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PACS:

Understanding the physical properties of magnetic skyrmions is important for fundamental
research with the aim to develop new spintronic device paradigms where both logic and memory
can be integrated at the same level. Here, we show a universal model based on the micromagnetic
formalism that can be used to study skyrmion stability as a function of magnetic field and
temperature. We consider ultrathin, circular ferromagnetic magnetic dots. Our results show that
magnetic skyrmions with a small radiusompared to the dot radiusare always metastable, while
large radius skyrmions form a stable ground state. The change of energy profile determines the
weak (strong) size dependence of the metastable (stable) skyrmion as a function of temperature
and/or field. These results can open a path toward the design of optimal materials for skyrmion

based devices.



Non-linear localized excitations have attracted the attention of physicisésldag time.
Such excitations, including solitary waves or solitons, @laymportant role in optics, quantum
field theory, condensed matter and other fields. It is sometimes possible to associate integer
numbers (topological charges) to the solitons, which are preserved in their dynamics. Topologically
non-trivial magnetization configurations in ferromagnetsch as domain walls, vortices, and
skyrmions are currently the focus of a lot of research activity. These spin textures are also
candidates for nanoscale device applicatienemputational paradigms, magnetic storage and
programmable logie-due to their small sizg-13].

Skyrmion solutions were obtained first by Skyrme in the non-linear field theory [14].
Subsequently chiral skyrmions were predicted [15], and discovered experimentally in non-
centrosymmetric cubic B20 compounds{26] which permit an antisymmetric anisotropic
interaction, namely the Dzyaloshinskii-Moriya interaction (DMI). This arises from a relativistic
correction and relies on spin-orbit interactions [21,22]. Recent efforts haveedoonsmaterials
with interfacial DMI—especially ultra-thin transition metal/heavy metal multilayers with large spin-
orbit coupling such as Co/Pt and Col/lr [8,23,24]. The DMI, which corresponds to Lifshitz
invariants in the micromagnetic energy functional, is necessary to yield axisymmetric skyrmions in
ultrathin magnetic elements and the chiral skyrmions can be further stabilized by external magnetic
field [8,23,24]. Temperature is usually considered to be detrimental to skyrmion stability, leading to
either the transformation of the skyrmion stetti® a more energetically favorable state [25] or to
nucleation of multiple skyrmions and labyrinth domains [8,23,24]. In addition, recent room-
temperature experiments with an external @yptlane magnetic field [8,23], showed a strong non-
linear dependence of the skyrmion radius on the external field strength pointing out the key role of
the external field.

Rohart et al. [26] developealdomain wall model of Néel skyrmiors zero temperature T

and zero magnetic fielti,,, and identified a critical DMI parametdr, quantifying the influence
of DMI that is independent of the dot size. They found @sahgle skyrmion is metastable for DMI
magnitudesp | smaller tharD, and does not existt |[D > D, =(4/7),/AK; , where A and K

are the exchange stiffness and effective uniaxial magnetic anisotropy constants. Within their

analytic model, the skyrmion radius,, divergesas D — D,. In a finite magnetic dot, however,
R, is determined by the confining potential and cannot exceed the dot r&gi{d6]. This

analytical model yields incorrect results for> D, and should be improved.



The temperature dependence of the skyrmion radius in an infinite film was calculated

numerically by Barker et al. [27] who attempted to uBRehart’s expression for R, with the

temperature dependence of the magnetic properties of the host material to explain the behavior. In

that paper [27], the bulk scaling relatiasfs A and K, (uniaxial anisotropy constgnwith respect
to the reduced magnetizatioom(T)=M,(T)/M,(0) were used K, is the saturation

magnetization), while no temperature dependende @fas considered. The authors concluded that

in ferromagnets the skyrmion radius has a weak quasi-linear temperature dependence. fiéis is rat
aresult of using the Rohart’s et al. equation for small radius (~10 nm) skyrmions which have a size
comparable with the domain wall width.

