
This is a repository copy of BookLeaf: An Unstructured Hydrodynamics Mini-application.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/136556/

Version: Accepted Version

Conference or Workshop Item:
Truby, David, Wright, Steven A. orcid.org/0000-0001-7133-8533, Kevis, Robert et al. (3 
more authors) (2018) BookLeaf: An Unstructured Hydrodynamics Mini-application. In: 
IEEE International Conference on Cluster Computing 2018, 10 Sep - 13 Oct 2018. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



BookLeaf: An Unstructured Hydrodynamics

Mini-application

Workshop paper: WRAp 2018

David Truby⇤, Steven A. Wright†⇤, Robert Kevis‡, Satheesh Maheswaran‡, J. A. Herdman‡ and Stephen Jarvis⇤

⇤Department of Computer Science, University of Warwick, UK
†Department of Computer Science, University of York, UK

‡Atomic Weapons Establishment, Aldermaston UK

Abstract—With the age of Exascale computing causing a
diversification away from traditional CPU-based homogeneous
clusters, it is becoming increasingly difficult to ensure that
computationally complex codes are able to run on these emerging
architectures. This is especially important for large physics
simulations that are themselves becoming increasingly complex
and computationally expensive. One proposed solution to the
problem of ensuring these applications can run on the desired
architectures is to develop representative mini-applications that
are simpler and so can be ported to new frameworks more
easily, but which are also representative of the algorithmic and
performance characteristics of the original applications.

In this paper we present BookLeaf, an unstructured Arbitrary
Lagrangian-Eulerian mini-application to add to the suite of
representative applications developed and maintained by the UK
Mini-App Consortium (UK-MAC). First, we outline the reference
implementation of our application in Fortran. We then discuss a
number of alternative implementations using a variety of parallel
programming models and discuss the issues that arise when
porting such an application to new architectures. To demonstrate
our implementation, we present a study of the performance
of BookLeaf on number of platforms using alternative designs,
and we document a scaling study showing the behaviour of the
application at scale.

I. INTRODUCTION

Scientific discovery has benefited enormously as the field of

computational science has matured. High Performance Com-

puting (HPC) systems are now an essential tools in scientific

investigation, in particular for situations where physical exper-

imentation is prohibitively costly, impractical or dangerous.

As the performance of HPC systems has increased, so too

has the complexity of the computational problems that can be

tackled on them. The next major milestone for supercomputing

– ExaFLOP computing (1018 Floating-point Operations per

Second) – promises to increase this capability further.

In recent years the designs of HPC systems have become

more diverse than the traditional homogeneous clusters that

were previously prevalent [1]. Emerging architectures, such

as many-core CPUs and GPUs, present greater challenges for

program implementation than the traditional bulk-synchronous

parallel model using multiple MPI processes operating in

parallel. This presents particular challenges for large legacy

code bases that need to be re-engineered to run on these

heterogeneous systems, as their size and complexity makes

hardware-specific optimisation difficult and they often cannot

be shared with vendors.

One approach being explored by many HPC centres is to

develop smaller representative applications that have similar

algorithmic and performance characteristics to larger codes but

with less complexity and no commercially sensitive content.

These mini-applications can be shared with vendors and

can be ported to emerging architectures without having to

handle the complexity or commercial sensitivity of the original

applications. This enables scientists to rapidly evaluate new

HPC systems, architectures, programming models, algorithms

and code optimisation prior to porting or re-engineering large

legacy applications.

The UK Mini-App Consortium (UK-MAC) is a collabo-

rative effort by a number of UK institutions to develop a

suite of mini-applications that are broadly representative of

a number of key multi-physics packages used in science and

industry. This paper contributes a 2-D unstructured hydrody-

namics mini-application to this benchmark suite. BookLeaf

is an unstructured Arbitrary Lagrangian-Eulerian (ALE) code

developed in Fortran, that has additionally been ported to the

OpenMP and CUDA frameworks. In this paper, we present

the algorithm, implementation and an initial performance

evaluation of BookLeaf.

Specifically, this paper makes the following contributions:

• We present a new ALE mini-application called BookLeaf

and describe the physics underpinning the implementa-

tion;

• We outline multiple implementations of this application

using OpenMP and CUDA, and highlight the difficulties

of porting to these frameworks;

• We demonstrate the performance of the application

on various platforms, including Intel Xeon CPUs and

NVIDIA GPUs.

c� British Crown Owned Copyright 2018/AWE
Published with permission of the Controller of Her Britannic Majesty’s Stationery Office.

This document is of United Kingdom origin and contains proprietary information which is the property of the Secretary of State for Defence. It is furnished
in confidence and may not be copied, used or disclosed in whole or in part without prior written consent of Defence Intellectual Property Rights

DGDCDIPR-PL - Ministry of Defence, Abbey Wood, Bristol, BS34 8JH, England.



The remainder of this paper is structured as follows: Section

II provides a summary of similar work; Section III provides

an overview of the computational physics involved in the

implementation of BookLeaf; Section IV describes the porting

of this application to various frameworks; Section V con-

tains a performance analysis of the application on various

architectures using these frameworks; and finally, Section VI

concludes this paper.

II. RELATED WORK

Architectural and algorithmic co-design is one proposed strat-

egy to tackle the likely challenges of Exascale computation [2].

