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Abstract

A classical physical example of the sideways heat equation is represented by re-entry vehicles in the atmosphere
where the temperature at the nozzle of a rocket is so high thatany thermocouple attached to it would be destroyed.
Instead one could measure both the temperature and heat flux,i.e. Cauchy data, at an interior boundary inward
the capsule. In addition, we assume that there exists a heat source which is significantly dependent on space, time
and temperature, and hence it cannot be neglected. This gives rise to a non-characteristic Cauchy inverse bound-
ary value problem in the sense that the interior accessible boundary is overspecified, whilst the exterior hostile
boundary is underspecified as nothing is prescribed on it. The problem is ill-posed in the sense that the solution
(if it exists) does not depend continuously on the Cauchy data. In order to obtain a stable numerical solution,
we propose two regularization methods to solve the semilinear problem in which the heat source is a Lipschitz
function of temperature. We show rigorously, with error estimates provided, that the corresponding regularized
solutions converge to the true solution strongly inL2 uniformly with respect to the space coordinate under some
a priori assumptions on the solution. These assumptions place no serious restrictions on the applicability of the
results since in practice we always have some control and knowledge about how large the absolute temperature and
heat flux are likely to be. Finally, in order to increase the significance of the study, numerical results are presented
and discussed illustrating the theoretical findings in terms of accuracy and stability.

Keywords and phrases:Nonlinear heat equation; Ill-posed problem; Cauchy problem; Contraction principle;
Regularization method.
MSC codes:65N15, 65N20, 65N21, 35K05, 35K58

1. Introduction

Inverse heat conduction problems (IHCP) arise in many physical situations where a certain hostile part of
the boundary of a body that is heated/cooled is inaccessible to measurement [3, 6, 11]. In this case the missing
information is compensated for by additional observationsmade through measurement on the complementary ac-
cessible part of the boundary of the body or, even inside the body itself. Apart from the re-entry vehicle example
mentioned at the beginning of the abstract, one can envisageother applications related to: (i) the accurate deter-
mination of the temperature ’spike’ inside a cannon at firing, [23]; (ii) the safety analysis of elements of nuclear
reactors where the temperature measurement at the adiabatic inner wall of a hollow cylinder is used to find the
unspecified/unavailable temperature and heat flux at the outer wall that is abruptly cooled, [11]; and (iii) the de-
termination of ther temperature and heat flux at the surface of a particle board, on which a thin layer of lacquer
coating is applied, [4]. All these practical applications can be mathematically modelled by the following IHCP:
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find the temperatureu(x, t) for (x, t) ∈ [0, L] × [0, 2π] from known boundary temperatureu(L, t) = g(t) and heat
flux ux(L, t) = h(t) measurements satifying the following problem:



ut(x, t) = uxx(x, t) + F
(
x, t, u(x, t)

)
, 0 < x < L, 0 ≤ t ≤ 2π,

u(L, t) = g(t), 0 ≤ t ≤ 2π,

ux(L, t) = h(t), 0 ≤ t ≤ 2π,

(1.1)

whereg, h are given functions (usually inL2(0, 2π)). Moreover, to investigate stability and simulate the real
situation of measured data, the Cauchy datag andh are perturbed so as to contain errors in the form of the input
noisy Cauchy datagε andhε (also inL2(0, 2π)) satisfying

∥∥∥gε − g
∥∥∥ +

∥∥∥hε − h
∥∥∥ ≤ ε, (1.2)

where‖·‖ denotes theL2(0, 2π)-norm andε > 0 is a small positive number representing the level of noise.Although
the semilinear problem (1.1) is formulated in the one-dimensional setting of a finite slab of lengthL > 0, it can be
also extended to higher-dimensional cuboids with a preferential sideways coordinate.

The main difference with the classical linear IHCP is that in the governing semilinear heat equation in (1.1),
the given sourceF may depend on not only the independent variables (x, t) but also on the dependent variable
u. The time intervalt ∈ [0,T], whereT > 0 is a given finite time of interest, does not necessarily require that
T = 2π, which herein is taken only for the convenience of the Fourier series development in Section 2. Note also
that we have no intial condition prescribed att = 0, which may occur when the heat conducting device is already
in service and the initial temperature is an extra unknown tobe determined. We also mention here the case of
internal measurements when it is sometimes necessary to determine the surface temperature and heat flux from a
measured temperature history at a fixed locationx0 ∈ (0, L) inside the body, [8, 21]. Note that in this case the initial
temperature att = 0 has to be supplied, at least on the space interval (x0, L). However, internal measurements are
intrusive and may damage the material. In this case, non-destructive testing, where measurements are taken at the
boundary only, is preferred and our formulation in (1.1) models such a situation.

In the linear case, i.e.F = F(x, t) does not depend onu, the problem (1.1) has at most one solution using
classical analytical sideways continuation for the parabolic heat equation. It can also easily be remarked that in
this linear case one can takeF = 0 by superposition with the solution of a direct and well-posed problem with heat
sourceF(x, t), and homogeneous initial and boundary conditions. Then, if F = 0, the existence of a solution holds
if and only if the functiont 7→ h(t) + 1√

π

∫ t

0
g′(t)√

t−τdτ is a function of class two, [12].

In the semilinear case, i.e.F = F(x, t, u), for F ∈ C1([0, L] × [0, 2π] × R), uniqueness of the solution of
problem (1.1) follows from the well-known uniqueness theorem for general parabolic partial differential equations
of second-order with lateral Cauchy data, see, e.g., Chapter 4 of [17].

However, even if uniqueness holds, the problem is still ill-posed in the sense that the solution, if it exists, it
does not depend continuously on the data. Any small perturbation in the observation data atx = L can cause large
errors in the solution which are increasing with decreasingx from L to 0. Therefore, most classical numerical
methods often fail to give an acceptable approximation of the solution and regularization techniques are required
to restore stability, [13, 25].

In recent years, the linear homogeneous sideways heat equation, i.e. F = 0 in the first equation in (1.1), has
been researched by many authors and various numerical methods have been proposed, e.g. the boundary element
Tikhonov regularization method [18], the conjugate gradient method [14], and, following the footsteps of Profes-
sor L. Elden, a few others based on filtering methods of regularization, e.g. the difference regularization method
[27], the ’optimal filtering’ method [23], the sequential windowing of the data [4], the Fourier method [28], the
quasi-reversibility method [8, 20], the wavelet, wavelet-Galerkin and spectral regularization methods [9, 22], to
mention only a few. However, the more important but challenging semilinear sideways heat equation with the heat
source depending nonlinearly on the temperature, which occurs in many applications related to reaction-diffusion,
combustion and radiation processes, is yet to be investigated from the filtering perspective, although it is worth cit-
ing here [11, 19], who used the finite difference method and a Lie-group differential algebraic equations algorithm,
respectively, but both without any regularization, and themore rigorous study [16] of Professor Klibanov and his
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colleagues, who proposed minimizing a strictly convex Tikhonov-type functional with Carleman weight functions
embedded in it. Therefore, our study is a major extension of the linear case, which requires novel filtering propos-
als, see equations (2.14) and (3.39), and proofs of new convergences theorems, see Theorems 3.1 and 3.2, based
on the contraction mapping principle.

In summary, we propose two new methods that are based on nonlinear integral equations to regularize problem
(1.1) under twoa priori conditionson the solution. As will be shown in next section, for the semilinear sideways
heat problem (1.1), its solution (true solution) can be represented as an integral equation which contains some
instability terms. In order to restore stability we replacethese instability terms by some regularization ones and
show that the solution of our regularized problem convergesto the solution of the original semilinear problem (if
such solution exists), as the regularization parameter tends to zero.

The paper is organized as follows. In Section 2, the formulation of the problem and the regularization methods
are given. In Section 3, a stability estimate is proved undera priori conditions on the solution and the Lipschitz
source term. Numerical results are presented and discussedin Section 4 and finally, conclusions are summarised
in Section 5.

2. Mathematical analysis

Let 〈·〉 denote the inner product inL2(0, 2π). For f ∈ L2(0, 2π), we have the complex Fourier series

f (t) ∼ ∑
n∈Z

〈
f (t), e−int

〉
eint, where

〈
f (t), e−int

〉
= 1

2π

2π∫

0

f (t)e−intdt. For time being, the symbol∼ denotes that the

right-hand side is the Fourier series of the left-hand side.It is well-known that the Fourier series off ∈ L2(0, 2π)
converges inL2(0, 2π) to f . Pointwise convergence holds iff is continuous in [0, 2π] and if f (0) = f (2π). In
case the latter condition does not hold we consider the 2π−periodic extensionf ∗ of f defined byf ∗(t) = f (t) for
t ∈ [0, 2π], f ∗(2π) = f ∗(0) and f ∗(t + 2π) = f ∗(t) for all t ∈ R. This will not affect the values of any integrals over

the interval [0, 2π] (since
∫ 2π
0 f (t)dt =

∫ 2π
0 f ∗(t)dt =

∫ 2π+a

a
f ∗(t)dt for anya ∈ R), though it may change the value

of f at t = 2π.
TheL2(0, 2π)-norm of f is

‖ f ‖2 = 2π
∑

n∈Z

∣∣∣∣
〈

f (t), e−int
〉∣∣∣∣

2
. (2.3)

The principal value of
√

in is

√
in =


(1+ i)

√
|n|/2, n ≥ 0,

(1− i)
√
|n|/2, n < 0.

(2.4)

Let the solution of problem (1.1) be represented by the complex Fourier series

u(x, t) ∼ u∗(x, t) =
∑

n∈Z
un(x)eint , with un(x) =

〈
u(x, t), e−int

〉
=

1
2π

2π∫

0

u(x, t)e−intdt, (2.5)

where, as above,u∗(x, ·) is a 2π−periodic extension int of the functionu(x, ·). Sinceu∗(x, ·) can be represented as
a Fourier series we know that this series converges tou(x, ·) in L2(0, 2π). Based on this agrgument, from now on,
for simplicity, we identifyu∗ with u.

From (1.1), we have the following systems of second-order ordinary differential equations:


−d2un

dx2
(x) + inun(x) = Fn(u)(x),

un(L) = gn =
〈
g(t), e−int

〉
,

dun

dx
(L) = hn =

〈
h(t), e−int

〉
,

(2.6)
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whereFn(u)(x) =
〈
F(x, t, u(x, t)), e−int

〉
= 1

2π

2π∫

0

F(x, t, u(x, t))e−intdt for all n ∈ Z.

