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11 Abstract There is continued uncertainty regarding the rate, timing, duration and 

12 direction of Holocene sea-level for the Indian Ocean, and indeed the wider 

13 tropical realm.  We present the first synthesis, and a new chronology, for 

14 Holocene relative sea-level (RSL) using a range sediment cores retrieved from 

15 mangrove ecosystems in three locations along coastal Tanzania. This study 

16 applies the relationship of ratios between the key mangrove taxa of 

17 Sonneratia:(Bruguiera/Ceriops) (S/BC) (ranging from 0 – 22.9) and 

18 Sonneratia:Rhizophora (S/R) (ranging from 0 – 2.29), vegetation and altitude to 

19 interpret mangrove dynamics and refine the vertical errors associated with relative 

20 sea level change. The variations in mangrove taxa ratios in the sediment cores 

21 obtained from each site shows mangrove development at different periods during 

22 the Holocene from around 7900 cal yr BP. An early to mid-Holocene RSL rise 

23 occurred from ~7900 to ~4600 cal yr BP that may have reached a higher level 

24 than present. A lower RSL occurred after 4600 cal yr BP, resulting in mangroves 

25 retreating seaward at all three study locations, before a low magnitude RSL rise 
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26 occurred between 4400 and 2000 cal yr BP. Another RSL rise is recorded at ~ 

27 500 cal yr BP before falling to a level lower than present at ~100 cal yr BP. There 

28 is evidence of a recent RSL rise recorded from mangrove ratios during the last 

29 century. In addition, the sedimentation rates among sites are relatively different 

30 due to different altitudinal ranges with freshwater input, sediment supply and 

31 progradation having significantly more effect in the Rufiji Delta (2.1-10.9 mm cal 

32 yr-1) than at the Zanzibar sites (0.3-6.6 mm cal yr-1). 

33

34 Keywords: Indian Ocean, pollen-vegetation relationships, far-field locations, 

35 Zanzibar, Rufiji Delta  
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39 1. Introduction

40 Relative sea-level (RSL) (the height of the ocean with respect to the 

41 surface of the solid Earth) has fluctuated over time that has resulted in 

42 geophysical and ecological changes (Pirazzoli, 1991). Far-field sites, located at a 

43 distance from the major ice sheets, are important locations for reconstructing RSL 

44 changes. Far-field locations can provide important constraints on global RSL 

45 change when combined with more intensively studied temperate areas, where 

46 coastal adjustments following removal of ice loading are most acute, especially 

47 during the mid and late Holocene (Milne and Mitrovica, 2008).

48 Holocene RSL changes in far-field locations result from eustatic changes, 

49 equatorial syphoning and hydro-isostasy (continental levering) (Mitrovica and 

50 Milne, 2002; Milne and Mitrovica, 2008). Equatorial ocean syphoning results 

51 from collapsing forebulges at the near-field continental margins that cause RSL 

52 fall to be recorded in far-field locations (Mitrovica and Peltier, 1991). Continental 

53 levering occurs when there is water loading due to deglaciation, that causes 

54 continental subsidence and an uplift of the adjacent continents, inducing RSL fall 

55 at areas distant from the continental margins (Lambeck and Nakada, 1990; 

56 Mitrovica and Milne, 2002; Gehrels and Long, 2008). RSL records from far-field 

57 locations have been produced from various locations including the Indian Ocean 

58 (Katupotha and Fujiwara, 1988; Banjeree, 2000), Southeast Asia (Hanebuth et al., 

59 2000; Horton et al., 2005; Bird et al., 2007) and Australia (Lambeck and Nakada, 

60 1990; Larcombe et al., 1995; Lewis et al., 2013). Holocene RSL changes have 

61 been reconstructed from Australia using a range of coastal and coral reef proxies; 

62 some studies suggest a highstand at ~6000 cal yr BP (Lambeck and Nakada, 1990; 

63 Larcombe et al., 1995), whereas others indicate a later highstand around 3900 cal 
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64 yr BP (Baker et al., 2001). A review of geo-chronological data from along the 

65 southeast coast of Australia, indicates a highstand from 7700 cal yr BP that lasted 

66 until about 2000 cal yr BP, before falling to the present-day level (Sloss et al., 

67 2007). In the northern Indian Ocean, two mid-late Holocene highstands, one at 

68 7300 cal yr BP and another at 4300 cal yr BP, have been recorded from beach 

69 ridges and coral terraces along the east coast of India (Banerjee, 2000). These 

70 highstands were also recorded from corals and marine shells along the southwest 

71 and south coasts of Sri Lanka (Katupotha and Fujiwara, 1988) occurring at 6500 

72 cal yr BP and 3200 cal yr BP. 

73 Clearly far-field RSL records are of immense value for understanding and 

74 constraining sea level records but there is a range of timings and duration of these. 

75 In this paper we present evidence of RSL changes derived from three mangrove 

76 sediment records (Punwong et al., 2012; 2013a; 2013b) from sites on the 

77 Tanzanian coast. Combined, these data provide the first sea-level curve and a 

78 refined chronology for Holocene RSL and coastal changes for Tanzania. This 

79 study also uses the relationship between ratios of key mangrove taxa, vegetation 

80 and altitude to interpret mangrove dynamics and refine the vertical errors of RSL 

81 change. Holocene RSL changes are integrated with existing RSL reconstructions 

82 from the region to develop a reconstruction of Holocene RSL changes across the 

83 Southwest Indian Ocean.   

84

85 1.1. Sea-level history in the southwest Indian Ocean

86 The record of Holocene RSL change along the East African coast, situated 

87 in the tectonically stable (Woodroffe and Horton, 2005) Southwest Indian Ocean, 

88 is poorly constrained (Pirazzoli, 1991; Camoin et al., 2004). Reconstructed RSL 
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89 changes are available from only a few locations and use a range of different 

90 proxies (Figure 1a). Previous studies of RSL change on the continental coasts of 

91 east and southeast Africa (Mozambique and South Africa) indicate that RSL rose 

92 rapidly during the early Holocene and reached the present level by the mid 

93 Holocene (Jaritz et al., 1977, Ramsay, 1995; Ramsay and Cooper, 2002; Norström 

94 et al., 2012). Mid Holocene highstands of up to 3.5 m above the present level 

95 were recorded by 5000 cal yr BP, followed by subsequent falls to the present level 

96 in the late Holocene. A different RSL reconstruction derived from coral from the 

97 offshore islands (Mauritius, Mayotte and Réunion Island) shows that a rapid RSL 

98 rise occurred during the early Holocene reaching present level at ~3000 cal yr BP 

99 with no evidence for a mid Holocene highstand (Camoin et al., 1997; 2004; 

100 Colonna et al., 1997; Zinke et al., 2003). Although all RSL studies within this 

101 region record an early Holocene RSL rise, there is considerable uncertainty on the 

102 amplitude and timing of this. The varied environmental settings and distances 

103 from formerly glaciated areas would result in different isostatic contributions to 

104 RSL changes. For example, it is thought that small offshore volcanic islands are 

105 less affected by hydro-isostatic adjustment than those studies from continental 

106 locations due to the effects of continental levering during the mid and late 

107 Holocene (Camoin et al., 2004; Lambeck and Nakada, 1990; Mitrovica and 

108 Milne, 2002; Milne and Mitrovica, 2008). The different proxies used make it 

109 likely that the sea-level index points may not be comparable and some sea-level 

110 index points may have large indicative ranges and different degrees of precision 

111 (Jaritz et al., 1977; Ramsay, 1995; Ramsay and Cooper, 2002; Woodroffe and 

112 Horton, 2005; Norström et al., 2012).
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114 1.2. Mangrove as sea-level indicators

115 Research on RSL reconstruction from far-field locations has traditionally 

116 focused on coring and dating corals (Pirazzoli, 1988; Fairbanks, 1989; Colonna et 

117 al., 1997; Camoin et al., 1997, 2004). However, sediments that accumulate within 

118 mangrove ecosystems can also be used to reconstruct RSL and coastal changes. 

