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Abstract—Traffic prediction approaches face challenges when
presented with sparse or missing data. This can be caused by
numerous factors such as: i) sensors not being operational; ii)
communication issues; iii) cost prohibiting full monitoring of
a road network. This present work adds to existing body of
knowledge by proposing a particle based framework for dealing
with these challenges. An expression of the likelihood function is
derived for the case when the missing value is calculated based on
Kriging interpolation. With the Kriging interpolation, the missing
values of the measurements are predicted, which are subsequently
used in the computation of likelihood terms in the particle filter
algorithm. The results show 23% to 36.34% improvement in
RMSE values for the synthetic data used.

I. INTRODUCTION

Traffic state estimation and forecasting is an essential part

of Intelligent Transportation System (ITS) for effective traffic

monitoring and control. Most traffic estimation approaches are

model based [1], while the new trend is to develop data driven

approaches [2], [3]. Traffic modelling methods are used to

understand the evolution of traffic and estimate the traffic state

[4]–[7].

An overview of different models is given in [7]–[9]. These

include microscopic, macroscopic and mesoscopic models.

Microscopic traffic models [7], [9]–[11], describe the mo-

tion of each individual vehicle with a high level of de-

tail. Macroscopic models [12], [13] represent the aggregated

behaviour of the traffic, usually in terms of the average

speed and the average density. Mesoscopic models [14] uses

varying levels/degrees of detail to model traffic behaviour.

Some areas are modelled with aggregated measurements as

in macroscopic models and other areas the detail goes down

to individual vehicles as in microscopic models. Due to its

computational efficiency for most practical purposes such as

traffic management, road pricing and changes in infrastructure,

the macroscopic model is sufficient to produce acceptable

estimation.

The cell transmission model (CTM) [13] models traffic

flow using macroscopic details by dividing the road into

contiguous segments called cells. An extension of CTM, the

stochastic compositional model (SCM) for traffic flow [5]

uses probability distributions known as sending and receiving

functions, which control the number of vehicles that could

leave from one cell to the next, to model the stochastic nature

of traffic state evolution.

The SCM was employed with the particle filter (PF) for

estimating traffic state in motorways in [15]. Measurements at

the boundaries were used to estimate the traffic state within the

segments. It was reported that estimation accuracy is affected

at boundaries without measurements.

A major challenge in traffic prediction is the problem of

missing or sparse data. Communication infrastructure upon

which traffic measurements are transmitted for processing and

utilization often experience failure leading to missing data,

which could be more than 40% in some cases [16]. The

cost of installing and managing traffic sensing devices is high

making it impractical to cover all locations needed for effec-

tive observation of the full road network resulting in sparse

data. Various methods and approaches have been applied by

researchers to address these problems such as missing data

imputation [17], compressive sensing and historical averages

[18], Kriging interpolation [19].

In [20], a review of three different missing data imputation

methods, interpolation, prediction and statistical learning is

presented. The interpolation method uses the historical average

of measurements from a given sensor at similar times of

day (e.g. all weekdays at 9am) to help cope with missing

data. Prediction methods use a deterministic mathematical

description to model the relationship between historical and

future data. The statistical methods differ from the other two

by modelling the stochastic nature of the traffic pattern into

the imputation algorithm.

This work adds to the existing body of knowledge by

proposing the use of Kriging and particle filtering to ad-

dress the challenge of sparse traffic data. It uses Kriging

to compute missing values at unobserved locations, which

are subsequently used in the computation of likelihood terms

in the particle filter algorithm. This approach combines the

benefits of Kriging, which is a powerful geospatial method and

a particle filter, which can capture the scholastic variations in

traffic flow.

