2.3.4 | Model sensitivity to source classification

The model RMSEP can be considered as an estimate of the final

uncertainty on the model output if measurement errors and the

intrasource variability of the DRIFTS spectra are minimal. However,

as stated in the introduction, this is only valid when the experimental

mixtures are a good representation of the actual river sediment

samples (Collins & Walling, 2004; Davis & Fox, 2009; Haddadchi

et al., 2013; Koiter et al., 2013; Pulley, Foster, & Collins, 2017).

The contributions estimated with the individual, source‐specific

PLSR models can be totalled: ( L%þM%þ C%þ R%þ U%ð Þ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CILð Þ2 þ CIMð Þ2 þ CICð Þ2 þ CIRð Þ2 þ CIUð Þ2

q
). In theory, a sum of

100% should indicate that all dominant sources were identified. Yet

due to the propagated uncertainty associated with the individual PLSR

models, it is impossible to use this sum to confirm this hypothesis.

Therefore, to test the impact of the sediment source classification

on the final model estimates, sets of PLSR “test‐models” were devel-

oped, whereby individual sources were systematically omitted from

the classification (i.e., mixtures containing a certain source were

omitted from model calibration; Table 2, Figure 2b). Subsequently,

the outputs of the “reference PLSR models” (i.e., models where all

sources are included in classification) were compared with the outputs

of the PLSR test models by calculating the average RMSE between



FIGURE 2 Illustration of partial least squares regression (PLSR) model development and application: (a) five individual, source‐specific PLSR
models are calibrated between the diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) spectra of the experimental mixtures
and the corresponding known quantities of a single source in the mixtures. The PLSR models are then applied to the DRIFTS spectra of the
suspended sediment (SS) to estimate its source contributions. Estimated source contributions are each characterised by a different PLSR model
uncertainty. (b) Example of partial model test, whereby one source (here M) is omitted as a source (i.e., experimental mixtures containing M are
removed)

TABLE 2 PLSR models

Model set Source omitted n mixtures PLSR models developed

Reference / 54 PLSRL, PLSRM, PLSRC, PLSRR,
PLSRU

NL Limestone 24 PLSRM, PLSRC, PLSRR, PLSRU

NM Millstone 35 PLSRL, PLSRC, PLSRR, PLSRU

NC Coals 29 PLSRL, PLSRM, PLSRR, PLSRU

NR Riverbank 21 PLSRL, PLSRM, PLSRC, PLSRU

NU Urban 31 PLSRL, PLSRM, PLSRC, PLSRR

Note. Reference: all sources included in classification; NC: coals excluded;
NL: limestone excluded; NM: millstone excluded; NR: riverbank excluded;
NU: urban excluded; PLSR: partial least squares regression; /: reference
model set, no sources omitted.
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both: RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 XRefi−XNYið Þ2=n
q

, with XRefi the contribution of

source X with the reference model, XNYi the contribution of source X

with the model without source Y, i the observation, and n the amount

of observations.
3 | RESULTS

3.1 | Sediment source discrimination

3.1.1 | Visual interpretation

Based on the DRIFTS spectra of the sediment source samples, 17

characteristic absorption peaks were identified that are typical for soil

samples (Figure 3; Tiecher et al., 2016). The 3,695 and 3,620 cm−1
peaks are characteristic for aluminosilicates (kaolinite and micas),

which are typically present in clays (Parikh, Goyne, Margenot,

Mukome, & Calderón, 2014; Poulenard et al., 2012; Tiecher et al.,

2016; Yang & Mouazen, 2012). The peaks around 2,920 and

2,850 cm−1 are generally attributed to organic matter (Poulenard et al.,

2009; Reeves III, 2012; Tiecher et al., 2016), whereas the peak at

2,505 cm−1 is attributed to carbonates (inorganic carbon; Poulenard

et al., 2012; Reeves III, Mccarty, & Reeves, 2001; Viscarra Rossel

et al., 2016). The 1,990; 1,870; and 1,785 cm−1 peaks are generally

related to quartz (Qz), and 1,630 cm−1 to Qz and clay minerals. The

peaks around 1,530 and 1,360 cm−1 are attributed to Qz and organic

matter, whereas 1,160 cm−1 relates to clay minerals and organic

matter (Tiecher et al., 2016). Finally, the 1,115 to 698 cm−1 peaks

are attributed to the combination of clay minerals and Qz (Ge,

Thomasson, & Morgan, 2014; Parikh et al., 2014; Reeves III, 2012;

