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Abstract— To further improve the performance of the variable 

step size continuous mixed p-norm (VSS-CMPN) adaptive 

filtering algorithm in the presence of impulsive noise, a 

generalized VSS-CMPN algorithm (GVSS-CMPN) is proposed in 

this paper. Instead of assuming the probability density-like 

function ( )pλ  to be uniform, a linear function is proposed for 

( )pλ  to control the mixture of various error norms. The 

influence of the selection of the regulating factor (slope of the 

linear function) is discussed. Besides, the computational 

complexity as well as the mean-square convergence analysis is 

presented. Simulations conducted in the system identification 

scenario demonstrate the superiority of the proposed algorithm 

over known algorithms. 

Index Terms—impulsive noise, mean-square convergence, 

mixed p-norm, probability density-like function 

I. INTRODUCTION 

ver the past few decades, the least-mean-squares (LMS) 

algorithm has attracted much attention due to its low 

computational cost and easy implementation [1]. Unfortunately, 

impulsive noise which is frequently encountered in practice 

would deteriorate the performance of the LMS algorithm since 

it is based on the mean square error criterion [2]-[4]. 

To address this problem, the least absolute deviation (LAD) 

algorithm and the robust mixed-norm (RMN) algorithm were 

proposed [5]-[7]. The later algorithm is based upon the convex 

combination of the LMS and LAD algorithms, and employs a 

scalar parameter considered as the probability that the 

instantaneous desired response does not contain significant 

impulsive noise to control the mixture [7]. Subsequently, its 

normalized version (NRMN) was developed in [8], which 

provides an improved performance in the non-stationary 

environment. Recently, the continuous mixed p-norm (CMPN) 

adaptive filtering algorithm was proposed [9], which combines 

various p-norms for 1 2p≤ ≤  using a continuous probability 

density density-like function ( )pλ . Based on different 

approximations for the expectation of the lp-norm of the error 
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signal, the variable step size CMPN (VSS-CMPN) algorithm 

and the block CMPN (Block-CMPN) algorithm were put 

forward [9]. The VSS-CMPN algorithm relies on single point 

estimate, while the Block-CMPN algorithm relies on a block of 

the error signal. As reported in [9], the VSS-CMPN algorithm 

outperforms the Block-CMPN algorithm because the latter is 

derived from past error samples. Based on the p-norm error 

criterion, several algorithms have been investigated [10]-[13]. 

However, in the CMPN, the probability density-like function 

( )pλ  assumed to be uniform, i.e., ( ) 1pλ =  for [1, 2]p ∈ , is 

just a special case, and other situations that meet the constraint 
2

1
( )d 1p pλ =∫  have not been taken into account. Therefore, in 

this brief, we focus on further development of the VSS-CMPN 

algorithm. As can be seen in Fig. 1, rotating the function ( )pλ  

around the coordinate 
3

, 1
2

 
 
 

 does not change the value of the 

integral 
2

1
( )dp pλ∫ , which implies that the rotated function can 

be utilized as ( )pλ . The rotated function can be expressed as a 

linear function 

3
( ) 1

2
p pλ θ  = − + 

 
                        (1) 

where θ  is a constant denoting the regulating factor. Although, 

strictly speaking ( )pλ  is not a probability density function 

(PDF), we still treat it as a PDF and correspondingly limit the 

range of θ . Since the PDF ( )pλ  cannot be negative, θ  

belongs to the interval [ 2, 2]− . Based on (1), we develop a 

generalized VSS-CMPN (GVSS-CMPN) algorithm in this 

paper. We discuss the influence of the regulating factor θ  

employing a nonlinear function of the error signal and reveal 

the connection between the regulating factor and the algorithm 

robustness. We also compare the computational complexity of 

the proposed GVSS-CMPN algorithm with that of several 

existing algorithms. In addition, we provide the mean-square 

convergence analysis. Simulations conducted in the system 

identification scenario illustrate the advantages of our finding. 

In general, our main contributions are threefold: 

(a) A linear function is put forward for the PDF ( )pλ  to derive 

the GVSS-CMPN algorithm. 

(b) The influence of the selection of the regulating factor is 

discussed by using a nonlinear function of the error signal. 