The rest of the paper is organised as follows. Section II

discusses the traffic flow and measurement model used in this

work. Traffic state interpolation and prediction using Kriging



and particle filters (PF) are presented in sections III and IV,

respectively. Results and discussion are presented in Section

V with conclusions being drawn in Section VI

II. TRAFFIC EVOLUTION AND MEASUREMENT MODEL

A. Traffic Flow Model

Consider a system with the following state equation

xk = f(xk−1) + ωk (1)

and observation equation

zk = g(xk) + ξk. (2)

Here f(.) and g(.) are the state and observation model

functions, xk is state vector, zk is the measurement vector,

ωk and ξk are the state and observation errors, respectively

and k is discrete time index.

The stochastic compositional model (SCM) for traffic flow

[5], which is an adaptation of the cell-transmission model [13],

uses sending and receiving functions to model the stochastic

nature of traffic state evolution. The sending functions repre-

sent the vehicles that are able to leave a cell while the receiving

functions determine the vehicles that are allowed to enter a

cell. Figure 1 sows how the road is divided into n segments,

also called cells, with length Li and li lanes. The number of

vehicles crossing the boundary between segments i and i+ 1
at time k is represented by Qi,k. Ni,k represents the number

of vehicles in segment i with average speed given by vi,k.

Fig. 1. SCM road network showing segments and measurement points [5].

The overall state vector at time tk is given by xk =
[xT

1,k,x
T
2,k, ...,x

T
n,k]

T where xi,k = [Ni,k, vi,k]
T is the local

state vector at segment i.

The evolution of traffic state within the segments is mod-

elled with equations (3) to (5). The boundary conditions are

the number of vehicles entering the first segment (inflow) Qin
k ,

with average speed vink and the number of vehicles leaving

the last segment (outflow) Qout
k , with corresponding average

speed voutk within the time interval ∆tk = tk+1 − tk. These

are not estimated but supplied to the model by traffic sensors

as boundary conditions. The reader is referred to [5] for a

detailed algorithm.

x1,k+1 = f1(Q
in
k , vink ,x1,k,x2,k,η1,k). (3)

xi,k+1 = fi(xi−1,k,xi,k,xi+1,k,ηi,k). (4)

xn,k+1 = fn(xn−1,k,xn,k, Q
out
k , voutk ,ηn,k). (5)

B. Measurement Model

For a road segment with n boundaries, the traffic state at

a boundary j ∈ J = 1, 2, ..., n is sampled at discrete time

steps ts, s = 1, 2, ..., to give zj,s = (Qj,s, vj,s)
T . The matrix

of measurements taken at all of the n boundaries is given

by Zs = [zT1,s, z
T
2,s, ..., z

T
n,s]

T . The sampling interval ∆ts is

usually split into q state update time steps ∆tk. That is, ∆ts =
q∆tk.

With the assumption of Gaussian noise, the measurement

zj,s can be expressed as:

zj,s =





Qj,s

vj,s



+ ξs. (6)

Here, Qj,s is the number of vehicles crossing segment j within

time step s with average speed vj,s and ξs = [ξQj,s
, ξvj,s ]

T is

the error.

III. SPATIAL TRAFFIC DATA ESTIMATION USING KRIGING

The Kriging algorithm [21] is a point based estimation

method which relies on exploiting the spatial correlation, of

the data points. The Kriging algorithm attempts to interpolate

the values at an unobserved location using statistics of the

spatial variation between pairs of observed locations in a given

region.

A. Variogram

The measurement (speed and count) z(y) observed at two-

dimensional locations y, are modelled according to equation

(7) into two parts called the drift µ and the residuals (or error)

ǫ(y).

z(y) = µ+ ǫ(y) (7)

The drift is the average value of measurements and it is

assumed to be constant in a given region of interest. The

residual, ǫ(y) = z(y) − µ, is a zero-mean-valued random

quantity with covariance Cov(h) given by (9), which models

the correlation of measurements at different locations based

on their separation distance called lag h.