For n ∈ Z\{0}, multiplying the first equation in (2.6) by
sinh

(
(z−x)

√
in
)

√
in

and integrating both sides fromx to L,
we obtain

un(x) = cosh
(
(L − x)

√
in

)
un(L) −

sinh
(
(L − x)

√
in

)

√
in

u′n(L) −
L∫

x

sinh
(
(z− x)

√
in

)
√

in
Fn

(
u
)
(z)dz, n ∈ Z\{0}. (2.7)

In the casen = 0, multiplying the first equation in (2.6) byz− x and integrating both sides fromx to L, we obtain

u0(x) = u0(L) − (L − x)u′0(L) +

L∫

x

(z− x)F0
(
u
)
(z)dz. (2.8)

Denoting

F̃(g, h, v)(x) := g− (L − x)h+

L∫

x

(z− x)F0(v)(z)dz, (2.9)

from (2.5), (2.7) - (2.9) the exact form ofu is given by

u(x, t) =
∑

n∈Z\{0}

cosh
(
(L − x)

√
in

)
gn −

sinh
(
(L − x)

√
in

)

√
in

hn −
L∫

x

sinh
(
(z− x)

√
in

)

√
in

Fn(u)(z)dz

 eint

+ F̃(g0, h0, u)(x). (2.10)

We remark that the term cosh
(
(L − x)

√
in

)
satisfies

∣∣∣∣cosh
(
(L − x)

√
in

)∣∣∣∣ =
1
2

∣∣∣∣e
√

in(L−x) + e−
√

in(L−x)
∣∣∣∣ ≤

e
√
|n|/2(L−x) + e−

√
|n|/2(L−x)

2
≤ e

√
|n|/2(L−x) (2.11)

and

∣∣∣∣cosh
(
(L − x)

√
in

)∣∣∣∣ =
1
2

∣∣∣∣e
√

in(L−x) + e−
√

in(L−x)
∣∣∣∣ ≥

e
√
|n|/2(L−x) − e−

√
|n|/2(L−x)

2
≥ e

√
|n|/2(L−x) − 1

2
. (2.12)

Also,

e
√
|n|/2(z−x) − 1

2
√
|n|

≤

∣∣∣∣∣∣∣∣

sinh
(
(z− x)

√
in

)

√
in

∣∣∣∣∣∣∣∣
≤ e

√
|n|/2(z−x)

√
|n|

, 0 ≤ x ≤ z≤ L. (2.13)

Thus, we obtain that the three functions

cosh
(
(L − x)

√
in

)
,

sinh
(
(L − x)

√
in

)

√
in

,
sinh

(
(z− x)

√
in

)

√
in

in (2.10) are unbounded, as functions of the variablen, for x ∈ [0, L). Consequently, small errors in high frequency
components can blow up and completely destroy the solution for x ∈ [0, L). A natural idea to stabilize the prob-
lem is to eliminate all high frequencies or to replace them bya bounded approximation. With this in mind, we

replace cosh
(
(L − x)

√
in

)
,

sinh
(
(L−x)

√
in
)

√
in

,
sinh

(
(z−x)

√
in
)

√
in

by coshγ(ε)
(
(L − x)

√
in

)
,

sinhγ(ε)
(
(L−x)

√
in
)

√
in

,
sinhγ(ε)

(
(z−x)

√
in
)

√
in

,

respectively. Our idea of regularization method is of constructing two new kernels, coshγ(ε)
(
(L − x)

√
in

)
and

4



sinhγ(ε)
(
(z−x)

√
in
)

√
in

which have the following two properties:

(A) If γ = γ(ε) > 0 is fixed, the terms coshγ(ε)
(
(L − x)

√
in

)
and

sinhγ(ε)
(
(z−x)

√
in
)

√
in

are bounded, as functions of
n ∈ Z\{0}.
(B) If the parameterγ > 0 is small, then for smalln, the kernel coshγ(ε)

(
(L − x)

√
in

)
is close to cosh

(
(L − x)

√
in

)

and the kernel
sinhγ(ε)

(
(z−x)

√
in
)

√
in

is close to
sinh

(
(z−x)

√
in
)

√
in

.

Property (B) describes how close the kernels coshγ(ε)
(
(L− x)

√
in

)
and

sinhγ(ε)
(
(z−x)

√
in
)

√
in

are to cosh
(
(L− x)

√
in

)

and
sinh

(
(z−x)

√
in
)

√
in

, respectively, in the low frequency components. Obviously, the smaller the parameterγ, the closer

is the agreement. Property (A) describes the degree of continuous dependence, i.e., when the terms coshγ(ε)
(
(L −

x)
√

in
)

and
sinhγ(ε)

(
(z−x)

√
in
)

√
in

are bounded, the regularized solution will depend continuously on the data.
To approximateu, we introduce the first regularized solutionuε satisfying

uε(x, t) =
∑

n∈Z\{0}

coshγ(ε)
(
(L − x)

√
in

)
gεn −

sinhγ(ε)
(
(L − x)

√
in

)

√
in

hεn

 eint

−
∑

n∈Z\{0}



L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

Fn(uε)(z)dz

 eint + F̃(gε0, h
ε
0, u
ε)(x). (2.14)

Here, coshγ(ε)
(
(L − x)

√
in

)
and sinhγ(ε)

(
(z− x)

√
in

)
are defined for alln ∈ Z\{0} by

coshγ(ε)
(
(L − x)

√
in

)
:= cosh

(
(L − x)

√
in

)
+
√

in P̃γ(ε)(x, L, n), (2.15)

sinhγ(ε)
(
(z− x)

√
in

)
:= sinh

(
(z− x)

√
in

)
+
√

in P̃γ(ε)(x, z, n), (2.16)

whereP̃γ(ε)(x, z, n) is given by

P̃γ(ε)(x, z, n) =

[
Rγ(ε)(L, n) − 1

]
e
√

in(z−x)

2
√

in
. (2.17)

The well-posedness of the solution to the integral equation(2.14) depends on the filter functionRγ(ε)(L, n) and
the regularization parameterγ(ε) > 0. In this paper, we assume that the filter functionRγ(ε)(L, n) satisfies

∣∣∣∣Rγ(ε)(L, n)
∣∣∣∣e
√
|n|/2y ≤ γ(ε)−y/L, y ∈ [0, L], (2.18)

∣∣∣∣Rγ(ε)(L, n) − 1
∣∣∣∣e−
√
|n|/2y ≤ γ(ε)y/L, y ∈ [0, L]. (2.19)

From (2.15) and (2.17), we have

coshγ(ε)
(
(L − x)

√
in

)
=

Rγ(ε)(L, n)e
√

in(L−x) + e−
√

in(L−x)

2
,

so that one can see that the filtering applies to the unboundedcomponent.
For illustration, we give a couple of examples ofRγ(ε) which satisfy the conditions (2.18) and (2.19).

Example 1. Let Rγ(ε)1 be as

Rγ(ε)1 (L, n) =
e−
√
|n|/2L

γ(ε) + e−
√
|n|/2L
. (2.20)
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First, we deduce the following inequality:

∣∣∣∣Rγ(ε)1 (L, n)
∣∣∣∣ e
√
|n|/2y =

e−
√
|n|/2L

γ(ε) + e−
√
|n|/2L

e
√
|n|/2y

=
e−
√
|n|/2(L−y)

(
γ(ε) + e−

√
|n|/2L

)(L−y)/L (
γ(ε) + e−

√
|n|/2L

)y/L
≤

(
1

γ(ε) + e−
√
|n|/2L

)y/L

≤ γ(ε)−y/L, (2.21)

which shows that (2.18) holds.
To prove that (2.19) holds, consider the functionχ : [0, L] → R+ defined by

χ(y) := γ(ε)−y/Le−
√
|n|/2y = eyΓ, y ∈ [0, L],

whereΓ := −
√
|n|/2 − ln γ(ε)1/L. Depending on the sign ofΓ, we have thatχ is increasing and maxy∈[0,L] χ(y) =

χ(L) = e−
√
|n|/2L

γ(ε) if Γ > 0, andχ is decreasing and maxy∈[0,L] χ(y) = χ(0) = 1 if Γ ≤ 0. In both cases, we obtain that

χ(y) := γ(ε)−y/Le−
√
|n|/2y ≤ max

y∈[0,L]
χ(y) ≤ 1+

e−
√
|n|/2L

γ(ε)
. (2.22)

Using (2.20) and (2.22) we obtain that

∣∣∣∣Rγ(ε)1 (L, n) − 1
∣∣∣∣ e−
√
|n|/2y = γ(ε)

e−
√
|n|/2y

γ(ε) + e−
√
|n|/2L

≤ γ(ε)y/L, y ∈ [0, L], (2.23)

which shows that (2.19) holds.

Example 2: Let us chooseRγ(ε)2 as follows:

Rγ(ε)2 (L, n) =


1, if |n| ≤ Nε,

0, if |n| > Nε,
(2.24)

with Nε satisfying limε→0 Nε = +∞. It then follows that
∣∣∣∣Rγ(ε)2 (L, n)

∣∣∣∣e
√
|n|/2y ≤ e

√
Nε/2y and

∣∣∣∣Rγ(ε)2 (L, n) − 1
∣∣∣∣e−
√
|n|/2y ≤ e−

√
Nε/2y, y ∈ [0, L]. (2.25)

Therefore,Rγ(ε)2 given in (2.24) satisfies (2.18) and (2.19) withγ(ε) = e−L
√

Nε/2.

Before we establish the properties of the regularized solution, let us introduce some notation first. For a Hilbert
space B, we denote

L∞(0, L; B) =
{
f : [0, L] → B

∣∣∣∣ess sup
0≤z≤L

‖ f (z)‖B < ∞
}

with the norm

‖ f ‖L∞(0,L;B) = ess sup
0≤z≤L

‖ f (z)‖B.

For r ≥ 0 andδ, let us also introduce the spaces

Gr
δ(0, 2π) =

{
θ ∈ L2(0, 2π);

∑

n∈Z
|n|2re

√
2|n|δ∣∣∣〈θ(t), e−int〉∣∣∣2 < ∞

}
, (2.26a)

Vr(0, 2π) =
{
θ ∈ L2(0, 2π);

∑

n∈Z
|n|2r

∣∣∣〈θ(t), e−int〉∣∣∣2 < ∞
}
, (2.26b)
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and their norms given by

‖θ‖Gr
δ
(0,2π) =

√∑

n∈Z
|n|2re

√
2|n|δ

∣∣∣〈θ(t), e−int〉∣∣∣2, (2.27a)

‖θ‖Vr (0,2π) =

√∑

n∈Z
|n|2r

∣∣∣〈θ(t), e−int〉∣∣∣2. (2.27b)

It is easy to see thatGr
0(0, 2π) = Vr(0, 2π) andV0(0, 2π) = L2(0, 2π).