119 Mangrove ecosystems are found in coastal tropical regions along the margins of 

120 the sea and lagoons; they are characterised by evergreen trees and shrubs that are 

121 physiologically and morphologically adapted to grow in the sub-tropical to 

122 tropical intertidal zone between mean sea level and the high water of spring tide 

123 (Woodroffe and Grindrod, 1991; Blasco et al., 1996; Ellison and Farnsworth, 

124 2001; Ellison, 2008). Mangrove ecosystems respond to changes in sea level by 

125 migrating landwards with a rise in sea level or seawards with a fall (Gilman et al., 

126 2008). Mangrove community composition is able to keep pace with sea-level 

127 changes (McIvor et al., 2013). For mangroves to be able to withstand sea level 

128 rise, the rates of sedimentary accretion within the mangrove has to be equivalent 

129 to the rate of sea-level rise (Ellison, 2015), otherwise mangroves may undergo in 

130 situ drowning leading to weakened root structures, dieback and disappearance 

131 (Gilman et al., 2008). 

132 Santisuk (1983) and Watson (1928) classified mangroves into a series of 

133 inundation class zones according to ecological preference to monthly inundation 

134 frequency. Rhizophora mucronata, Avicennia marina, Sonneratia alba, Bruguiera 

135 gymnorrhiza and Ceriops tegal are classified as true mangroves or mangroves. 

136 The term true mangroves are also defined as mangroves representing trees and 

137 shrubs growing in the areas inundated by the normal to all high tides. Back 

138 mangroves such as Heritiera littoralis and Acrostichum aureum are plants 
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139 growing in the areas inundated by the sea only during spring high tides, 

140 exceptional high tides, or during cyclones. The dominance of mangrove species 

141 which occurs in zones throughout the mangrove ecosystem can thus be an 

142 indicator of sea-level fluctuations by comparing the relationships between 

143 contemporary vegetation assemblages and their inundation frequency with respect 

144 to sea level.

145 Mangrove pollen has previously been used to reconstruct compositional 

146 changes in mangrove ecosystems (e.g. Cohen et al., 2005; Horton et al., 2005; 

147 Vedel et al., 2006; Tossou et al., 2008; Hait and Behling, 2009) including in East 

148 Africa (Punwong et al., 2012; 2013a; 2013b). Engelhart et al. (2007) developed a 

149 transfer function from a modern analogue of mangrove surface pollen 

150 assemblages that has been used to predict the palaeo mangrove elevation with 

151 precision of ± 0.22 m. A contemporary study into the relationships between 

152 mangrove pollen in surface sediment samples and the composition of the 

153 vegetation indicated that majority of pollen was local in origin reflecting 

154 vegetation in close proximity to the sampling sites (Punwong et al., 2013a, 

155 2013b). Pollen accumulated in sediments underlying mangroves, in combination 

156 with an understanding of the present relationship of mangrove composition to the 

157 altitude of present sea level, can be used to reconstruct RSL fluctuations (Ellison, 

158 1989; 2005; 2008; Punwong et al., 2012; 2013a; 2013b). 
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159

160 Figure 1. (a) Map of the Southwest Indian Ocean showing the location of 

161 Tanzania and previous sea level studies: (1) Ramsay and Cooper (2002), (2) 

162 Compton (2001), (3) Jaritz et al. (1977), (4) Colonna et al. (1996); Camoin et al. 

163 (1997), (5) Zinke (2000); Zinke et al. (2003). (b) Map of the coast of Tanzania 

164 showing the location of the Rufiji Delta (c) and Zanzibar (d). Inset e, f, g and h 

165 show where the sedimentary cores were taken and the location of vegetation plots 

166 located in Makoba Bay and Unguja Ukuu respectively.
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167

168 2. Study sites

169

170 2.1. Geology and geomorphology

171 The three sites investigated are all characterised by mangrove forest and 

172 located in the northern Rufiji Delta (Tanzanian mainland), Makoba Bay and 

173 Unguja Ukuu (Unguja island, Zanzibar) (Figure 1b-h). The Rufiji Delta consists 

174 of mangrove forest that grades into paddy fields at higher elevations and supports 

175 the largest expanse of estuarine mangrove along the East African coast 

176 (Nshubemuki, 1993; Fisher et al., 1994; Richmond et al., 2002; Masalu, 2003; 

177 Mangora et al., 2016). The deltaic area is covered by fluvial sand, silt and clay 

178 (Semesi, 1992) (Figure 1c). A series of sand spit islands and submerged sand bars 

179 have formed parallel to the seaward margins (Fisher et al., 1994), while clayey 

180 silts and silty clays containing organic matter characterise the mangrove 

181 sediments. The average tidal range is 2 - 2.5 m and approximately 3.3 - 4.3 m on 

182 high spring tides (Francis, 1992; Fisher et al., 1994; Richmond et al., 2002).

183 Unguja Island (Zanzibar) is located on the continental shelf some 40 km 

184 from the mainland. The island has been periodically part of the mainland when 

185 sea level was 30-40 m below present sea level and the last separation from the 

186 mainland by sea-level inundation of the Zanzibar channel occurred at the end of 

187 the Pleistocene to early Holocene (Prendergast et al., 2016). Most of Unguja 

188 consists of Pleistocene reef limestone often outcropping on the east coast 

189 (Shunula, 2002) with alluvial deposits locally present (Schlüter, 1997; Arthurton 

190 et al., 1999) although there are no large rivers (Shunula, 2002). It is influenced by 

191 a semi-diurnal tide, ranging from 2 m on neap tide to 4 m on spring tide 
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192 (Mwandya et al., 2010). The study areas are located in the northwest of Makoba 

193 Bay (Figure 1d; 1e) and the east Makime headland of Unguja Ukuu (Figure 1d; 

194 1g). 

