
This is a repository copy of The Visual Inheritance Structure to Support the Design of 
Visual Notations.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/136841/

Version: Accepted Version

Proceedings Paper:
Selviandro, Nungki, Kelly, Tim orcid.org/0000-0002-7385-2031 and Hawkins, Richard 
David orcid.org/0000-0001-7347-3413 (Accepted: 2018) The Visual Inheritance Structure 
to Support the Design of Visual Notations. In: Third International Workshop on Human 
Factors in Modeling (HuFaMo’18). . (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



The Visual Inheritance Structure to Support the

Design of Visual Notations

Nungki Selviandro∗†, Tim Kelly∗, Richard Hawkins∗

∗Department of Computer Science, University of York, UK
†School of Computing, Telkom University, Indonesia

{ns1162, tim.kelly, richard.hawkins}@york.ac.uk

Abstract—It is a common practice in modelling languages
to provide their users with a set of visual notations as a
representation of semantic constructs. The use of visual notation
is believed to help communicate complex information, especially
when communicating with non-technical users. Therefore, re-
search in the design of visual notation continues to evolve, e.g.
research to provide an effective and efficient design approach.
There are approaches exist to support the designer in designing
the visual notation such as the Cognitive Dimensions and the
Physics of Notations. As the current metamodeling approach is
widely adopted as a mechanism for improving standardisation
and interoperability in modelling languages, it is important to
provide a guideline that focus on the design of visual notation
for a predefined metamodel. In this paper, we address the visual
inheritance structure to support the design of visual notations for
a predefined metamodel. This approach emphasises the design
coherence between classes and sub-classes. To demonstrate that
it is possible to apply our approach, we use part of the OMG
Structured Assurance Case Metamodel as a case study.

I. INTRODUCTION

In developing a system model using a particular modelling

language, it is essential for the designer to understand the se-

mantic constructs, the compositional rules, and the constructs

representation (e.g. in textual or visual forms). It is now a

common practice in modelling languages to provide users with

a set of visual notations for the representation of the semantic

constructs. UML, for example, as a general-purpose modelling

language, has a visual notation to help the designer visualise

system models.

The visual communication aspect itself in modelling lan-

guages is crucial. It can be seen as the interface of the

modelling language and users, and helps communicate com-

plex information, especially when communicating with non-

technical users. A well-designed visual notation is also easier

to learn and to remember than textual syntax [1], [2]. To

be more effective, the design of the visual notation should

intuitively represent the semantic constructs [3], [4].

In the visual modelling language development process,

the semantic constructs and the language rules are typically

defined in a metamodel by the language developers together

with the end-users, who help to refine the language concepts.

Based on the defined metamodel, notation will be developed

as a representational form of the language [3]. The design of

the notation should be accompanied by a design rationale, that

Supported by Indonesia Endowment Fund for Education (LPDP).

is, explicit reference to theories and empirical evidence for de-

signing the notations [5]. Some approaches exist to support the

designer in designing the visual notation such as proposed in

[3], [6], [7]. In this paper, we address the visual inheritance to

support the design of a visual notation based on a metamodel.

We show the applicability of this approach by designing a

set of visual notation for the Argumentation Metamodel of

the OMG Structured Assurance Case Metamodel (SACM)

[8]. This metamodel describes and defines the concepts that

are required to model structured arguments (e.g. for safety).

However, the current version of the SACM Argumentation

specification is not equipped with any visual notation.

The remainder of this paper is organised as follows: Section

2 presents related work on the visual notation design theory,

visual inheritance design, and the concept of structured argu-

ments in SACM. Section 3 describes the visual inheritance

notation design. In Section 4, we discuss the applicability

of the proposed approach. In Section 5, we describes the

limitations to the current version of the proposed approach.

Finally, Section 6 gives conclusions and discusses future work.

II. RELATED WORK

A. State-of-the-Art of Visual Notation Design Theory

Visual notations form an integral part of the language of

computer science and software engineering. Many of visual

notations have been developed to facilitate communicating

complex information between technical and non-technical

users. They are also used in different stages of software

engineering, from requirements engineering through to main-

tenance. Visual notations are also adopted by practitioners

in industry for strategic planning in the design of software

systems. In industry, visual notations play a critical role in

communicating with internal and external stakeholders [9].

This encourages visual notation researchers to conduct studies

as to how to maximise the effectiveness of visual notations.