3. Regularization and error estimates

Throughout this section, we assume thatF : [0, L] × [0, 2π] × L2(0, 2π) → L2(0, 2π) is a Lipschitz function,
i.e. there exists a constantKF ≥ 0 such that

‖F (x, ·, u(x, ·)) − F(x, ·, v(x, ·))‖ ≤ KF ‖u(x, ·) − v(x, ·)‖ , ∀x ∈ [0, L], ∀u, v ∈ C
(
[0, L]; L2(0, 2π)

)
. (3.28)

The next theorem and remark give error estimates between thetrue solutionu of problem (1.1) and the regu-
larized solutionuε satisfying (2.14).

Theorem 3.1. Letγ(ε) be a regularization parameter such that0 < γ(ε) < e−L and


lim
ε→0
γ(ε) = 0,

lim
ε→0

ε

γ(ε)
is a non-negative real number.

(3.29)

Then, the integral equation(2.14)has a unique solution uε ∈ C
(
[0, L]; L2(0, 2π)

)
.

Let Rγ(ε) satisfy conditions(2.18)and (2.19).
(a) Suppose that the problem(1.1)has a solution u satisfying

‖u‖L∞(0,L;G0
L(0,2π)) + ‖ux‖L∞(0,L;G0

L(0,2π)) ≤ I1, (3.30)

for some known constantI1 ≥ 0. Then,
∥∥∥uε(x, ·) − u(x, ·)

∥∥∥ ≤ E1γ(ε)
x/L, x ∈ [0, L], (3.31)

where

E1 ≥
√

3
ε

γ(ε)
exp


3K

2
FL2

2

 +
√

2πI1 exp
(
K

2
FL2

)
. (3.32)

(b) Assume that there exists r> 0 such that
∣∣∣∣Rγ(ε)(L, n) − 1

∣∣∣∣|n|−re−
√
|n|/2y ≤ M̃(ε, r)γ(ε)y/L, ∀n ∈ Z\{0}, ∀y ∈ [0, L], (3.33)

whereM̃(ε, r)→ 0 asε→ 0. Suppose that the problem(1.1)has a solution satisfying

‖u‖L∞(0,L;Gr
L(0,2π)) + ‖ux‖L∞(0,L;Gr

L(0,2π)) ≤ I2, (3.34)

for some known constantI2 ≥ 0. Then,
∥∥∥uε(x, ·) − u(x, ·)

∥∥∥ ≤ E2γ(ε)
x/L, x ∈ [0, L], (3.35)

where

E2 ≥
√

3
ε

γ(ε)
exp


3K

2
FL2

2

 +
√

2πM̃(ε, r)I2 exp
(
K

2
FL2

)
. (3.36)
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Remark 3.1. Under assumption(3.30), the estimate(3.31), via (3.32), does not yield the continuous dependence
of the solution at x= 0. Therefore, we need a stronger assumption on u, as in(3.34), to obtain the error estimate
(3.35), via (3.36), at x= 0. To obtain the approximation of the solution at x= 0 with assumption(3.30), we select
a number xε ∈ (0, L) such thatlim

ε→0
xε = 0 and then we have

∥∥∥uε(xε, ·) − u(0, ·)
∥∥∥ ≤

∥∥∥uε(xε, ·) − u(xε, ·)
∥∥∥ + ‖u(xε, ·) − u(0, ·)‖ ≤ E1γ(ε)

xε/L + xεE3, (3.37)

where E3 = sup0≤x≤L ‖ux(x, ·)‖. It is easy to show that for everyγ(ε) > 0, there exists a unique xε ∈ (0, L) such
that lim

ε→0
xε = 0 and xε = γ(ε)xε/L. This implies thatln xε

xε
=

ln γ(ε)
L . Using the inequalityln x > −1

x for every x> 0,

we obtain xε <
√

L
ln

(
1
γ(ε)

) , which yields

∥∥∥uε(xε, ·) − u(0, ·)
∥∥∥ ≤ (E1 + E3)

√
L

ln
(

1
γ(ε)

) . (3.38)

In order to obtain error estimates under easier to check and weaker assumptions than (3.30) and (3.34), next
we develop a second regularized solutionUε satisfying the integral equation

Uε(x, t) =
∑

n∈Z\{0}

coshγ(ε)
(
(L − x)

√
in

)
gεn −

sinhγ(ε)
(
(L − x)

√
in

)

√
in

hεn

 eint

−
∑

n∈Z\{0}



L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

Fn(Uε)(z)dz+

x∫

0

P̃γ(ε)(x, z, n)Fn(Uε)(z)dz

 eint + F̃(gε0, h
ε
0,U

ε)(x). (3.39)

Instead of conditions (3.30) and (3.34), we will assume

‖u(0, ·)‖ + ‖ux(0, ·)‖ ≤ I3, (3.40a)

‖u(0, ·)‖Vr (0,2π) + ‖ux(0, ·)‖Vr (0,2π) ≤ I4, with r > 0, (3.40b)

for some known non-negative constantsI3 andI4, respectively. We then obtain error estimates between the true
solutionu and the regularized solutionUε, as given by the next theorem and remarks.

Theorem 3.2. Let γ(ε) be as in Theorem 3.1 and assume that LKF < 1. Then the integral equation(3.39)has a
unique solution Uε ∈ C

(
[0, L]; L2(0, 2π)

)
.

Let Rγ(ε) satisfy conditions(2.18)and (2.19).
(a) Suppose that the problem(1.1)has a solution u satisfying(3.40a). Then,

∥∥∥Uε(x, ·) − u(x, ·)
∥∥∥ ≤ E4(α̃)

√

I2
3 + 4

(
ε

γ(ε)

)2

γ(ε)x/L, x ∈ [0, L], (3.41)

for somẽα ∈
(
0, 1

K
2
F L2 − 1

)
, where

E4(α̃) :=

√√
1+ 1

α̃

1− (1+ α̃)K2
FL2
. (3.42)

(b) Assume that there exists r> 0 such that(3.33)holds. Suppose that the problem(1.1)has a solution u satisfying
(3.40b). Then,

∥∥∥Uε(x, ·) − u(x, ·)
∥∥∥ ≤ E4(α̃)

√

2πM̃2(ε, r)I2
4 + 4

(
ε

γ(ε)

)2

γ(ε)x/L, x ∈ [0, L]. (3.43)
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Remark 3.2. Under assumption(3.40a), the estimate(3.41) does not yield the continuous dependence of the
solution at x= 0. Therefore, we need a stronger assumptions of u as in(3.40b), to obtain the error estimate(3.43)
at x= 0. In the same way as in Remark 3.1, there exists xε ∈ (0, L) such thatlimε→0 xε = 0 and

∥∥∥Uε(xε, ·) − u(0, ·)
∥∥∥ ≤ (E3 + E4(α̃))

√
L

ln
(

1
γ(ε)

) . (3.44)

Remark 3.3. For the the cut-off regularizing filter (2.24), condition (3.33) is satisfied withM̃(ε, r) = N−r
ε and

γ(ε) = e−L
√

Nε/2.

First, we have the following lemmas which will be useful in proving Theorems 3.1 and 3.2.

Lemma 3.1. For 0 < γ(ε) < e−L we have

γ(ε)
x−L
L ≥ 1, 0 ≤ x ≤ L, (3.45a)

x ≤ γ(ε)−
x
L , 0 ≤ x ≤ L. (3.45b)

The proof is omitted.

Lemma 3.2. For n ∈ Z\{0} and0 < γ(ε) < e−L, we have the following inequalities:
∣∣∣P̃γ(ε)(x, z, n)

∣∣∣ ≤ γ(ε) x−z
L , 0 ≤ z≤ x ≤ L, (3.46a)∣∣∣∣coshγ(ε)

(
(L − x)

√
in

)∣∣∣∣ ≤ γ(ε)
x−L
L , x ∈ [0, L], (3.46b)

∣∣∣∣∣∣∣∣

sinhγ(ε)
(
(z− x)

√
in

)

√
in

∣∣∣∣∣∣∣∣
≤ γ(ε)

x−z
L , 0 ≤ x ≤ z≤ L. (3.46c)

Proof. From (2.17) and (2.19), we obtain (3.46a), as follows:

∣∣∣P̃γ(ε)(x, z, n)
∣∣∣ =

∣∣∣∣∣∣∣∣

(
1− Rγ(ε)(L, n)

)
e
√

in(z−x)

2
√

in

∣∣∣∣∣∣∣∣
≤ γ(ε)

x−z
L

2
√
|n|
≤ γ(ε)

x−z
L , 0 ≤ z≤ x ≤ L.

From (2.15), (2.17), (2.18) and (3.45a), we obtain (3.46b),as follows:

∣∣∣∣coshγ(ε)
(
(L − x)

√
in

)∣∣∣∣ ≤
1
2

∣∣∣∣Rγ(ε)(L, n)e
√

in(L−x)
∣∣∣∣ +

1
2

∣∣∣∣e−
√

in(L−x)
∣∣∣∣ ≤

1
2
γ(ε)

x−L
L +

1
2

e−
√
|n|
2 (L−x) ≤ γ(ε)

x−L
L .

From (2.16), (2.18) and (3.45b), we also obtain (3.46c), as follows:
∣∣∣∣∣∣∣∣

sinhγ(ε)
(
(z− x)

√
in

)

√
in

∣∣∣∣∣∣∣∣
≤

∣∣∣∣Rγ(ε)(L, n)e
√

in(z−x)
∣∣∣∣

2
√
|n|

+

∣∣∣∣e−
√

in(z−x)
∣∣∣∣

2
√
|n|

≤ 1

2
√
|n|
γ(ε)

x−z
L +

1

2
√
|n|

e−
√
|n|
2 (z−x) ≤ γ(ε)

x−z
L , 0 ≤ x ≤ z≤ L.

