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Detecting deterrence from patrol data

Andrew D. M. Dobson ,1 ∗ E. J. Milner-Gulland ,2 Colin M. Beale ,3 Harriet Ibbett,2

and Aidan Keane 1

1School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, U.K.
2Department of Zoology, University of Oxford, Oxford, OX1 3PS, U.K.
3Department of Biology, University of York, York, Y010 5DD, U.K.

Abstract: The threat posed to protected areas by the illegal killing of wildlife is countered principally by ranger

patrols that aim to detect and deter potential offenders. Deterring poaching is a fundamental conservation

objective, but its achievement is difficult to identify, especially when the prime source of information comes in

the form of the patrols’ own records, which inevitably contain biases. The most common metric of deterrence is

a plot of illegal activities detected per unit of patrol effort (CPUE) against patrol effort (CPUE-E). We devised a

simple, mechanistic model of law breaking and law enforcement in which we simulated deterrence alongside

exogenous changes in the frequency of offences under different temporal patterns of enforcement effort. The

CPUE-E plots were not reliable indicators of deterrence. However, plots of change in CPUE over change in effort

(�CPUE-�E) reliably identified deterrence, regardless of the temporal distribution of effort or any exogenous

change in illegal activity levels as long as the time lag between patrol effort and subsequent behavioral

change among offenders was approximately known. The �CPUE-�E plots offered a robust, simple metric

for monitoring patrol effectiveness; were no more conceptually complicated than the basic CPUE-E plots;

and required no specialist knowledge or software to produce. Our findings demonstrate the need to account

for temporal autocorrelation in patrol data and to consider appropriate (and poaching-activity-specific)

intervals for aggregation. They also reveal important gaps in understanding of deterrence in this context,

especially the mechanisms by which it occurs. In practical applications, we recommend the use of �CPUE-�E

plots in preference to other basic metrics and advise that deterrence should be suspected only if there is a

clear negative slope. Distinct types of illegal activity should not be grouped together for analysis, especially if

the signs of their occurrence have different persistence times in the environment.

Keywords: bushmeat, conservation, law enforcement, poaching, protected areas, wild meat

Detección de la Disuasión a Partir de Datos de Patrullaje

Resumen: La amenaza que representa la caza ilegal de fauna para las áreas protegidas está contrarrestada

principalmente por las patrullas de guardias que buscan detectar y disuadir a los delincuentes potenciales.

La disuasión de la caza furtiva es un objetivo fundamental de la conservación, pero es dif́ıcil identificar

cuándo se logra, especialmente cuando la fuente principal de información proviene de los propios registros

de las patrullas, que inevitablemente contiene sesgos. La medida más común de la disuasión es una parcela

de actividades ilegales detectadas por unidad de esfuerzo de patrullaje (CPUE, en inglés) contra el esfuerzo de

patrullaje (CPUE-E, en inglés). Diseñamos un modelo simple y mecánico del rompimiento y aplicación de la

ley en el cual simulamos la disuasión junto con cambios exógenos en la frecuencia de ofensas bajo diferentes

patrones temporales del esfuerzo de aplicación. Las parcelas de CPUE-E no fueron indicadores confiables

de la disuasión. Sin embargo, las parcelas de cambio de CPUE sobre cambio en el esfuerzo (�CPUE-�E)

identificaron con seguridad la disuasión sin importar la distribución temporal del esfuerzo o cualquier cambio

exógeno en los niveles de actividad ilegal siempre y cuando el retraso en el tiempo entre el esfuerzo de patrullaje
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y el cambio en comportamiento subsecuente entre los delincuentes se conoćıa con cierta aproximación.