Research in notation design is closely associated with

research in conceptual modelling languages, specifically in

evaluating the quality of the conceptual model [10]. Several

frameworks have been proposed to evaluate and improve

the quality of conceptual models, and some of them, such

as SEQUAL [11] and GoM [12], partially paid attention to

the visual notation aspect. However, they were not designed

exclusively to focus on the visual notation.



Recently, a theory that focuses on visual notation design

has been proposed, which is called The Physics of Notations

(PoN). This theory aimed to ensure that visual notations are

designed to be cognitively effective (i.e. the speed, ease, and

accuracy with which a representation can be processed by the

human mind) [3]. PoN provides nine principles that can be

used either to design or to evaluate the visual notation. There

are numbers of existing notations that has been evaluated

using the PoN principles such as UML [13], I* [14], SEAM

[9], UCM [15], and BPMN [5]. There are also several new

notations that are designed using the PoN principles, such

as VTML (The Visual Traceability Modelling Language)

[16] and Larman’s Operation Contracts [17]. However, this

framework has received some criticism in the literature, mainly

focused on the validation and difficulty in applying the princi-

ples since PoN does not prescribe any systematic method for

the implementation. Several works, such as in [18]–[20], have

been proposed to address this issue.

Besides PoN, the Cognitive Dimensions (CDs) theory is

also frequently discussed in notation design literature. CDs

framework was introduced by Green, who emphasised the

use of this framework as a ”discussion tool” to aid non-HCI

specialists in evaluating the usability of notational systems

and information artifacts [6]. To do this, the CDs provides

a vocabulary that can be used by designers when investigating

the cognitive implications of their design decisions. Therefore,

it does not explicitly provide any guideline or procedure for

designing or evaluating a visual notation [21].

With the advancement of meta-modelling standards, the

semantic constructs and grammatical rules of modelling lan-

guages tend to be defined in the metamodel to facilitate

communication and tool support [14]. The notation should

be defined afterwards referring to the defined metamodel.

Therefore, in this paper we focus on providing a guideline

to support the design of the notations based on a metamodel.

B. Visual Inheritance

The term inheritance is commonly used in object-oriented

methodology. Inheritance can be defined as a mechanism

which allows new classes to be defined based on existing

classes; a new class can be defined as a specialisation of one

that has already been defined. In this case, the specialised class

inherits the characteristics (attributes and methods) of the class

it is created from. This specialised-class is also known as a

sub-class or child-class, while the existing class that inherits

its characteristics is also known as a general-class, super-class,

or parent-class [22].

There are two types of inheritance: single and multiple [22],

[23]. Single inheritance can be described as a condition where

a child-class has exactly one parent-class. For example, in

Fig. 1(a), a child-class ”B” has only one parent-class ”A”.

Multiple inheritance can be described as a condition where a

child-class has more than one parent-class. However, multiple

inheritance tends to be hard to implement due to ambiguity.

For example, Java programming language does not support the

multiple inheritance mechanism since it could cause ambiguity

Fig. 1. (a) Single Inheritance; (b) Multiple Inheritance

Fig. 2. An Example of Visual Inheritance in UI Design

when compiling the program. A popular case of this ambiguity

is known as a ’diamond problem’. The diamond problem can

be illustrated as an ambiguity that arises when a parent-class

A inherits its attributes and methods to child-classes B and C,

while there is a sub-class D that inherits from both class B

and C (see Fig. 1(b)). In this case, the problem occurs when

there exist methods with the same signature in both parent

and child-classes. On calling the method, the compiler cannot

determine which class method to be called and even on calling

which class method gets the priority [22].

In user interface (UI) object-oriented programming, the

concept of inheritance is also being adopted to maximise

efficiency. For example, in the case when we have a common

(base) design that can be reused further by inheriting this base

design [24], [25]. For example, in designing a UI frame, we

can create the base design as a rectangle that has common

functionalities (methods), e.g. close. This frame base design

and functionalities can be reused by more specialised frames

(e.g. login frame) by implementing the inheritance mechanism.

This process can be called visual inheritance. An illustration

of this is provided in Fig. 2.

The concept of inheritance has inspired the idea of visual

inheritance design in designing visual notations based on the

metamodel. The implementation of this idea only applies for

single inheritance scenarios because of the ambiguity in the

case of multiple inheritance. The concept of visual inheritance

for designing visual notations will be discussed in Section 3.