195

196 2.2. Climate

197 The rainfall pattern within the Rufiji Delta and on Zanzibar is largely 

198 controlled by the north and south migration of the Inter-tropical Convergence 

199 Zone (ITCZ). For the Rufiji delta, the northeast monsoon prevails from December 

200 to April bringing heavy rainfall (Goudie, 1996; Nicholson, 2001) and the 

201 southeast monsoon dominates from May to November bringing less rainfall 

202 (Fisher et al., 1994; Richmond et al., 2002). The average annual rainfall is about 

203 1200 mm yr-1 (Semesi, 1992) and the temperature range throughout the year is 24 

204 - 31 °C (Richmond et al., 2002). For Zanzibar, the northeast and southeast 

205 monsoons bring the long rains from March to May and short rains from October 

206 to December (Machiwa and Hallberg, 1995; Mwandya et al., 2010). The mean 

207 annual rainfall is about 1500 -1800 mm yr− 1 (Knopp et al., 2008) and the average 

208 temperature range throughout the year is about 27 - 30 °C (Machiwa and 

209 Hallberg, 1995). 

210

211 3. Methodology

212

213 3.1. Coring

214 Three sediment cores were retrieved from each site at a seaward, central and 

215 landward location using a Russian corer along a transect perpendicular to the 

216 coastline through the centre of mangrove forests to reduce the influence of local 
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217 land-based edge effects such as erosion or progradation from creeks (Ellison, 

218 2008). The core depths varied between 1 to 4.5 m (Table 1) and each site was 

219 cored until the sediment became impenetrable or bedrock was reached (Punwong 

220 et al., 2012; 2013a; 2013b). The transect length varied depending on the nature of 

221 the environmental setting and the extent of the mangrove area; this extended along 

222 20 km in the northern Rufiji Delta (ANR, BNR, CNR), 600 m in Makoba Bay 

223 (AMAK-1, BMAK-1, CMAK-1) and 80 m at Unguja Ukuu (A-UU-1, B-UU-1, C-

224 UU-1) (Figures 1c; 1f; 1h, Table 1). An additional sediment core was retrieved 

225 from Unguja Ukuu (C-UU-4) at a location away from the transect as it represents 

226 a longer sediment record than the other three cores.  

227 3.2. Vegetation plots

228 To study the relationship between mangrove species composition, pollen 

229 accumulating in the sediment and RSL, nine 20 m2 vegetation plots were set up to 

230 establish species percentages along an altitudinal gradient. At the three sites, there 

231 was considerable variation in the horizontal distance covered to accommodate the 

232 full range of the upper and the lower limits of mangroves. In the Rufiji Delta, the 

233 vegetation survey transect along the large riverine mangrove system with 

234 freshwater inputs covered 20 km. As the consequence, we were not able to carry 

235 out adequate vegetation surveys and to set up plots within the restricted fieldwork 

236 time frame. On Zanzibar the transects extended between 80 to 600 m of fringing 

237 mangroves characterised by a similar composition across the three sites. Given 

238 variations in the horizontal distance and vertical range, the mangrove gradient in 

239 Zanzibar is considered to be steeper than the Rufiji Delta. A more detailed study 

240 at both sites in Zanzibar allowed the ecosystem and structural composition at 

241 different levels of sea-level inundation to be determined and inform the 
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242 reconstruction of past RSL fluctuations.  Vegetation in nine 20 m2 nested quadrats 

243 was surveyed and recorded and surface sediment samples were collected (Figures 

244 1f; 1h) from three seaward, three central and three landward sites, then considered 

245 to be an upper intertidal, a middle intertidal and a lower intertidal mangrove 

246 classes, respectively. Five cm3 of surface samples from the four corners and centre 

247 of each plot were collected and subsequently used to study the relationship 

248 between pollen presence and vegetation coverage. Altitudinal heights were 

249 obtained using a differential GPS (dGPS model Leica TCRA total station and 

250 Leica System 500 base and receiver with a manufacturer quoted vertical precision 

251 of ± 0.001 m). Initial calibration of the dGPS occurred against recognised 

252 National Datum benchmarks and subsequently all coring sites, vegetation plots 

253 and full range of mangrove sites were levelled and calibrated to mean tide level 

254 (MTL) (based on Admiralty Tide Tables, 2014).  These altitudes were determined 

255 relative to a benchmark at Kibiti for the Rufiji Delta using a known actual base 

256 station Triangulation point (TTP 353) and the Ministry of Lands and the 

257 Environment Benchmark (Zanzibar).

258

259 3.3. Palaeoecological analysis

260 The cores were sub-sampled every 10 cm and the volume of each subsample 

261 was approximately 2 cm3 for pollen analysis (Punwong et al., 2012; 2013a; 

262 2013b). The relationship between pollen assemblages and vegetation composition 

263 was determined using three pollen association indices that reflect how accurately 

264 pollen types reflect the abundance of their parent plant (Davis, 1984). The three 

265 indices are ‘association index’ representing similar presence of the pollen and the 

266 associated plant in the vegetation, ‘under-representation index’ representing 
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267 pollen percentages that are much lower than plant percentages, and ‘over-

268 representation index’ representing pollen percentages that exceed plant 

269 percentages (Davis, 1984). Pearson’s Correlation Coefficients were used to 

270 describe the relationship between pollen percentages extracted from the surface 

271 sediment and plant percentages from the nine vegetation plots in Makoba Bay and 

272 Unguja Ukuu. 

273

274 3.4. Chronology

275 Twenty-six bulk sediment samples were selected for AMS dating and 

276 submitted to the Radiocarbon Dating Laboratories at the University of Waikato, 

277 New Zealand and the CHRONO Centre, Queen’s University Belfast, UK. At the 

278 start of the laboratory work, dates were obtained from the base of the core with 

279 targeted dating from different stratigraphic boundaries and key biostratigraphical 

280 horizons occurring as the research developed. Additionally, nine dates from 

281 AMAK-1 and BMAK-1 cores were obtained on organic concentrate samples 

282 following Woodroffe et al. (2015a). Each 1 cm3 bulk sediment was deflocculated 

283 using Na4P2O4 / NaOH, heated with 10% HCl and sieved through a 10, 63 and 90 

284 μm mesh. The 10-63 μm sieving fraction was selected for dating as it contained 

285 fine organic material and pollen (Woodroffe et al., 2015a). The organic 

286 concentrate samples were submitted for dating to the Natural Environment 

287 Research Council (NERC) Radiocarbon Facility (East Kilbride) for AMS dating 

288 (NERC Radiocarbon Facility Allocation 1608.0312). All dates were calibrated 

289 using the southern hemisphere calibration Shcal04 curve (McCormac et al., 2004) 

290 using the software OxCal v4.10 (Bronk-Ramsey, 2009). 
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292 4. Results

293

294 4.1. Stratigraphy 

295 Detailed stratigraphic descriptions and diagrams have been previously 

296 published (Punwong et al., 2012; 2013; 2013b). There were no abrupt 

297 stratigraphic boundaries between the units; they were gradational in all ten cores. 

298 The basal unit of BNR and CNR in the northern Rufiji Delta was comprised of 

299 organic matter and silt (Punwong et al., 2012). Organic matter amount, including 

300 root fragments, increased towards the top of the cores where wood and bark 

301 fragments were also present. 

302 In the three cores retrieved from Makoba Bay, the deepest sediment was 

303 grey silt with some shell fragments (Punwong et al., 2013b). In cores AMAK-1 

304 and BMAK-1 the silt unit was overlain by a peat unit containing woody root 

305 fragments and fine sand. Sand was found in the uppermost unit of all three cores.

306 The basal unit of A-UU-1, B-UU-1 C-UU-1 sediment cores from Unguja 

307 Ukuu was grey sand and silt with silt as the basal unit in C-UU-4 (Punwong et al., 

308 2013a). All basal units were overlain by peat with woody root fragments. Some 

309 small shell fragments were also found in this unit in A-UU-1 and B-UU-1. Peat 

310 layers with sand and small fragments of woody plant roots alternated with organic 

311 sand layers throughout the sediment column in all four cores. Sand containing 

312 small fragments of woody plant root formed the top unit of B-UU-1, C-UU-1, and 

313 C-UU-4 while silt characterised the top unit of A-UU-1. 

314

315 4.2. Pollen analysis and vegetation survey
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316 Fossil pollen and spores were identified and placed into five main 

317 ecological groups: mangroves, back mangroves, terrestrial herbaceous, 

318 pteridophytes and unidentifiable pollen; the first two (mangroves, back 

319 mangroves), denote a tolerance to sea-water inundation (Punwong et al., 2012; 

320 2013a; 2013b). Terrestrial taxa consisted solely of terrestrial herbaceous plants 

321 such as grasses and sedges that are not tolerant of salinity. An understanding of 

322 the contemporary mangrove species within the zones is used to underpin the 

323 interpretation of ecosystem and environmental changes through the fossil record. 