Our work is motivated by the lack of understanding the skyrmion size and stability as a
function of control parameters such as temperature and external field in a finite-size sample. Here,
we provide a simple analytic tool for developing materials and geometries which can host
skyrmions in a target temperature and field window. Particularly, the analytical model predicts
weak/strong dependence of skyrmion size on control parameters which is further confirmed by
numerical modeling. This would provide a simple analytic tool for developing materials and
geometries which can host skyrmions in a target temperature and field window.

Here, we develop a theoretical approach to skyrmion stability based on minimization of the
magnetic energy using a skyrmion ansatz in confined geometries. We show that the thermal

evolution of skyrmion size in ultrathin dots is best expressed irdgliase space of the skyrmion

quality factorQ=2Ku//¢0MS2 (44, is the vacuum permeabilityand the reduced DMI strength

d =Dl / A (I,,=+2A/ 4,MZ is the exchange length). The proximity of the point describing

the skyrmion state in this Q-d phase space, to the border of the skyrmion stability, is the crucial
parameter in understanding the linear or non-linear change in radius with temperature or field as

observed in micromagnetic simulations. The temperature dependence of the skyrmion stability is
expressed as scaling relations of bQthand d with changingn(T) .We find the equilibrium
skyrmion size increases rapidly with temperature only when approaching a critical line
d, (Q)=(4/7)JQ—1. The size becomes comparable with the dot radiud(&)>d.(T). The
metastable skyrmions have small radil§, << R;), whereas the stable (ground state) ones have

large radius. The ouwf-plane external magnetic field can be used to bring metastable skyrmions

closerto or farther from the critical Iinde(Q) where the metastable skyrmion becomes a ground

state skyrmion.



The magnetic skyrmion can be described by the energy functigma] =jdVg(m), with

the energy density
g(m)=A(VM)* + &, +Km2-0.M m-H —M m-H (1)

wherem=M /M, is the unit magnetization vectoM(, is the saturation magnetization at given T),

Ais the exchange stiffness constésy,, = D[ m (V-m)—(m-Vv)m | is the interface DMI energy

density, with D being the DMI parametéX,, is the perpendicular uniaxial anisotropy constamt,

is the magnetization z-componeH , is the magnetostatic field, aiH,, is the external magnetic
field.
We assume that in an ultrathin circular dot the magnetizatiodoes not depend on the

thickness (z-coordinate). We introduce polar coordinates in the dot plarf@,#), and define
spherical angles of the magnetization veqter, @) as functions ofp. We also assume that the

static skyrmion centered in the dot is axially symmetric and use the equadipy =0,(p),

@, (p)=¢+4¢,. In seeking a general expression for the dependence of the skyrmion size on both

temperature and external magnetic field, and to overcome drawbacks of previous approaches in
estimating the skyrmion radius [28](see note 1 in the Supplemental Material), we developed an
analytical approach using a different skyrmion ansatz from Ref. [26]. To minimize the energy

functional (1), we propose the trial function

tan®°—(r) = Taic géran) (2)

2 r ’

wherer = p/l_, £ =Q-1, and the polar angl®, describes the static skyrmion profile. The

accuracy of the ansatz (2) was numerically verified in the case of 2D easy axis infinite ferromagnets
(Q>1) in Ref. [29]. Eq. (2) recovers the Belavin-Polyakov solution for the isotropic£as@ and
leads to the finite exchange energy rat 0. Eq. (2) is also very similar (in the area of its
applicability, atr = r, >>1) to the ansatz used in the theory of bubble domains [30] in highly

anisotropic ferromagnetic films [28] (see Approach 3 in note 1 in the Supplemental Material).