C. Argumentation Metamodel in SACM

The concept of an assurance case is that it provides a

framework for analysing and communicating the assurance

arguments and evidence about a particular system in a specific

environment (e.g. covering safety requirements of the systems)

[8]. In [26], an assurance case is defined as a reasoned and

compelling argument, supported by a body of evidence, that a



system, service or organisation will operate as intended for a

defined application in a defined environment. These structured

arguments, for example in complex systems, sometimes can

be very large and complicated. Therefore, it is necessary for

them to be clearly documented.

The Structured Assurance Case Metamodel (SACM) is a

specification that defines a metamodel for representing struc-

tured assurance cases. It is published by The Object Manage-

ment Group to improve standardisation and interoperability for

assurance cases [8]. Part of the SACM specification defines a

metamodel for representing structured arguments (see Fig. 3).

In SACM, structured arguments are represented explicitly by

the Claims, citation of artifacts or ArtifactReferences (e.g. Ev-

idence and Context for claims), and the relationships between

these elements [8]. The following relationships are defined:

• AssertedInference for relationship between Claims

• AssertedEvidence for ArtifactReference (as Evidence)

and Claims

• AssertedContext for ArtifactReference (as Context) and

Claims

• AssertedArtifactSupport for ArtifactReference (as Evi-

dence) supporting ArtifactReference (as Evidence and

Context)

• AssertedArtifactContext for ArtifactReference (as Con-

text) supporting ArtifactReference (as Evidence and Con-

text)

In addition to these core elements, it is also possible to

provide:

• Description of the ArgumentReasoning associated with

AssertedInference or AssertedEvidence

• Counter-Argument and Counter-Evidence (via isCounter:

Boolean)

• Modular structured argument (via ArgumentPackage) in-

cluding the mechanism to organise a specific selection of

the ArgumentElements contained within the package (via

ArgumentPackageInterface), and a mechanism to bound

two or more argument packages (via ArgumentPackage-

Binding)

• An association of a number of ArgumentElements to a

common group (via ArgumentGroup)

The current version of the SACM argumentation specifi-

cation is not equipped with any visual notation. It is believed

that the visual notation is an integral part of modern modelling

languages and can help users in communicating their intended

message in the form of a model (or models) to the reader [3]. It

would therefore be beneficial if we provide the visual notation

for the SACM argumentation metamodel, and we shall use this

as an example application of our approach.

III. VISUAL INHERITANCE AS PART OF NOTATION DESIGN

In this section, we describe the visual inheritance process

as part for designing a visual notation based on a predefined

metamodel. This approach emphasises the design coherence

between parent and child-classes, where the basic design

characteristics of a parent-class must be inherited to its child-

classes. We hypothesise that by inheriting the base design of

a parent-class to its child-classes, this could help the user of

the notation inferring the semantic meaning of the classes and

reduce the cognitive overload [3] in memorising the number

of the notations.

As an input to start the visual inheritance process, we need a

predefined metamodel as our main reference for designing the

visual notation. This process can be applied only for single

inheritance relationship scenarios, where a child-class in a

metamodel only has exactly one parent-class. This condition

is important to avoid ambiguity such as a ”diamond problem”

in programming multiple inheritance. The output of the visual

inheritance process is the visual notation that consists of visual

representations, the visual semantics, and the compositional

rules based on the metamodel.

Before designing the visual notation, it is important to study

all concepts of the metamodel to capture the core aspects and

elements in the metamodel. We also suggest to observe the

following elements in the metamodel:

• Type and attributes of each class.

A class in a metamodel could be defined either as an

abstract- or concrete-class. Unlike the concrete-class, an

abstract-class cannot be instantiated. A certain class can

have one or more attributes. An attribute is a feature

within a class that describes a range of values that the

instances of the class may hold. The attribute may be

grouped by visibility. A visibility keyword can be given

once for multiple features with the same visibility.

• Type of each relationship.

A relationship is a semantic connection among model

elements. For example, in UML there are several types

of relationships such as association, generalisation, ag-

gregation, and composition.

After studying the overall concept of the metamodel, we

can begin the visual inheritance process. At first, we need to

choose a root class. In selecting the root class, we suggest

considering the scope of the concept that needs to be visually

modelled. Note that we only create visual representation for

the root class and its successors. We then need to see if

the root class has any attribute that must be inherited from

its predecessors. An attribute that exists in a class is always

inherited to its successors.

Because we use visual inheritance approach, we need to

start the design process from the root and inherit any base

design to its child-classes by using depth first traversal. An

abstract-class does not have a visual representation, but it

still need to be analysed to see if we can define any design

constraint from its semantic. In addition, an abstract class

could have an attribute which must be inherited to its child-

classes. A visual representation of attributes in an abstract-

class might as well be defined based on the semantic of each

attribute. Hence, in analysing an abstract-class we might get a

design constraint or a base design for attributes to be inherited

to its child-classes.

