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Abstract—Gaussian processes are used in Bayesian machine
learning and signal processing for estimation of unknown func-
tions. However, they suffer from high computational complexity,
as in a basic form they scale cubically with the number of
observations. Several approaches based on inducing points were
proposed to handle this problem in a static context. However,
these methods lack performance for online data that is received
sequentially over time. In this paper, a novel online algorithm for
training sparse Gaussian process models is presented. It treats the
mean and hyperparameters of the Gaussian process as the state
and parameters of the ensemble Kalman filter, respectively. The
online evaluation of the parameters and the state is performed
on new upcoming samples of data. This procedure iteratively
improves the accuracy of parameter estimates. The ensemble
Kalman filter reduces the computational complexity required
to obtain predictions with Gaussian processes preserving the
accuracy level of these predictions. The performance of the
proposed method is demonstrated on synthetic dataset and real
large dataset of UK house prices.

I. INTRODUCTION

In Bayesian machine learning and signal processing, Gaus-

sian processes (GPs) are used to approximate unknown func-

tions ([1]) and provide posterior estimates for mean and

variance of the target functions in the selected points. The

function can be latent, and, in this case, GPs represent the idea

of proximity, or structure, when close values of inputs lead to

close values of outputs. Another popular application is black-

box optimisation with GPs, known as Bayesian optimisation.

GPs are widely applied for signal processing, examples include

audio ([2]), communications ([3]), fault detection ([4]).

GPs are characterised by covariance functions that usu-

ally have a set of hyperparameters. The popular examples

are squared-exponential, Matérn and exponential covariance

functions ([1]). They are stationary functions that depend

only on distance between points, they provide solutions with

different smoothness properties. The hyperparameters are hard

to estimate by experts and they are usually learnt within the GP

framework, for example by optimising the marginal likelihood,

which leads to local maxima.

GPs are usually represented in a grid of points and it is the

source of the main limitation. The required resources are huge:

computational time scales cubically with the number of grid

points, required memory scales quadratically. It is essential

to reduce these numbers in order to make GPs applicable for

larger datasets or online inference.

During the last decades multiple approaches have been pro-

posed to deal with this problem. The most popular approach is

introduction of inducing points [5] where the locations of grid

points are optimised, their amount is reduced with an attempt

to maintain good prediction power. In [6] inducing points are

treated as variational parameters and Bayesian inference is

performed. In [7] expectation propagation is proposed for the

Bayesian inference of the parameters.

Another approach is the distributed computations, where

local predictions are combined into unified mean and variance

predictions. The idea of partitioning dataset for the GP prob-

lem was considered in [8] with use of Kd-trees. The distributed

Bayesian version with sparse approximation is proposed in [9].

In [10] the online procedure for updating GP parameters is

proposed. The mean in the grid points is treated as a state

variable, GP hyperparameters and noise are treated as param-

eters and for the joint state-parameter vector the unscented

Kalman filter is used. The model has been recently used

for the received-signal-strength estimation ([11], [12]), flow

modelling and prediction in sports analytics ([13]). Sampling

approaches for the online updating of the GP hyperparameters

include slice sampler ([14]), sequential Monte Carlo ([4]),

Bayesian Monte Carlo ([15]).

In this paper the ensemble Kalman filter is proposed to deal

with online GP problem. It provides more stable parameter

estimates with better predictive performance.

The main contributions of this paper can be summarised as:



• For the first time the ensemble Kalman filter (EnKF)

for the problem of online GP regression and learning

is proposed. This allows to reduce the computational

complexity related to the prediction, as the size of the

invertible matrices is reduced according to the ensemble

sizes.

• The dual and joint versions of the ensemble Kalman filter

are presented in the paper.

• The performance of the algorithms is compared using

the synthetic dataset and real large dataset of the house

prices.

The paper is organised in the following way: first the

overview of the ensemble Kalman filter and the problem

of state and parameter estimation within this framework is

described in Section II. In Section III the joint and dual

EnKF frameworks for GPs are described. In Section IV the

experiments are conducted on synthetic data and UK house

price data and the conclusion is presented in Section V.