Lemma 3.3. For 0 < γ(ε) < e−L, we have the following inequalities:
∣∣∣∣F̃(g1, h1,w1)(x) − F̃(g2, h2,w2)(x)

∣∣∣∣

≤ γ(ε)
x−L
L (|g1 − g2| + |h1 − h2|) +

L∫

x

γ(ε)
x−z
L

∣∣∣∣F0(w1)(z) − F0(w2)(z)
∣∣∣∣dz, x ∈ [0, L] (3.47)
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and for n∈ Z\{0}

2π
∑

n∈Z\{0}

∣∣∣∣∣∣

L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

(
Fn(w1)(z) − Fn(w2)(z)

)
dz

∣∣∣∣∣∣
2

+2π
∣∣∣∣F̃(g0, h0,w1)(x) − F̃(g0, h0,w2)(x)

∣∣∣∣
2
≤ K

2
F(L − x)

L∫

x

γ(ε)
2x−2z

L ‖w1(z, ·) − w2(z, ·)‖2 dz, x ∈ [0, L]. (3.48)

Proof. We invoke (2.9) and Lemma 3.1 to deduce that

∣∣∣∣F̃(g1, h1,w1)(x) − F̃(g2, h2,w2)(x)
∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
(g1 − g2) − (L − x) (h1 − h2) +

L∫

x

(z− x)
(
F0(w1)(z) − F0(w2)(z)

)
dz

∣∣∣∣∣∣∣∣∣

≤ γ(ε)
x−L

L
[|g1 − g2| + |h1 − h2|

]
+

L∫

x

γ(ε)
x−z
L

∣∣∣∣F0(w1)(z) − F0(w2)(z)
∣∣∣∣dz,

as required.
Using (3.28), (3.46c), (3.47) and Hölder’s inequality, weobtain

2π
∑

n∈Z\{0}

∣∣∣∣∣∣

L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

(
Fn(w1)(z) − Fn(w2)(z)

)
dz

∣∣∣∣∣∣
2

+2π
∣∣∣∣F̃(g0, h0,w1)(x) − F̃(g0, h0,w2)(x)

∣∣∣∣
2
≤ 2π(L − x)

∑

n∈Z\{0}

L∫

x

∣∣∣∣∣∣∣∣

sinhγ(ε)
(
(z− x)

√
in

)

√
in

∣∣∣∣∣∣∣∣

2

|Fn(w1)(z) − Fn(w2)(z)|2 dz

+2π(L − x)

L∫

x

γ(ε)
2x−2z

L

∣∣∣∣F0(w1)(z) − F0(w2)(z)
∣∣∣∣
2
dz≤ (L − x)

L∫

x

γ(ε)
2x−2z

L ‖F (z, ·,w1(z, ·)) − F (z, ·,w2(z, ·))‖2 dz

≤ K
2
F(L − x)

L∫

x

γ(ε)
2x−2z

L ‖w1(z, ·) − w2(z, ·)‖2 dz,

as required.

Lemma 3.4. For n ∈ Z\{0}, we have

un(x) −
u′n(x)
√

in
= e

√
in(L−x)

(
gn −

hn√
in

)
−

L∫

x

e
√

in(z−x)

√
in

Fn(u)(z)dz, x ∈ [0, L]. (3.49)

Proof. Differentiating (2.7) with respect tox gives

−
u′n(x)
√

in
= sinh

(
(L − x)

√
in

)
gn −

cosh
(
(L − x)

√
in

)

√
in

hn −
L∫

x

cosh
(
(z− x)

√
in

)

√
in

Fn(u)(z)dz, (3.50)

and adding (3.50) to (2.10) we complete the proof.

We are now in a position to prove Theorems 3.1 and 3.2.
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3.1. Proof of Theorem 3.1

The proof is divided into two steps.

Step 1.The existence and uniqueness of the solution uε ∈ C
(
[0, L]; L2(0, 2π)

)
to the integral equation(2.14).

Forw ∈ C
(
[0, L]; L2(0, 2π)

)
, we consider the following function

J̃ (x, t,w(x, t)) :=
∑

n∈Z\{0}

coshγ(ε)
(
(L − x)

√
in

)
gεn −

sinhγ(ε)
(
(L − x)

√
in

)

√
in

hεn

 eint

−
∑

n∈Z\{0}



L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

Fn(w)(z)dz

 eint + F̃(gε0, h
ε
0,w)(x). (3.51)

and we aim to apply the Banach fixed point theorem. For this, wehave to show that there exists an integer
numberm0 such that them0-compound power̃Jm0 is a contraction mapping. In fact, we will prove that for every
w1,w2 ∈ C

(
[0, L]; L2(0, 2π)

)
andm≥ 1, we have

∥∥∥∥J̃m (x, ·,w1(x, ·)) − J̃m (x, ·,w2(x, ·))
∥∥∥∥

2
≤


LK

2
F

γ2(ε)


m

(L − x)m

m!
|‖w1 − w2 |‖2 , (3.52)

where|‖ · |‖ is supremum norm inC
(
[0, L]; L2(0, 2π)

)
. We shall prove this inequality by induction. Indeed, for

m= 1, using (3.48), we have

∥∥∥∥J̃ (x, ·,w1(x, ·)) − J̃ (x, ·,w2(x, ·))
∥∥∥∥

2
≤ 2π

∑

n∈Z\{0}

∣∣∣∣∣∣

L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

(
Fn(w1)(z) − Fn(w2)(z)

)
dz

∣∣∣∣∣∣
2

+2π
∣∣∣∣F̃(gε0, h

ε
0,w1)(x) − F̃(gε0, h

ε
0,w2)(x)

∣∣∣∣
2
≤ K

2
F(L − x)

L∫

x

γ(ε)
2x−2z

L ‖w1(z, ·) − w2(z, ·)‖2 dz

≤
K

2
FL

γ2(ε)
(L − x) |‖w1 − w2|‖2 .

Thus, (3.52) holds form= 1. Next, supposing that (3.52) holds form= p, we prove that it also holds form= p+1.
We have

∥∥∥∥J̃ p+1 (x, ·,w1(x, ·)) − J̃ p+1 (x, ·,w2(x, ·))
∥∥∥∥

2
≤

K
2
FL

γ2(ε)

L∫

x

∥∥∥∥J̃ p (z, ·,w1(z, ·)) − J̃ p (z, ·,w2(z, ·))
∥∥∥∥

2
dz

≤
K

2
FL

γ2(ε)

L∫

x


K

2
FL

γ2(ε)


p

(L − z)p

p!
|‖w1 − w2 |‖2 dz≤


K

2
FL

γ2(ε)


p+1

(L − x)p+1

(p+ 1)!
|‖w1 − w2|‖2 .

Therefore, by the induction principle, we obtain (3.52).
We considerJ̃ : C

(
[0, L]; L2(0, 2π)

)
→ C

(
[0, L]; L2(0, 2π)

)
defined by (3.51) and satisfying (3.52). Since

lim
m→∞

√
K2

FL

γ2(ε)


m

(L − x)m

m!
= 0, ∀x ∈ [0, L],

there exists a positive integer numberm0 such that

√(
K

2
F L

γ(ε)2

)m0 (L−x)m0

m0! < 1. It means thatJ̃m0 is a contraction. It

follows that the equatioñJm0(w) = w has a unique solutionuε ∈ C
(
[0, L]; L2(0, 2π)

)
. We claim thatJ̃ (uε) = uε.
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In fact, we haveJ̃m0
(
J̃(uε)

)
= J̃ (uε) because of̃J

(
J̃m0(uε)

)
= J̃ (uε). Then, the uniqueness of the fixed point

of J̃m0 leads toJ̃ (vε) = vε; i.e., the equatioñJ(w) = w has a unique solutionuε ∈ C
(
[0, L]; L2(0, 2π)

)
. Finally,

from (2.14) and (3.52) it then follows the desired conclusion that the integral equation (2.14) has a unique solution
uε ∈ C

(
[0, L]; L2(0, 2π)

)
.

Step 2.Estimate the errors(3.31)and (3.35)between the first regularization uε and the true solution u.

Proof of part (a). Using the triangle inequality, we have
∥∥∥uε(x, ·) − u(x, ·)

∥∥∥ ≤
∥∥∥uε(x, ·) − vε(x, ·)

∥∥∥ +
∥∥∥vε(x, ·) − u(x, ·)

∥∥∥ =
∣∣∣∣Ã1(x)

∣∣∣∣ +
∣∣∣∣Ã2(x)

∣∣∣∣ , (3.53)

wherevε is defined by

vε(x, t) =
∑

n∈Z\{0}

coshγ(ε)
(
(L − x)

√
in

)
gn −

sinhγ(ε)
(
(L − x)

√
in

)

√
in

hn

 eint

−
∑

n∈Z\{0}



∫ L

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

Fn(vε)(z)dz

 eint + F̃(g0, h0, v
ε)(x). (3.54)

From the proof of Step 1, we know that the nonlinear integral equation (3.54) has unique solutionvε ∈
C

(
[0, L]; L2(0, 2π)

)
. We first estimate the term̃A1. Forn ∈ Z\{0}, combining to (2.14) and (3.54), we get

∣∣∣∣Ã1(x)
∣∣∣∣ = 2π

∑

n∈Z\{0}

∣∣∣uεn(x) − vεn(x)
∣∣∣2 + 2π

∣∣∣∣F̃(gε0, h
ε
0, u
ε)(x) − F̃(g0, h0, v

ε)(x)
∣∣∣∣
2

≤ 6π
∑

n∈Z\{0}



∣∣∣∣coshγ(ε)
(
(L − x)

√
in

)∣∣∣∣
2 ∣∣∣gεn − gn

∣∣∣2 +

∣∣∣∣∣∣∣∣

sinhγ(ε)
(
(L − x)

√
in

)

√
in

∣∣∣∣∣∣∣∣

2
∣∣∣hεn − hn

∣∣∣2


+ 6π
∑

n∈Z\{0}

∣∣∣∣∣∣

L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

(
Fn(uε)(z) − Fn(vε)(z)

)
dz

∣∣∣∣∣∣
2

+ 2π
∣∣∣∣F̃(gε0, h

ε
0, u
ε)(x) − F̃(g0, h0, v

ε)(x)
∣∣∣∣
2
,

where we have used the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2).
We now apply Lemmas 3.2 and 3.3 to obtain

∣∣∣∣Ã1(x)
∣∣∣∣
2
≤ 6πγ(ε)

2x−2L
L




∑

n∈Z\{0}

∣∣∣gεn − gn

∣∣∣2 +
∣∣∣gε0 − g0

∣∣∣2
 +


∑

n∈Z\{0}

∣∣∣hεn − hn

∣∣∣2 +
∣∣∣hε0 − h0

∣∣∣2




+ 6πLγ(ε)
2x
L

L∫

x

|γ(ε)|
−2z
L


∑

n∈Z\{0}

∣∣∣Fn(uε)(z) − Fn(vε)(z)
∣∣∣2 +

∣∣∣F0(uε)(z) − F0(vε)(z)
∣∣∣2
dz

≤ 3γ(ε)
2x−2L

L

(∥∥∥gε − g
∥∥∥2
+

∥∥∥hε − h
∥∥∥2

)
+ 3K

2
FLγ(ε)

2x
L

L∫

x

γ(ε)
−2z
L

∥∥∥uε(z, ·) − vε(z, ·)
∥∥∥2

dz. (3.55)

Multiplying by γ(ε)−
2x
L both sides of (3.55) and using (1.2), we get

γ(ε)
−2x

L

∣∣∣∣Ã1(x)
∣∣∣∣
2
≤ 3

(
ε

γ(ε)

)2

+ 3K
2
FL

L∫

x

γ(ε)
−2z
L

∣∣∣∣Ã1(z)
∣∣∣∣
2

dz.
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Applying Gronwall’s inequality to this yields

γ(ε)
−2x

L

∣∣∣∣Ã1(x)
∣∣∣∣
2
≤ 3

(
ε

γ(ε)

)2

exp
(
3K

2
FL(L − x)

)
.