The energyE and the equilibrium skyrmion radiug, = R,/ |, can nowbe expressed as
functions E[ 1, Q, d, H,, ] and ry [Q, d, H, ] . The conditions of the skyrmion stability can be

found using standard variational procedure; solving the equafiengr, =0, 6°E/or’ =0. To

account for the temperature dependence of the skyrmion radius, we use the scaling approach for
macroscopic (micromagnetic) parameters which usually decrease with temperature increasing due
to the magnetization fluctuation effects. Including thermal effects into a micromagnetic approach is
known to largely overestimate the Curie temperature as compared to the more accurate atomistic
approach [31]. However, the largest temperatures considered in the present study are very far from
the Curie temperaturel ( T, <1/2). In this case, the micromagnetic approach produces accurate
results in terms of the thermodynamically averaged quantities as a function of the magnetization

m(T). We calculated the temperature dependence of uniaxial magnetic anisotropy
K,(T)=K,(0)m(T) achieving y =3.03 that is close to the Callen-Callen relation [32]. The

scaling of the exchangé&\(m) = A(0)m” and DMI D(T)=D(0)m(T)” parameters are found

by atomistic simulations of an infinite thin film calculating the thermal spin wave spectrum and
fitting the long wavelength regime (sméHvectors) with a linear spin wave theory [28] (see note 2

in the Supplemental Material). We obtai= £ =1.5, consistent with other recent results [33,34].
To benchmark the theory, we consider a circular nanodot (e.g., Co) of dia2iRte400 nm

and thicknessf 0.8 nm assumed to be in contact with a thin layer of heavy metal (e.g., Pt) giving
an appreciable interfacial DMI. We performed systematic micromagnetic simulations to calculate
the skyrmion size as a function of the ofiplane external field K (from O mT to 50 mT) and
temperature (from 0 K to 300 K) integrating the Landau-Lifshitz-Gilbert equation of motidimefor

reduced magnetizatiom =M/ M, [28] (see note 3 in the Supplemental Material). At T=0 K, we
used the following material parameterdM =600 kA/m [8], A=20 pJ/m [35], D=3.0
mJ/nt [36,37], K, =0.60 MJ/ni[8], and Gilbert dampingxg =0.1 [38]. As a reference, Rohart’s

critical DMI value D, =3.48 mJ/rAfor our parameters at T=0 K [26].

Temperature causes the skyrmion to diffuse and leads to fluctuations of the diameter and
deformations of the skyrmion shape [27,39,40], losing the circular symmeteyth@/efore
calculated the effective diameter by assuming that the area of the skyrmion core (here it is the
region where the z-component of the magnetization is negative) is equivalent to a circle [27]. The

skyrmion diameter and perimeter display approximately Gaussian statistical distributions [28] (see



note 3 in the Supplemental Material) with increasing widths with temperature. The application of
the magnetic field significantly decreases both mean and standard deviation of the distributions.

Fig. 1(a) compares the magnetic field dependence of the skyrmion diameter calculated by
micromagnetic simulations with the analytic skyrmion ansatz, Eq. (2), at T=0 K. There is
reasonably good agreement considering there are no fitting parameters (maximum difference
around 8% at zero field). Fig. 1(b) shows the temperature dependence of the skyrmion diameter
calculated with micromagnetic simulations for three values of the external field (open sywbols).
zero field, the skyrmion diameter rapidly expands with increasing temperature. The increasing out-
of-plane field causeaweak quasi-linear increasing of the diameter up to T=300 K (red circles and
green triangles in Fig. 1(b)). Our computations show that two thermal/field regimes exist: at high
temperature (T>200 K) and low field {kk10 mT), the skyrmion size is strongly influenced by
thermal fluctuations, whereas at low temperature (T<200 K) independent of the field, or at high
temperature and high field {10 mT), the skyrmion is weakly affected by thermal fluctuations.
These different behaviors were not observed in Ref. [27], because with the parameters used, the
skyrmions were always in the metastable region. Calculating the skyrmion diameter as a function of
the external field for T=300K (Fig. 1(c)) thereadarge, non-linear expansion of the diameter and
larger variance as the external field is reduced. This is consistent with the experimental results in
Refs. [8,23].