II. ENSEMBLE KALMAN FILTER OVERVIEW

Ensemble Kalman filter was originally discussed in [16],

and a recent overview with different improvement techniques

is given in [17]. EnKF uses the Monte Carlo method to

generate an ensemble of state sigma points and then this

state ensemble is passed through the measurement function to

obtain the observation ensemble, it is additionally perturbed

with the measurement noise. The mean and variance of the

resulting observational distribution together with actual obser-

vations are used to update the state. The main computational

difference in comparison to the classic Kalman filter is that

the covariance matrices are replaced with ensembles that can

be less in dimensionality.

The usual approach to parameters estimation is augmenting

the state vector with parameters vector thus creating the larger

augmented state-parameter vector. It can then be used to

perform the online estimation within the EnKF framework

[18], [19]. In [20] dual estimation of state and parameters

is proposed to replace joint estimation as in classic Kalman

filters: for every new observation, first the parameters are

updated and then using the updated parameters the state is

updated. Dual estimation of parameters and state for EnKF is

considered in [21].

Other approaches for parameters estimation in EnKF in-

clude the maximum likelihood method [22], [23] and the

Bayesian inference [24].

III. ENSEMBLE KALMAN FILTER FOR GAUSSIAN

PROCESSES

This paper proposes the algorithm for the problem of online

estimation of the constant unknown continuous function f(x)
of the D-dimensional input vector x ∈ R

D. The unknown

function is approximated with a GP: the mean g ∈ R
K of the

GP is approximated at the K grid points Xg ∈ R
K×D and Lθ

parameters of the covariance function θ ∈ R
Lθ are estimated.

With mean and parameters of the covariance function it is

possible to predict the mean and variance of f(x∗) at any

point x∗.

It is assumed that the observations of the function are

available sequentially, at every timestamp 1 ≤ t ≤ T , where

T is the last observation timestamp. At every iteration t of

the algorithm a total of S one-dimensional noisy function

observations yt ∈ R
S are obtained at random points xnew.

The variance of noise σ2
y assumed to be unknown and it is

estimated at every iteration of the algorithm. The full vector of

parameters is therefore η = [θ, σ2
y] ∈ R

L, where L = Lθ +1.

The dependency between covariance function parameters

and observations is non-linear, therefore a nonlinear version of

Kalman filter is required. The ensemble Kalman filter allows

to have constant complexity for updates, which is determined

by the number of ensemble points, N .

Two versions of ensemble Kalman filter for the online GP

learning are proposed, they differ in the way how hyperpa-

rameters of the GP are treated: Dual EnKF first updates the

hyperparameters of the GP and then based on their estimates

updates the state; Joint EnKF updates hyperparameters of the

GP and the state simultaneously with the augmented state–

hyperparameter vector.

A. Dual Ensemble Kalman Filter for Gaussian Processes

This algorithm is further denoted as Dual GP-EnKF. It uses

the ensembles of same size N , to approximate the distributions

of parameters and state. At every iteration the predicted

distributions of parameters and state are computed, and the ob-

servations are predicted. Then, based on the cross-covariance

of parameters and observations ensembles, Kalman gain is

computed and it is used to update parameters distribution.

After this step, new observations are predicted with updated

parameters and then cross-covariance of new observations and

state is used to update state. The details of the algorithm are

presented below.

1) Initialisation: Initially, ensembles for parameters H ∈
R

N×L = [η(i) ∈ R
1×L]1≤i≤N and mean G ∈ R

N×K =
[g(i) ∈ R

1×K ]1≤i≤N at the grid points of the GP are gener-

ated. The rows of matrices correspond to ensemble members.

For parameters that can only be positive, such as variance,

logarithms of their values are used in the ensemble. Initial

ensembles are generated from the Gaussian distribution: for

each ensemble index 1 ≤ i ≤ N

η
(i)
0|0 ∼ N (0,ΣH), (1a)

g
(i)
0|0 ∼ N (0,ΣG), (1b)

where ΣH , ΣG are the initial covariance matrices for the en-

sembles. In our experiments, they are assumed to be diagonal.

N (·) denotes the Gaussian distribution.

After the initialisation at every iteration of the algorithm

three steps follow: prediction, update for parameters, update

for state.