(c) The mean-square convergence analysis for the proposed 

algorithm is presented. 
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Fig. 1. The linear function designed for the PDF ( )pλ  

II. PROPOSED ALGORITHM 

Consider an unknown M-dimensional vector 
o

w  that 

satisfies the following linear model 

( ) ( ) ( )T

o
d k k kη= +u w                         (2) 

where ( )d k  denotes the desired signal, 

[ ]( ) ( ), ( 1), , ( 1)
T

k u k u k u k M= − − +u   stands for the input 

vector, ( )kη  is the zero-mean background noise, and ( )T⋅  

represents vector or matrix transpose. 

Inspired by the CMPN algorithm [9], the cost function of the 

proposed scheme is given by 

{ }2

1
( ) ( ) ( ) d

p
J k p E e k pλ= ∫                      (3) 

where ( ) ( ) ( ) ( )T
e k d k k k= − u w  is the error signal, and {}E ⋅  

denotes the expectation. 

The proposed algorithm is obtained by applying the steepest 

descent principle 

( )( 1) ( ) ( )
k

k k J kµ+ = − ∇ww w                     (4) 

where µ  denotes the fixed step size ( 0µ > ), and ( ) ( )
k

J k∇w  is 

given by 

{ }2

( )
1

( ) ( ) ( ) d
( )

p

k
J k p E e k p

k
λ ∂

∇ =
∂∫w
w

          (5) 

Employing the approximation method of single point 

estimate and replacing { }( )
p

E e k  with ( )
p

e k , we obtain 

( 1) ( ) sign( ( )) ( )
k

k k e k kµg+ = +w w u               (6) 

where 
2 1

1
( ) ( ) d

p

k
p p e k pg λ −= ∫ , and sign( )⋅  stands for the 

sign function. 

With (1), 
k

g  can be rewritten as 

2 1

1

2 21 1

1 1

3
1 ( ) d

2

3
( ) d ( ) d

2

( ) ( )

p

k

p p

p p e k p

p p e k p p e k p

k k

g θ

θ

θd ρ

−

− −

  = − +    
 = − + 
 

= +

∫

∫ ∫       (7) 

where 

2 1

1

3
( ) ( ) d

2

p
k p p e k pd -æ ö÷ç - ÷ç ÷çè øò3                  (8) 

and 

2 1

1
( ) ( ) d

p
k p e k pp -

ò3                      (9) 

Finally, ( )kd  and ( )kρ  are expressed as 

3 2

2 ( ) 2 0.5 2.5 ( ) ( ) 0.5
( )

ln ( )ln ( ) ln ( )

e k e k e k
k

e ke k e k
d

− − +
= + +      (10) 

2

ln ( ) (2 ( ) 1) ( ) 1
( )

ln ( )

e k e k e k
k

e k
ρ

− − +
=               (11) 

Note that, when 0θ = , the GVSS-CMPN algorithm reduces to 

the VSS-CMPN algorithm, which implies that the 

GVSS-CMPN algorithm is a generalized version of the 

VSS-CMPN algorithm. 

A. Selection of the Regulating Factor 

In order to investigate the influence of the regulating factor 

θ  on the algorithm performance, we seek to explore this issue 

using a nonlinear function of the error signal. Before 

proceeding further, (6) is reformulated as 

( 1) ( ) ( ( )) ( ) ( )k k f e k e k kµ+ = +w w u            (12) 

where ( ( ))
( )

kf e k
e k

g
=  is a nonlinear function of the error 

signal, and ( ( ))f e kµ  can be viewed as the overall step size for 

the LMS algorithm. Using (7), ( ( ))f e k  can be further written 

as 

( ) ( )
( ( ))

( )

k k
f e k

e k

θd ρ+
=                        (13) 

Fig. 2 plots the nonlinear function ( ( ))f e k  with different 

regulating factors. As can be seen, the nonlinear function 

( ( ))f e k  with 2θ =  yields a larger value than that with other 

tested values under the same ( )e k . With the decrease of θ , 

( ( ))f e k  is reduced for the same ( )e k . 