By including the scaling relations (calculated from atomistic simulations) in the analytical
approach, the results are in agreement with micromagnetic simulations until the skyrmion is in the
metastable region far from the boundary of the stable region [28](e.g. when T<200 J&F0OrrhiT,
seenote 3 in the Supplemental Material). When approaching the ground state region, the confining
potential—due to the magnetostatic field and the DMI boundary conditiestarts to play a
significant role in fixing the skyrmion size [11,26], and the skyrmion diameter depends ort the do

size. To account for this, we consider the scaling expongnbf the uniaxial perpendicular

anisotropy K, (T) =K, (0)m(T)" as afitting parameter. This is because the analytical model is
developed within the thin-film approximation where the effective anisotropy is computed as
Ko (T)=K,(T)-0.54M (T ), but the numerical micromagnetic solution includes the full

magnetostatic calculation. By performing athermal (deterministic) micromagnetic simulations [28]
(see note 3 in Supplemental Material), an excellent agreement is found=8585. With this

value, we can calculate the skyrmion diameter dependence on temperature and field By Eqg. (2
(dashed lines in Fig. 1(b)). The analgli¢ansatz Eq. (2)) and micromagnetic results agree well and



we conclude that our analytical expression is accurate in predicting the skyrmion size for arbitrary
temperature and external field combinations.

Fig. 1(c) shows how even a small external field strengii=5mT significantly reduces the
skyrmion size at room temperature. This occurs because the magnetization region outside of the
skyrmion core expandsthe field direction is opposite to the skyrmion core magnetization
leading to a shrinking of the skyrmion. The non-linear field-skyrmion size dependrioe
gualitative agreement with recent experimental results (see, for comparison, Fig. 4a in Ref. [23] and
Fig. S8 in Supplemental Material of Ref. )8]

To understand the origin of the two thermal/field regimes, we focus on the data obtained at
zero external field. We calculate the critical DMI parameter for each set of the scaled parameters by

the expressionD,(T)=4,/A(T)-K, (T)/;z [26]. When D approachesD, (as temperature
increases, see Fig. 2), a sharp increase of the skyrmioiRgiZE) occurs [26]. This could explain

why, at room temperature, the skyrmion size increases §{@x5HMT exhibiting a non-linear
dependence on the external field [8,23] (see Fig. 1(c)).
The thermal scaling of the macroscopic parameters leads to the temperature dependence of

the quality factor Q(T)=Q(0)m(T). Taking into account the  definition

d(T)=D(T)l(T)/A(T), we derive the temperature dependence of the reduced DMI parameter

as d(T)=d(0[m(T)]“'**. Note that temperature dependence of the reduced critical DMI

parameterd,(m)oc m™, /K 4 (m) o ,/Q(m)-1 includes neither the exchange stiffnassnor the

DMI exponent 8. This justifies the use of the skyrmion stability diagram expressed in the reduced
coordinates, Q and-dpresented in Fig. 3(a). The parameters at T=0 K are: Q(0)=2.65, d(0)=1.41,

1ex(0)=9.4 nm, (the scaling law for the reduced DMI parameterd(sn)oc m¥=/?* e,

d(m)oc m®**). The dependencei(m) determines the evolution of the point describing the
skyrmion configuration in the Q-d plane accounting for the change of temperature w thaw
(Fig. 3(a)). The increase of parameter d leads to the stabilization of the skyrmion state and a rapid

expansion of the skyrmion radius. This effect is especially strord,gat=0 mT. A finite value of

the field H,,, opposing the skyrmion core magnetization, results in a contraction of the skyrmion

radius and the skyrmion radius weakly increases with T. In other words, the skyrmion radius
increase is suppressed by the finite magnetic field which does not occur at zero field.

There are two qualitatively different behaviors of how the skyrmion ragiyéT) changes

with temperature aH ., =0 mT according to the parametepsand d:
7



1) The skyrmion radiusR; (T) is an almost constant function of temperature when the

skyrmion configuration remains in the metastable region.