2) Prediction: For the whole running time of the algorithm

the estimated function remains constant, while unknown. This



can be simulated with the random walk motion model for the

parameters and state, each ensemble member is updated as

η
(i)
t+1|t = η

(i)
t|t + εη, (2a)

g
(i)
t+1|t = g

(i)
t|t + εg, (2b)

where εη ∼ N (0, σηI), εg ∼ N (0, σgI) are the noise

variables with corresponding variances. We also consider Liu-

West filter that has other approach to parameter prediction later

in this section.

Assume that S observations were obtained at locations

Xnew = [xs
new]

S
s=1. According to the definition of GPs the

joint distribution for any discrete set of samples is the mul-

tivariate Gaussian distribution. Therefore, for each parame-

ter ensemble i the distribution of predicted function values

ŷ(i) = [ŷ1,(i), . . . , ŷS,(i)] at locations xnew can be obtained as

ŷ(i) = K(Xnew,Xg|θ
(i)
t+1|t)

× [K(Xg,Xg|θ
(i)
t+1|t) + σ

2(i)
y t+1|tI]

−1g
(i)
t+1|t,

(3)

where K(X1,X2|θ) is the covariance matrix evaluated at

every pair of points from X1, X2 with parameters θ; θ
(i)
t+1|t

and σ
2(i)
y t+1|t are components of the joint parameter vector

η
(i)
t+1|t. The matrix for all predictions is denoted as Ŷ ∈

R
N×S = [ŷ(i)]Ni=1

In EnKF, observations are treated as random variables and

the observation ensemble is generated, which has a Gaussian

distribution around the actual observation with predefined

covariance σ2
obs

y(i) = y + εobs, (4)

where εobs ∼ N (0, σ2
obsI)

3) Update parameters: EnKF updates are similar to the

usual KF, with the means and covariances estimated from

the ensembles. First, cross covariances of parameter ensemble

and prediction ensemble are computed. Let Ei[·] denote the

expected value with respect to ensembles. Then

ηt+1|t =
1

N

N∑

i=1

η
(i)
t+1|t, (5a)

Σηy =Ei

[
(Ht+1|t − Ei[Ht+1|t])

⊤(Ŷ − Ei[Ŷ])
]

=
1

N − 1

N∑

i=1

(η
(i)
t+1|t − ηt+1|t)

⊤(ŷ(i) − y)
(5b)

After that, the forecast error covariance matrix of the

predictions is computed

Σyy =Ei

[
(Ŷ − Ei[Ŷ])⊤(Ŷ − Ei[Ŷ])

]

=
1

N − 1

N∑

i=1

(ŷ(i) − y)⊤(ŷ(i) − y)
(6)

Then the Kalman gain for correcting parameters can be

computed as

Kη = Σηy(Σyy + σ2
obsI)

−1 (7)

The parameters are updated as

η
(i)
t+1|t+1 = η

(i)
t+1|t +Kη(y(i) − ŷ(i)) (8)

4) Update state: Updates for state are similar to the updates

for parameters, but with the updated values of parameters.

First, predictions of observations are corrected with updated

parameters using

ŷ(i) =K(Xnew,Xg|θ
(i)
t+1|t+1)

× [K(Xg,Xg|θ
(i)
t+1|t+1) + σ

2(i)
y t+1|t+1I]

−1g
(i)
t+1|t

(9)

After that, the cross covariance of state ensemble and

prediction ensemble is updated

gt+1|t =
1

N

N∑

i=1

g
(i)
t+1|t, (10a)

Σgy =Ei

[
(Gt+1|t − E[Gt+1|t])

⊤(Ŷ − E[Ŷ])
]

=
1

N − 1

N∑

i=1

(g
(i)
t+1|t − gt+1|t)

⊤(ŷ(i) − y)
(10b)

After that, the forecast error covariance matrix of the

predictions is computed according to (6) and then Kalman

gain for correcting state

Kg = Σgy(Σyy + σ2
obsI)

−1 (11)

Then state is updated as

g
(i)
t+1|t+1 = g

(i)
t+1|t +Kg(y(i) − ŷ(i)) (12)

The resulting algorithm is given in Fig.1.