324 Nine mangrove species found in Tanzania within a zonation scheme developed 

325 through a combination of Watson’s (1928) and Santisuk’s (1983) inundation 

326 classes (mangroves and back mangroves) and field-based observations of modern 

327 ecological occurrences of mangrove taxa (Figure 2a) (Punwong et al., 2012; 

328 2013a; 2013b) are therefore used as a modern analogue of mangrove pollen to 

329 interpret sea level. Low mangrove diversities and a linear relationship between 

330 contemporary mangrove habitat and inundation frequency negates the need for the 

331 use of transfer functions (Ellison, 1989; Engelhart et al., 2007).

332 Contemporary vegetation assemblages observed in the field based on 

333 Watson and Santisuk (1928) classes revealed a distinct vertical relationship with 

334 present sea level. The altitude of the upper and lower limits of the mangrove areas 

335 was +1.67 m to +3.47 m mean tide level (MTL) in the northern Rufiji Delta, -1.63 

336 m to +1.47 m MTL in Makoba Bay, and -0.03 m to +1.87 m MTL at Unguja 

337 Ukuu. The altitudinal variation of the upper and lower limits of the mangrove 

338 areas at the three sites is due to different mangrove systems and environmental 

339 settings. In the northern Rufiji Delta, an estuarine mangrove ecosystem exists 

340 while at Unguja Ukuu and Makoba Bay, fringe mangroves with less freshwater 
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341 input are found. For Makoba Bay we acknowledge it is unusual for mangroves to 

342 grow at -1.63 m MTL and is most likely caused by the geomorphology of the tidal 

343 creek system that allows seaward mangrove species, e.g. Sonneratia alba, to 

344 colonise altitudes below MTL.

345 The indices of pollen association (Davis, 1984) and correlation between 

346 the contemporary mangrove pollen records and contemporary vegetation showed 

347 that fossil mangrove pollen in Zanzibar have a close correlation between 

348 representivity in pollen spectra and the actual vegetation and can be used to 

349 reconstruct coastal ecosystem dynamics (Punwong et al., 2013a; 2013b). 

350 Strikingly, there are some notable changes between the percentages of Sonneratia 

351 alba and Bruguiera/Ceriops pollen throughout Zanzibar cores. At the present-day 

352 Sonneratia alba and Bruguiera/Ceriops appear at different altitudes; Sonneratia 

353 alba occurs in the lower intertidal zone whilst Bruguiera and Ceriops occur at 

354 higher intertidal areas. The relative pollen ratios of 

355 Sonneratia:(Bruguiera/Ceriops) (S/BC ratio) and Sonneratia:Rhizophora (S/R 

356 ratio) of the surface samples from each vegetation plot vary with altitudinal 

357 gradient (Table 2). An increase in the ratios of S/BC and S/R indicates a decrease 

358 in altitude of the mangrove ecosystem and associated sea level (Table 2). These 

359 ratios are applied to infer the mangrove altitude shift within the upper and lower 

360 altitudinal limits of the Makoba Bay and Unguja Ukuu study areas as a modern 

361 analogue of altitude mangrove classes (Table 2). In Makoba, the S/BC ratios of 

362 5.4 – 22.8 and the S/R ratios of 0.37 – 2.29 represent lower intertidal mangroves; 

363 the S/BC ratios of 0.2 – 5.4 and the S/R ratios of 0.04 – 2.29 represent middle 

364 intertidal mangroves; the S/BC ratios of 0 – 0.2 and S/R ratios of 0 – 0.04 

365 represent higher intertidal mangroves. At Unguja Ukuu, the S/BC ratios of 0.17 – 
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366 2.23 and the S/R ratios of 0.20– 0.59 represent lower intertidal mangroves; the 

367 S/BC ratios of 0 – 0.17 and the S/R ratios of 0 – 0.20 represent higher intertidal 

368 mangroves. 

369 Therefore, the pollen biostratigraphy as used in this study allows 

370 correlation between horizons using the S/BC and S/R ratios of the surface samples 

371 within the eighteen vegetation plots that were calculated and used to characterise 

372 the mangrove position of the reconstructed past mangrove ecosystems. This 

373 information is applied to the dated samples (Figure 2b). 
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375

376 Figure 2. (a) Summary cross section showing typical mangrove zonation and 

377 response of this to RSL change in Tanzania developed from Watson’s (1928) and 

378 Santisuk’s (1983) inundation classes and field observations with its indicative 

379 range. Figure 2. (b) Biostratigraphy of core sites from Makoba Bay and Unguja 

380 Ukuu showing paleoenvironmental interpretation in terms of mangrove position 

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080



381 as lower, middle, higher inferred from the ratios of S/BC and S/R. All ages are in 

382 cal yr BP developed from Punwong et al. (2013a; 2013b).

383

Site Core
Altitude (m 

MTL)
14

C yr BP

(2σ)

Calibrated age 

range yr BP

Indicative 

meaning (m 

MTL) derived 

from full range 

of mangrove 

RSL (m MTL) 

derived from 

full range of 

mangroves

Mangrove 

classes with 

altitudinal range 

(interpolated 

from Fig. 2b)

Indicative 

meaning (m 

MTL) derived 

from pollen 

ratios

RSL (m MTL) 

derived from 

pollen ratios

Decompaction 

correction

Sea-level 

tendency

ANR 1.61 392 ± 30 493-324

3.22 > 1950 A.D.

2.95
Failure to 

make graphite

2.34 4167 ± 30 4821-4453 2.57 ± 0.9 -0.23 ± 0.9 n/a n/a n/a 1.03 rise

0.61 4751 ± 30 5579-5318 2.57 ± 0.9 -1.96 ± 0.9 n/a n/a n/a 0.51 rise

-0.96 4931 ± 30 5711-5486 2.57 ± 0.9 -3.59 ± 0.9 n/a n/a n/a 0.02 rise

2.33 > 1950 A.D.