On the other hand, a concrete-class must have a visual

representation. In creating a visual representation of a class,

we need to consider a base design or a design constraint that



Fig. 3. UML Class Diagram of SACM Argumentation Metamodel [8]

is inherited from its parent-class (if any). Then in creating a

visual representation of an attribute in a concrete-class, if there

exists a base design that is inherited from a parent-class, we

need to combine the base design with the base design of the

concrete-class. If there is no base design of the attribute, then

we need to create a base design from its semantic. The detail

of the process can be seen in Fig. 4.

In designing the visual representations, we can adopt

Bertin’s visual variables that can be used to graphically encode

information: shape, colour, size, texture, orientation, bright-

ness, position (horizontal and vertical). These visual variables

can be used to develop numbers of graphical symbols by com-

bining the variables together in different ways [27]. Besides

that, we suggest to apply the following design principles:

• Semantic transparency

In creating the visual representation, we suggest cre-

ating the design of visual representation that conveys

the meaning of the semantic definition of the identified

class (Semantic Transparency) [3], [4]. If no visual rep-

resentation directly conveys the meaning of the semantic

definition, then create the visual representation design that

can provide a clue to the (majority) of targeted users.

If there is still no visual representation that can provide

a clue to the majority of the targeted users, create the

visual representation design that consensually (as a norm)

provides a closer meaning to the domain of the language.

Peirce’s theory of signs [28] influences the idea of this

guideline. Peirce stated that the form of a sign could be

classified as one of three types:

– An Icon has similar characteristics to the object that

is being referred, e.g., a photograph as it certainly

resembles whatever it depicts.

– An Index shows factual connection or clue to its object,

e.g., using an image of smoke to indicate a fire.

– A Symbol provides interpretive habit or norm of ref-

erence to its object. Therefore, it needs to be learned,

e.g., numbers. There is nothing inherent in the number

7 to indicate what it represents. So, it must be culturally

learned.

• Graphic Economy

It is also essential to keep the number of the visual

representations as minimal as possible (Graphic Econ-

omy) [3]. This is to make sure not to overload the total

number of the visual representations that could cause

difficulty for the users in remembering all the notations

[3]. We suggest to keep the visual representations simple

by reusing the same visual representation for sub-classes

that has close semantic meaning (e.g. relationship-types

class); meanwhile, we can still distinguish their meaning

while implementing them in the diagram by utilising the

compositional rules of the visual representation which is

can be defined based on the relationship between classes

in the metamodel.

IV. APPLICABILITY

In this section, we present a case study to apply the visual

inheritance. In this case, we adopt the SACM Argumentation

Metamodel since currently there is no available visual notation

for this metamodel. A metamodel of SACM Argumentation

(see Fig. 3), that is documented in SACM manual [8], is used

as an input to conduct the visual inheritance process. This

argumentation metamodel does not have any multiple inheri-

tance in it, so this approach is applicable for this metamodel.

To begin the visual inheritance process, we need to choose

a root class. Here, we choose the ArgumentAsset as the root

class because it contains the core concept of the structured

argument. The ArgumentAsset is inherited public attributes

from the SACMElement class (in the Structured Assurance

Case Base Classes): gid (an element unique ID), isCitation

(indicate whether an element cites another element), isAbstract

(indicate an abstract element). The ArgumentAsset itself is an

abstract-class, and there is no design constraint that we can

define from its semantic. However, we still need to see the

semantic of its attributes to see if we can have a base design

for each attribute.



Fig. 4. The Visual Inheritance Process

Based on the semantic definition of gid attribute, it is a

unique identifier for the SACM element. The type of the

gid attribute is string, therefore we decided to represent this

attribute as a string that indicate the ID of the element. Then

for the attribute +isAbstract: True, because we could not find

any visual representation that can convey directly the meaning

of abstract, we decided to use an arbitrary design choice. In

this case, we will consistently use a dashed line to represent an

abstract meaning. Meanwhile, for +isCitation, we consistently

use a closed square bracket to represent a citation, as is

commonly used in academic writing.

The ArgumentAsset class has three child-classes: Assertion,

ArtifactReference, and ArgumentReasoning. Hence, we inherit

the attributes and their base design to the child-classes.