However, the size and complexity of legacy multi-physics

applications means their use in this design space exploration

may be prohibitively expensive. Mini-apps, that are broadly

representative of key application kernels, are therefore increas-

ingly being developed and used to explore this space much

more rapidly. Subsequently, numerous benchmark suites have

been compiled containing a small number of mini-apps that

are of particular interest to a group or laboratory.

One of the earliest examples of this is the NAS parallel

benchmark suite, compiled by NASA in 1991 [3]. These

“paper-and-pencil” applications have been the focus of a

number of performance investigations, including scalability

studies [4], implementations in alternative frameworks [5], and

porting exercises to new architectures [6].

Lawrence Livermore National Laboratory (LLNL) maintain

a small collection of applications as part of their Advanced

Simulation and Computing (ASC) Proxy Apps project [7].

The suite includes applications for Algebraic Multi-grid [8],

Monte Carlo Particle Transport [9], Scalable I/O [10], [11] and

Hydrodynamics [12].

Of particular note, LULESH is a simplified hydrodynamics

application similar to BookLeaf, but is restricted to solve

only a simple Sedov blast problem on a unstructured 3-

D hex mesh [12]. Karlin et al. have performed a thorough

performance analysis of LULESH using a large number of

different programming frameworks and languages [13].

Similarly, Sandia National Laboratories (SNL) have a suite

of mini-apps as part of the Mantevo project [14]. The miniMD

application in particular is a good example of the co-design

process [15]. It is a feature-limited molecular dynamics appli-

cation that is representative of the larger LAMMPS production

application [16] and has been used in a number of performance

studies [17] that have each subsequently influenced the devel-

opment of LAMMPS.

The UK Mini-App Consortium (UK-MAC) – a collabora-

tion between AWE and UK Universities – also contributes

two mini-apps to the Mantevo suite, specifically TeaLeaf and

CloverLeaf. TeaLeaf is an application that solves the linear

heat conduction equation implicitly using a 5-point stencil. It

has been the focus of a number of performance studies, notably

by Martineau et al. [18] and Kirk et al. [19].

CloverLeaf is similar to our BookLeaf application, solving

the Sod shock tube problem using the ALE method, but

using a structured grid [20]. CloverLeaf has subsequently been

used to evaluate emerging architectures using various frame-

works [21], [22] and has also been extended to use adaptive

mesh refinement to improve performance and accuracy of the

simulation results [23].

This paper contributes BookLeaf to the UK-MAC bench-

marks. BookLeaf is an implementation of an ALE method for

shock hydrodynamics, using a quadrilateral 2-D mesh.

III. METHOD

In this section details of the hydrodynamics discretisation

in BookLeaf are given, along with an overview of the test

problems provided.

A. Hydrodynamics Scheme

BookLeaf uses an Arbitrary Lagrangian Eulerian method to

solve Euler’s equations of compressible flow in two spatial

dimensions. ALE methods are a hybrid technique that aim

to exploit the strengths of both Lagrangian and Eulerian

methods while avoiding their weaknesses. As bounding cases

in the ALE methodology, BookLeaf has the capability to solve

Euler’s equations in either the Lagrangian or Eulerian frame,

though an additional remap step is required for the latter case.

Euler’s equations for compressible flow are a system of

three partial differential equations expressing the conservation

of mass, momentum and energy.

D⇢

Dt
= �⇢r · u (1)

⇢
Du

Dt
= �rP (2)

⇢
D✏

Dt
= �Pr · u (3)

where D

Dt
is the material derivative, ⇢ is the density, u is the

velocity, P is the pressure and ✏ is the specific internal energy.

To close this system an additional equation called the

Equation of State (EoS) is needed. BookLeaf has three options

for the EoS – ideal gas, Tait, JWL – plus a void option.

The equations are solved on an unstructured mesh. The

mesh comprises of quadrilateral cells, neighbouring cells con-

nect via faces, and faces intersect at nodes. Since the mesh

is unstructured, the number of cells surrounding a node is

arbitrary. The discretisation used in BookLeaf uses a staggered

mesh, whereby thermodynamic variables (e.g. Pressure) are

centred in the cell and kinematic variables (e.g. Velocity) are

centred on the node. In two dimensions there are six hydrody-

namic degrees of freedom whereas a staggered quadrilateral

mesh supports eight degrees of freedom. The two non-physical

degrees of freedom are called hourglass or zero energy modes.

Two of the most common methods for suppressing hourglass

modes are filters and sub-zonal pressures. BookLeaf possesses

an implementation of a filter following Hancock [24] and sub-

zonal pressures following Caramana et al. [25].

Euler’s equations for compressible flow are hyperbolic, so

an explicit temporal discretisation is appropriate. BookLeaf

uses a predictor-corrector method: a first order forward Euler

method evolves the state to the half step (predictor), this is



then used to time centre the states evolution to the end of step

(corrector) to achieve second order accuracy [26]. The spatial

discretisation of the Lagrangian step in BookLeaf employs

explicitly integrated bilinear isoparametric finite elements. A

compatible discretisation (see Barlow [27]) is used to ensure

exact energy conservation with second order accuracy. Ther-

modynamic variables are represented in a piecewise constant

manner, and kinematic variables use bilinear elements. Such a

spatial discretisation is valid for differentiable compressible

flow but inappropriate for shock hydrodynamics. An artifi-

cial viscosity term is used in the spatial discretisation in

BookLeaf to smear shock discontinuities across a few mesh

cells to overcome this restriction. The form of the artificial

viscosity term in BookLeaf follows Caramana et al. [28]. The

optional remap step in BookLeaf uses a swept volume flux

approach [29] which is second order and uses limiters [30] to

enforce monotonicity.