Therefore, we obtain

∥∥∥uε(x, ·) − vε(x, ·)
∥∥∥ ≤
√

3

(
ε

γ(ε)

)
exp


3K

2
FL(L − x)

2

 γ(ε)
x
L . (3.56)

Next, we estimate|Ã2(x)|. From (2.10), (2.15)-(2.17) and (3.49), we have

un(x) = coshγ(ε)
(
(L − x)

√
in

)
gn −

sinhγ(ε)
(
(L − x)

√
in

)

√
in

hn −
L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

Fn(u)(z)dz

+
1
2

(
1− Rγ(ε)(L, n)

)
e
√

in(L−x)
(
gn −

hn√
in

)
−

L∫

x

e
√

in(z−x)

√
in

Fn(u)(z)dz



= coshγ(ε)
(
(L − x)

√
in

)
gn −

sinhγ(ε)
(
(L − x)

√
in

)

√
in

hn −
L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

Fn(u)(z)dz

+
1
2

(
1− Rγ(ε)(L, n)

) [
un(x) −

u′n(x)
√

in

]
, ∀n ∈ Z\{0}. (3.57)

Combining (3.54) and (3.57) yields

vεn(x) − un(x) = Ψn(x) −
L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

(
Fn(vε)(z) − Fn(u)(z)

)
dz, ∀n ∈ Z\{0}, (3.58)

where

Ψn(x) =
1
2

(
Rγ(ε) (L, n) − 1

)
e−
√

inx
[
e
√

inxun(x) − e
√

inxu′n(x)
√

in

]
, ∀n ∈ Z\{0}. (3.59)

The termÃ2 can be estimated as follows:

|Ã2(x)|2 = 2π
∑

n∈Z\{0}

∣∣∣vεn(x) − un(x)
∣∣∣2 + 2π

∣∣∣∣F̃(g0, h0, v
ε) − F̃(g0, h0, u)

∣∣∣∣
2
≤ J̃1(x) + J̃2(x), (3.60)

where

J̃1(x) = 4π
∑

n∈Z\{0}

∣∣∣∣∣
1
2

(
Rγ(ε) (L, n) − 1

)
e−
√

inx
∣∣∣∣∣
2
∣∣∣∣∣∣e
√

inxun(x) − e
√

inxu′n(x)
√

in

∣∣∣∣∣∣
2

, (3.61)

J̃2(x) = 4π
∑

n∈Z\{0}

∣∣∣∣∣∣

L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

(
Fn(vε)(z) − Fn(u)(z)

)
dz

∣∣∣∣∣∣
2

+ 2π
∣∣∣∣F̃(g0, h0, v

ε) − F̃(g0, h0, u)
∣∣∣∣
2
. (3.62)

Using (2.19) we have

J̃1(x) ≤ 2πγ(ε)
2x
L


∑

n∈Z\{0}
e
√

2|n|L|un(x)|2 +
∑

n∈Z\{0}
e
√

2|n|L |u′n(x)|2

|n|



≤ 2πγ(ε)
2x
L

[
‖u‖2

L∞(0,L;G0
L(0,2π))

+ ‖ux‖2L∞(0,L;G0
L(0,2π))

]
≤ 2πγ(ε)

2x
L I2

1. (3.63)
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It readily follows from (3.48) that

J̃2(x) ≤ 2K
2
F(L − x)γ(ε)

2x
L

L∫

x

γ(ε)
−2z
L

∥∥∥vε(z, ·) − u(z, ·)
∥∥∥2

dz. (3.64)

Using (3.63) and (3.64) into (3.60) yields

∣∣∣∣Ã2(x)
∣∣∣∣
2
≤ 2πγ(ε)

2x
L I2

1 + 2K
2
FLγ(ε)

2x
L

L∫

x

γ(ε)
−2z
L

∣∣∣∣Ã2(z)
∣∣∣∣
2

dz. (3.65)

Multiplying by γ(ε)
−2x

L both sides and using Gronwall’s inequality we obtain
∥∥∥vε(x, ·) − u(x, ·)

∥∥∥ ≤
√

2πI1 exp
(
K

2
FL(L − x)

)
γ(ε)

x
L . (3.66)

Combining (3.53), (3.56) and (3.66), we deduce that

∥∥∥uε(x, ·) − u(x, ·)
∥∥∥ ≤


√

3

(
ε

γ(ε)

)
exp


3K

2
FL(L − x)

2

 +
√

2πI1 exp
(
K

2
FL(L − x)

) γ(ε)
x
L , (3.67)

which implies (3.31) and completes the proof of part (a) of Theorem 3.1.

Proof of part (b). This part can be proved similarly as part (a). Rewrite (3.59)as

Ψn(x) =
1
2

(
Rγ(ε) (L, n) − 1

)
n−re−

√
inx

[
nre
√

inxun(x) − nre
√

inxu′n(x)
√

in

]
, r > 0,

and observe in passing that (3.33) implies that
∣∣∣∣∣
1
2

(
Rγ(ε) (L, n) − 1

)∣∣∣∣∣ |n|
−r

∣∣∣∣e−
√

inx
∣∣∣∣ ≤

1
2

M̃(ε, r)γ(ε)
x
L , n ∈ Z\{0}. (3.68)

As in (3.63), we obtain

J̃1(x) ≤ 2πM̃2(ε, r)γ(ε)
2x
L


∑

n∈Z\{0}
|n|2re

√
2|n|L|un(x)|2 +

∑

n∈Z\{0}
|n|2re

√
2|n|L |u′n(x)|2

|n|



≤ 2πM̃2(ε, r)γ(ε)
2x
L

[
‖u‖2L∞(0,L;Gr

L(0,2π)) + ‖ux‖2L∞(0,L;Gr
L(0,2π))

]
≤ 2πM̃2(ε, r)γ(ε)

2x
L I2

2. (3.69)

Combining (3.64) and (3.69) yields

γ(ε)
−2x

L

∣∣∣∣Ã2(x)
∣∣∣∣
2
≤ 2πM̃2(ε, r)I2

2 + 2K
2
FL

L∫

x

γ(ε)
−2z
L

∣∣∣∣Ã2(z)
∣∣∣∣
2

dz.

Applying Gronwall’s inequality, we deduce that
∥∥∥vε(x, ·) − u(x, ·)

∥∥∥ ≤
√

2πM̃(ε, r)I2 exp
(
K

2
FL(L − x)

)
γ(ε)

x
L . (3.70)

Combining (3.53), (3.56) and (3.70), we deduce that

∥∥∥uε(x, ·) − u(x, ·)
∥∥∥ ≤


√

3

(
ε

γ(ε)

)
exp


3K

2
FL(L − x)

2

 +
√

2πM̃(ε, r)I2 exp
(
K

2
FL(L − x)

) γ(ε)
x
L ,

which implies (3.35) and completes the proof of part (b) of Theorem 3.1.
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3.2. Proof of Theorem 3.2

The proof of Theorem 3.2 consists of two steps.

Step 1.The existence and uniqueness of solution Uε ∈ C
(
[0, L]; L2(0, 2π)

)
to (3.39).

For anyw ∈ C
(
[0, L]; L2(0, 2π)

)
, we define

G̃ (x, t,w (x, t)) :=
∑

n∈Z\{0}

coshγ(ε)
(
(L − x)

√
in

)
gεn −

sinhγ(ε)
(
(L − x)

√
in

)

√
in

hεn

 eint

−
∑

n∈Z\{0}



L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

Fn(Uε)(z)dz+

x∫

0

P̃γ(ε)(x, z, n)Fn(Uε)(z)dz

 eint + F̃(gε0, h
ε
0,w)(x). (3.71)

The proof of this step is nontrivial and it is different from the proof of Step 1 in Theorem 3.1. We have to
prove that the mapping̃G is a contraction mapping by using a new norm. Let us define the following norm on
C

(
[0, L]; L2(0, 2π)

)
:

‖ f ‖1 = sup
0≤x≤L

{
γ(ε)−

x
L ‖ f (x, ·)‖

}
, ∀ f ∈ C

(
[0, L]; L2(0, 2π)

)
. (3.72)

It is easy to show that‖·‖1 is a norm onC
(
[0, L]; L2(0, 2π)

)
. We claim that for everyw1,w2 ∈ C

(
[0, L]; L2(0, 2π)

)
,

we have
∥∥∥∥G̃ (w1) − G̃ (w2)

∥∥∥∥
1
≤ KFL ‖w1 − w2‖1 . (3.73)

First, from (3.47) we have

∑

n∈Z\{0}

∣∣∣∣∣∣∣∣∣

L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

(Fn(w1)(z) − Fn(w2)(z)) dz

∣∣∣∣∣∣∣∣∣

2

+
∣∣∣F̃(gε0, h

ε
0,w1)(x) − F̃(gε0, h

ε
0,w2)(x)

∣∣∣2

≤ 1
2π

K
2
F(L − x)2γ(ε)

2x
L ‖w1 − w2‖21 , x ∈ [0, L]. (3.74)

Second, using (3.46a), as in the proof of Lemma 3.3, we have

∑

n∈Z\{0}

∣∣∣∣∣∣∣∣∣

x∫

0

P̃γ(ε)(x, z, n) (Fn(w1)(z) − Fn(w2)(z)) dz

∣∣∣∣∣∣∣∣∣

2

≤ xγ(ε)
2x
L

x∫

0

γ(ε)
−2z
L

∑

n∈Z
|Fn(w1)(z) − Fn(w2)(z)|2 dz

≤ 1
2π

xK2
Fγ(ε)

2x
L

x∫

0

γ(ε)
−2z
L ‖w1(z, ·) − w2(z, ·)‖2 dz≤ 1

2π
x2

K
2
Fγ(ε)

2x
L ‖w1 − w2‖21 . (3.75)

Then, for 0< x < L, using the inequality (a1 + a2)2 ≤ (1+ α̃) a2
1 +

(
1+

1
α̃

)
a2

2, for any real numbersa1, a2, α̃ > 0

together with (2.3), we conclude that

∥∥∥∥G̃ (x, ·,w1(x, ·)) − G̃ (x, ·,w2(x, ·))
∥∥∥∥

2
≤ γ(ε)

2x
L K

2
F(1+ α̃)x2 ‖w1 − w2‖21 + γ(ε)

2x
L K

2
F

(
1+

1
α̃

)
(L − x)2 ‖w1 − w2‖21 .