Viscarra Rossel, Walvoort, McBratney, Janik, & Skjemstad, 2006).

In general, the spectra of SS and BS are comparable with the

spectra of the source material and the experimental mixtures,

especially for wavelengths >2,000 cm−1. The spectra of BS had a more

pronounced trough at 1,020 cm−1 compared with the SS, and the peak

at 1,160 cm−1 (clay + OM) in the spectra of SS and BS is not as

pronounced in the spectra of the source material. Furthermore, the

grassland and riverbank sources appeared to have a higher clay

content compared with urban street dust, whereas urban street dust

had a relatively higher OM and Qz content (Figure 3b,c). The urban

street dust also appeared to be enriched in Qz and inorganic carbon.

Topsoil from the coals area had the highest clay content and relatively



FIGURE 3 Mean diffuse reflectance infrared
Fourier transform spectrometry spectra of (a)
suspended sediment (SS), bed sediment (BS),
and experimental mixtures (Exp. mix); (b)

unprocessed and (c) preprocessed (i.e.,
smoothened and mean centred) sediment
source samples. Vertical lines represent
absorption peaks ascribed to clay minerals,
organic matter (OM), inorganic carbon (IC),
and quartz (Qz)
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high Qz peaks, whereas topsoil from the millstone area appeared to be

characterised by the lowest clay content.

3.1.2 | Discriminant analysis

The (preprocessed) DRIFTS spectra (Figure 3c) were used as input for

the PCA. The results of the PCA indicated that nine components

describe 99% of the variation in the data. Therefore, the first nine

components were retained for the DA. Most samples were consis-

tently closer (standard deviations <3) to the mean of their own group

compared with the other group (Figure 4). Urban street dust samples

are most strongly discriminated from the other sources (standard

deviations up to 40), whereas the samples from riverbanks were less

strongly defined by their DRIFTS spectra (i.e., high intrasource variabil-

ity). Despite the relatively weak discriminative power of riverbank

sources, it was decided to take into account all classes as potential

sediment sources to evaluate the effect of the discriminative power

on the final sediment source estimates.
3.2 | Sediment unmixing

Five reference PLSR models were developed to estimate sediment

contributions from each source (i.e., all mixtures in Table 1 were used

for model calibration). Model calibration indicated that eight compo-

nents minimises the RMSE in all models and thus is the optimal num-

ber of components. The PLSR models had a RMSEP ranging between
4% and 6%, with exception of the riverbank model (9%), resulting in

95% CIs between ±10% and ± 18% (Table 3). The PLSR models were

applied on the DRIFTS spectra of the SS to estimate average sediment

source contributions. During the sampled period, the dominant fine

sediment sources in the River Aire appeared to be topsoil from the

limestone area (45 ± 12%) and urban street dust (43 ± 10%). Topsoil

from the millstone and coals area contributed on average 19 ± 13%

and 14 ± 10%, respectively, and eroding riverbanks 16 ± 18%

(Figure 5).