The mesh can be spatially decomposed and distributed

across processes within BookLeaf using a simple RCB strategy

or a hypergraph strategy via METIS [31]. Data that is required

from neighbouring processes is stored in ghost layers and

retrieved via MPI point-to-point communications. A single

global reduction is required by BookLeaf to determine the

global timestep for the explicit temporal discretisation.

B. Test problems

BookLeaf comes provided with input for four standard shock

hydrodynamic test cases. These are Sod’s shock tube, the Noh

problem, the Sedov problem and Saltzmann’s piston.

Sod’s shock tube [32] consists of a shock tube containing

two gases initially at rest separated by a diaphragm, when the

diaphragm is removed a shock wave is formed and travels

from the high pressure gas into the lower pressure gas, a

rarefaction wave propagates in the opposite direction. Sod’s

shock tube tests a codes ability to model the fundamentals of

shock hydrodynamics.

Noh’s problem [33] consists of a single gas with no internal

energy, uniform density and an initially uniform radially

inwards velocity field. A strong shock wave is formed at the

centre. Noh’s problem is used to highlight the wall-heating

issue commonly found with artificial viscosity methods.

The Sedov problem [34] is a blast wave emanating from

a point source. In BookLeaf this is calculated on a Cartesian

mesh to test the codes capability to model non-mesh aligned

shocks.

Saltzmann’s piston [35] is a simple one dimensional piston

problem run on a distorted mesh. This is designed to exacer-

bate hourglass modes and therefore test a codes capability to

suppress such modes.

IV. IMPLEMENTATION

A. Reference

The reference BookLeaf implementation is written in Fortran,

using a traditional massage-passing, process-based approach.

Inter-process communications are performed using a custom

communications library called Typhon, a distributed commu-

nications library for unstructured mesh applications. Typhon

uses the MPI library as a backend, to handle operations such as

halo exchanges and collectives. In BookLeaf, loop exchanges

are only performed twice, once immediately before the vis-

cosity calculation and once immediately before calculating the

acceleration, meaning that the majority of the main computa-

tion loop can execute without pausing for communications.

Algorithm 1 outlines the hydrodynamics loop in BookLeaf.

Algorithm 1 Pseudocode for the hydrodynamics loop in

BookLeaf

procedure HYDRO()

dt initial dt

loop

if after first time step then

dt GETDT(dt) . Calculate time step

end if

LAGSTEP(dt) . Lagrangian calculations

if grid requires Eulerian remap then

ALESTEP(dt) . Initiate a remap

end if

end loop

end procedure

procedure LAGSTEP(dt)

Predictor:

GETQ() . Artificial viscosity calculation

GETFORCE() . Calculate forces

GETGEOM() . Update geometry

GETRHO() . Calculate half-step density

GETEIN() . Calculate half-step internal energy

GETPC() . Calculate half-step pressure

Corrector:

GETQ()

GETFORCE()

GETACC()

GETGEOM()

GETRHO() . Calculate full-step density

GETEIN() . Full-step energy update

GETPC() . Calculate full-step pressure

end procedure

procedure ALESTEP(dt)

ALEGETMESH() . Select mesh to be modified

ALEGETFVOL() . Calculate flux volume

ALEADVECT() . Calculate independent advection vars

ALEUPDATE() . Update dependent advection vars

end procedure

B. OpenMP Host

At scale, some flat MPI applications see degraded performance

due to load imbalance. Often this issue can be alleviated

using a hybrid model, whereby inter-socket communication

is performed using MPI, and intra-socket communication is



handled through shared memory. To evaluate the effectiveness

of a hybrid model on BookLeaf, an OpenMP implementation

is available.

Most kernels in BookLeaf are trivially parallelisable using

OpenMP pragmas, with few changes needing to be made to

effectively thread the application. However the acceleration

calculation kernel currently contains a data dependency that

prevents parallelisation. While this potentially could be fixed

by rewriting the kernel it has currently been left unchanged,

adversely affecting OpenMP performance.

Additionally, the OpenMP implementation makes extensive

use of Fortran intrinsics for many calculations, in particular

the MINVAL and MINLOC intrinsics. OpenMP nominally

provides a method for parallelising intrinsic and elemental

functions in Fortran, namely the workshare directive, however

the specification for this directive simply states that threads

must ‘share the work such that each unit is executed only

once by one thread’. This specification allows all of the work

to be given to a single thread in order to trivially maintain

correctness, and this is how this directive is implemented

in a number of compilers. As such, the intrinsic functions

have been expanded out to normal loops, allowing traditional

OpenMP loop directives to be used to force parallelisation.