B. Liu-West filter

The evolution of parameters distribution in (2) leads to

over-diffuse of parameters distribution. Liu-West filter [25]

uses kernel density estimation, it can be used to estimate the

predicted distribution of parameters so that the resulting dis-

tribution converges to the true distribution. It is parametrised

with discount factor δlw ∈ (0, 1], that is usually taken from

the interval [0.95, 0.99]. With the introduction of additional

parameters

alw =
3δlw − 1

2δlw
, (13a)

h2
lw = 1− a2lw, (13b)

the evolution of parameters density is

η
(i)
t+1|t = alwη

(i)
t|t + (1− alw)ηt|t + εlw, (14)

where εlw ∼ N (0,
√

h2
lw Varηt|t) The algorithm is further

denoted as Liu-West Dual GP-EnKF.

C. Joint Ensemble Kalman Filter for Gaussian Processes

It is also possible to estimate parameters of the model

by augmenting the state vector g by parameter vector η:

augmented state is s = [g;η]. The algorithm is further denoted

as Joint GP-EnKF. The details are presented in Fig.2.



1) Initialise (1)

2) Iterate

a) Predict, for each 1 ≤ i ≤ N :

P1 Predict parameters and state (2)

P2 Predict observations (3)

P3 Compute noisy trajectories (4)

b) Update parameters

UP1 Compute cross covariance of parameter ensemble

and prediction ensemble (5)

UP2 Compute forecast error covariance matrix of the

predictions (6)

UP3 Compute Kalman gain for correcting parameters

(7)

UP4 Update parameters (8)

c) Update model state

US1 Predict observations with updated parameters (9)

US2 Compute cross covariance of state ensemble and

prediction ensemble (10)

US3 Compute forecast error covariance matrix of the

predictions (6)

US4 Compute Kalman gain for correcting state (11)

US5 Update state (12)

Fig. 1: Dual GP-EnKF algorithm

1) Initialisation: Initially, an ensemble for augmented state

S ∈ R
N×(L+K) = [s(i)]1≤i≤N is generated. For each 1 ≤ i ≤

N

η
(i)
0|0 ∼ N (0,ΣS) (15a)

where ΣS is the initial covariance matrices for the ensembles.

After the initialisation the algorithm iterates prediction and

update steps.

2) Prediction: Similar to the dual EnKF, the random walk

assumption for motion model of the augmented state is as-

sumed. Each ensemble member is updated as

s
(i)
t+1|t = s

(i)
t|t + εs, (16)

where εs ∼ N (0, σsI) is the noise variable with correspond-

ing variance.

The predictions are made in a same way as in (3) and

observations are noised as in (4).

3) Update: Updates for the augmented state are similar

to the updates for state in dual EnKF. The cross covariance

of augmented state ensemble and prediction ensemble is

estimated as

st+1|t =
1

N

N∑

i=1

s
(i)
t+1|t, (17a)

Σsy =Ei

[
(St+1|t − E[S]t+1|t)

⊤(Ŷ − E[Ŷ])
]

=
1

N − 1

N∑

i=1

(s
(i)
t+1|t − st+1|t)

⊤(ŷ(i) − y)
(17b)

1) Initialise (15)

2) Iterate

a) Predict, for each 1 ≤ i ≤ N :

P1 Predict augmented state (16)

P2 Predict observations (3)

P3 Compute noisy trajectories (4)

b) Update augmented state

US1 Compute cross covariance of augmented state en-

semble and prediction ensemble (17)

US2 Compute forecast error covariance matrix of the

predictions (6)

US3 Compute Kalman gain for correcting augmented

state (18)

US4 Update augmented state (19)

Fig. 2: Joint GP-EnKF algorithm

After that, forecast error covariance matrix of the predic-

tions is computed as (6) and then Kalman gain for correcting

augmented state

Ks = Σsy(Σyy + σyI)
−1 (18)

Then augmented state is updated as

s
(i)
t+1|t+1 = s

(i)
t+1|t +Ks(y(i) − ŷ(i)) (19)