The mean sum of the source contributions estimated based on the

individual, reference PLSR models is 137 ± 28% ( 45þ 43þ 19þð

14þ 16Þ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð Þ2 þ 10ð Þ2 þ 13ð Þ2 þ 10ð Þ2 þ 18ð Þ2

q
). It is therefore

impossible to make conclusions about the validity of the source classi-

fication and whether all actual sediment sources are correctly repre-

sented by the source groups (i.e., the sum is as close to 100% as it is

to 170%). The effect of source classification on source apportionment

is further examined in the next section.
3.3 | Model sensitivity to source classification

To test how the models vary when omitting specific sediment sources,

PLSR test models were developed and again applied on the SS samples

(Figure 5). With the test models without coals (NC in Figure 5), the sed-

iment source contributions were very similar to the reference model



FIGURE 4 Pairwise comparison of Mahalanobis distances between sediment source classes

TABLE 3 Reference PLSR model statistics (i.e., all sources are
included)

Model R2 RMSEC RMSEP 95% CI Explained variance

PLSRL 0.884 0.053 0.059 ±12 99.09

PLSRM 0.877 0.148 0.065 ±13 93.78

PLSRC 0.929 0.151 0.053 ±10 85.57

PLSRR 0.790 0.156 0.092 ±18 88.92

PLSRU 0.772 0.091 0.045 ±10 96.19

Note. CI: confidence interval; PLSR: partial least squares regression.

TABLE 4 RMSE between source estimates of the reference and test
models

Model Contribution

RMSE between

Ref‐NL Ref‐NM Ref‐NC Ref‐NU Ref‐NR

PLSRL Limestone / 28% 15% 29% 32%

PLSRM Millstone 15% / 11% 11% 112%

PLSRC Coals 11% 9% / 10% 25%

PLSRU Urban 22% 37% 5% / 36%

PLSRR Riverbank 155% 74% 17% 133% /

Note. Reference: all sources included in classification; NC: coals excluded;
NL: limestone excluded; NM: millstone excluded; NR: riverbank excluded;
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estimations, whereby limestone and urban street dust are the dominant

sediment sources. Contrarily, when limestone (NL), millstone (NM), or

urban (NU) were excluded as sources, the riverbank contributions

became very high (80% to 180%), and when riverbank was excluded

as a source, most of the sediment was attributed to millstone (140%).

Furthermore, the sum of the average contributions per model set varied

between 108% (NC) and 233% (NL). Based on these numbers, it is dif-

ficult, if not impossible, to evaluate how well the source classification

accurately represents the actual sediment sources.
FIGURE 5 Average source contributions to the suspended sediment in
sources included in classification; NC: coals excluded; NL: limestone exclu
excluded)
The variation in the source estimates between model sets was

further quantified by calculating the RMSE between the estimations

of the reference models and the test models (Table 4). Source

contributions from the coals area varied the least between model sets

(14% on average), whereas estimations for riverbank contributions

varied considerably (up to 155%). Furthermore, when coals was

removed as a source (NC), the deviations from the reference models
the River Aire based on different model calibrations (Reference: all
ded; NM: millstone excluded; NR: riverbank excluded; NU: urban

NU: urban excluded; /: no data.
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were within the CIs associated to the reference models (Table 3).

However, when other sources were removed, the effect was more

pronounced: removing limestone and urban (NL and NU) most

strongly influenced the riverbank contribution (155% and 133%,

respectively), whereas removing millstone (NM) both influenced the

urban (37%) and riverbank (74%) contribution. Finally, when riverbank

was removed as a source (NR), the estimated millstone contribution

changed most significantly (112%).

The above observations are also illustrated with two examples

(Figure 6). First, based on the reference model (i.e., all sources included

in classification), there was no coals contribution to the BS (Figure 6a).

Given that the first three locations of BS samples (BS5 to 3) are

located in the millstone area, no contribution of the coals area is

indeed expected. However, with the test models, high coals contribu-

tions (up to 80%) were estimated even where it was geographically

not possible (Figure 6a). Furthermore, when coals was removed as a

source (NC), the other source contributions did not change signifi-

cantly compared with the reference model, while removing riverbank

(NR) had a pronounced effect on the millstone contribution.