By choosing̃α = L−x
x , we obtain

γ(ε)−
2x
L

∥∥∥∥G̃ (x, ·,w1(x, ·)) − G̃ (x, ·,w2(x, ·))
∥∥∥∥

2
≤ K

2
FL2 ‖w1 − w2‖21 , ∀x ∈ (0, L). (3.76)
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On the hand, lettingx = L in (3.75), we have

γ(ε)−2
∥∥∥∥G̃ (L, ·,w1(L, ·)) − G̃ (L, ·,w2(L, ·))

∥∥∥∥
2
≤ K

2
FL2 ‖w1 − w2‖21 , (3.77)

and lettingx = 0 in (3.74), we have
∥∥∥∥G̃ (0, ·,w1(0, ·)) − G̃ (0, ·,w2(0, ·))

∥∥∥∥
2
≤ K

2
FL2 ‖w1 − w2‖21 . (3.78)

Combining (3.76)-(3.78), we obtain

γ(ε)−
x
L

∥∥∥∥G̃ (x, ·,w1(x, ·)) − G̃ (x, ·,w2(x, ·))
∥∥∥∥ ≤ KFL ‖w1 − w2‖1 , ∀x ∈ [0, L],

which leads to (3.73). SinceKFL < 1 it means that̃G is a contraction. It follows that the equatioñG(w) = w has a
unique solutionw ∈ C

(
[0, L]; L2(0, 2π)

)
and this completes the proof of Step 1.

Step 2.For establishing(3.41)we estimate the error‖Uε − u‖1 in the norm(3.72)of C
(
[0, L]; L2(0, 2π)

)
.

Proof of part (a). Consider the function

W̃(x, t) = γ(ε)−
x
L

∑

n∈Z

[
Uεn(x) − un(x)

]
eint. (3.79)

Let us find an upper bound for
∥∥∥∥W̃

∥∥∥∥
1
= supx∈[0,L]

∥∥∥∥W̃(x, ·)
∥∥∥∥. The norm exists because the two functionsUε andu

belong toC
(
[0, L]; L2(0, 2π)

)
.

We first observe that
∥∥∥∥W̃(x, ·)

∥∥∥∥
2
= 2π

∑

n∈Z\{0}

∣∣∣∣W̃n(x)
∣∣∣∣
2
+ 2πγ(ε)−

2x
L

∣∣∣∣F̃
(
gε0, h

ε
0,U

ε
)
(x) − F̃ (g0, h0, u) (x)

∣∣∣∣
2
. (3.80)

Applying (3.49) atx = 0, we have

un(0)−
u′n(0)
√

in
= e

√
inL

(
gn −

hn√
in

)
−

L∫

0

e
√

inz

√
in

Fn(u)(z)dz, n ∈ Z\‖0},

which implies that

e−
√

inL
(
un(0)−

u′n(0)
√

in

)
+

x∫

0

e
√

in(z−L)

√
in

Fn(u)(z)dz= gn −
hn√
in
−

L∫

x

e
√

in(z−L)

√
in

Fn(u)(z)dz, n ∈ Z\{0}. (3.81)

From (2.17), (3.57) and (3.81), we deduce that

un(x) = coshγ(ε)
(
(L − x)

√
in

)
gn −

sinhγ(ε)
(
(L − x)

√
in

)

√
in

hn −
L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

Fn(u)(z)dz

+
1
2

(
1− Rγ(ε)(L, n)

)
e
√

in(L−x)

e
−
√

inL
(
un(0)−

u′n(0)
√

in

)
+

x∫

0

e
√

in(z−L)

√
in

Fn(u)(z)dz



= coshγ(ε)
(
(L − x)

√
in

)
gn −

sinhγ(ε)
(
(L − x)

√
in

)

√
in

hn −
L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

Fn(u)(z)dz

+
1
2

(
1− Rγ(ε)(L, n)

)
e−
√

inx
(
un(0)−

u′n(0)
√

in

)
−

x∫

0

P̃γ(ε)(x, z, n)Fn(u)(z)dz. (3.82)
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From (3.39), (3.79) and (3.82), we have

W̃n(x) = γ(ε)−
x
L
[
Uεn(x) − un(x)

]

= γ(ε)−
x
L

Φn(x) + coshγ(ε)
(
(z− x)

√
in

) (
gεn − gn

) −
sinhγ(ε)

(
(L − x)

√
in

)

√
in

(
hεn − hn

)


− γ(ε)− x
L



L∫

x

sinhγ(ε)
(
(z− x)

√
in

)

√
in

(
Fn(Uε)(z) − Fn(u)(z)

)
dz



− γ(ε)−
x
L



x∫

0

P̃γ(ε)(x, z, n)
(
Fn(Uε)(z) − Fn(u)(z)

)
dz

 , (3.83)

where

Φn(x) :=
1
2

(
Rγ(ε) (L, n) − 1

)
e−
√

inx
(
un(0)−

u′n(0)
√

in

)
, n ∈ Z\{0}.

Then

|W̃n(x)| = γ(ε)−
x
L
∣∣∣Uεn(x) − un(x)

∣∣∣

≤ γ(ε)− x
L

[
|Φn(x)| +

∣∣∣∣coshγ(ε)
(
(z− x)

√
in

)∣∣∣∣
∣∣∣gεn − gn

∣∣∣ +

∣∣∣∣∣∣∣∣

sinhγ(ε)
(
(L − x)

√
in

)

√
in

∣∣∣∣∣∣∣∣

∣∣∣hεn − hn

∣∣∣

+

L∫

x

∣∣∣∣∣∣∣∣

sinhγ(ε)
(
(z− x)

√
in

)

√
in

∣∣∣∣∣∣∣∣

∣∣∣Fn(Uε)(z) − Fn(u)(z)
∣∣∣ dz+

x∫

0

∣∣∣P̃γ(ε)(x, z, n)
(
Fn(Uε)(z) − Fn(u)(z)

)∣∣∣ dz

]
,

n ∈ Z\{0}. (3.84)

From Lemma 3.2, we get
∣∣∣∣W̃n(x)

∣∣∣∣ ≤
1
2

[
|un(0)| +

∣∣∣u′n(0)
∣∣∣
]
+ γ(ε)−1

[∣∣∣gεn − gn

∣∣∣ +
∣∣∣hεn − hn

∣∣∣
]

+

L∫

0

γ(ε)−
z
L
∣∣∣Fn(Uε)(z) − Fn(u)(z)

∣∣∣dz, n ∈ Z\{0}. (3.85)

From the inequality

(a1 + a2 + a3)2 ≤ 2

(
1+

1
α̃

)
a2

1 + 2

(
1+

1
α̃

)
a2

2 + (1+ α̃)a2
3, (3.86)

for any real numbersa j , ( j = 1, 2, 3) andα̃ > 0 and thanks to Hölder’s inequality, we deduce that

2π
∑

n∈Z\{0}

∣∣∣∣W̃n(x)
∣∣∣∣
2
≤

∑

n∈Z\{0}

[
2π

(
1+

1
α̃

) [
|un(0)|2 +

∣∣∣u′n(0)
∣∣∣2
]
+ 8π

(
1+

1
α̃

)
γ(ε)−2

(∣∣∣gεn − gn

∣∣∣2 +
∣∣∣hεn − hn

∣∣∣2
)]

+
∑

n∈Z\{0}

2π (1+ α̃) L

L∫

0

γ(ε)
−2z
L

∣∣∣Fn(Uε)(z) − Fn(u)(z)
∣∣∣2 dz

 . (3.87)

Using again (3.86) in (3.47), and Hölder inequality we obtain

2πγ(ε)−
2x
L

∣∣∣∣F̃
(
gε0, h

ε
0,U

ε
)
(x) − F̃ (g0, h0, u) (x)

∣∣∣∣
2

≤ 4π

(
1+

1
α̃

)
γ(ε)−2

(∣∣∣gε0 − g0

∣∣∣2 +
∣∣∣hε0 − h0

∣∣∣2
)
+ 2π (1+ α̃) L

L∫

x

γ(ε)
−2z
L

∣∣∣F0(Uε)(z) − F0(u)(z)
∣∣∣2 dz. (3.88)
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We can now combine the results of (1.2), (3.28), (3.79), (3.80), (3.87) and (3.88), to obtain

∥∥∥∥W̃(x, ·)
∥∥∥∥

2
≤ 4

(
1+

1
α̃

) (
ε

γ(ε)

)2

+

(
1+

1
α̃

) [
‖u(0, ·)‖2 + ‖ux(0, ·)‖2

]
+ (1+ α̃) K

2
FL

L∫

0

∥∥∥∥W̃(z, ·)
∥∥∥∥

2
dz

≤ 4

(
1+

1
α̃

) (
ε

γ(ε)

)2

+

(
1+

1
α̃

)
I2

3 + (1+ α̃) K
2
FL2

∥∥∥∥W̃
∥∥∥∥

2

1
, x ∈ [0, L]. (3.89)

The latter inequality holds for allx ∈ [0, L] and the right-hand side of (3.89) is independent ofx so, we get
∥∥∥∥W̃

∥∥∥∥
2

1
≤ 4

(
1+

1
α̃

)
γ(ε)−2ε2 +

(
1+

1
α̃

)
I2

3 + (1+ α̃)K2
FL2

∥∥∥∥W̃
∥∥∥∥

2

1
.