2) The skyrmion radius Ry (T) increases sharply with increasing temperature when

approaching the region of skyrmion ground state stability.
The first scenario is realized when the0TK parameters Q(0), d(0)x{0) correspond to the
skyrmion metastable state (Figs. 3(a) and (c)). In this case, the skyrmion radius at T=0 K is small

and has only a weak temperature dependéRg€T) up to 200 K because the skyrmion is deep in

the region of metastability in Q-d phase diagram. The decreasing furt{tiap guarantees that the

skyrmion state stays in the (Q, d)-area of the skyrmion metastability for increasing temperature.

The second behavior occurs wheeskyrmion, initially in the metastable state with parameters
Q(0), d(0), I«0) (see Figs. 3(a) and (b)), moves towards the area of global stability in the Q-d
space. This is realized for our dot magnetic parameters Tr200 K to T=350 K (green points in
Fig. 3 (a)). In this case, the skyrmion radius at T=0 K is small, but it shows a strong dependence

with increasing temperatu,, (T).

For further increasing of T up to 400 K, the skyrmion reaches the area of its stability (magenta
point in Fig. 3(a)) crossing the uniform state-skyrmion equilibrium line (red dashednlikig.

3(a)). At this line the skyrmion energy is equal to the perpendicular uniform state edergl,,

the skyrmion radius is large and depends on the confining potential. In particular, the skyrmion
radius calculated from deterministic micromagnetic simulations with scaled values of the
parameters (corresponding to T=400 K) is much larger than the skyrmion radius for T=300 K

(compare spatial distribution of the magnetization in Fig. 3(b) with the one in Fig. 3(c)). In the

region of stability where the skyrmion is the ground state of the ferromagnet, th&afidR is a

weak function of all parameters.

On the other hand, when considering in the micromagnetic simulations thermal fluctuations at
T=400 K, we observe largéeformations of the skyrmion which turns into a “horseshoe”-like
configuration as already observed in experiments [8], while it remains quasi-circular for T=300 K
(see insets in Fig. 3(a)). We do not consider here stabilization of multiple skyrmions or labyrinth
domain textures, assuming that the parameter d is not very large and we are always in the area of
the single skyrmion stability.

Understanding how to move skyrmions between the metastability and the confined ground state
can be exploited to enhance the electrical skyrmion detection [40]. Fig. 4 shows a racetrack memory

device where the skyrmions in the track are metastable and therefore-gimaly a high storage



density. The skyrmions are detected under a magnetic tunnel junction (green squara) with
polarized layer witha magnetization pointing along the caftplane direction which generates
dipolar field parallel to the skyrmion core magnetization. This field can modify the stability
properties of the skyrmion in the region below the contact, moving it through the Q-d phase space.
By shifting the skyrmions across the line of stability, their radius will expand significantly making
it much easier to detect from the tunnel magnetoresistance signal (see Supplemental Material Video
1 [28]). After leaving the detection regions, the skyrmions will return to their small size in the
metastable region of the Q-d diagram.

In summary, we developed a theoretical framework describing the skyrmion stability in
ultrathin dots as a function of the external magnetic field and temperature by combining a proper

ansatz with thermal scaling relations of the micromagnetic paramateks, and D. We shoved

that the strong temperature dependence of the skyrmion diameter occurs because the thermal
evolution of an initially metastable skyrmion brings it toward the regiorrevhe skyrmion is the

ground state due to increase of the effective DMI strength in comparison to the anisotropy. Our
results, corroborated by extensive micromagnetic simulations, provide a tool, the Q-d phase
diagram, to determine the transition from the metastable to ground state skyrnfigaration,as

well as the skyrmion size in presence of both adytlane external field and temperatuf@ur
achievements can drive the design of racetrack memories where localized manipulation of magnetic
parameters can be used to vary the skyrmion size and stability, improving the ability for the
skyrmion electrical detection.
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Supplementary note 1