C. OpenMP Target Offload

Building on the OpenMP host implementation, BookLeaf

has been extended to offload to GPUs. This presents new

challenges on top of the original implementation. In particular,

with an offload implementation care must be taken to ensure

the data residency of the arrays is correct and optimal. In the

case of BookLeaf, the arrays are transferred to the device at

the start of the main loop and are transferred back to the host at

the end of the loop. As such, data transfers are only performed

once and not every loop iteration. The obvious drawback of

this approach is that, for larger problem sets, the entire set of

arrays will not fit in GPU memory.

Another particular issue with the OpenMP offload imple-

mentation is lack of compiler support. At the time of writing

only two compilers support OpenMP offload to GPUs in

Fortran – the Cray compiler and the IBM XL compiler.

When attempting to support the XL compiler, issues were

found with the implementation of reductions, and as such the

only supported compiler for OpenMP offload for BookLeaf

is currently the Cray compiler. It should be noted that other

compilers such as PGI are planning OpenMP offload support

for Fortran, however at the time of writing this is not yet

complete.

Additionally, since BookLeaf uses a custom communica-

tions library on top of MPI which is currently not GPU-

aware, it is not possible for the GPU implementations to take

advantage of GPU-aware MPI libraries such as OpenMPI. This

means that large amounts of redundant data are copied from

device to host when run on multiple nodes in order to maintain

correct MPI behaviour. As a result the multi-node support in

the OpenMP offload and CUDA implementations is currently

suboptimal.

D. CUDA Fortran

In order to further evaluate the performance of BookLeaf on

GPUs, a CUDA Fortran implementation is also provided. The-

oretically such an implementation would allow an evaluation

of the overhead involved in writing OpenMP applications.

During our performance evaluation of the CUDA Fortran

implementation, an issue was discovered when using assumed-

size arrays, which are used extensively in BookLeaf. When

an assumed-size array is used as a parameter to a device

kernel, the runtime transfers the dope vector associated with

that array in order to determine the actual size. While these

dope vectors are quite small, usually between 72 and 96 bytes

per array, the time taken to transfer these from the host to

the device for each kernel run in BookLeaf adds up to a

significant time. This can be fixed by specifying the size

of each assumed-size array inside the kernels, removing the

need for a dope vector transfer. When this optimisation is

applied, performance of the kernels improves dramatically;

for example, the viscosity kernel runtime is improved from

4.23 seconds to 2.2 seconds for one problem set. Additionally,

CUDA Fortran does not provide any reduction primitives, and

libraries providing reductions such as CUDA Unbound (CUB)

or Thrust that are available for CUDA C are not available for

Fortran. While reductions are possible to implement in raw

CUDA Fortran, this has not been attempted here. As a result

the time differential kernel is run on the host rather than on

the device, negatively affecting overall runtime performance.

V. EVALUATION

In this section, we evaluate our mini-application on a number

of systems using a variety of different parallel programming

models. In each case, the results presented are the average

runtime of five executions. On all platforms, executions exhibit

a statistically insignificant deviation and so error bars are

omitted.

A. Experimental Setup

A variety of systems, architectures and compilers were used

to collect our results. The Intel Xeon E5-2699 v4 ‘Broadwell’

CPUs and Intel Xeon Platinum 8176 ‘Skylake’ CPU results

were collected on a Cray XC50 cluster using the Cray Com-

piler, which consistently produced the best performing binaries

in our testing. In the system used for the Broadwell CPUs

there were 22 cores per socket and 2 sockets per node, and

for the Skylake CPUs there were 28 cores per socket and 2

sockets per node. The NVIDIA V100 and P100 CUDA Fortran

results were obtained with the PGI compiler as this is the only

compiler available to us that supports CUDA Fortran, and in

each case were obtained on a single GPU connected by PCI

Express to an Intel Xeon CPU E5-2660 v4 CPU. OpenMP

GPU results were obtained on a single NVIDIA P100 GPU

attached to an Intel Xeon E5-2699 CPU in a Cray XC50

cluster using the Cray compiler as this is the only compiler

available to us that has implemented OpenMP offload for

GPUs. The various platforms and configurations used for these

experiments are shown in Table I.



Hardware System Compiler Compiler Flags

Intel Xeon Platinum 8176 ‘Skylake’ Cray XC50 Cray -h cpu=x86-skylake -h network=aries -sreal64

-sinteger -ffree -ra -Oipa3 -O3

Intel Xeon E5-2699 v4 ‘Broadwell’ Cray XC50 Cray -h cpu=broadwell -h network=aries -sreal64

-sinteger32 -ffree -ra -Oipa3 -O3

NVIDIA P100 (OpenMP) Cray XC50 Cray -h cpu=broadwell -h accel=nvidia_60 -h network=aries

-sreal sinteger32 -ffree -ra -Oipa3 -O3

NVIDIA P100 (CUDA) SuperMicro 2028GR-TR PGI -c -r8 -i4 -Mfree -fastsse -O2 -Mipa=fast -Mcuda=cc60

NVIDIA V100 SuperMicro 2028GR-TR PGI -c -r8 -i4 -Mfree -fastsse -O2 -Mipa=fast -Mcuda=cc70

TABLE I: Experimental configuration

Hardware Overall Viscosity Acceleration getdt getgeom getforce getpc

Skylake MPI 76.068 46.365 (70%) 6.663 (9%) 8.880 (12%) 3.396 (4%) 5.364 (7%) 1.314 (2%)