1.06 884 ± 31 799-680 2.57 ± 0.9 -1.51 ± 0.9 n/a n/a n/a 0.62 fall

-0.97 1292 ± 30 1264-1071 2.57 ± 0.9 -3.54 ± 0.9 n/a n/a n/a 0.02  fall

-0.37* 1803 ± 36 1807-1548 -0.08 ± 1.55 -0.29 ± 1.55
Middle intertidal 

(-1.14)-0.57
-0.08  ± 0.86 -0.29 ± 0.86 0.46 rise

-0.41 1615 ± 24 1525-1385

-1.55* 5290 ± 38 6178-5913 -0.08 ± 1.55 -1.47 ± 1.55
Lower intertidal  

(-1.61) - (-1.14)
-0.08 ± 0.23 -1.47 ± 0.23 0.11 fall

-1.56 5078 ± 26 5892-5659

BMAK-1

0.39* Modern -0.08 ± 1.55 0.47 ± 1.55
Higher intertidal 

0.57-1.51
-0.08 ± 0.47 0.47 ± 0.47 1.19 fall

-0.54 3111 ± 24 3362-3167

-0.55* 2072 ± 35 2107-1880 -0.08 ± 1.55 -0.47 ± 1.55
Middle intertidal 

(-1.14)-0.57
-0.08 ± 0.86 -0.47 ± 0.86 0.91 fall

-0.64 1543 + 25 1477-1305

BMAK-1 -1.16 1695 ± 50 1692-1408

-1.17* 3053 ± 37 3341-3043 -0.08 ± 1.55 -1.09 ± 1.55
Middle intertidal 

(-1.14)-0.57
-0.08 ± 0.86 -1.09 ± 0.86 0.73 rise

-1.53 309 ± 23 443-289

-1.54* 4024 ± 40 4566-4250 -0.08 ± 1.55 -1.46 ± 1.55
Middle intertidal 

(-1.14)-0.57
-0.08 ± 0.86 -1.46 ± 0.86 0.61 rise

-2.78 6878 ± 36 7735-7582

-2.79* 6847 ± 39 7694-7572 -0.08 ± 1.55 -2.7 ± 1.55
Low intertidal (-

1.61) - (-1.14)
-0.08 ± 0.23 -2.70 ± 0.23 0.24 rise

-3.52* 7092 ± 38 7960-7760 -0.08 ± 1.55 -3.46 ± 1.55
Middle intertidal 

(-1.14)-0.57
-0.08 ± 0.86 -3.46 ± 0.86 0.01 rise

-3.54 7202 ± 30 8025-7872

0.41 5200 ± 35 5991-5751

0.18 4239 ± 37 4841-4579

-0.24 3117 ± 35 3376-3162

A-UU-1 -0.84 169 ± 22 278-(-4) 0.92 ± 0.95 -1.76 ± 0.95
Lower intertidal  

0.01-0.21
0.92 ± 0.10 -1.76 ± 0.10 0.17 fall

B-UU-1

-1.24 1534 ± 23 1407-1310 0.92 ± 0.95 -2.16 ± 0.95
Higher intertidal 

0.21-1.91
0.92 ± 0.85 -2.16 ± 0.85 0.04 fall

C-UU-1

0.57 4211 ± 25 4828-4574 0.92 ± 0.95 -0.35 ± 0.95
Lower intertidal  

0.01-0.21
0.92 ± 0.10 -0.35 ± 0.10 0.09 rise

0.59 >1950 AD

0.39 560 ± 19 550-512 0.92 ± 0.95 -0.53 ± 0.95
Lower intertidal  

0.01-0.21
0.92 ± 0.10 -0.53 ± 0.10 0.47 fall

-1.29 5973 ± 36 6877-6652 0.92 ± 0.95 -2.21 ± 0.95
Higher intertidal 

0.21-1.91
0.92 ± 0.85 -2.21 ± 0.85 0.02 rise

Northern 

Rufiji Delta BNR 

CNR          

AMAK-1

CMAK-1

Unguja Ukuu

C-UU-4

Makoba Bay

384

385 Table 1. List of radiocarbon dates derived from bulk samples and organic 

386 concentrates (marked with asterisks) from three sites. The calibrated ages are 

387 shown using the Shcal04 curve (McCormac et al., 2004) within the software 
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388 OxCal v4.10 Bronk-Ramsey (2009). RSL dates are also depicted using the 

389 indicative range derived from the upper and lower limits of modern mangrove 

390 vegetation and altitudinal error derived from the full range of mangroves for the 

391 Rufiji Delta and from the pollen ratios for Makoba and Unguja Ukuu.

392

Site Plot Altitude of plot MTL (m) Altitudinal range of mangrove classes S/BC ratio Range of S/BC ratios S/R ratio Range of S/R ratios Mangrove classes

 AMAK-3 -1.61 22.8 2.29

AMAK-2 -1.14 5.4 0.37

BMAK-3 -0.55 1.3 0.07

BMAK-2 -0.05 0.2 0.04

BMAK-1 0.42 0.2 0.05

AMAK-1 0.57 0.2 0.09

CMAK-3 1.01 0 0

CMAK-1 1.48 0 0

CMAK-2 1.51 0 0

A-UU-3 0.01 2.23 0.59

A-UU-1 0.07 0.88 0.20

B-UU-1 0.14 0.72 0.25

A-UU-2 0.21 0.17 0.33

B-UU-2 0.86 0.04 0.16

B-UU-3 0.99 0.04 0.08

C-UU-1 1.35 0.02 0.05

C-UU-3 1.89 0 0

C-UU-2 1.91 0 0

Unguja Ukuu

0.01-0.21

0.21-1.91 Higher intertidal

Lower intertidal

0-0.17 0-0.20

0.17-2.23 0.20-0.59

5.4-22.8 0.37-2.29

0.2-5.4 0.04-2.29(-1.14) - 0.57

Lower intertidal

Middle intertidal

Makoba Bay

Higher intertidal0-0.04

(-1.61) - (-1.14)

0.57-1.51 0-0.2

393 Table 2. Vegetation plots of Makoba Bay and Unguja Ukuu showing 

394 Sonneratia/(Bruguiera/Ceriops) (S/BC) and Sonneratia/Rhizophora (S/R) ratios 

395 of surface samples developed from Punwong et al. (2013a; 2013b). The ranges of 

396 ratios show the modern altitudinal range and are applied to infer the mangrove 

397 position of sediment in core as modern analogue of lower intertidal, middle 

398 intertidal, higher intertidal mangrove classes of the area with respect to altitude. 

399

400 4.3. Chronology

401 Nine radiocarbon dates were obtained from the northern Rufiji Delta 

402 (Table 1). The radiocarbon dates indicate sedimentary hiatuses in the upper part of 

403 BNR between 46 cm (4821- 4453 cal yr BP) and 19 cm (modern deposition) and 

404 between 242 cm (799 - 680 cal yr BP) and 115 cm (modern deposition) in CNR. 

405 The dates from 19 cm (BNR) and 115 cm (CNR) are therefore rejected for RSL 

406 reconstruction. In ANR there is no pollen record between the depths of 115-150 
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407 cm. The date from 128 cm of ANR is therefore not applicable for RSL 

408 reconstruction.

409 Eleven radiocarbon dates on bulk sediment were obtained from Makoba 

410 Bay (Table 1). The radiocarbon dates from cores BMAK-1 (96 and 195 cm) and 

411 CMAK-1 (107 and 172 cm) demonstrate age reversals. Despite their potential, 

412 mangrove peats are notoriously difficult to date with age reversals common in 

413 radiocarbon dated sequences, and modern ages often being reported from samples 

414 collected several decimeters below the ground surface (e.g. Woodroffe and 

415 Horton, 2005).  The likely causes of these dating problems are reworking of 

416 mangrove sediments through root penetration introducing younger carbon lower 

417 down in the sediment profile and mixing of older sediments within the upper unit 

418 (Punwong et al., 2013b; Woodroffe et al., 2015a). The nine dates obtained from 

419 the organic concentrates reveal a coherent chronology and logical age-depth 

420 relationship suggesting reliable dates for AMAK-1 and BMAK-1 (Woodroffe et 

421 al., 2015a). It would therefore appear that the source of contamination, such as the 

422 penetration of mangrove roots into the sediment matrix and bioturbation at depth, 

423 taking younger carbon down the core (Punwong et al., 2013b; Woodroffe et al., 

424 2015a). We therefore reject the dates on bulk sediments from the cores AMAK-1, 

425 BMAK-1 and the two reversed dates (at 107 and 172 cm) of CMAK-1 and use the 

426 organic concentrate dates for RSL reconstruction. In CMAK-1, there is no pollen 

427 record between the depths of 105-174 cm. The date from 130 cm of CMAK-1 is 

428 therefore not used for RSL reconstruction.