Given measurements z(yi) and z(yj) at locations yi and

yj , respectively, the lag is given by h = ||yi − yj ||2, where

||.||2 is the l2 norm. For a straight stretch of motorway this

is equivalent to the path length through the road network. For

convenience, z(yi) is denoted as zi and z(yj) as zi+h. The

following is then used to calculate the covariance:



Cov(h) = E[{z(yi)− µ}T {z(yj)− µ}]. (8)

which is equivalent to:

Cov(h) = E[ǫTi ǫi+h] (9)

The covariance is a function of the lag distance, h, between

pairs of locations and it is used to compute the empirical

semi-variogram of the random process. The empirical semi-

variogram, γ̂(h), can be computed using:

γ̂(h) =
1

2N(h)

N(h)
∑

i=1

[ǫi − ǫi+h]
T [ǫi − ǫi+h] (10)

where N(h) is the number of pairs of observations with lag, h.

B. Nugget, Sill and Range

If a graph of the lag and variogram of the measurements

are plotted, then Figure 2 is generated. Three points on the

graph are useful in the computation of the model variogram

for finding the Kriging weight. The variogram increases with

the lag between points up to a point where it flattens out and

remains constant. All pairs of location within the range are

correlated while locations father than the range are not. The

distance at which this flattening starts is called the range and

the value of the variogram at that point is called the sill. All

points at a location less than the range are correlated and all

points with separation more than the range are not correlated.

At lag distance of zero γ(0) is expected to be zero. This is

not so in practise but exhibits what is known as nugget effect.

This is attributed to either error in the measurements or when

the spatial variation is less than the sampling rate.

Fig. 2. Plot of empirical variogram γ and lag h

The computed empirical semi-variogram from the given

number of observed locations is used to determine the pa-

rameters (nugget, range and sill in the chosen variogram

model. To obtain values at unobserved locations, the values of

these parameters are then used to calculate the co-variogram

matrix between all the contributing observed locations and the

unobserved locations required to find the Kriging weights. The

variogram models to choose from include exponential, spher-

ical, Gaussian, linear or power model [22]. The exponential

model was used in this work because it gives the best fit for

the dataset. This is given by,

γ(h) = c0 + c{1− e−
h
a } (11)

where c0 is the nugget, and c = sill − c0 is the maximum of

the correlated variance and α is the range.

C. Ordinary Kriging

After computing the semi-variograms, the values at an

unobserved location, (yu) can be estimated as a weighted sum

of the measurements at the observed locations. This is given

by:

ẑu =
m∑

i=1

wizi = wTZ. (12)

where ẑu is the estimated value at unknown location yu and

w = [w1, w2, ..., wm]T are the Kriging weights at the m

observed locations. To ensure an optimal solution the unbiased

estimation constraint E[zu − ẑu] = 0 is applied. The Kriging

weights can be computed by minimizing the estimator error

variance V ar[.] with the constraint
∑

i wi = 1,

min
wi∈ℜ

V ar[zu − ẑu]. (13)

Let the variogram and co-variogram of all the m observed

locations to be used in the Kriging interpolation be expressed

in matrix form as:

A =






γ1,1 . . . γ1,m
... . . .

...

γm,1 . . . γm,m




 (14)

and the co-variogram of the point to be estimated and the m

contributory observed locations represented as:

b =






γu,1
...

γu,m




 (15)

With this notation, the mean squared error (MSE) can be

expressed as,

MSE = E[(zu − ẑu)
T (zu − ẑu)]

= V ar[zu − ẑu]
= V ar[zu] + V ar[ẑu]− 2Cov[zuẑu]
= γu +wTAw − 2wTb.

(16)

Equation (16) is minimized by introducing a Lagrange

multiplier, −2λ with the constraint wT1 = 1, where 1 is

a vector of ones.

MSE = γ(yu) +wTAw − 2wTb+ 2λ(wT1− 1). (17)

By partial differentiation wrt w we get:

∂MSE

∂w
= 2Aw − 2b+ 2λ1 = 0. (18)



This implies that:

Aw = b− λ1. (19)

The Lagrange multiplier, λ is computed by solving equation

(19) by direct substitution of values,

λ1 = b−Aw

λA−11 = A−1b−w

λ1TA−11 = 1TA−1b− 1Tw
︸︷︷︸

1

λ = 1
T
A

−1
b−1

1TA−11

(20)

and with that the weights can be computed using:

w = A−1(b− λ1). (21)

Algorithm 1 gives a summary of this Kriging interpolation

procedure.