Assertion is an abstract-class, so we do not need to create

a visual representation for this class. However, in addition to

attributes that are inherited from its parent-class, this class

has an attribute, +assertionDeclaration with six enumeration

literals: Asserted, Axiomatic, Defeated, Assumed, NeedsSup-

port, and AsCited. From their semantics, we only can create

a base design for Defeated and AsCited. For defeated, it is

“indicating that the Assertion is defeated by counter-evidence

and/or argumentation”. Hence, we use a cross to convey this

meaning. Then for AsCited, it is “indicating that because

the Assertion is cited, the AssertionDeclaration should be

transitively derived from the value of the AssertionDeclaration

of the cited Assertion”. Here, we use the same representation

as +isCitation as both have related semantic meaning. All

attributes in Assertion then must be inherited to all its child-

classes: Claim and AssertedRelationship.

Claim is a concrete-class, so we need to create a visual

representation for this class. In creating the visual repre-

sentation we should consider its semantic definition so we

can visually convey its meaning: “Claims are used to record

the propositions of any structured argument contained in an

ArgumentPackage. Propositions are instances of statements

that could be true or false, but cannot be true and false

simultaneously” [8]. Based on the semantic definition of a

Claim, we could not find any visual representation that can

directly infer the meaning of the semantic. Therefore, we

adopt the visual representation that might provide a cue to

the majority of targeted users that are already familiar with an

existing assurance case notation. In this case, we reuse a visual

representation of a Goal from a widely used assurance case

notation (i.e. The Goal Structuring Notation (GSN) [26]), that

has similar semantics with the Claim. Hence, we decided the

visual representation for a Claim is a rectangle where the user

can write down the propositional statement in it and the ID as

its attribute (gid) in the top left. Fig. 5 illustrates the visual

representation for a Claim. Then for the attribute +isAbstract:

True, the AbstractClaim is visually represented as a dashed line

rectangle. Meanwhile, for +isCitation, we place the rectangle



Fig. 5. The visual representation of a Claim

in a closed square bracket.

There is also an attribute (i.e. assertionDeclaration) of the

Assertion class that is inherited to the Claim class. This

attribute has six enumeration literals (Asserted, Axiomatic,

Defeated, Assumed, NeedsSupport, and AsCited) that the

visual representations of each attribute values need to be

created as instances in the Claim class. In this case, the

instances of the Claim class are: Asserted Claim, Axiomatic

Claim, Defeated Claim, Assumed Claim, NeedsSupport Claim,

and AsCited Claim. As mentioned in the visual inheritance

approach guideline process in the previous section, the base

design for these attribute values need to be inherited from the

base design of the class, in this case is the Claim class. Then,

we need to modify their base design to convey the semantic

definition of these attribute values. As follows we describe the

semantic definition of each attribute value (based on [8]) along

with the proposed design of the visual representation and the

rational behind the design.

• asserted, “the default enumeration literal, indicating that

an Assertion is asserted”. Based on this definition, the

default Claim that being asserted is called as as asserted

Claim, the visual representation of the asserted Claim is

the visual representation of the Claim.

• axiomatic, “indicating the Assertion being made by the

author is axiomatically true, so that no further argumen-

tation is needed”. Here, we use a thick line below the

rectangle to indicate a sign of “no further argumentation

is needed” (i.e. declaring axiomatically true).

• defeated, we already have a base design for this attribute,

which is a cross. Hence, we add a cross on top of the

rectangle to convey the meaning of defeated Claim.

• assumed, “indicating that the Assertion being made is

declared by the author as being assumed to be true rather

than being supported by further argumentation”. Here, we

add a gap in the bottom part of the rectangle to represent

that there is no supporting evidence or argumentation.

• needsSupport, “indicating that further argumentation has

yet to be provided to support the Assertion”. For this, we

add three dots in the bottom-centre part of the rectangle

to represent that further evidence or argumentation is

required.

• asCited, we already have a base design for this attribute,

which is a closed square bracket. Therefore, we use the

same representation as +isCitation.

Fig. 6 shows the summary of all Claim types.

After designing all Claim types, we continue to the other

child-class of the Assertion class: the AssertedRelationship

class. The semantic definition of this class is: “the abstract

association class that enables the ArgumentAssets of any

structured argument to be linked together” [8]. Based on this

Fig. 6. Types of Claim

definition, this class is an abstract-class, so we do not need to

create a visual representation for this class. Besides that, the

semantic definition describes that this class is used to declare

a type of association, which then became the design constraint

to be inherited to its child-classes. There are several visual rep-

resentations that can be used to represents an association e.g.

colours and lines. We decided to adopt a ’line’ to represents

the AssertedRelationship since it can give information about

the source and target of the AssertedRelationship. In this case,

the types of the line can vary based on the semantic definition

of the AssertedRelationship concrete child-classes.