429 Six radiocarbon dates were obtained from Unguja Ukuu (Table 1). The 

430 radiocarbon date from core C-UU-4 (42 cm) records modern age deposition, 
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431 probably due to contamination (as described above) and this date is therefore 

432 rejected for RSL reconstruction.

433

434 4.4. RSL and compaction

435 In order to reconstruct RSL changes using mangrove sediments, the upper 

436 and lower limits of mangrove vegetation with reference to the mean tide level 

437 (MTL) is used in order to establish an indicative range for mangroves following 

438 the approach of Woodroffe et al. (2015b) and Hijma et al. (2015). The indicative 

439 ranges for mangrove sediments are +2.57 m MTL ± 0.90 m in the northern Rufiji 

440 Delta, -0.08 m MTL ± 1.55 m in Makoba Bay and +0.92 m MTL ± 0.95 m in 

441 Unguja Ukuu (Table 1; Figure 2a). To reduce the vertical error, where detailed 

442 contemporary vegetation pollen studies were undertaken in Makoba Bay and 

443 Unguja Ukuu, we use the pollen ratios of S/BC and S/R to calculate the altitudinal 

444 ranges of RSL (as described in 4.2 Pollen analysis and vegetation survey). For 

445 example, the radiocarbon date of 1807-1548 cal yr BP occurs at the depth of 0.94 

446 m in AMAK-1 from Makoba Bay; using the pollen ratios of S/BC and S/R 

447 derived from contemporary pollen studies, it is possible that the vegetation at the 

448 depth of 0.94 m represent a middle-intertidal mangrove association (Figure 2b). If 

449 this is related to MTL using the vegetation plot data, the vertical error of the date 

450 becomes ± 0.86 m derived from the vertical range of the middle-intertidal 

451 mangrove that is -1.14 m MTL and +0.57 m MTL (Table 1 and 2). The indicative 

452 range derived from the upper and lower limit of mangrove vegetation in Makoba 

453 Bay is -0.08 m MTL and therefore the indicative range of RSL from the date is -

454 0.08 m MTL ± 0.86 m (Table 1). 
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455 Sediments are susceptible to post-depositional compaction (Bird et al., 

456 2004; Horton and Shennan, 2009). A compaction factor for the mangrove 

457 sediment was estimated by comparing the dry bulk density of a compacted sample 

458 with the modern sediment sample and found to range from 17-31% (Bird et al., 

459 2004). As this geotechnical technique is beyond the scope of study, the worst-case 

460 compaction scenario of Bird et al. (2004) of 31% was adopted for the 

461 decompaction correction below the depth dated (Table 1). For example, at the 

462 depth 1.07 m of BNR that is 4.50 m in total length, the compaction of mangrove 

463 sediment below this depth would be 1.0633 m (31% of 4.50 – 1.07 m) and would 

464 be applied to the vertical error in an upward direction. This approach has also 

465 been used in mangrove sea-level reconstructions from mangrove deposits in the 

466 Seychelles (Woodroffe et al., 2015b). 

467 Vertical errors also include compaction caused by the coring equipment (± 

468 0.04 m) (Woodroffe, 2006), levelling errors (± 0.051 m), and the vertical range of 

469 the radiocarbon date (± 0.005 m). Sea-level tendency for each RSL reconstruction 

470 is determined (Table 1) by using a combination of stratigraphy and the trend of 

471 mangrove pollen-based interpretation from each coring site (Figure 2b). 

472

473 5. Interpretation and discussion

474 Age-depth plots of the cores indicated that the basal age for each core 

475 ranged from ~ 7900 cal yr BP (BMAK-1 of Makoba Bay) to ~100 cal yr BP (A-

476 UU-1 of Unguja Ukuu). A comparison of sedimentation rates showed great 

477 variation between the Rufiji Delta and Zanzibar sites (Figure 3). Although the 

478 chronology is problematic, it would appear that the sedimentation rate of between 

479 2.1-10.9 mm cal yr-1 for the Rufiji Delta was considerably higher than that for 
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480 Makoba Bay and Unguja Ukuu (0.3-6.6 mm cal yr-1).  This enhanced 

481 sedimentation rate is probably due to the nature of the deltaic mangrove setting 

482 with river discharge transporting sediment from the wider Rufiji catchment to be 

483 deposited into the Rufiji Delta (Semesi, 1992; Fisher et al., 1994). The variation in 

484 sedimentation rates results in different altitudinal ranges of the mangrove areas at 

485 the three locations with freshwater input, sediment supply and progradation 

486 having significantly more effect in the Rufiji Delta than at the Zanzibar sites. 

487 However, given site-specific responses of mangroves relative to sea level, when 

488 sites are combined, they provide regional RSL reconstruction.

489
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490

491 Figure 3. Comparative age-depth plots including rejected dates (in red edge) for 

492 the cores analysed in this study. Comparative age-depth (altitude) models for the 

493 cores analysed in this study. The top value against the zero origin (cal yr BP) on 

494 all such graphs except BMAK-1 does not necessarily represent present day 

495 deposition because of potential surface erosion.

496

497 5.1. Holocene mangrove dynamics 
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498 Combined palaeoecological records from the three locations provide a new 

499 palaeoenvironmental sea-level synthesis from Tanzania where relatively little is 

500 known about the Holocene mangrove dynamics. The records reveal that mangrove 

501 ecosystems have not remained stable as they responded to wide scale 

502 environmental changes and there are some site-specific responses to 

503 environmental shifts. The results further our understanding of how mangrove 

504 ecosystems reflect environmental variables, and shifts in these, that could help 

505 assess resilience of coastal ecosystems under future climatic scenarios, 

506 particularly sea-level rise (Ellison, 2015).

507 Early to mid Holocene

508 The pollen record of BMAK-1 indicates that mangroves have been present 

509 at Makoba Bay at -3.6 m below MTL since at least ~7900 cal yr BP (Figure 2b). 

510 The ratios of S/BC and S/R suggest that the central core (BMAK-1) location was 

511 colonised by higher intertidal mangroves (Figures 1f, 2b; Table 2) suggesting an 

512 early Holocene RSL rise. A higher RSL rise was then recorded after this period 

513 for a relatively short duration until ~7600 cal yr BP, as mangroves migrated 

514 landward and this area supported middle intertidal mangrove taxa. RSL continued 

515 to rise, as indicated by the ratios of mangrove pollen and the deposition of oyster 

516 shells in BMAK-1b and AMAK-1. This marine transgression caused the 

517 mangrove taxa at these two coring locations to migrate further landwards and 

518 allowed mangroves to establish on the headland of Unguja Ukuu at -1.3 m MTL 

519 as recorded ~6800 cal yr BP in C-UU-4. After this time, higher intertidal 

520 mangroves recorded in C-UU-4 were replaced by lower intertidal mangrove taxa; 

521 thus contributing to a body of evidence indicating that RSL continued to rise 

522 during the mid Holocene (Camoin et al., 1997; 2004; Zinke et al., 2003; Norström 
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523 et al., 2012). It should be noted that the pollen records from both sites in Zanzibar 