 
Fig. 2. The nonlinear function ( ( ))f e k  with different θ  

When the impulsive noise occurs, the absolute value of the 

error signal, i.e., ( )e k , is very large. We expect the step size to 

be reduced to suppress the impulsive noise, ensuring the 

robustness of the algorithm. Since µ  is fixed, ( ( ))f e k  should 

be a small value to achieve this goal. Therefore, according to 

the characteristics of the function described previously, 

adopting a small regulating factor θ  is beneficial to improve 

the robustness of the algorithm. Moreover, the closer the 
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regulating factor θ  is to -2, the more robust against impulsive 

noise the algorithm is. When there is no impulsive noise, the 

error signal does not exhibit great value, and we hope to speed 

up the convergence by increasing the step size. Therefore, θ
should be close to 2 to obtain a large value for ( ( ))f e k . 

B. Practical Consideration 

It is observed from Fig. 2 that as ( )e k  tends to zero, the 

function ( ( ))f e k  tends to infinity. When the algorithm arrives 

at the steady state, if ( )e k  is small enough, ( ( ))f e k  will be 

high, which may result in instability of the algorithm. To 

prevent this happening, we set a threshold for ( )e k  as 

, if ( )
( ) =

( ) , otherwise

e k
e k

e k

η ηks ks ≤



                 (14) 

where k  is a positive constant, and ηs  denotes the standard 

deviation of the background noise. The threshold ηks  is 

motivated by the fact that 
2 2( )E e ηs ∞ ≈   [1]. Replacing 

2 ( )E e ∞   with 
2 ( )e ∞  and performing a square root operation, 

we have ( )e ηs∞ ≈ . We then introduce an adjustment 

parameter k  to generate the threshold ηks . If the variance 
2

ηs  

of the background noise is unknown, the online learning 

method can be used to estimate it [14]. Extensive simulations 

suggest that 1k ≤  can provide good performance. 

C. Computational Complexity 

Table I compares the computational complexity of various 

algorithms, where 
w

N  denotes the length of sliding window of 

the RMN algorithm. It is observed that the RMN algorithm is 

more computationally expensive than the LAD algorithm 

because the calculation for mixing parameter in the RMN 

increases the cost. As compared to the VSS-CMPN algorithm, 

the proposed GVSS-CMPN algorithm requires more 

multiplications, additions and logarithmic operations since the 

additional computation in (10) and (11) is needed. However, 

this increase is moderate. 
TABLE I 

COMPUTATIONAL COMPLEXITY OF VARIOUS ALGORITHMS 

Algorithms Multiplications Additions Logarithmic 

operations 

LAD [4] 2 1M +  2 1M −  0  

RMN [6] 2 2 4wM N+ +  2 1
w

M N+ −  0  

VSS-CMPN [8] 2 4M +  2M  2  

GVSS-CMPN 2 10M +  2 2M +  5  

III. MEAN-SQUARE STABILITY 

To perform the convergence analysis in the mean-square 

sense, we define the weight error vector ( )kw  as 

( ) ( )
o

k k= −w w w                          (15) 

Combining (15) with (12) gives rise to 

( 1) ( ) ( ( )) ( ) ( )k k f e k e k kµ+ = −w w u        (16) 

Taking the square and expectation of both sides of (16) 

yields 

[ ]2 2

22 2 2

2

( 1) ( ) 2 ( ( )) ( ) ( )

( ( )) ( ) ( )

( ) ( )

a
E k E k E f e k e k e k

E f e k e k k

E k k

µ

µ

   + = −   
 +  

 = − ∆ 

w w

u

w

 



(17) 

where ( ) ( ) ( )T

a
e k k k= w u  denotes noise-free a priori error 

signal, and ( )k∆  is given by 

[ ] 22 2 2( ) 2 ( ( )) ( ) ( ) ( ( )) ( ) ( )
a

k E f e k e k e k E f e k e k kµ µ  ∆ = −  u  

(18) 

From (17), the convergence of the GVSS-CMPN algorithm 

in the mean-square sense can be guaranteed if the squared 

weight error satisfies 
2 2

( 1) ( )E k E k   + ≤   w w                  (19) 

The inequality (19) is established as long as ( ) 0k∆ ≥ . 