Second, similar observations were made for the estimated SS

source contributions during an individual high‐flow event in

September 2016 (Figure 6b): coals appeared to be an important

sediment source during the peak in Suspended Sediment Concentra-

tion (SSC), but when coals was removed as a source, the other source
FIGURE 6 Examples of sediment source contributions estimated by d
sediment (SSC, mg L−1) during a high‐flow event in September 2016 (refer
limestone excluded; NM: millstone excluded; NR: riverbank excluded; NU:
contributions remain relatively constant compared with the reference

model. Furthermore, millstone became more important when river-

bank was removed as a source, whereas the riverbank contributions

increased with removal of limestone.
4 | DISCUSSION

Individual, source‐specific regression models (based on PLSR) were

developed to estimate sediment source contributions to SS and BS

samples from the River Aire. The dominant sediment sources were

topsoil from the limestone area (45 ± 12%) and urban street dust

(43 ± 10%). Topsoil from the millstone and coals area contributed on

average 19 ± 13% and 14 ± 10%, respectively, and eroding riverbanks

16 ± 18%.

The estimated sediment source contributions generally corre-

spond well with field evidence and a previous sediment fingerprinting

study in the River Aire catchment (Carter et al., 2003). The dominant

contribution from the limestone area reflects the steeper topography

and connectivity of this area to the river system compared with the

scattered, less connected patches of topsoil in the coals area

(Figure 1). The high urban street dust contributions to the SS and

downstream BS (BS1, Figures 1 and 6) and the lower riverbank contri-

butions reflect the urban environment of the sampling locations.
ifferent model sets for (a) bed sediment samples and (b) suspended
ence: all sources included in classification; NC: coals excluded; NL:
urban excluded)
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Furthermore, model testing showed that when sources are

omitted, the sum of source contributions does not provide a clear indi-

cation about the representativeness of the source groups as actual

sediment sources (i.e., sum does not decrease to less than 100% when

a source is omitted). In what follows, the geochemical basis for

discrimination between source classes is discussed further to evaluate

how the combination of source group discrimination and their

importance as actual sediment sources affects model outputs and

uncertainties.
4.1 | Sediment source discrimination

The sediment sources are not equally well discriminated from each

other, which has implications for developing regression models that

are statistically comparable. Riverbank sources are the least well

discriminated of all sources, whereas urban street dust is most

strongly discriminated (Figure 4; Table 3). This variability in discrimina-

tion can be linked back to the primary origin of the source material

(Koiter et al., 2013).

First, urban street dust is the best defined class because of its

distinctly different sediment composition (Figure 4), which is in line

with previous observations that street dust is characterised by the

least within‐source variability and highest discrimination based on

geochemistry (Pulley et al., 2015). The mean DRIFTS spectrum of

street dust suggests that street dust samples were depleted in clay

minerals and enriched in OM and quartz, which reflects the primary

origin of street dust as a mixture of particles from urban run‐off,

sewage and atmospheric deposition, and soils and sand from

construction works (Franz, Makeschin, Weiß, & Lorz, 2014;

Shilton et al., 2005; Taylor & Owens, 2009).

Second, the grassland samples are also generally characterised by

a low intrasource variability, making them relatively well‐defined

classes (Figure 4). The difference between the grassland sources is

mainly defined by the parent mineral material of the lithological areas.

Grassland topsoil from the limestone area was defined by a combina-

tion of peak areas corresponding to clay, OM, carbonates, and quartz
FIGURE 7 Scenario's in sediment source
classification: (1) calibration of partial least
squares regression models with experimental
mixtures of a set of classified sources and (2)
application of the models on a suspended
sediment (SS) sample to estimate sediment
source contributions
(Figure 3), which is linked to the limestone (carbonates) and shale

(quartz) bed rock of the area (British Geological Survey, 2016). Topsoil

from the coals area had the highest clay content and was mainly

defined by quartz peaks, which is also in agreement with the main

lithology (mixture of siltstone, mudstone, and sandstone; British

Geological Survey, 2016). Contrarily, topsoil from the millstone area

(sandstone) appeared to be characterised by the lowest clay content

of the topsoils and an average mineral content compared to the other

sources (Figure 3).