After computing the weights, estimated values at unknown

location are given by (12) and their variance computed as:

σ2
eu

= V ar[zu − ẑu]
= γu +wTAw − 2wTb

= γu +wT (b− λ1)− 2wTb

= γu −wTb− λ.

(22)

Equation (22) provides useful information about how confi-

dent we are with the estimation accuracy. This information is

used to compute the weighting factor to improve computation

of particle predictor likelihood.

Algorithm 1 Kriging Algorithm for Spatial Interpolation [23]

1) Determine location of all sensors (measurement/input

points)

2) Compute the distance (lag, h) between all measurement

locations

For u = 1 to U , U number of unknown locations to be

computed

Do the following

a) Determine the measurement locations that will

contribute to the interpolation at each unknown

location yu.

b) Compute the distance between all measurement

locations in the above step.

c) Compute the empirical semivariogram of all the

contributory measurement location pairs above.

d) Fit the exponential semi-variogram model to obtain

the nugget, sill and range.

e) Compute the distances of point yu to all the

measurement locations identified in step (a).

f) Compute the semivariogram of the distances above.

g) Compute the vector w containing the weight fac-

tors of the point u using (21).

h) Compute the estimated value of this point u us-

ing (12).

IV. TRAFFIC ESTIMATION VIA BAYESIAN INFERENCE AND

PARTICLE FILTERING

A. Bayesian Estimation of Traffic State

In Bayesian estimation the posterior probability density

function (PDF) p(xk|Z
k) of the traffic state xk at time tk is

evaluated, given a set of measurements Zk = {z1:k}, collected

up to time tk using Bayes’ rule as:

p(xk|Z
k) =

p(zk|xk)p(xk|Z
k−1)

p(zk|Zk−1)
. (23)

The likelihood, p(zk|xk) is defined by the observation

model (2), and p(zk|Z
k−1) is a normalizing constant. The

prior or state prediction p(xk|Z
k−1) is updated recursively

using the Chapman-Kolmogorov equation given by [24]:

p(xk|Z
k−1) =

∫

Rnx

p(xk|xk−1)p(xk−1|Z
k−1)dxk−1. (24)

When the system model (1) is linear, equations (23) and (24)

are analytically tractable and the Kalman filter [25] is used to

obtain optimal solutions under certain constraints. When the

system is highly non-linear, the recursive solution becomes

expensive to compute and numerical approximations methods

such as the extended Kalman filter [26], [27] and particle

filter [15], [24], [28] are often employed to obtain acceptable

solutions.

B. Particle Filtering for Traffic State Estimation

The particle filter estimates the traffic state by taking a

sufficient number of random samples from the PDF with as-

signed weights. When a new measurement becomes available,

it is used to compute what is known as the likelihood and

a normalized form of the weights computed. The new state

of the system is then updated with the computed weights.

Degeneracy can be avoided by re-sampling, i.e removing

particles with low weights and replicating those with high

weights [24].

1) Improved Likelihood Computation: The likelihood func-

tion term p(zk|xk), is computed when a new measurement

arrives. For the multivariate Gaussian distribution, the PDF is

given by:

p(zk|xk) =
1

√

2π|R|
e−0.5νR−1

ν
T

, (25)

where R is the covariance matrix of the measurement data,

|R| ≡ det(R) is the determinant of R and ν is the difference

between the PF predicted value (z̄s) and measurement (zs),

given by:

ν = zs − z̄s. (26)

The measurement matrix zs can be expressed as,

zs =







zmeas
s measurement from sensor;

ẑkrigs ◦ βs estimated by Kriging.

