
This is a repository copy of Implicit mapping of pointers inside C++ Lambda closure 
objects in OpenMP target offload regions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/136574/

Version: Accepted Version

Conference or Workshop Item:
Truby, David R., Bertolli, Carlo, Wright, Steven A. orcid.org/0000-0001-7133-8533 et al. (3 
more authors) (2018) Implicit mapping of pointers inside C++ Lambda closure objects in 
OpenMP target offload regions. In: UK OpenMP Users' Conference 2018, 21-22 May 
2018. (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/199217898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Implicit Mapping of Pointers Inside C++

Lambda Closure Objects in OpenMP Target

Offload Regions

David Truby1, Carlo Bertolli2, Steven Wright1, Gheorghe-Teodor
Bercea2, Kevin O’Brien2, and Stephen Jarvis1

1University of Warwick
2IBM Research

February 28, 2018

Abstract

With the diversification of HPC architectures beyond traditional CPU-
based clusters, a number of new frameworks for performance portability
across architectures have arisen. One way of implementing such frame-
works is to use C++ templates and lambda expressions to design loop-like
functions. However, lower level programming APIs that these implemen-
tations must use are often designed with C in mind and do not specify how
they interact with C++ features such as lambda expressions.

This paper proposes a change to the behavior of the OpenMP specifi-
cation with respect to lambda expressions such that when functions gen-
erated by lambda expressions are called inside GPU regions, any point-
ers used in the lambda expression correctly refer to device pointers. This
change has been implemented in a branch of the Clang C++ compiler and
demonstrated with two representative codes. Our results show that the
implicit mapping of lambda expressions always exhibits identical perfor-
mance to an explicit mapping but without breaking the abstraction pro-
vided by the high level frameworks, and therefore also reduces the burden
on the application developer.

1