We assume that in an ultrathin circular dot with thickness t about 1 nm and Radite
magnetizationm does not depend on the thickness (z-coordinate). We introduce the polar

coordinates in the dot plang=(p.¢), and define spherical angles of the magnetization vector
(G),QJ) as functions op . We also assume that the magnetization of the static skyrmion centered in
the dot is circularly symmetric and use the equatieg$p)=0,(p), ©o(p)=¢+¢,. The DMI
energy depends on the product of D and skyrmion chir&h'ttysigr( rr/1~)=cos¢0 demanding

¢ =0,7 (Néel skyrmions) andCD=—|D|<0. The energy of the face magnetic charges is
accounted via the effective uniaxial anisotroRy, =K, M 2/2. The magnetoatic energy of

the volume and side surface charges is neglected due to small dot thickness.

The polar angl®,,, describing the static skyrmion profile, satisfies the equilibrium equation

obtained from the minimization of the energy functional:
2 2 1 - d - 2 -
VO, =| & +— [sin®,cos, ——sin“ O, +hsinO,, (S1)
r r

where £2=Q-1= 2Ku/yoM52—1 describes the effective easy-axis magnetic anisotropy,

h=H_, /M, is reduced perpendicular magnetic field,=p/l,, and d=|D|l, /A (

ex?

|, =+2A/ u,MZ is the exchange length). The non-linear differential Eq. (S1) should be
complemented by the boundary conditi#d$(0) = or 0 (i.e.,m,=-1 or +1),0,(ry)=~/2 and

00,/or =d/2 atr=R, /I, [1]. Herery = R, /|, is the reduced skyrmion radius defined as

m,(ry)=0.

In order to obtain the skyrmion radius dependence on field and temperature, we can consider
three state-of-the-art approaches. The first one solves Eq. (S1) in some limiting case, while the other
two minimize the energy functional (Eq. (1) in the main)tastng different trial functions.

Approachl.

Eq. (S3 has a simple analytical solution only for the dominating isotropic exchange

interaction Q=1, d=0), tan(®,(r)/ 9 =r,/r, which is known as Belavin-Polyakov (BP) saiito
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We use the definite skyrmion polarization p=-1 defined as the z-component of the magnetization
the skyrmion centerp=cos®,( 0.

Approach 2

The simplest trial function widely used in the domain wall theory is the linear ansatz (
O, (p)=7(1-p/2R,) at p<R,, Oy(p)=0 at p = 2R, [2]. The equilibrium skyrmion radius

derived from the linear ansatz is directly proportional to the DMI constant

D
Rsk(Hext): ’ S@
4|\/I52[Q—1+1(1—42JHEX‘}
Vs 7<) My

where the perpendicular field,,, is opposite to the skyrmion core magnetization.

It can be shown that the skyrmion radius givsnEq. (S2) can describe neither the field
dependence obtained by micromagnetic simulations and experimental measurements at room
temperature, nor the simulated temperature dependence of the skyrmion radius at zero field. The
field and temperature dependence of the skyrmion radius given bysBgexhibits a different
slope in comparison with obtained by micromagnetic simulations (see Fig. S1) and measured
experimentally. In addition, the drawbacks of the linear ansatz are: 1) it predicts that the chiral

skyrmion is metastable at arﬂ])| > 0 (the critical value of DMID_, =0) and anyQ>1, the
skyrmion cannot be the dot ground state; 2) the area of the skyrmion metastﬁl’quﬂ)O(, Q>1)

does not depend on the exchange constaftr small radius skyrmionsR,, /R<1/2; 3) the
dependence of the skyrmion radR{D) calculated within the ansatz is linear in D, whereas this
function is strongly non-linear with an inflation point a&D. (with a finite D_) as also shown

numerically in Ref. [1].
Approach 3.
We can choose the following ansatz describing a circular domain wall:

® o(P~Rok)
tanM =e A Sq
2
whereA = /Al K, is the domain wall width.

Eq. 83 is a very good approximation within the limR, >>A. However, in our case,
R,/A~2 only, and then Eq.SJ has a bad accuracy and cannot be applied. Moreover, the ansatz

(S3) leads to a singularity in the exchange energypat 0, because it does not satisfy the
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boundary conditior@o(o) = . Substituting the ansat3®) to the magnetic energy functional (Eq.