Finally, the within‐source variability of riverbank samples was

higher compared with the other sources, and the discrimination from

especially millstone and coals samples was less pronounced (Figure 4).

This observation is in agreement with the fact that riverbank material

generally represents a mixture of floodplain deposits consisting of

various primary sediment sources (Vale, Fuller, Procter, Basher, &

Smith, 2016), so that its discrimination from topsoil sources is strongly

influenced by different degrees of weathering since deposition (Pulley

et al., 2015; Vale et al., 2016). These findings illustrate the challenge

of including riverbank material as a separate source using DRIFTS. In

further research, it would potentially be useful to combine DRIFTS with

other techniques (e.g., 137C; Omengo, Alleman, Geeraert, Bouillon, &

Govers, 2016; Smith & Blake, 2014) to further test the importance of

riverbank material as an actual sediment source.

4.2 | Sediment source importance

The findings suggest that the degree of discrimination between the

source classes, in combination with the importance of the source

classes as actual sediment sources, determines the sensitivity of the

model to the exclusion of a particular source. These observations are

synthesised in five scenarios (Figure 7):

1. All a priori classified sediment sources are included in the

classification (reference).

2. An important, well‐discriminated sediment source is omitted from

classification.
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3. An unimportant, well‐discriminated sediment source is omitted

from classification.

4. An important, poorly discriminated sediment source is omitted

from classification.

5. An additional sediment source was added to classification.

The first scenario (1) represents the reference model set in this

study where all classified sources are included in the model

calibration. It is assumed that all important sediment sources were

identified and thus that the mixtures used to calibrate the models

are a close representation of the SS. Therefore, omission of a

dominant, well‐defined sediment source has a pronounced impact

on the apportionment of other sources (Scenario 2). For example,

limestone‐grassland and urban street dust are well‐discriminated

and also dominant sources to the SS (Figure 5). Removing these

sources results in mixtures that are not comparable with the SS, so

that part of the SS remains unclassified. Consequently, when applying

this model to the actual SS, a higher contribution is attributed to the

least well‐discriminated source (i.e., riverbank) to compensate for the

unclassified part.

Contrarily, when a well‐discriminated, though unimportant, source

is omitted from the classification, the mixture does not differ substan-

tially from the SS (Scenario 3). For example, when topsoil from the

coals area is excluded as a source, the estimated contributions of the

other sources do not change significantly compared with the refer-

ence estimations. The apparent insensitivity of the models to the

exclusion of coals as a source suggests that topsoil from the coals area

may not be a significant sediment source. In other words, without

coals as a source, there is little of the SS sample that remains uniden-

tified and is being attributed to other sources. This corresponds well

to what would be expected based on land use in the Aire catchment.

The amount of grassland in the coal area upstream of the point of

SS sampling is limited; most of the area is strongly urbanised with

scattered patches of grassland that are poorly connected to the river

system. However, during the event in September 2016 (Figure 6b),

the coals contribution reaches high levels and becomes the second

largest sediment source during the peak SSC. For this reason, it can

be argued that coals may generally not be a dominant sediment

source, but its importance varies over time, which can be driven by

changes in the connectivity of the catchment to transfer sediment to

the river system (e.g., as a result of precipitation; Bracken, Turnbull,

Wainwright, & Bogaart, 2015; Wethered, Ralph, Smith, Fryirs, &

Heijnis, 2015).

Furthermore, omitting an important, but poorly discriminated

source from the classification can cause a significant difference

between the experimental mixture and the SS (Scenario 4). For exam-

ple, although riverbank appears to be an important sediment source

(especially to the BS; Figure 6b), it is also the least well‐discriminated

source based on DRIFTS. Consequently, removing riverbank as a

source results in a significant impact on the other source contributions

(e.g., coals contribution where no is expected; Figure 6a).