AssertedRelationship class has attributes that need to be

inherited to its child-classes: isCounter, assertionDeclaration,

gid, isAbstract, and isCitation. From all these attributes, only

isCounter that has no base design yet. However, from its se-

mantic, we can not define its base design without having a base

design of the class, so we can not create it in an abstract-class.

The AssertedRelationship class has five concrete child-classes

for which visual representations need to be created including

visual representations as instances of the inherited attributes.

We proposed design, based on the semantic definition (on

[8]) of all the AssertedRelationship’s concrete child-classes.

In each case, we could not find any visual representation that

intuitively conveys the semantic definition, so we used either

visual representations from existing notations or proposed an

arbitrary design. As follows we describe the result of the

design process:

AssertedInference

• Definition:“records the inference that a user declares

to exist between one or more Assertion (premise) and

another Assertion (conclusion)”.

• Visual representation: We use a solid arrowhead line to

visualise an AssertedInference. This visual representation

is influenced by a SupportedBy visual representation in

GSN that indicating an inferential relationship. Then for

the attributes, we already have a base design for each

attribute except for isCounter, which has semantic defini-

tion “indicating that the AssertedRelationship counters its

declared purposes”. We use a hollow-head line to indicate

the counter purpose of the AssertedInference and we use

this consistently to represent isCounter attribute for all

types of relationship. Then to create the visual represen-

tation for each attribute, we only need to combine the



defined base design of each attribute with the base design

of AssertedInference. Note that the other child-classes of

AssertedRelationship also have the same attributes as this

class, so the process of creating the visual representation

of the attributes is similar to this.

AssertedEvidence

• Definition: “records the declaration that one or more

artifacts of Evidence (cited by ArtifactReference) provide

information that helps establish the truth of a Claim”.

• Visual representation: We adopted the visual represen-

tation from GSN, that is a solid arrowhead which is

representing the evidential relationships. In this case, the

visual representation is similar to the visual representation

for AssertedInference, but we can distinguish them by

identifying the source of the relationship (line). The

source is an Evidence for AssertedEvidence (cited by

ArtifactReference), and a Claim for AssertedInference.

AssertedContext

• Definition:“can be used to declare that the artifact cited

by an ArtifactReference(s) provides the context for the

interpretation and scoping of a Claim or ArgumentRea-

soning element”.

• Visual representation: We cannot use the existing vi-

sual representation from GSN visual representation that

conveys similar meaning (i.e. hollow arrowhead line for

inContextOf ) because we already used this type of visual

representation. Therefore, we decided to create our own

design for AssertedContext, with requirements: the design

needs to be a line-type to represents a relationship type;

and the type of the line-head can be designed as a solid

or hollow. As the result, we use solid diamondhead line

for AssertedContext and hollow diamondhead line for

representing Counter AssertedContext.

AssertedArtifactSupport

• Definition: “records the assertion that one or more arti-

facts support another artifact”.

• Visual representation: Here, we reuse the visual represen-

tation of AssertedInference since the main idea from its

semantic meaning also supporting the targeted elements.

We believed reusing the same visual representation to

represents different classes that have a closer semantic

meaning can help to minimise the number of the visual

representations. To distinguish them, we identify the

source and target elements. For AssertedArtifactSupport,

the source and target elements must be of type ArtifactRe-

ference (as described in [8] for AssertedArtifactSupport

constraints).

AssertedArtifactContext

• Definition: “records the assertion that one or more arti-

facts provide context for another artifact”.

• Visual representation: Here, we reuse the visual repre-

sentation of AssertedContext because the main idea from

their semantic meaning are providing context for the

targeted element. To distinguish them, we can identify the

source and the targeted elements. For AssertedArtifact-

Context the source and target elements must be of type

Fig. 7. Types of Relationship

Fig. 8. The visual representation of a MetaClaim

ArtifactReference (as described in [8] for AssertedArti-

factContext constraints).

As the result of the design combinations and as summary

of all types of AssertedRelationship can be seen in Fig. 7.