Therefore, a mean-square convergence condition is achieved 

for 

[ ]
22 2

2 ( ( )) ( ) ( )
0<

( ( )) ( ) ( )

a

m

E f e k e k e k

E f e k e k k
µ µ< =

 
 u

          (20) 

where 
m

µ  denotes the upper bound of the step size.  

To proceed, we make the following assumptions: 

A1: The background noise ( )kη  is independent of the input 

signal ( )ku  and noise-free a priori error signal ( )
a

e k  [1]. 

A2: The ratio of the expectation of two random variables is 

approximated by the expectation of the ratio between them, i.e., 

( )

( )

E x x
E

E y y

 
≈  

 
, which is reasonable for sufficiently long filters 

[15]. 

A3: The error signal ( )e k  is uncorrelated with the input signal 

( )ku  [16]. 

Combining ( ) ( ) ( )
a

e k e k kη= +  and applying Assumption 

A1 for 
m

µ  in (20), we arrive at 

2

22 2

2 ( ( )) ( )

( ( )) ( ) ( )

a

m

E f e k e k

E f e k e k k
µ

  =
 
 u

              (21) 

Define the auto-correlation matrix as ( ) ( )T
E k k =  uuR u u . 

Invoking Assumptions A2 and A3 for (21), we obtain 

[ ]

22

2 22

2 ( )( )
2

( ( )) ( ) Tr( ( )) ( ) ( )

aa

m

E e ke k
E

E f e k e kf e k e k k
µ

      = = 
      uuRu

(22) 

where Tr( )⋅  denotes the trace of a matrix. In particular, if the 

variance of the background noise 
2

ηs  is much smaller than 

2 ( )
a

E e k   , i.e., 
2 2 ( )

a
E e kηs    , we have 

2 2 2 2( ) = ( ) + ( )
a a

E e k E e k E e kηs     ≈      . Recalling Assumption 

A2, (22) is simplified as 



[ ] [ ]
2

( ( )) Tr
m

E f e k
µ =

uuR
                   (23) 

From Fig. 2, the nonlinear function ( ( ))f e k  is an even 

function. Moreover, when ( ) 0e k > , the function ( ( ))f e k  is 

monotonically decreasing. Note that in (14), a lower bound is 

set for ( )e k , i.e., 
min

( )e k ηks  =  . Therefore, ( ( ))f e k  takes 

the maximum value at point ηks . The minimum upper bound 

m
µ  of the step size is given by 

[ ]
2

( )Tr
m

f η

µ
ks

=
uuR

                  (24) 

In the case of 
2 2 ( )

a
E e kηs    , a sufficient condition for the 

mean-square convergence can be expressed as 

[ ]
2

0<
( )Trf η

µ
ks

<
uuR

                     (25) 

IV. SIMULATION RESULTS 

In this section, the performance of the proposed algorithm is 

evaluated in the system identification scenario. Experiments are 

performed in an impulsive noise environment which introduces 

both the background noise and impulsive noise. Background 

noise is a white Gaussian process resulting in a signal-to-noise 

ratio (SNR) of 15dB. The unknown system is given by 

0.5 ones(1, )
o

M= ×w  with 11M = . The zero-mean, white 

Gaussian signal with unit variance is used as the input. The 

normalized mean-square-deviation (NMSD), defined as 
2 2

1020log ( ) /
o o

k − w w w , is employed to evaluate the 

algorithm performance. Generally, the impulsive noise can be 

modeled by either the Bernoulli-Gaussian (BG) distribution [9], 

[17] or the α -Stable distribution [10], [18]. We consider both 

cases. In the simulations, when performing the comparison of 

various algorithms, we let the unknown vector 
o

w  change to 

o
−w  at the middle of iterations to evaluate their tracking 

abilities. All results are the average of 100 independent trials. 