524 reveals a similar age determination of 5600 cal yr BP and a similar pollen record, 

525 lending support to the chronological and sea-level interpretation from BNR in the 

526 northern Rufiji Delta (Punwong et al., 2012). The predominance of R. mucronata 

527 pollen suggests that BNR was located in a low intertidal environment, a further 

528 indication of a higher sea level relative to the present day. A mid Holocene RSL 

529 rise possibly attained a higher altitude after 4700 cal yr BP resulting in higher 

530 intertidal mangroves establishment at 0.5 m above MTL in CMAK-1 and higher 

531 intertidal mangrove establishment at 0.6 m MTL in C-UU-1. This mid Holocene 

532 RSL rise occurred until prior to ~4400 cal yr BP, when RSL started to fall as 

533 indicated by the transition from lower intertidal to middle intertidal mangroves in 

534 BMAK-1.

535

536 Mid Holocene to the present day

537 After ~4400 cal yr BP mangrove ecosystem character varied between the 

538 sites reflecting different RSL changes.  A lower RSL is recorded in Makoba Bay 

539 from ~4400 cal yr BP, as indicated by the change in mangrove composition from 

540 lower to middle intertidal mangroves in BMAK-1 until ~3200 cal yr BP. This 

541 period coincides with a regionally arid phase recorded across East Africa 

542 commencing around 4500–4100 cal yr BP (Hassan, 1997; Bonnefille and Chalie, 

543 2000; Thompson et al., 2002; Marchant and Hooghiemstra, 2004; Kiage and Liu, 

544 2006; Rijsdijk et al., 2011; de Boer et al., 2015). After 3200 cal yr BP, and prior 

545 to 2900 cal yr BP, a RSL rise occurred indicative of a change from middle to 

546 lower intertidal mangroves. Mangrove composition subsequently changed to 

547 middle intertidal mangroves in AMAK-1 and BMAK-1 (Figure 2b) suggesting a 
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548 lower RSL as mangroves retreated seaward until the late Holocene ~2000-1700 

549 cal yr BP. However, a sea-level rise is recorded at Unguja Ukuu as lower 

550 intertidal mangroves occupied C-UU-1 and C-UU-4 after the mid Holocene until 

551 ~500 cal yr BP. The apparent discrepancy in RSL between these two sites at 

552 Unguja after 4400 to 1700 cal yr BP is probably due to local processes including 

553 mangrove composition response to sediment input and/or erosion at the sites, 

554 resulting in localised RSL changes. 

555 The late Holocene RSL fall is recorded at all three sites. In Makoba Bay, 

556 RSL fell until the present day, as suggested by the change of middle intertidal 

557 mangroves to higher intertidal mangroves in AMAK-1 and BMAK-1. At Unguja 

558 Ukuu, lower intertidal mangroves changed to higher intertidal mangroves after 

559 1400 cal yr BP in B-UU-1. RSL probably continued falling in Unguja Ukuu, as 

560 represented by the change from lower intertidal mangroves to higher intertidal 

561 mangroves after ~500 cal yr BP in C-UU-4, and the presence of more intertidal 

562 mangroves after ~100 cal yr BP in A-UU-1. In the Rufiji Delta, a reduction in 

563 mangrove pollen and increase in back-mangrove and terrestrial grasses in the 

564 landward site (CNR) after 1200 cal yr BP resulted in a shift of mangroves 

565 seaward. RSL then fluctuated, as suggested by changes in the proportions of 

566 mangroves, back-mangrove and terrestrial grasses until prior to 700 cal yr BP. 

567 After 700 cal yr BP, RSL started to fall, as recorded by a gradual change from 

568 mangroves characterised by R. mucronata to terrestrial vegetation, and a 

569 replacement of mangroves by recent herbaceous taxa. However, changes from 

570 higher intertidal mangroves to lower intertidal mangroves in A-UU-1, B-UU-1 

571 and C-UU4 at Unguja Ukuu, corresponding to an increase in A. marina at the top 
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572 of ANR, are likely to represent a signal of sea-level rise during the last few 

573 hundred years. 

574

575 5.2. Sea-level reconstruction 

576 The pollen evidence from the Rufiji Delta, Makoba Bay and Unguja Ukuu 

577 can be used to reconstruct the Holocene RSL from Tanzania using the upper and 

578 lower limits of mangrove vegetation and shift in recognisable salinity tolerance 

579 zones of the mangrove ecosystem.  The RSL derived from the pollen ratios within 

580 the vegetation plots can refine vertical errors (Figure 4). Regardless of site-

581 specific characteristics, it should be noted that all three sites provide evidence for 

582 a phase of early-mid Holocene RSL rise and late Holocene RSL fluctuation. The 

583 composite RSL curve shows that RSL rise occurred from around 7900 cal yr BP. 

584 It is possible that RSL rose and was potentially higher than present at ~4700-4600 

585 cal yr BP. However, when the sites are compared (Figure 4), variations in the rate 

586 of sea level rise are noted. In the northern Rufiji Delta, the higher sedimentation 

587 rates are probably due to the large freshwater and terrestrial inputs to the system. 

588  The general trend of the early to mid Holocene RSL rise (Figure 4) 

589 appears to be in agreement with RSL trends from other locations such as the 

590 mainland coast and offshore islands in the Southwest Indian Ocean (Colonna et 

591 al., 1996; Camoin et al., 1997; 2004; Zinke et al., 2000; Compton, 2001; Ramsay 

592 and Cooper, 2002; Zinke et al., 2003). 

593 The proposed higher than present sea level at around 4700-4600 cal yr BP 

594 recorded in Tanzania indicates a similar trend to that recorded from South Africa 

595 (Compton, 2001; Ramsay and Cooper, 2002) (Figure 4). The mid Holocene RSL 

596 rise in Tanzania is also comparable to a marine transgression phase in 
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597 Mozambique (Norström et al., 2012) where a highstand is recorded ~6600-6300 

598 cal yr BP. The mid Holocene transgression is well represented from the Southern 

599 Hemisphere in far-field locations (Isla, 1989) relating to three possible causes 

600 including meltwater from late glacial ice sheets (Lambeck and Nakada, 1990; 

601 Fleming et al., 1998) and/or the Holocene melting of ice sheets from Antarctica, 

602 Greenland and mountain glaciers during the early Holocene until 5000 cal yr BP 

603 (Milne et al., 2005). 

604 Evidence from Mauritius, Mayotte and Réunion Island (Camoin et al., 

605 1997; 2004; Zinke et al., 2003) suggest no mid Holocene highstand occurred at 

606 these locations. The differences between the records from the islands and 

607 Tanzania may result from hydro-isostatic influences relating to the differences in 

608 the geographical locations of the Tanzanian coast and the islands (Clark et al., 

609 1978). The Holocene highstand at small offshore islands is likely to be less 

610 marked than at the continental margins due to the effects of continental levering 

611 (Lambeck and Nakada, 1990; Mitrovica and Milne, 2002; Milne and Mitrovica, 

612 2008). However, the highstand recorded from South Africa is likely to be higher 

613 than the potential maximum transgression at ~4700 cal yr BP and 4600 cal yr BP 

614 in Tanzania (Compton, 2001; Ramsay and Cooper, 2002). In addition to eustatic 

615 changes, a combination of various factors such as hydro-isostasy, thermal 

616 expansion of sea water caused by warmer ocean temperatures in subtropical 

617 latitudes (Ramsay, 1995, Woodroffe and Horton, 2005), and the steric expansion 

618 of sea water (Ramsay, 1995; Compton, 2001) may also be considered as factors 

619 enhancing the highstand altitude in South Africa. 