We have finished designing the visual representations for

classes that are successors of the root. Next, we see if all

relationships have been represented. From all relationship-

types only metaClaim, which is an association relationship

between Assertion and Claim, has not been represented. The

+metaClaim association indicates ”references Claims concern-

ing the Assertion”. Therefore, we need to create a visual

representation that can convey the semantic meaning of the

+metaClaim, in this case as a type of relationship visual

representation that the source of the relationship is a Claim and

the targeted of is the Assertion types (i.e. the concrete child-

classes of the Assertion) [8]. Based on the semantic definition,

we decided to use a ’line’ to represent the +metaClaim. Here,

we use the ”crow’s foot line” since we do not have a constraint

such as ”counter” +metaClaim that need to be visualised in the

form of a hollow head-line. The illustration of the +metaClaim

visual representation can be seen in Fig. 8.

After designing the visual representation of the Assertion

class, we need to design the visual representation of the other

child-classes of the ArgumentAsset class: ArtifactReference

and ArgumentReasoning. According to [8], “ArtifactReference

enables the citation of an artifact as information that relates

to the structured argument.” This semantic definition inspired

us to create the visual representation of ArtifactReference in a

form of a file or document icon because we think it infers the

semantic meaning. Besides that, for the ArgumentReasoning,

we created a visual representation in a form of an annotation-

type icon that can be attached to the instances of Asserte-

dRelationship class. This is to convey the semantic meaning

of the ArgumentReasoning: “can be used to provide additional

description or explanation of the asserted relationship”. Fig. 9



Fig. 9. The visual representations of an ArtifactReference and an Argumen-

tReasoning

shows the visual representations of the ArtifactReference and

the ArgumentReasoning.

V. LIMITATIONS

There are some limitations to the current version of the

proposed approach. First, in selecting the root in the meta-

model, the scope of the concept is used as the only consid-

eration. This aspect could be explored further to have more

specific justification in selecting the root. Second, the proposed

approach highly depends on the predefined metamodel, and

the metamodel is depended on the method and style used

by the meta-modeller. Third, currently, the proposed approach

is being applied in a case study since it is part of work in

progress. It is important to explore the applicability of the

visual inheritance mechanism in another case study in order

to evaluate the validity aspect.

VI. CONCLUSION AND FUTURE WORK

We have outlined the visual inheritance as part of visual

notation design (considered as an extension of the Semiotic

Clarity principle of PoN [3] regarding a guideline about a

complete monosemy [27] through the inheritance mechanism).

The proposed approach emphasises the design coherence be-

tween parent- and child-classes to provide design efficiency

(in terms of reusability and extensibility) as well as to help

notation users to easily infer the semantic meaning of the

visual representations that have a similar base design. We

have also described the applicability of the proposed approach

by designing the visual notations for SACM Argumentation

metamodel. As the future work, we are planning to conduct

empirical studies to test the effectiveness [3], [4] of the visual

inheritance. In this case, we are interested in observing how

effective is the idea of design coherence. We are also interested

in testing the semantic transparency [3], [4] of the notation as

a result of adopting the visual inheritance process.

REFERENCES

[1] R. M. A. El-Ghafar, A. M. Ghareeb, and E. S. Nasr, “Designing user
comprehensible requirements engineering visual notations: A systematic
survey,” in Informatics and Systems (INFOS), 2014 9th International

Conference on. IEEE, 2014, pp. SW–10.

[2] A. El Kouhen, A. Gherbi, C. Dumoulin, and F. Khendek, “On the
semantic transparency of visual notations: experiments with uml,” in
International SDL Forum. Springer, 2015, pp. 122–137.

[3] D. Moody, “The physics of notations: Toward a scientific basis for con-
structing visual notations in software engineering,” IEEE Transactions

on Software Engineering, vol. 35, no. 6, pp. 756–779, 2009.

[4] K. Arning and M. Ziefle, “”it’s a bunch of shapes connected by lines”:
Evaluating the graphical notation system of business process modeling
languages,” in Full paper at the 9th International Conference on Work

With Computer Systems, WWCS, 2009.

[5] N. Genon, P. Heymans, and D. Amyot, “Analysing the cognitive effec-
tiveness of the bpmn 2.0 visual notation,” in International Conference

on Software Language Engineering. Springer, 2010, pp. 377–396.
[6] T. R. Green, “Cognitive dimensions of notations,” People and computers

V, pp. 443–460, 1989.
[7] G. Costagliola, A. Delucia, S. Orefice, and G. Polese, “A classification

framework to support the design of visual languages,” Journal of Visual

Languages & Computing, vol. 13, no. 6, pp. 573–600, 2002.
[8] O. M. G. (OMG), Structured assurance case metamodel (SACM),

Version 2.0, 2018, https://www.omg.org/spec/SACM/About-SACM/.
[9] G. Popescu and A. Wegmann, “Using the physics of notations theory

to evaluate the visual notation of seam,” in Business Informatics (CBI),

2014 IEEE 16th Conference on, vol. 2. IEEE, 2014, pp. 166–173.
[10] D. van der Linden, I. Hadar, and A. Zamansky, “What practitioners

really want: requirements for visual notations in conceptual modeling,”
Software & Systems Modeling, pp. 1–19, 2018.