Skylake Hybrid 168.633 52.913 (31%) 15.923 (9%) 53.086 (31%) 26.654 (16%) 4.925 (3%) 2.054 (1%)

Broadwell MPI 108.978 70.116 (64%) 8.386 (8%) 11.936 (11%) 4.834 (4%) 7.348 (7%) 1.390 (1%)

Broadwell Hybrid 180.438 76.387 (42%) 16.142 (9%) 45.494 (25%) 20.764 (12%) 6.501 (3%) 2.108 (1%)

P100 OpenMP 186.506 75.873 (41%) 26.806 (14%) 12.684 (7%) 16.784 (9%) 40.853 (22%) 3.608 (2%)

P100 CUDA 261.183 97.445 (37%) 21.995 (8%) 40.433 (15%) 39.448 (15%) 0.536 (0%) 17.922 (7%)

V100 CUDA 191.636 44.981 (23%) 11.442 (6%) 44.401 (23%) 14.789 (8%) 0.651 (0%) 10.051 (5%)

TABLE II: Per-kernel performance breakdown in seconds (percentages in parentheses)

S
k
y

la
k
e

M
P

I

S
k
y

la
k
e

H
y

b
ri

d

B
ro

ad
w

el
l

M
P

I

B
ro

ad
w

el
l

H
y

b
ri

d

P
1

0
0

C
U

D
A

V
1

0
0

C
U

D
A

P
1

0
0

O
p

en
M

P

0

50

100

150

200

250

E
x
ec

u
ti

o
n

ti
m

e(
s)

Fig. 1: Overall performance for the Noh problem on a single

node.

B. Single Node Performance

First, we present a performance analysis of BookLeaf on

various architectures in single node configurations. CPU re-

sults were obtained with two different configurations for

comparison, flat MPI with one process per physical core and

hybrid MPI+OpenMP with one process per NUMA region.

A per kernel performance breakdown of BookLeaf on each

platform with the Noh problem set is shown in Table II.

The overall performance for the Noh solver shown in

Figure 1 demonstrates a performance discrepancy between

flat MPI and hybrid MPI+OpenMP, with the flat MPI model

performing better in both cases. However, this performance

discrepancy is not so notable in the most theoretically com-

putationally expensive kernel in the application, the viscosity

calculation kernel as shown in Figure 2a, where the hybrid

solution is within 5% of the performance of the flat MPI

solution. The performance difference becomes particularly no-

ticeable in the second most computationally expensive kernel,

the acceleration calculation kernel as shown in Figure 2b.

Here there is a data dependency in the main calculation loop,

severely impacting parallelisation opportunities when using a

thread-level framework such as OpenMP, an issue that does

not apply to the flat MPI solution.

Additionally the performance on GPUs is shown to be

slightly worse overall than that of the CPUs. Part of the reason

for the poor performance in the CUDA implementation in

particular is that the time differential kernel is performed on

the host, meaning the relevant arrays have to be copied from

the device to the host for the calculation once per timestep.

This is not the case for the OpenMP 4 offload implementation,

which can perform the reductions in the kernel correctly,

leading to better performance for OpenMP 4 overall than for

CUDA. Additionally, the performance for the viscosity calcu-

lation is better in the OpenMP offload implementation than

in the CUDA implementation. This is due to better register

utilisation in the OpenMP offload implementation; this greatly

affects GPU performance as registers are shared between

threads in the same streaming multiprocessor (SM) so a lower

register count allows more threads to be run simultaneously.

As such, the CUDA implementation would benefit greatly

from further optimisation to reduce the required number of

registers in each thread. However one conclusion that can

be drawn from this is that although it is often shown that

optimised CUDA implementations can outperform OpenMP

offload implementations, the work required is much greater



S
k
y

la
k
e

M
P

I

S
k
y

la
k
e

H
y

b
ri

d

B
ro

ad
w

el
l

M
P

I

B
ro

ad
w

el
l

H
y

b
ri

d

P
1

0
0

C
U

D
A

V
1

0
0

C
U

D
A

P
1

0
0

O
p

en
M

P

0

20

40

60

80

100

E
x
ec

u
ti

o
n

ti
m

e
(s

)

(a) Viscocity calculation kernel

S
k
y

la
k
e

M
P

I

S
k
y

la
k
e

H
y

b
ri

d

B
ro

ad
w

el
l

M
P

I

B
ro

ad
w

el
l

H
y

b
ri

d

P
1

0
0

C
U

D
A

V
1

0
0

C
U

D
A

P
1

0
0

O
p

en
M

P

0

5

10

15

20

25

E
x
ec

u
ti

o
n

ti
m

e
(s

)
(b) Acceleration calculation kernel

Fig. 2: Per-kernel execution times for the Noh problem on a single node.

and if the CUDA implementation is not carefully optimised

then performance can be worse than a simpler pragma-based

offload solution.