620 RSL fell from 4600 cal yr BP to 4400 cal yr BP. After 4400 cal yr BP, 

621 RSL slightly rose until ~2000 cal yr BP.  The RSL record at this time from 
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622 Tanzania correlates well with records from South Africa (Ramsay and Cooper, 

623 2002) and also corresponds with a possible marine transgression with a highstand 

624 from Macassa Bay (Mozambique) between 4000 - 1100 cal yr BP (Norström et 

625 al., 2012).  The pollen records from Makoba Bay and C-UU-1 and C-UU-4 of 

626 Unguja Ukuu indicate that mangrove development continued after the mid 

627 Holocene RSL rise indicating a sustained higher level that did not fall until the 

628 late Holocene ~2000 cal yr BP. This may have allowed suitable conditions for 

629 mangroves to establish at A-UU-1 and B-UU-1 and may correspond to the 

630 progradation of beach plains that is recorded in Zanzibar (Arthurton, 2003).

631 The late Holocene RSL record after 2000 cal yr BP until 100 cal yr BP 

632 correlates well with the RSL records from South Africa (Compton, 2001; Ramsay 

633 and Cooper, 2002) and Mozambique (Norström et al., 2012) (Figure 4). A lower 

634 sea level occurred in Tanzania until 1400 - 1200 cal yr BP; this RSL fall is also 

635 recorded in northeastern South Africa ~1400 cal yr BP to the present (Ramsay and 

636 Cooper, 2002). We acknowledged that potential sea-level fall would correspond to 

637 climatically cold phases and sea-level rise to warm phases, as a result of the 

638 glacial eustasy (Oerlemans, 2001). Changes in rainfall can also cause local 

639 eustatic sea-level changes (Mörner, 1996). However, easternmost East Africa 

640 experienced drought during the Medieval Warm Period (MWP) (900 - 700 cal yr 

641 BP) and wet conditions during the Little Ice Age (LIA) (700 - 100 cal yr BP) 

642 (Verchuren et al., 2000). These phases are contrast with our records of sea-level 

643 transgression after 1200 - 500 cal yr BP and sea-level regression from 500 - 100 

644 cal yr BP. Archaeological sites in Unguja Ukuu indicate that RSL was 

645 approximately -0.5 m below the present level between ~1300 - 1000 cal yr BP 

646 (Mörner, 1992). This is in good agreement with the reconstruction from the three 
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647 sites studied suggesting RSL did not attain present sea level between 1400-1200 

648 cal yr BP (Figure 4). 

649 A further RSL rise occurred after 1200 to ~700 - 500 cal yr BP and it is 

650 likely that RSL was below the present sea level. This concurs with records from 

651 ruins in southeastern Tanzania (Kilwa) suggesting RSL was about -1 m below the 

652 present level between 800-  600 cal yr BP (Mörner, 1992). After this period, RSL 

653 fell until ~100 cal yr BP when sea level was lower than the present day. This is in 

654 good agreement with a study of raised terraces along the Kenyan coast indicating 

655 that RSL started to fall 500 years ago (Åse, 1978; 1981). In contrast, data from 

656 Mozambique (Norström et al., 2012) and southern Langebaan Lagoon in South 

657 Africa (Compton, 2001) show somewhat conflicting results from the Tanzanian 

658 data indicating RSL fell after 1200 cal yr BP. After 100 cal yr BP, RSL rose until 

659 the present day corresponding to the onset of recent sea-level rise from the 19th 

660 century (Stocker et al., 2013) as recorded in Kenya between 1986-2002 (Kibue, 

661 2006). However, a recent sea-level fall was observed in Zanzibar between 1985-

662 2001 (Permanent Service for Mean Sea Level) before rising trend was observed to 

663 the present day. In addition, it should be noted that Makoba and Unguja Ukuu 

664 which all are on the west cost of Unguja Island and separated by 40 km shows 

665 different RSL especially during the last 2000 years probably due to local 

666 processes, such as changes in sediment input and/or erosion at the sites.

667 Difficulties encountered in dating suggest additional records and 

668 chronological control using dating of pollen concentrates is required to determine 

669 a high-resolution record of mid Holocene sea level and environmental changes. 

670 Although the evidence from Tanzania demonstrates the site-specific nature of 

671 responses of mangroves to RSL changes, it does provide a valuable contribution 
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672 to patterns of Holocene RSL from “far-field” locations. There is great potential to 

673 scale up the type of investigation presented here to other coastal mangrove sites 

674 across East Africa, as well as offshore islands. Such an extension to this study 

675 would provide an unprecedented regional record of environmental and sea-level 

676 changes from a far-field region and allow us to distinguish large and meso-scale 

677 regional signals against site-specific responses across East Africa.

678

679 Figure 4. RSL reconstructions from this study along the Tanzanian coast plotted 

680 alongside RSL curves from the southwest Indian Ocean region 

681

682 6. Conclusions
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683 A reconstruction of Holocene RSL has been derived for coastal Tanzania 

684 from mangrove ecosystem changes from three sites. The ratios of 

685 Sonneratia:(Bruguiera/Ceriops) and Sonneratia:Rhizophora derived from the 

686 pollen-vegetation-altitude realtionships  can be used to interpret mangrove 

687 dynamics and refine the vertical errors of RSL changes derived from mangrove 

688 sediments. Although the results in part demonstrate the site-specific shifts in the 

689 upper and lower limits of mangroves relative to sea level, due to responses of 

690 sediment input and/or erosion at the three sites, they do provide evidence for 

691 Holocene RSL fluctuations coherent across coastal Tanzania. An early-mid to mid 

692 Holocene RSL rise occurred from ~ 7900 cal yr BP prior to ~4700-4600 cal yr BP 

693 when RSL was potentially higher than the present.  This period is followed by a 

694 lower RSL until 4400 cal yr BP when RSL rose until ~2000 cal yr BP. 

695 Subsequently, late Holocene RSL fluctuations were characterised by RSL rise 

696 recorded at ~700 - 500 cal yr BP before falling below the present level at ~100 cal 

697 yr BP. There is evidence of a more recent RSL rise during the last centuries. The 

698 Tanzanian RSL curve indicates a similar trend to the mid Holocene RSL record 

699 from South Africa, probably related to similar hydro-isostatic conditions 

700 representing the apparent Holocene highstand at continental margins due to the 

701 effects of continental levering. The RSL fall recorded during the last 500 years is 

702 in good agreement with the records from the Kenyan coast, although data from 

703 Mozambique and the Langebaan Lagoon in South Africa indicate RSL fell after 

704 1200 cal yr BP. The difficulties of developing a reliable chronology from 

705 mangrove environments have previously precluded extensive use of these 

706 sediment archives for reconstructing RSL changes. Organic concentrate dating 

707 applied on some of the samples presented here can provide a reliable chronology 
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708 allowing these far-field locations to be fully investigated and used as a proxy for 

709 reconstructing eustatic sea-level changes. Site-specific signals of RSL change, 

710 mangrove response to this and the need to further constrain the pollen-vegetation-

711 environmental relationships all emphasise the need for further research along the 

712 East African coast, as well as other “far-field” locations, so that the full potential 

713 of the mangrove sedimentary sea-level archive can be fully realised.

714
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