Then,
(
1− (1+ α̃)K2

FL2
) ∥∥∥∥W̃

∥∥∥∥
2

1
≤ 4

(
1+

1
α̃

)
γ(ε)−2ε2 +

(
1+

1
α̃

)
I2

3 =

(
1+

1
α̃

) (
I2

3 + 4γ(ε)−2ε2
)
.

Sinceα̃ ∈
(
0, 1

K
2
F L2 − 1

)
it follows that the left-hand side bracket is positive. Thisimplies that

γ(ε)−
2x
L
∥∥∥Uεn(x) − un(x)

∥∥∥2 ≤
∥∥∥∥W̃

∥∥∥∥
2

1
≤

(
1+ 1

α̃

) (
I2

3 + 4γ(ε)−2ε2
)

(
1− (1+ α̃)K2

FL2
) .

Thus (3.41) holds.

Proof of part (b). First, we re-writeΦn as

Φn(x) =
1
2

(
Rγ(ε) (L, n) − 1

)
n−re−

√
inx

(
nrun(0)− nr u′n(0)

√
in

)
, n ∈ Z\{0}.

Using (3.68), as in (3.85), we obtain
∣∣∣∣W̃n(x)

∣∣∣∣ ≤
1
2

M̃(ε, r)|n|r
[
|un(0)| +

∣∣∣u′n(0)
∣∣∣
]
+ γ(ε)−1

[∣∣∣gεn − gn

∣∣∣ +
∣∣∣hεn − hn

∣∣∣
]

+

L∫

0

γ(ε)−
z
L
∣∣∣Fn(Uε)(z) − Fn(u)(z)

∣∣∣dz, n ∈ Z\{0}.

Using inequality (3.86), as in (3.87), we obtain

2π
∑

n∈Z\{0}

∣∣∣∣W̃n(x)
∣∣∣∣
2
≤

∑

n∈Z\{0}

[
2π

(
1+

1
α̃

)
M̃2(ε, r)

[
|n|2r |un(0)|2 + |n|2r

∣∣∣u′n(0)
∣∣∣2
]]

+
∑

n∈Z\{0}

[
8π

(
1+

1
α̃

)
γ(ε)−2

(∣∣∣gεn − gn

∣∣∣2 +
∣∣∣hεn − hn

∣∣∣2
)]

+
∑

n∈Z\{0}

[
2π (1+ α̃) L

∫ L

0
γ(ε)

−2z
L

∣∣∣Fn(Uε)(z) − Fn(u)(z)
∣∣∣2 dz

]
.

Finally, as in (3.88), we obtain
∥∥∥∥W̃(x, ·)

∥∥∥∥
2
≤ 2π

(
1+

1
α̃

)
M̃2(ε, r)

[
‖u(0, ·)‖2Vr (0,2π) + ‖ux(0, ·)‖2Vr (0,2π)

]

+ 4

(
1+

1
α̃

) (
ε

γ(ε)

)2

+ (1+ α̃) K
2
FL

L∫

0

∥∥∥∥W̃(z, ·)
∥∥∥∥

2
dz

≤ 2π

(
1+

1
α̃

)
M̃2(ε, r)I2

4 + 4

(
1+

1
α̃

) (
ε

γ(ε)

)2

+ (1+ α̃) K
2
FL2

∥∥∥∥W̃
∥∥∥∥

2

1
.
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We obtain

∥∥∥∥W̃
∥∥∥∥

2

1
≤ 2π

(
1+

1
α̃

)
M̃2(ε, r)I2

4 + 4

(
1+

1
α̃

) (
ε

γ(ε)

)2

+ (1+ α̃) K
2
FL2

∥∥∥∥W̃
∥∥∥∥

2

1
.

Finally, we get

γ(ε)−
2x
L
∥∥∥Uε(x, ·) − u(x, ·)

∥∥∥2 ≤
∥∥∥∥W̃

∥∥∥∥
2

1
≤

2π
(
1+ 1

α̃

)
M̃2(ε, r)I2

4 + 4
(
1+ 1

α̃

)
γ(ε)−2ε2

1− (1+ α̃) K
2
FL2

.

Hence, inequality (3.43) holds. This concludes the proof ofTheorem 3.2.

4. Numerical results and discussion

As showed in Sections 2 and 3, the two regularized solutionsuε andUε satisfying the integral equations (2.14)
and (3.39), respectively, can be resolved uniquely by fixed-point iteration.

Let us introduce the uniform mesh

xk = k∆x, ∆x =
L
K
, k = 0,K, K ∈ N\{0},

tm = m∆t, ∆t =
2π
M
, m= 0, (M − 1), M ∈ N\{0},

whereK andM are given positive integers and, for convenience,M is even.
The outline of the remainder of this section is as follows. First, we explain modelling a data function from its

discrete values. Second, we give some numerical details of the approximations of the right-hand sides of equations
(2.14) and (3.39). Finally, a couple of examples are presented and discussed.

4.1. Modelling data

Lemma 4.1. Let v∈ H2(0, 2π) and set vm := v(tm) for m= 0, (M − 1). A functionṽ is called interpolating function
of data sets(vm)m=0,(M−1) for v, if it satisfies, [15],

ṽ(t) =
M/2∑

n=−M/2+1

v̂neint for t ∈ [0, 2π), wherev̂n =
1
M

M−1∑

m=0

vme−mn2πi
M . (4.90)

Then, we have

ṽ(tm) =
M/2∑

n=−M/2+1

v̂nemn2πi
M = vm for m= 0, (M − 1). (4.91)

Moreover, the error between v andṽ is bounded by

‖v− ṽ‖ ≤ C(∆t)2‖v′′‖, (4.92)

where C is a positive constant independent of v and∆t.

Proof. One can find the proof of this lemma in textbooks, see e.g. [15], Chapter 2. The relationship between ˆvn

andvm shown in equations (4.90) and (4.91) is well-known as the discrete Fourier transform (DFT) and the inverse
discrete Fourier transform (IDFT), respectively, [5].
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Definition 5.1 Now assume the Cauchy data g and h∈ H2(0, 2π). Let (gεm, h
ε
m) be the discrete data on the time

grid (tm)m=0,(M−1) measured with pointwise errors

gεm = gm +
ε

2
rand(m), hεm = hm +

ε

2
rand(m), (4.93)

where(gm, hm) := (g(tm), h(tm)), the function rand(·) generates a vector of M random numbers from a uniform
distribution in [−1, 1] andε ≥ 0 indicates the level of noise disturbing the data. Using the discrete data(gεm, h

ε
m)

we construct the noisy data functions(g̃ε, h̃ε) as follows:

g̃ε(t) =
M/2∑

n=−M/2+1

ĝεneint for t ∈ [0, 2π), whereĝεn =
1
M

M−1∑

m=0

gεme−mn2πi
M (4.94)

and

h̃ε(t) =
M/2∑

n=−M/2+1

ĥεneint for t ∈ [0, 2π), whereĥεn =
1
M

M−1∑

m=0

hεme−mn2πi
M . (4.95)

Now, we have the following lemma which shows that (g̃ε, h̃ε) is a noisy data function of (g, h).

Lemma 4.2. We have the following estimate:

‖g− g̃ε‖ + ‖h− h̃ε‖ ≤ ε0, (4.96)

whereε0 := ε + 2C(∆t)2 max{‖g′′‖, ‖h′′‖}.

Proof. Using the modelling formula (4.90) and the discrete form of Parseval’s identity, see [5], Chapter 3, i.e.

M/2∑

n=−M/2+1

|v̂n|2 =
1
M

M−1∑

m=0

|vm|2,

we have

‖g̃− g̃ε‖ =
M/2∑

n=−M/2+1

|ĝεn − ĝn|2 =
1
M

M−1∑

m=0

|gεm − gm|2 ≤ (ε/2)2.

Using (4.92), we have
‖g− g̃‖ ≤ C(∆t)2‖g′′‖.

These imply that

‖g− g̃ε‖ ≤ ‖g̃− g̃ε‖ + ‖g− g̃‖ ≤ ε
2
+C(∆t)2‖g′′‖

and a similar inequality holds for‖h− h̃ε‖. Thus (4.96) holds.

4.2. Numerical details

As mentioned before, the numerical solutions to equations (2.14) and (3.39) can be found by a fixed-point
convergent iteration. To computeuε andUε, we need to evaluate the integrals in the right-hand sides ofthese
equations. For eachk = 1,K, we need to approximate the integral

∫ Xu

Xl

α(n, xk, z) 〈F(z, t, uε(z, t)), eint〉dz=
∫ Xu

Xl

φ(z)dz,
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for two cases: [Xl ,Xu] = [0, xk] or [Xl ,Xu] = [xk, L].
Givenuε, a previous numerical solution of the fixed-point iteration, the integrandφ = φ(uε, xk, z, n) has only

discrete values with repect toz ∈ [Xl ,Xu]. Using the Newton-Cotes formulas, we have

∫ Xu

Xl

φ(z)dz≈ ∆x
p∑

j=1

Ap, jφ j , p = 2,K,

where the coefficientsAp, j are given in [1], p.886, or in [26].
In our numerical practice, computation is implemented in Fortran programming language with double precision

floating point numbers. Since the aforementioned transforms, such as DFT: (vm) 7→ (v̂n) (equation (4.90)) and
IDFT: (v̂n) 7→ (vm) (equation (4.91)) can be performed efficiently using the fast Fourier transform (FFT) technique,
we adopt the subroutinesc f f t1 f andc f f t1b of FFTPACKS, [10], to accomplish the DFT and IDFT, respectively.

4.3. Numerical tests

In this subsection we test a couple of numerical examples in order to assess and verify the accuracy and stabil-
ity of the regularized solutionsuε andUε.

Example 1.We takeL = 0.5 and consider the analytical solution given by

u(x, t) = exp

−3x

(
t − 5π

6

)2 =: U(x, t), (x, t) ∈ [0, 0.5] × [0, 2π], (4.97)

with the nonlinear Lipschitz source (with Lipschitz constant KF = 1)

F(x, t, u) =
|u|

u2 + 1
+ R(x, t), (4.98)

whereR= Ut −Uxx − |U|
U2+1. The nonlinearity in (4.98) is characteristic to a reaction-diffusion equation.

From (4.97), the Cauchy data is given by

g(t) = U(0.5, t) = exp

−
3
2

(
t − 5π

6

)2 , h(t) = Ux(0.5, t) = −3

(
t − 5π

6

)2

exp

−
3
2

(
t − 5π

6

)2 ,

t ∈ [0, 2π]. (4.99)

The graph of the exact solution (4.97) is shown in Figure 1(a). The exact Cauchy data (4.99) are plotted in
Figure 2(a) together with the desired solution at the boundary x = 0 given byu(0, t) ≡ 1.