(27)



where ẑkrigs represents the value estimated by Kriging (when

measurement is not available), ◦ is the Hadamard product,

βs = [βs,1, βs,2, ..., βs,n]
T is a weighting factor introduced to

vary the level of confidence placed on the Kriged values. The

value of β is 1 if we fully trust the Kriging result and less

than 1 otherwise.

The modified particle filter procedure is shown in Algo-

rithm 2.

Algorithm 2 PF Algorithm for Prediction with Improved

Likelihood [15]

1) Initialization

At k = 0; define all boundary conditions: number of

samples, weight of samples as below,

For i = 1, ...Npf , Npf number of particles;

• generate Npf samples {x
(i)
0 } from the initial distri-

bution p(x0)

• initialize the particle weights w
(i)
0 = 1

Npf
.

End for

2) Start the iteration for k = 1, 2, ...

a) Prediction stage

For i = 1, ..., Npf ,

sample x
(i)
k ∼ p(xk|x

(i)
k−1) according to SCM

model equations

End for

b) Use measurements to compute likelihoods and

update the weights

This step is performed when the sampling time ts
equals the iteration count tk
i. Estimate missing measurements with Kriging

using Algorithm 1

ii. Compute the likelihoods

Use model (6) to compute the likelihood,

p(zs|x
(i)
s ) of the particles

iii. Update the weights of the particles using the

likelihood p(zs|x
(i)
s ) calculated from model (6)

For i = 1, ..., Npf

ω
(i)
s = ω

(i)
s−1p(zs|x

(i)
s )

End For

iv. Normalize the weights: ω̂
(i)
s =

ω(i)
s

∑Npf
i=1 ω

(i)
s

.

c) Update the predicted states (Output): x̂s =
∑N

i=1 ω̂
(i)
s x

(i)
s

d) Re-sample the weights (Selection) only when tk =

ts

V. PERFORMANCE EVALUATION

A. Investigation with Synthetic Data

Here, the performance of the particle filter with Kriging for

traffic state estimation is evaluated using synthetic data from

a 4km stretch of motorway over a period of three hours. This

is split into eight segments, each with a length of 0.5km and

three lanes. For more details on the process for obtaining the

synthesized data see [15].

The modelling consists of periods of normal flow and

congestion which was modelled by random changes (increase

and decrease) in the inflow between time interval of (1.12 ≤
t<1.17)hours and (1.70 ≤ t<1.82)h and outflow speed

(decrease) between (2.40 ≤ t ≤ 2.65)hours.

To test the effect of assigning different values between 0

and 1 to βs, the simulation was repeated three times each

with 200 independent Monte Carlo runs. First, by using all the

measurements available at the segment boundaries. Second,

removing measurements at two locations (boundary segments)

and interpolating them using Kriging with equal weights

assigned to the interpolated measurement and actual measure-

ment in the likelihood computation. Lastly, by assigning a

weight of 0.2 to the Kriging interpolated values.

In order to test the prediction accuracy for different levels

of sparsity, three statistical measures namely the root mean

squared error (RMSE), the absolute percentage error (APE)

and the mean absolute error (MAE) were computed. Note, zi
is the ground truth or actual measurement, ẑi is the estimated

value and mr is number of independent Monte Carlo runs.

RMSE =

√
√
√
√

1

mr

mr∑

i=1

[zi − ẑi]2. (28)

APE =

mr∑

i=1

|[zi − ẑi]|

zi
∗ 100. (29)

MAE =
1

mr

mr∑

i=1

|[zi − ẑi]|. (30)

The RMSE and APE for 200 independent Monte Carlo runs

were plotted in Figures 3 and 4, respectively. The results show

that there is an improvement in the estimation accuracy when

the Kriging interpolated values were assigned weights. The

results for the two Kriged examples reach the same accuracy

for location 4. When the middle sensor is removed there is still

information up and down flow from the missing sensor. As

a result more information can be applied to the interpolation

process allowing a more accurate estimate. Instead when there

are no sensor down flow for example there is less information

therefore the interpolation is less accurate.