(1) in the main text), and conducting integration in the vicinity @& R, , the equilibrium

skyrmion radiuof Ref. [1] is obtained
A

" o) >

Eq. G4 is applicable in a narrow region ab<D_,, when the skyrmion is

metastable/unstable. Other drawback of ) {s a prediction of such a small value Bf, ~ A,

for which the ansatzS3 cannot be applied.

Therefore, the form of the approximate solution for the skyrmion equilibrium ragjjus
depends on the relative value of the ratie R, /A:
1) The Belavin-Polyakov model is approximately validzat 1 (small radius skyrmion);
2) The Iinear@o(p) model and Eq.§2) are valid for intermediatd< ¢ <5 (however, it has

other drawbacks);

3) The domain wall ansat5) is valid for largeR,,, ¢ >5.
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Supplementary note 2

The temperature dependence of macroscopic magnetic parameters, such as #({yand

can be calculated from a microscopic formalism. This formalism includes spin fluctuations which
cause the macroscopic magnetization to change length and the magnetic parameters to decrease a
the system samples larger areas of the free energy [3].

We used atomistic spin dynamics to calculate the temperature dependeh€E) oK, (T)

and D (T) from the finite temperature spin wave spectrum. Temperature is included in the classical
(white noise) limit and general details of the method can be found in Ref. [4]. We consider a 2D
simple cubic thin film in the ¥ plane, as was used in the micromagnetic calculations. The

Hamiltonian is:
H:_J2<ij>sl.§+2<ij>d(l'ﬁXA?.($ xﬁ)_'uSZi BS, £

whereS are classical spins of unit lengtd,=1.0-10%° and d =6.0- 10%* Joules, andu,=1.62
ug corresponding to the micromagnetic parameters with the unit cell sizes a=0.25 nm and c=0.4

nm. The angle brackets <ij> indicate a summation over nearest neighbors only. We use a large
magnetic field Hy=(0, 10T, 0) to force the magnetization to lie in the plane of the film while also
maintaining a uniform texture. The DMI manifests as a k-shift of the spin wave frequency. The
system size is 256x256x1 unit cells, i.e., we conduct simulations in the 2D limit and with im{arge
plane size to reduce finite size effects. Periodic boundary conditions are used in the x-y directions.

The dynamics are solved using the Landau-Lifshitz-Gilbert equation for each spin using the
Heun method with the Gilbert dampiag=0.001 and\t=1 fs.

The finite temperature spin wave spectrum is calculated from the space-time Fourier
transform of the § S, spin component fluctuations (following the same procedure as in Ref. [5]
giving the result in FigS2

To calculate the change in exchange stiffness and DMI, we fit the spin excitation spectrum

with the linear spin wave dispersion relation (see &8y.

ofk) = H (1) 215+ (1) kg, | (s9)
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where m(T) = M,(T)/M,(0) is the reduced magnetizatioM( is the saturation magnetization),
g, =(cosak + cosak )/ :for the 2D simple cubic lattica:(T) and £ (T) describe the effective

temperature dependendgT)/A(0), and D(T)/D(0), respectively.

The scaling laws are then found by fitting the relations (seeSH)g.

A(T) [M (T)Ja D(T) ('V' (T)Jﬁ (S7)

giving the exponents=1.498 +/- 0.001 and DMp=1.495+/- 0.007. These results are consistent
with literature [6,7]. In particular, they depend on the lattice structure and generally are material-
specific. Since the micromagnetic simulations are conducted on a square lattice, the bulk scaling

exponenta is expected to be approximatively 1.6 [6].
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Supplementary note 3

The micromagnetic computations are carried out by means of a state-of-the-art
micromagnetic solver which numerically integrates the Landau-Lifshitz-Gilbert (LLG) equation by

applying the time solver scheme Adams-Bashforth [8]:

(1+aé)?j—r:=—(mxheﬁ)—aGmx(mxheﬁ), )

where «a, is the Gilbert dampingm =M/ Mg is the normalized (reduced) magnetization, and
T=y,M{ is the dimensionless time, with, being the gyromagnetic ratio, aM, the saturation
magnetization.h_, is the normalized effective magnetic field, which includes the exchange,

magnetostatic, anisotropy and external fields, as well as the interfacial DMI and the thermal field.