C. Multi-node Performance

Next, we present a strong scaling study of the BookLeaf

Sod solver using the hybrid MPI+OpenMP implementation

on a Cray XC50 cluster. The reason for selecting the hybrid

implementation for this analysis is that currently the partitioner

in BookLeaf is serial, meaning that when trying to scale a large

problem up to many hundreds of MPI processes the partitioner

begins to dominate the application runtime. Additionally, the

serial partitioner requires that the arrays used for partitioning

must exist initially in a single process; this results in the root

process quickly approaching the maximum amount of memory

available on a single node. As mentioned in Section IV-C

the GPU offload implementations currently exhibit very poor

performance with MPI due to the lack of a GPU aware version

of the communications library used by BookLeaf and so have

also been omitted from this analysis.

The results shown in Figure 3 show promising performance

when scaling BookLeaf. In particular, it can be seen that

BookLeaf actually scales superlinearly between 8 and 16

nodes and continues to scale almost linearly when the number

of nodes is increased beyond this. The reason for the initial

superlinear scaling is the significantly better cache utilisation

that can be achieved on each core when the problem set

is divided to a certain size. This is particularly significant

in BookLeaf since there are very few MPI communications

during the main loop and no data-dependent loops except for

the acceleration kernel, allowing the better cache utilisation

8 16 32 64

10
2.5

10
3

10
3.5

E
x
ec

u
ti

o
n

ti
m

e
(s

)

Skylake

Broadwell

Fig. 3: Overall execution time for the Sod problem when

strong scaling.

to be easily visible when scaling. Since there are very few

communications calls, the performance continues to scale well

even once cache utilisation has become optimal, as can be seen

when scaling beyond 16 nodes. It can also be seen here that

while the Skylake results are overall better than the Broadwell

results, the scaling curve is similar to that of Skylake, showing

that the scaling behaviour is portable across CPU architecture

generations.

The results for specific kernels shown in Figures 4a and 4b

show similar scaling patterns to the overall scaling perfor-

mance. Again, the kernels scale superlinearly up to 16 nodes



8 16 32 64

10
2

10
3

E
x
ec

u
ti

o
n

ti
m

e
(s

)
Skylake

Broadwell

(a) Viscosity calculation kernel

8 16 32 64

10
1.5

10
2

10
2.5

E
x
ec

u
ti

o
n

ti
m

e
(s

)

Skylake

Broadwell

(b) Acceleration calculation kernel

Fig. 4: Per-kernel execution times for the Sod problem when strong scaling.

and then continue to scale almost linearly beyond that. This

demonstrates that both kernels are well parallelised and dom-

inate application performance when the application is run at

scale. Since both these kernels contain communications this

also shows that the communication overhead for these kernels

does not cause a significant issue when increasing node counts.

VI. CONCLUSION

As supercomputing enters the era of Exascale it is increas-

ingly important to ensure applications are capable of running

optimally on the platforms taking us to this new level of

performance. To allow easier porting to these platforms mini-

applications are being developed that are representative of

larger applications but are smaller and so easier to port to

new platforms for evaluation and benchmarking purposes.

In this paper we present BookLeaf, a new representative

mini-application solving a number of shock hydrodynamic

problems using an Arbitrary Lagrangian-Eulerian method on

a 2-D unstructured quadrilateral mesh. We present the devel-

opment of this application and present a number of alternative

implementations of BookLeaf using the OpenMP framework

and CUDA Fortran. Further, we demonstrate our OpenMP im-

plementation in both its traditional use as a CPU parallelisation

framework as well as using the newer GPU offload features.

Additionally, we outline a number of challenges in porting to

these frameworks that other similar codes may also face.

Finally, this paper provides a broad performance analysis of

the resulting implementations on a number of platforms, show-

ing the implications of the challenges faced when designing

them and demonstrating the performance of BookLeaf itself

in a number of different configurations. We also show a strong

scaling analysis of BookLeaf on CPU platforms, showing the

scaling properties of the application and demonstrating that

BookLeaf scales well up to larger numbers of nodes.

A. Future Work

The implementation of Fortran ports of BookLeaf was ham-

pered by lack of support for Fortran in some frameworks

and compilers, as well as intricacies surrounding the inter-

action of Fortran with these frameworks. In order to evaluate

whether the same issues would be found when using another

language a C++ port of BookLeaf is underway. This will also

allow evaluation of CUDA in C++, which has the advantage

of additional primitive libraries that are available to C++

CUDA applications. In particular for BookLeaf the reduction

primitives provided by the NVIDIA CUDA Unbound (CUB)

library allow a proper implementation of the time differential

calculation on GPUs.

Furthermore a number of recent parallelisation frameworks

are not available for Fortran applications. The C++ port of

BookLeaf will also allow the evaluation of the code with a

broader range of frameworks. In particular, a C++ GPU imple-

mentation using the RAJA performance portability framework

from LLNL [36] is planned, allowing further evaluation of

GPU results to compare to the implementations described

in this paper. These additional implementations will allow a

comparison of the state of the art of GPU programming models

on both C++ and Fortran.

ACKNOWLEDGEMENTS

This work was supported by the UK Atomic Weapons Es-

tablishment under grant CDK0724 (AWE Technical Outreach

Programme). Professor Stephen Jarvis is an AWE William

Penney Fellow.

The authors would also like to express our gratitude to Cray

for the use of their Marketing Partner Network system used

for the performance analysis.

This work would not have been possible without the as-

sistance of a number of members of the Applied Computer

Science group at AWE, to whom we would also like to express

our gratitude.