D. Computational complexity of Kalman Filter approaches for

Gaussian Processes

a) Dual Ensemble Kalman Filter: At the prediction step

the most demanding operation is prediction of observations,

that requires inversion of covariance matrix for each ensemble

member, that is O(NK3). At the update steps it is computation

of Kalman gains, that is O(S3)+O(LS2) for parameters and

O(S3)+O(KS2) for state. The resulting computational time

complexity for the Dual GP-EnKF is O(T (NK3+S3+(L+
K)S2))

b) Joint Ensemble Kalman Filter: Joint EnKF has the

same asymptotic complexity as Dual EnKF.

c) Classic GP: The classic GP without inducing points

that stores all previous observations and recomputes predic-

tions at every time step t has O(S3t3) computational com-

plexity due to the covariance matrix growing in size as St at

every dimension. The resulting computational complexity for

the classic GP is then O(S3T 3). Note that the computational

complexity of the dual ensemble Kalman Filter is linear with

respect to the number T of time steps.

IV. EXPERIMENTS

In this section the performance of the proposed algorithms

is evaluated on both synthetic and real data. Three versions of

the EnKF for online GP parameters estimation are assessed:

Dual GP-EnKF (Section III-A), Liu-West Dual GP-EnKF

(Section III-B), and Joint EnKF (Section III-C). The developed

algorithms are compared with the classic GP regression in
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(b) The classic GP mean with two standard deviations. Parameters are
optimised on the full history of observations.

Fig. 3: Target function and classic GP approximation

terms of both computational time and predictive accuracy. At

every iteration t the classic GP regression is applied on all

historical data.

For quantitative evaluation of the predictive accuracy, the

normalised mean squared error of predictions (NMSE) is used

on held-out test data [xtest,ytest]:

NMSE =
1

M

M∑

m=1

√
(ytest

m − f∗(xtest
m ))2

|ytest
m |

, (20)

where ytest
m is the observed value of the function at the test

data point xtest
m , f∗(xtest

m ) is the predicted function value at the

test data point.

A. Synthetic data

The algorithms are firstly evaluated on the synthetic one-

dimensional data. The target function for the synthetic data

is

f(x) =
x

2
+

25x

1 + x2
cos(x) (21)
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(a) Estimated mean, two standard deviation interval of the GP and target
function
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(b) Final distributions for the estimated GP parameters

Fig. 4: Performance of Joint GP-EnKF on the synthetic data

The observations are generated on the domain [−10, 10] and

are corrupted by the Gaussian noise with variance σ2
y = 0.01.

The example of generated observations is presented in Fig. 3a.

All three versions of GP-EnKF use the size of the grid

K = 51, and ensembles contain N = 100 members. The

covariance function is squared-exponential [1], it has two

hyperparameters: θ = [θvariance, θlengthscale] and estimates

covariance between two points x1 and x2 as

K(x1, x2) = θvariance exp

{
−
||x1 − x2||

2
2

θ2lengthscale

}
(22)

At every iteration, S = 5 samples are fed into the algo-

rithms, the total number of iterations is T = 200.

Fig. 3b shows the function estimate given by the classic

GP regression. Since the total number of observations is

sufficiently large, the classic GP is enable to reconstruct ideal

predictions of the function.

The performance of the proposed approaches is given in

Fig. 4–6. Joint GP-EnKF (Fig. 4) correctly estimates peaks
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(b) Final distributions for the estimated GP parameters

Fig. 5: Performance of Dual GP-EnKF on the synthetic data

of the target function, but it has large predictive errors for

most of the observations. Joint GP-EnKF learns the consistent

ensemble estimates of the hyperparameters, i.e. their variance

is not large.

Dual GP-EnKF (Fig. 5) provides predictions that are more

accurate that predictions made by Joint GP-EnKF, but still

there are several locations where the shape of the target

function differs from the predicted mean. The ensemble of

Dual GP-EnKF has low variance for the logarithm of the

lengthscale hyperparameter of the covariance function and

high variance for the estimates of the variance hyperparameter.

Liu-West Dual GP-EnKF (Fig. 6) is applied with discount

factor δlw = 0.95. The algorithm makes predictions that are

closer to the true values of the target function than other

algorithms. The ensemble of Liu-West Dual GP-EnKF gives

better estimations of hyperparameters than both Dual and Joint

GP-EnKFs.