The results in Figures 5 and 6 show that estimation accuracy

is better when all the measurements are used in computing the

likelihood, followed by that computed with kriging interpo-

lated measurements. The accuracy of the estimation performed

without using any measurement is the least as can be seen in

the figures. The results show improvement of 23% to 36.34%

at different segments in RMSE values for the synthetic data

used.

Figures 7 and 8 shows the plot of velocity and flow at seg-

ments boundaries 2 to 6. Segments 1 and 8 were not included

as they were the inflow and outflow segments. It is evident

that the estimation when all measurements (second plot from

bottom) are used provides the best accuracy, followed by that

where Kriging was used to estimate the missing measurements



Fig. 3. The root mean squared error (RMSE) of speed over locations

Fig. 4. The absolute percentage error (APE) of speed over locations

(third plot from bottom). The least accurate result was obtained

when the missing values were not included in the likelihood

computation (first plot from the top). This is apparent during

congestion between time interval (2.40 ≤ t ≤ 2.65) hours.

Another observation from the figures is that the estimation

accuracy is consistent under free flow conditions and begins to

get worse as congestion sets in. During the period when the

network is congested from time interval (2.40 ≤ t ≤ 2.65)
hours the estimate without the full measurements used in

the likelihood computation could not capture the decrease in

speed. Incorporating the Kriged values improves the accuracy

a little while the estimate with full measurements is closest to

the true value.

Fig. 5. The mean absolute error (MAE) of flow for locations

Fig. 6. The mean absolute error (MAE) of speed for locations

B. Investigation with Real Data

The modified algorithm was further tested with real data

from the E-17 motorway in Belgium [15], which is usu-

ally congested. The test data consist of a day measurement

recorded by sensors installed at locations CLOF to CLO9

as shown in Figure 9. Measurements at location CLOE to

CLOB were removed and then interpolated using Kriging with

the following parameters, free flow speed vfree = 120 km/h,

minimum speed vmin = 7.4 km/h, critical density ρcrit = 20.89

veh/km/lane, jam density ρjam = 180 veh/km and a β = 0.5.

Figures 10 show the plot of the estimated values and the

ground truth. The estimates follow the pattern of measured

states at most of the points as seen from the plot. The speed

flow and flow-density diagrams are plotted in Figures 11 and

12. The shape of the figures resemble the fundamental diagram

of traffic flow confirming the validity of the approach.



Fig. 7. The flow surf of segments 2 to 6

Fig. 8. Velocity surf of segments 2 to 6

VI. CONCLUSION

This paper presented a novel approach to tackle the problem

of missing and sparse data in traffic estimation. This approach

entails interpolating the missing values using Kriging with a

level of confidence assigned to the kriged values by computing

their interpolation error variance. This level of confidence

is then used to compute the weight to be assigned during

Fig. 9. Schematic diagram of the E17 freeway between Ghent and Antwerp
Kruibeke, Belgium [15]

Fig. 10. Predicted states (solid line) and actual measured states (*) at CLOC

computation of innovation terms used in PF. This was tested

using simulated and real data by assigning fixed test-values

to the weighting factor. From the results presented benefit of

lowering the weighting of interpolated values as compared to

actual measurements has offered an improvement.

In a future work, the algorithm will be validated further by

empirically computing the weighting factor β of the kriging

estimate of the missing measurements with real data from a

larger road network. In addition, the use of different methods

in calculating the kriging variance would be investigated.

ACKNOWLEDGEMENT

We appreciate the support of SETA project funded from the

European Unions Horizon 2020 research and innovation pro-

gramme under grant agreement No. 688082 and the Tertiary

Education Trust Fund (TETFund, Nigeria). We also thank the

Vlaams Verkeerscentrum Antwerpen, Antwerp, Belgium, for

providing the real data used in this study.



Fig. 11. Speed-low diagram for the PF with Kriging estimated measurements
at CLOE, CLOD, CLOC and CLOB

Fig. 12. Flow-density diagram for the PF with Kriging estimated measure-
ments at CLOE, CLOD, CLOC and CLOB
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