Finally, these observations suggest that in the River Aire case

study, important sediment sources may have been missed and their

contribution was attributed to the most poorly defined source in the

model (i.e., riverbank; Scenario 5). This hypothesis is supported by
the small differences between the DRIFTS spectra of BS, SS, and the

source material, especially at 1,160 and 1,020 cm−1 (Figure 3). A

possibly additional source could be solids from sewage treatment

works, which was estimated to contribute 14–18% of the SS in the

fingerprinting study by Carter et al. (2003).
4.3 | Methodological implications and
recommendations

The model testing results demonstrate that source group classifica-

tion can substantially alter sediment fingerprinting results and confirm

that using source‐specific PLSR models is not sufficient to test the

representativeness of the source groups as actual sediment sources.

Specifically, omitting less important sources (coals topsoil) does

not change the contributions of other sources, whereas omitting

important (in terms of contribution), but poorly‐discriminated, sources

(riverbank) increases contributions of all other sources. Therefore,

there is a need for standardised techniques to assess the impact of

alternative source groupings when using DRIFTS‐PLSR sediment

fingerprinting.

However, DRIFTS‐PLSR sediment fingerprinting based on exper-

imental mixtures (Poulenard et al., 2009) is different in methodolog-

ical design compared with more traditional techniques based on a

composite fingerprint and a mass balance equation (Collins, Walling,

& Leeks, 1997; Pulley & Collins, 2018). This difference in methodol-

ogy implies that standardised techniques to assess the impact of

source groupings (e.g., testing alternative source groups based on

cluster analyses; Pulley & Collins, 2018; Pulley, Van Der Waal,

Collins, Foster, & Rowntree, 2017) are not directly transferable to

DRIFTS‐PLSR sediment fingerprinting. Similarly, standard techniques

used in traditional sediment fingerprinting to test the effect of

particle size differences and nonconservativeness (e.g., pairwise

comparisons of fingerprinting properties; Pulley & Collins, 2018)

are also less appropriate with the DRIFTS‐PLSR approach.

Although the conservative behaviour of the DRIFTS spectra and

the effect of particle size were not explicitly tested due to the

experimental focus of the research, these remain important steps

in producing reliable sediment fingerprinting results. Therefore, to

fully make use of the potential advantages of DRIFTS‐PLSR sedi-

ment fingerprinting (i.e., faster analysis and less sediment material

required; Cooper, Rawlins, et al., 2014), the model testing presented

here should be further developed alongside the comparison of

existing and alternative methods to test the impact of variations in

source groupings, as well as particle size effects and conservative-

ness of DRIFTS spectra.

Finally, source sampling in this study was guided by erosion‐prone

areas within the catchment. Yet the sediment fingerprinting results

indicate that differences in connectivity control sediment source

contributions to the SS in the River Aire, which illustrates that material

coming from erosion‐prone areas is not necessarily the same material

that is most likely to reach the river. Therefore, it is recommended

for future studies to combine erosion information with sediment

routing (e.g., SCIMAP; Perks et al., 2017) to guide sediment source

sampling.
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5 | CONCLUSION

DRIFTS‐based sediment fingerprinting using individual, source‐

specific PLSR models was applied to assess the impact of sediment

source classification on sediment fingerprinting results. Although the

associated model uncertainties are statistically acceptable, sensitivity

analysis showed that source apportionment is strongly influenced by

the specific source classification considered, driven by the effect of

source discrimination and importance of source groups as actual

sediment sources.

The study illustrates the critical importance of initial source

classification in DRIFTS‐PLSR sediment fingerprinting and the need

for standard methods to assess the impact of source classification on

source apportionment. The presented model sensitivity testing will

guide the development of standard methodological procedures to

evaluate the appropriate number and type of sediment sources

specifically targeted to DRIFTS‐PLSR sediment fingerprinting. Better

understanding of the uncertainties related to source classification in

sediment fingerprinting and methods to evaluate these uncertainties

will push forward the development of future sediment‐related studies

and help target management decisions related to ecology, geomor-

phology, and water quality.
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