The numerical solutionsuε andUε solving (2.14) and (3.39), respectively, are obtained withthe meshM×K =
100×50. The number of iterations (starting from the zero trivialinitial guess) was 7 when the relative error between
two subsequent iterations was less than 10−9 tolerance, and the iterative process was terminated. Furthermore, in
both casesε = 0 and 2× 10−2, the root mean square errors between the two regularized solutionsuε, Uε and the
exact solution (4.97) were obtained equally accurate when the regularization parameterγ(ε) becomes smaller than
10−2; in other words, the two regularization methods have the same order of accuracy. This can also be visualised
from Figures 1(b)-1(e) which show the graphs ofuε andUε for noisy (ε = 2 × 10−2) Cauchy data (4.93). From
top to bottom of figures one can see that the regularized solutions are in better agreement with the exact solution
(shown in Figure 1(a)), asγ(ε) decreases. However, from Figures 1(b)-1(e), one can observe the sensitivity of the
numerical solutions to noise (ε = 2× 10−2) via the fluctuating countour lines, especially near the boundaryx = 0.
This is to be expected since the stability decreases withx marching sideway leftwards from the overprescribed
boundaryx = L. The numerical results ofu(0, t) also degrade close to the end of the time intervalt = 2π which is
consistent with the remarks made in [7]. Despite the fluctuations occuring, the shaping of the numerically retrieved
solutions confirm the estimates predicted in Theorems 3.1 and 3.2; a proper choice of the regularization parameter
γ(ε) concerns the termε/γ(ε) in expressions (3.32) and (3.36) of Theorem 3.1, and (3.41)and (3.43) of Theorem
3.2. That is, once this term is kept under control, the convergence and stability of the numerical solutions can be
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guaranteed. The best choice ofγ(ε) in our numerical experiments for Example 1 isγ(ǫ) = ε/20.

Example 2. In contrast to Example 1, in this example an analytical solution for u(x, t) is not explicitly available.
Consider a non-smooth functionb(t) with compact support given by

b(t) =


3
(

1
2 −

∣∣∣t − 2π
5

∣∣∣
)
, if

∣∣∣t − 2π
5

∣∣∣ ≤ 1
2,

0, otherwise.
(4.100)

Let u(0, t) = b(t). Let L = 5 and consider the following well-posed linear problems:


vt − vxx = 0, (x, t) ∈ (0, 5)× [0, 2π],
v(x, 0) = 0, x ∈ (0, 5),
v(0, t) = b(t), t ∈ [0, 2π],
vx(5, t) = 0, t ∈ [0, 2π].

and



wt − wxx = sin(v(x, t)), (x, t) ∈ (0, 5)× [0, 2π],
w(x, 0) = 0, x ∈ (0, 5),
w(0, t) = 0, t ∈ [0, 2π],
wx(5, t) = 0, t ∈ [0, 2π],

(4.101)

Since we cannot obtain the exact solutions forv andw, we approximate them numerically using the second-order
Crank-Nicolson finite difference method (FDM), [24]. Then, it is obvious that ˜u(x, t) = w(x, t)+ v(x, t) satisfies the
following nonlinear problem:



ũt − ũxx = sin(ũ− w(x, t)), (x, t) ∈ (0, 5)× [0, 2π],
ũ(x, 0) = 0, x ∈ (0, 5),
ũ(0, t) = b(t), t ∈ [0, 2π],
ũx(5, t) = 0, t ∈ [0, 2π].

(4.102)

Let us define the Cauchy data such asg(t) = ũ(1, t) andh(t) = ũx(1, t) and consider solving (1.1) for a function
u(x, t) satisfying



ut − uxx = sin(u− w(x, t)), (x, t) ∈ (0, 1)× [0, 2π],
u(1, t) = g(t), t ∈ [0, 2π],
ux(1, t) = h(t), t ∈ [0, 2π].

(4.103)

The nonlinearity in the first equation in (4.103) is characteristic to a sine-Gordon equation.
The graphs of the function (4.100) and the Cauchy data (g, h) obtained by solving the problem (4.102) are

shown in Figure 2(b).
In Example 2, in order to obtain the ”exact” solution and its Cauchy data, we have solved the two well-posed

mixed direct problems in (4.101) with the mesh 1001×1001 using the FDM. Afterwards, the obtained results were
interpolated to the computation domain (x, t) ∈ [0, 1] × [0, 2π] by adopting the subroutineRGSF3P, [2], where we
employed two mesh resolutions:K×M = 100×80 and 100×160. Similarly to Example 1, the fixed-point iterative
process was terminated after 7 iterations (starting from the zero trivial initial guess) with the error tolerance 10−9.
Again, the two regularization methods produced numerical solutions with the same order of accuracy and therefore,
for brevity and clarity, only the numerical results foruε(0, t) are illustrated in the next figure.

Figure 3 illustrates the convergence of the regularized solution uε(0, t) to the exact solution (4.100), asγ(ε)
tends to zero (from the left to the right of the figure), for a fixed mesh sizeK×M = 100×80. Here the Cauchy data
(gεm, h

ε
m) in equation (4.93) are disturbed byε = 2× 10−2, 2× 10−3 and 0 (from the top to the bottom of the figure).

From Figure 3 it can be seen, as expected, that better data quality yields a more accurate and stable solution. The
proper choice of regularization parameterγ(ε) for this example isγ(ε) ≈ 5ε.

Clearly in Figure 3, there are some wiggles occuring neart = 0 andt = 2π, which degrade the accuracy of
the numerical solutions near these endpoints. It is reasonable to believe that the issue is relevant to the periodicity
of the input data, which in this example is violated; a comprehensive survey of this matter can be found in [5],
Chapter 6. However, the error estimates of the regularized solutions in an interior of the interval [0, 2π] are actually
much better than the courterparts evaluated fully in [0, 2π] including the endpoints, and moreover, they improve
with either increasingM from M1 = 80 to M2 = 160 (forε = 2× 10−3 andε = 0) or, decreasingε from 2× 10−2
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to zero. Indeed, in Table 1, we provide numerical evidence tosupport the latter assertion. Therein, two kinds of
error estimates (̇Λ1,p, Λ̈1,p) and (Λ̇2,p, Λ̈2,p) are defined in form of the root mean square errors, as follows:

Λ̇1,p =

√√√
1

Mp

Mp−1∑

m=0

|uε(0, tm) − b(tm)|2, Λ̇2,p =

√√√
1

Mp − 9

Mp−5∑

m=5

|uε(0, tm) − b(tm)|2,

Λ̈1,p =

√√√
1

Mp

Mp−1∑

m=0

|Uε(0, tm) − b(tm)|2, Λ̈2,p =

√√√
1

Mp − 9

Mp−5∑

m=5

|Uε(0, tm) − b(tm)|2, (4.104)

for p = 1, 2, where (̇Λ1,p, Λ̈1,p) plays the role of the error estimate on the full interval [0, 2π], while (Λ̇2,p, Λ̈2,p)
stands for the error estimate well-inside the interior of the interval [0, 2π].

γ(ε) = 10−2 M1 = 80 M2 = 160

ε Λ̇1,1 Λ̈1,1 Λ̇2,1 Λ̈2,1 Λ̇1,2 Λ̈1,2 Λ̇2,2 Λ̈2,2

2× 10−2
1.061E-1 1.060E-1 8.226E-2 8.219E-2 2.088E-1 2.087E-1 1.491E-1 1.490E-1

2× 10−3
8.937E-2 8.925E-2 3.533E-2 3.537E-2 1.384E-1 1.383E-1 1.837E-2 1.845E-2

0 8.831E-2 8.819E-2 3.453E-2 3.457E-2 1.393E-1 1.392E-1 1.025E-2 1.041E-2

Table 1: Example 2, mean square errors (Λ̇1,p, Λ̈1,p) and (Λ̇2,p, Λ̈2,p) are defined in equation (4.104) corresponding to the regularized
solution (uε,Uε), andp = 1,2 meansMp. Here the regularization parameterγ(ε) = 10−2 in all cases.

5. Conclusions

This study has achieved a major extension over the much more investigated linear sideways heat equation. The
semilinear sideways heat equation, governing reaction-diffusion applications, has been solved using two new reg-
ularization methods based on (2.14) and (3.39) for the resulting nonlinear integral equation (2.10). Convergence
and stability estimates, as the noise level tends to zero, have been formulated and proved. Numerical examples
support the theoretical findings of the paper. Further work will consider extending the current study from Lipschitz
heat sources to locally Lipschitz ones in order to allow for an even wider range of physical applications related, for
example, to combustion and radiative heat transfer. Of additional interest would be to extend the inverse analysis
to the sideways heat equation in which the nonlinear heat sourceF in (1.1) also depends on the gradientux.
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(a) Exact solution

(b) uε(x, t), γ(ε) = 10−2 (c) Uε(x, t), γ(ε) = 10−2

(d) uε(x, t), γ(ε) = 10−3 (e)Uε(x, t), γ(ε) = 10−3

Figure 1: Example 1, graphs of the exact solution (4.97) and the numerical solutionsuε(x, t) and Uε(x, t) solving (2.14) and (3.39),
respectively, obtained from noisy (ε = 2× 10−2) Cauchy data (4.93).
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(a) Example 1
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(b) Example 2

Figure 2: Graphs of exact solutionu(0, ·) and exact Cauchy data (g,h) = (u(L, ·),ux(L, ·)) for Examples 1 and 2.
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(a)ε = 2× 10−2, γ(ε) = 10−1.
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(b) ε = 2× 10−2, γ(ε) = 10−2.
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(c) ε = 2× 10−2, γ(ε) = 10−3.
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(d) ε = 2× 10−3, γ(ε) = 10−1.
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(e)ε = 2× 10−3, γ(ε) = 10−2.
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(f) ε = 2× 10−3, γ(ε) = 10−3.
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(g) ε = 0, γ(ε) = 10−1.
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(h) ε = 0, γ(ε) = 10−2.
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(i) ε = 0, γ(ε) = 10−3.

Figure 3: Example 2, convergence tendency of the regularized solutionuε(0, t) (−◦−) to the exact solution (4.100) (—–), asγ(ε) decreases
(from left to right). Here the Cauchy data (gε,hε) in (4.93) are disturbed byε = 2× 10−2, 2× 10−3 and 0 (from top to bottom).
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