Bookleaf can be obtained from GitHub (see https://uk-mac.

github.io/BookLeaf/).



REFERENCES

[1] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak,
and C. V. Packer, “BEOWULF: A Parallel Workstation for Scientific
Computation,” in Proceedings of the International Conference on Par-

allel Processing (ICPP’95), 1995, pp. 11–14.

[2] S. S. Dosanjh, R. F. Barrett, D. W. Doerfler, S. D. Hammond, K. S.
Hemmert, M. A. Heroux, P. T. Lin, K. T. Pedretti, A. F. Rodrigues,
T. G. Trucano, and J. P. Luitjens, “Exascale Design Space Exploration
and Co-design,” Future Generation Computer Systems, vol. 30, pp. 46–
58, 2014.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga, “The
NAS Parallel Benchmarks,” International Journal of High Performance

Computing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[4] F. C. Wong, R. P. Martin, R. H. Arpaci-Dusseau, and D. E. Culler,
“Architectural Requirements and Scalability of the NAS Parallel Bench-
marks,” in Proceedings of the 11th ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis

(SC’99). Portland, OR: IEEE Computer Society, Washington, DC,
November 1999, pp. 1–10.

[5] H. Shan, F. Blagojević, S.-J. Min, P. Hargrove, H. Jin, K. Fuerlinger,
A. Koniges, and N. J. Wright, “A Programming Model Performance
Study Using the NAS Parallel Benchmarks,” Scientific Programming,
vol. 18, pp. 153–167, 2010.

[6] S. J. Pennycook, S. D. Hammond, G. R. Mudalige, S. A. Wright, and
S. A. Jarvis, “On the Acceleration of Wavefront Applications using
Distributed Many-Core Architectures,” The Computer Journal, vol. 55,
no. 2, pp. 138–153, February 2012.

[7] Lawrence Livermore National Laboratory, “LLNL ASC Proxy Apps,”
https://codesign.llnl.gov/proxy-apps.php (accessed July 12, 2018), 2018.

[8] P. Samfass, “Porting AMG2013 to Heterogeneous CPU+GPU Nodes,”
Lawrence Livermore National Laboratory, Livermore, CA, Tech. Rep.
LLNL-TR-720025, January 2017.

[9] P. S. Brantley, R. C. Bleile, S. A. Dawson, N. A. Gentile, M. S.
McKinley, M. J. O’Brien, M. M. Pozulp, D. F. Richards, J. A. W. David
E. Stevens, and H. Childs, “LLNL Monte Carlo Transport Research
Efforts for Advanced Computing Architectures,” in Proceedings of the

International Conference on Mathematics & Computational Methods

Applied to Nuclear Science & Engineering, Jeju, Korea, April 2017.

[10] J. Dickson, S. A. Wright, S. Maheswaran, J. A. Herdman, M. C. Miller,
and S. A. Jarvis, “Replicating HPC I/O workloads with Proxy Applica-
tions,” in 1st Joint International Workshop on Parallel Data Storage &

Data Intensive Scalable Computing Systems (PDSW-DISCS’16). IEEE
Computer Society, Los Alamitos, CA, November 2016.

[11] J. Dickson, S. A. Wright, D. Harris, S. Maheswaran, J. A. Herdman,
M. C. Miller, and S. A. Jarvis, “Enabling Portable I/O Analysis of Com-
mercially Sensitive HPC Applications Through Workload Replication,”
in Proceedings of the 39th Cray User Group (CUG’17). Redmond,
WA: IEEE Computer Society, Los Alamitos, CA, May 2017.

[12] R. D. Hornung, J. A. Keasler, and M. B. Gokhale, “Hydrodynamics
Challenge Problem,” Lawrence Livermore National Laboratory, Liver-
more, CA, Tech. Rep. LLNL-TR-490254, July 2011.

[13] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and
C. Still, “Exploring Traditional and Emerging Parallel Programming
Models using a Proxy Application,” in Proceedings of the 27th IEEE

International Parallel & Distributed Processing Symposium (IPDPS’13).
Boston, MA: IEEE Computer Society, Los Alamitos, CA, May 2013.

[14] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving Performance via Mini-Applications,” Sandia
National Laboratories, Albuquerque, NM, Tech. Rep. SAND2009-5574,
September 2009.

[15] P. S. Crozier and S. Plimpton, “miniMD v. 1.0,” Sandia National Labora-
tories, Albuquerque, NM, Tech. Rep. MINIMDV1.0; 002380MLTPL00,
June 2009.

[16] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular
Dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1–19,
1995.

[17] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A. Jarvis,
“Exploring simd for molecular dynamics, using intel xeon processors
and intel xeon phi coprocessors,” in Proceedings of the 27th IEEE Inter-

national Symposium on Parallel and Distributed Processing (IPDPS’13).
Boston, MA: IEEE Computer Society, Los Alamitos, CA, 2013, pp.
1085–1097.

[18] M. Martineau, S. McIntosh-Smith, and W. P. Gaudin, “Assessing the
Performance Portability of Modern Parallel Programming Models Using
TeaLeaf,” Concurrency and Computation: Practice and Experience,
vol. 29, no. 15, 2017.