The interfacial DMI contributiorh,,,, is obtained from the functional derivative of the DMI energy
density &, = D[mZV-m —(m-Vv) mz:| under the hypothesis of thin filrﬁ'%—m = O] [1,9] as
z

2D

hDMI -

[(Vm)2-Vvm |, S9

0'"'S

with D being the parameter taking into account the intensity of the DMIthe outef-plane
component of the normalized magnetizatigr, the vacuum permeability, angl the unit vector

along the oubf-plane direction. The DMI affects the boundary conditions of the ferromagnetic
: : D . :
sample in the following wayc(;—nr: :ﬂ(zx n)xm, wheren is the unit vector normal to the edge,

and Ais the exchange constant.

The thermal effects are accounted in Eq. (S8) as a stochastichterradded to the

deterministic effective magnetic field in each computational cell

h,, =(X/ MS)\/Z(aKBT gy /M A ), with K; being the Boltzmann constant; the volume

of the computational cubic celliy the simulation time step, T temperature of the sample yaad
three-dimensional white Gaussian noise with zero mean and unit variance [10,11]. The noise is
assumed to be uncorrelated for each computational cell. The discretization cell size used is
2.5x2.5x0.8nn’,

We nucleate a skyrmion with a negative ofsplane core (region where -1% <0) using

the method proposed in Ref. [12] and calculate the area, perimeter and diaRyeté&y, of the

skyrmion in a post-process from saved snapshots of the magnetization texture.
20



Figs. S5 and S6 display histograms of the statistical distribution of the skyrmion diameter
and perimeter, respectively, for different external magnetic fields and temperatures. All the
histograms are characterized by a Gaussian distribution, but the application of the field or reduction
of the temperature significantly decrease both mean and standard deviation, as indicated in the
figures.

In order to micromagnetically obtain the scaling exponeat the uniaxial perpendicular
anisotropy, we consideredy as free parameter. We performed athermal (deterministic)
micromagnetic simulations, where the thermal effect was included through the scaling relations of
A(T), K, (T) and D (T) rather than including the stochastic fibld As can be seen in Fi§./(a),

the best fitting has been achieved by considers8.585. Thisy and the temperature dependence
of the saturation magnetization are the input parameters of the analytical theory.

If we consider the scaling relations as calculated from atomistic simulations, we find results
in agreement with micromagnetic simulations until the skyrmion is in the metastable region far
from the boundary with the ground state region (seeS+dp) for T<200 K).
with scaled values of the macroscopic parameterg<a)5, /=1.5,=3.585, and (by=1.5, 5=1.5,=3.03.
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FIG: S3: Example of fitting of the linear spin wave dispersion relation. The dotted line is from the sindakated
extracted by fitting a Lorentzian curve to the frequency data of each k-point. The red line is the fitted lneavspi
theory Eq. (§ The solid line indicates the long wavelength fitted region and the dash line is the continuation of the

curve which is not fitted.
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the columns, the temperature is (a), (d), (g) T=100 K, (b), (e), (h) T=200 K, and (c), (830D K. The notations
mean, max, and min refer to the mean, maximum, and minimum value of the skyrmion diameter, whiiés std is
standard deviation.
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mean, max, and min refer to the mean, maximum, and minimum value of the skyrmion perimeter, while std is its
standard deviation.
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FIG. S7. Comparison between the mean value of the skyrmion diameter obtained by full micromagnetic simulations
including thermal fluctuations (same as Fig. 1(b) in the main text) with the skyrmion diameter calculated from
deterministic micromagnetic simulations
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