A. Bernoulli-Gaussian Distribution 

The impulsive noise is modeled by a Bernoulli-Gaussian 

process, i.e. ( ) ( ) ( )v k q k h k= , where ( )q k  is a white Gaussian 

process with variance ( )2
2 100 ( )T

q o
E ks  =   

u w , and ( )h k  is a 

Bernoulli process with the probability mass function given by 

[ ]( ) 1
r

P h k P= =  and [ ]( ) 0 1
r

P h k P= = −  (
r

P  denotes the 

probability of the occurrence of impulsive interference). In this 

example, we set 0.01
r

P = . 

Fig. 3 shows the NMSD curves of the proposed 

GVSS-CMPN algorithm for different k . The regulating factor 

is fixed as 2θ = − . As can be seen, when 1k = , the 

steady-state misalignment of the GVSS-CMPN algorithm is 

higher than that when 1k < . Moreover, the GVSS-CMPN 

algorithm with 0.1, 0.01, 0.001k =  achieves almost the same 

performance. Therefore, in our simulation, we set 0.1k = . 

Fig. 4 shows the NMSD curves of the proposed 

GVSS-CMPN algorithm for different θ . As can be seen, the 

GVSS-CMPN algorithm with 2θ =  exhibits faster 

convergence than that with other values, but increases its 

steady-state misalignment. With the decrease of θ , the 

proposed algorithm is gradually decelerating the convergence 

meanwhile reducing the steady-state misalignment. To ensure 

good robustness, for the GVSS-CMPN algorithm, we set 

2θ = − . 
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Fig. 3. NMSD performance of the proposed GVSS-CMPN algorithm 

against k ; 0.002µ = . 

 
Fig. 4. NMSD performance of the proposed GVSS-CMPN algorithm 

against θ ; 0.002µ = . 

 
Fig. 5. NMSD performance of various algorithms. (a) 0.002µ =  (b) 

0.002µ =  (c) 0.002µ =  (d) 0.0015µ =  (e) 0.002µ = . 

Fig. 5 compares the NMSD curves of the LMS, LAD, RMN, 

VSS-CMPN and GVSS-CMPN algorithms. For the RMN 

algorithm, we select 10
w

N =  as suggested in [7]. As can be 
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seen from Fig. 5, the LMS algorithm performs poorly since it 

cannot combat the impulsive noise. In contrast, the LAD, RMN 

and VSS-CMPN algorithms have great improvement for both 

the convergence rate and steady-state misalignment. Finally, 

the GVSS-CMPN algorithm provides superior performance 

compared to other algorithms. 

B. α -Stable Distribution 

The impulsive noise is here described by the α -stable 

distribution with a characteristic function ( ) exp( )x x
αϕ g= − , 

where the characteristic exponent ( ]0, 2α ∈  describes the 

impulsiveness of the noise (smaller α  leads to more impulsive 

noise samples) and 0g >  characterizes the dispersion level of 

the noise [10], [18]. In particular, when 2α = , it degenerates to 

the Gaussian noise. In this example, we consider two cases of 

α  and set 1 15g = . For the proposed algorithm, we set 

0.01k =  and 2θ = − . 

As can be seen from Figs. 6 and 7, the proposed 

GVSS-CMPN algorithm behaves better than other tested 

algorithms as well as retains good robustness. 

 
Fig. 6. NMSD performance of various algorithms, and 1.3α =  (a) 

0.001µ =  (b) 0.002µ =  (c) 0.002µ = , 10
w

N =  (d) 0.0015µ =  (e) 

0.002µ = . 

 
Fig. 7. NMSD performance of various algorithms, and 1.2α = . (a) 

0.001µ =  (b) 0.002µ =  (c) 0.002µ = , 10
w

N =  (d) 0.0015µ =  (e) 

0.002µ =  

V. CONCLUSION 

In this brief, we have designed a linear function for the 

probability density-like function to derive the GVSS-CMPN 

algorithm. The existing VSS-CMPN algorithm can be viewed 

as a special case of the proposed GVSS-CMPN algorithm. We 

have discussed the influence of the regulating factor based on a 

nonlinear function of the error. In addition, we have presented 

the mean-square stability analysis of the algorithm. Simulations 

in the context of system identification have demonstrated the 

advantages of the proposed algorithm over known techniques. 

In our future work, we will investigate how the algorithm 

performance can be improved by adapting the regulating factor 

to the signal statistics. 
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