The procedure is repeated for 10 Monte Carlo runs with

different random seeds. The results are presented as average

among these 10 Monte Carlo runs. In the Fig.7 the history
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(a) Estimated mean, two standard deviation interval of the GP and target
function
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(b) Final distributions for the estimated GP parameters

Fig. 6: Performance of the Liu-West Dual GP-EnKF on the

synthetic data

of NMSE is given over time. It final values together with the

computational time are presented in Table I. While Joint GP-

EnKF is the fastest method, NMSE of both Dual GP-EnKF

methods is lower, and Liu-West Dual GP-EnKF provides the

best results. The classic GP approach provides the lowest

NMSE, however, it has the computational time more than 10
times higher than of the slowest of the proposed approaches.

In terms of the likelihood all methods show similar results

with Joint GP-EnKF slightly outperforming the other two

algorithms.

TABLE I: Performance on the synthetic data at T = 200

Method NMSE Time (s)

Joint GP-EnKF 0.64 7.23

Dual GP-EnKF 0.48 13.68

Liu-West Dual GP-EnKF 0.19 15.60

classic GP 0.02 186.20
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B. House Prices

The Dual GP-EnKF approach is further evaluated on the real

data. In this example the HM Land Registry Price Paid Data1

is considered. The subset of all flats and maisonettes sold in

2017 is selected and the parameters estimation is performed

to predict mean prices corresponding to the locations of

properties. Longitude and latitude values for every location

have been calculated based on the postcode. Therefore, in this

experiment, every single input x is two-dimensional.

A total of T = 20 iterations have been performed with

two-dimensional grid of size K = 25 × 25 = 625. At every

iteration, S = 100 samples of the logarithms of standardised

prices are used to update parameters and mean in the grid

points. The ensemble consists of N = 200 members. The

covariance function is stationary squared-exponential.

Fig.8 demonstrates the results after the first and final it-

erations. It is clear that the prices have converged close to

real values, identifying such areas as London and Oxford as

places with higher prices. Though there are spikes of the mean

in the sea, the corresponding covariance values that describe

uncertainty of predictions in these points are high. Note that

the used squared-exponential covariance function is one of

the simplest covariance functions in terms of complexity of

modelling dependencies of function values at different data

points. The stationary squared-exponential covariance function

does not depend on locations. Therefore, the results can

potentially be further improved if the squared-exponential

covariance function is considered together with non-stationary

covariance functions to obtain more precise estimates for

covariance difference between sea and land locations.

V. CONCLUSIONS

The paper proposes two ensemble Kalman filters for online

Gaussian process regression and learning. The mean and

hyperparameters of the GP are interpreted as the state and

parameters of the ensemble Kalman filter, respectively. The

1https://data.gov.uk/dataset/land-registry-monthly-price-paid-data/
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Fig. 8: Mean estimates of the prices with Dual GP-EnKF

ensemble Kalman filter updates are utilised to recursively

improve estimates of both state and parameters. Two versions

of the ensemble updates are proposed: Joint GP-EnKF where

the update step of the EnKF is applied for the augmented

vector-parameter state and Dual GP-EnKF where the update

step is split to first update the parameters and then based on

new estimates of the parameters the state is updated. For the

Dual EnKF the Liu-West filter ([25]) updates are additionally

developed for further improvement of the estimates.

The proposed ensemble Kalman filter approach for the

GP has a linear computational complexity with respect to

the number of sequential observations, it depends mainly

on the dimensionality of the observations at each timestamp

and internal parameters of the filter. For the large volume

of data acquired sequentially, it can significantly reduce the

computational time in comparison to the usual GP regression

that scales cubically with respect to the number of observa-

tions. Starting from sufficient number of observations, cubic

complexity makes the usual GP not applicable for this large-

scale data. The proposed ensemble Kalman filter can be used



with any number of sequential observations given that at each

timestamp the dimensionality of observations is feasible.

The experiments both on synthetic and real data show

that the proposed ensemble Kalman filter approaches for

the Gaussian process estimation provide satisfactory predic-

tive accuracy using significantly less computational time in

comparison to the GP regression without online updates.

Among the proposed approaches the Liu-West Dual GP-EnKF

filter demonstrates the best results in terms of the predictive

accuracy slightly underperforming the Joint EnKF in terms of

the computational time.
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