[11] J. Krogstie, G. Sindre, and H. Jørgensen, “Process models representing
knowledge for action: a revised quality framework,” European Journal

of Information Systems, vol. 15, no. 1, pp. 91–102, 2006.
[12] R. Schuette and T. Rotthowe, “The guidelines of modeling–an approach

to enhance the quality in information models,” in International Confer-

ence on Conceptual Modeling. Springer, 1998, pp. 240–254.
[13] D. Moody and J. van Hillegersberg, “Evaluating the visual syntax of

uml: An analysis of the cognitive effectiveness of the uml family of dia-
grams,” in International Conference on Software Language Engineering.
Springer, 2008, pp. 16–34.

[14] D. L. Moody, P. Heymans, and R. Matulevičius, “Visual syntax does
matter: improving the cognitive effectiveness of the i* visual notation,”
Requirements Engineering, vol. 15, no. 2, pp. 141–175, 2010.

[15] N. Genon, D. Amyot, and P. Heymans, “Analysing the cognitive ef-
fectiveness of the ucm visual notation,” in International Workshop on

System Analysis and Modeling. Springer, 2010, pp. 221–240.
[16] P. Mäder and J. Cleland-Huang, “A visual traceability modeling lan-

guage,” in International Conference on Model Driven Engineering

Languages and Systems. Springer, 2010, pp. 226–240.
[17] A. Algablan, “A visual notation and an improvement for the syntax of

larman’s operation contracts,” Ph.D. dissertation, University of Ottawa,
2016.

[18] M. d. G. da Silva Teixeira, G. K. Quirino, F. Gailly, R. de Almeida Falbo,
G. Guizzardi, and M. P. Barcellos, “Pon-s: a systematic approach for
applying the physics of notation (pon),” in Enterprise, Business-Process

and Information Systems Modeling. Springer, 2016, pp. 432–447.
[19] H. Störrle and A. Fish, “Towards an operationalization of the ”physics

of notations” for the analysis of visual languages,” in International

Conference on Model Driven Engineering Languages and Systems.
Springer, 2013, pp. 104–120.

[20] D. van der Linden, A. Zamansky, and I. Hadar, “A framework for
improving the verifiability of visual notation design grounded in the
physics of notations,” in Requirements Engineering Conference (RE),

2017 IEEE 25th International. IEEE, 2017, pp. 41–50.
[21] T. R. Green, A. E. Blandford, L. Church, C. R. Roast, and S. Clarke,

“Cognitive dimensions: Achievements, new directions, and open ques-
tions,” Journal of Visual Languages & Computing, vol. 17, no. 4, pp.
328–365, 2006.

[22] R. Ducournau and J. Privat, “Metamodeling semantics of multiple
inheritance,” Sci. Comput. Program., vol. 76, no. 7, pp. 555–586, 2011.

[23] G. B. Singh, “Single versus multiple inheritance in object oriented
programming,” ACM SIGPLAN OOPS Messenger, vol. 6, no. 1, pp.
30–39, 1995.

[24] R. A. Cain, J. A. De Lu, and R. E. Lemke, “Development system with
methods for visual inheritance and improved object reusability,” Jul. 22
1997, uS Patent 5,651,108.

[25] C. P. Jazdzewski, “Development system with methods providing visual
form inheritance,” Dec. 14 1999, uS Patent 6,002,867.

[26] GSN, Goal Structuring Notation (GSN) Community Standard, Ver-
sion 1, 2011, http://www.goalstructuringnotation.info/documents/GSN\
Standard.pdf.

[27] B. Jacques, “Semiology of graphics: diagrams, networks, maps,” Uni-

versity of Wisconsin Press, Madison, Wisconsin, 1983.
[28] A. Atkin, “Peirce’s theory of signs,” in The Stanford Encyclopedia of

Philosophy, summer 2013 ed., E. N. Zalta, Ed. Metaphysics Research
Lab, Stanford University, 2013.