[19] R. O. Kirk, G. R. Mudalige, I. Z. Reguly, S. A. Wright, M. J. Mar-
tineau, and S. A. Jarvis, “Achieving Performance Portability for a Heat
Conduction Solver Mini-Application on Modern Multi-core Systems,” in
Proceedings of the IEEE International Conference on Cluster Computing

(CLUSTER’17). Honolulu, HI: IEEE Computer Society, Los Alamitos,
CA, September 2017, pp. 834–841.

[20] A. C. Mallinson, D. A. Beckingsale, W. P. Gaudin, J. A. Herdman, J. M.
Levesque, and S. A. Jarvis, “CloverLeaf: Preparing Hydrodynamics
Codes for Exascale,” in Proceedings of the 35th Cray User Group

(CUG’13), Napa, CA, May 2013.
[21] S. McIntosh-Smith, M. Martineau, T. Deakin, G. Pawelczak, W. P.

Gaudin, P. Garrett, W. Liu, R. Smedley-Stevenson, and D. A. Beck-
ingsale, “TeaLeaf: A Mini-Application to Enable Design-Space Ex-
plorations for Iterative Sparse Linear Solvers,” in Proceedings of the

IEEE International Conference on Cluster Computing (CLUSTER’17).
Honolulu, HI: IEEE Computer Society, Los Alamitos, CA, September
2017, pp. 842–849.

[22] M. Martineau, S. McIntosh-Smith, and W. P. Gaudin, “Evaluating
OpenMP 4.0’s Effectiveness as a Heterogeneous Parallel Programming
Model,” in Proceedings of the IEEE International Parallel and Dis-

tributed Processing Symposium Workshops (IPDPSW’16). Chicago, IL:
IEEE Computer Society, Los Alamitos, CA, May 2016, pp. 338–347.

[23] D. A. Beckingsale, W. P. Gaudin, J. A. Herdman, and S. A. Jarvis,
“Resident block-structured adaptive mesh refinement on thousands of
graphics processing units,” in Proceedings of the 44th International

Conference on Parallel Processing (ICPP’15). Beijing, China: IEEE
Computer Society, Los Alamitos, CA, September 2015, pp. 61–70.

[24] S. Hancock, “PISCES 2DELK Theoretical Manual,” Physics Interna-

tional, 1985.
[25] E. J. Caramana and M. J. Shashkov, “Elimination of Artificial Grid

Distortion and Hourglass-type Motions by Means of Lagrangian Sub-
zonal Masses and Pressures,” Journal of Computational Physics, vol.
142, no. 2, pp. 521–561, 1998.

[26] A. Barlow, “An Adaptive Multi-material Arbitrary Lagrangian Eulerian
Algorithm for Computational Shock Hydrodynamics,” Ph.D. disserta-
tion, University of Wales Swansea, 2002.

[27] A. J. Barlow, “A Compatible Finite Element Multi-material ALE Hy-
drodynamics Algorithm,” International Journal for Numerical Methods

in Fluids, vol. 56, no. 8, pp. 953–964, 2008.
[28] E. J. Caramana, M. J. Shashkov, and P. P. Whalen, “Formulations of

Artificial Viscosity for Multi-dimensional Shock Wave Computations,”
Journal of Computational Physics, vol. 144, no. 1, pp. 70–97, 1998.

[29] D. J. Benson, “An Efficient, Accurate, Simple ALE Method for Nonlin-
ear Finite Element Programs,” Computer Methods in Applied Mechanics

and Engineering, vol. 72, no. 3, pp. 305–350, 1989.
[30] B. Van Leer, “Towards the Ultimate Conservative Difference Scheme.

IV. A New Approach to Numerical Convection,” Journal of computa-

tional physics, vol. 23, no. 3, pp. 276–299, 1977.
[31] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme

for Partitioning Irregular Graphs,” SIAM Journal on Scientific Comput-

ing, vol. 20, no. 1, pp. 359–392, 1998.
[32] G. A. Sod, “A Survey of Several Finite Difference Methods for Systems

of Nonlinear Hyperbolic Conservation Laws,” Journal of Computational

Physics, vol. 27, no. 1, pp. 1–31, 1978.
[33] W. F. Noh, “Errors for Calculations of Strong Shocks Using an Arti-

ficial Viscosity and an Artificial Heat Flux,” Journal of Computational

Physics, vol. 72, no. 1, pp. 78–120, 1987.
[34] G. I. Taylor, “The Formation of a Blast Wave by a Very Intense

Explosion,” Proceedings of the Royal Society of London A, vol. 201,
no. 1065, pp. 159–174, 1950.

[35] J. K. Dukowicz and B. J. Meltz, “Vorticity Errors in Multidimensional
Lagrangian Codes,” Journal of Computational Physics, vol. 99, no. 1,
pp. 115–134, 1992.

[36] R. D. Hornung and J. A. Keasler, “The RAJA Performance Portability
Layer: Overview and Status,” Tech Report, LLNL-TR-661403, 09 2014.


	Introduction
	Related Work
	Method
	Hydrodynamics Scheme
	Test problems

	Implementation
	Reference
	OpenMP Host
	OpenMP Target Offload
	CUDA Fortran

	Evaluation
	Experimental Setup
	Single Node Performance
	Multi-node Performance

	Conclusion
	Future Work

	References