Las parcelas de �CPUE-�E ofrecieron una medida simple y sólida para el monitoreo de la efectividad del

patrullaje; no fueron más complicadas conceptualmente que las parcelas básicas de CPUE-E; y no requirieron

de conocimiento de especialistas o algún software para producir. Nuestros hallazgos demuestran la necesidad

de dar cuenta de la autocorrelación temporal en los datos de patrullaje y de considerar intervalos apropiados

(y espećıficos a la actividad de caza furtiva) para su agregación. Nuestros hallazgos también revelan vaćıos

importantes en el entendimiento de la disuasión en este contexto, especialmente para los mecanismos

mediante los cuales ocurre. En las aplicaciones prácticas recomendamos el uso de parcelas de �CPUE-�E

por encima de otras medidas básicas y recomendamos que se sospeche de la disuasión sólo si existe una

clara pendiente negativa. No se deben agrupar diferentes tipos de actividades ilegales para su análisis,

especialmente si las señales de su ocurrencia tienen diferentes momentos de persistencia en el ambiente.

Palabras Clave: aplicación de la ley, áreas protegidas, carne de caza, carne silvestre, caza furtiva, conservación
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Introduction

The illegal hunting of wildlife is among the most
severe and widespread threats to global biodiversity
(Milner-Gulland et al. 2003; Nasi et al. 2008), and a

large proportion of conservation expenditure is directed
toward enforcement of wildlife protection laws (e.g.,
de la Mata & Riega-Campos 2015; Wright et al. 2016).

Ranger patrols are employed in protected areas (PAs) to
combat poaching, and an effective patrol strategy is one
that leads to fewer instances of illegal activity, whether

by incarceration of offenders or by the deterrence of
potential future offences (Keane et al. 2011). However,

arrest rates of hunters and detection rates of passive
hunting techniques, such as snaring, are typically very
low in PAs (Watson et al. 2013; O’Kelly et al. 2018a,

2018b), meaning that deterrence is often the dominant
means by which ranger patrols are assumed to reduce
poaching. Conservationists therefore need to know

whether funds spent on ranger patrols actually translate
into reductions in the rate of law breaking.

Deterrence is a simple concept but one with complex

underlying processes. Early writings on criminal deter-
rence typically focused on the desire to avoid punish-
ment, but more modern perspectives have widened the

definition to include extra-legal effects (e.g., social cen-
sure) as well as strictly economic considerations (such as
the loss of criminal opportunity engendered by increased

police presence) (Cornish & Clarke 1987; Nagin &

Paternoster 1993; Ratcliffe et al. 2011). Regardless of the
definition, the existence of deterrence can be difficult
to confirm, even with access to long-term, large-sample

data sets (Paternoster 2010; Nagin 2013). For example,
despite the long-held assumption that police foot-patrols
deter crime, the supporting evidence is weak (Ratcliffe

et al. 2011), and numerous studies have found no impact
of increasing patrol effort on crime (e.g., Kelling et al.
1974; Bowers & Hirsch 1987; Esbensen 1987). In their

randomized controlled trial of foot-patrol effectiveness in
violent crime hotspots in Philadelphia (U.S.A.), Ratcliffe
et al. (2011) found a significant reduction in crime target

areas after 12 weeks, but the effects were restricted to
areas within the top 40% of baseline crime rates.

Critics point out that deterrence is easily confounded

with the spatial or temporal displacement of activities
that does not cause an overall reduction in their

frequency (Reppetto 1976), though there is also
evidence of the opposite effect, that of diffusion of crime
reduction beyond the policed area, known variously

as the halo, free-rider and free-bonus effects, among
other terms (Weisburd et al. 2006; Braga et al. 2014).
Displacement could theoretically also act between crime

types, such as burglars switching to drug dealing when
homes become more secure, but evidence for all forms of
displacement is limited (Weisburd et al. 2006; Guerette

& Bowers 2009). Despite such challenges, criminologists
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have nonetheless been able to identify deterrence in

a wide range of situations, including the threat of
imprisonment to enforce fine payments (Weisburd et al.

2008) and the implementation of hot-spot policing to
reduce neighborhood crime (Braga et al. 2014).

There has been a lack of consensus on how to

infer deterrence when analyzing the effectiveness
of ranger patrolling, not least because the context
poses specific challenges. For example, wildlife crimes

are not independently reported by the victim (as
opposed to robbery, theft, or assault). Instead they are
discovered only by the patrols themselves, meaning that

control areas can rarely be incorporated into studies of
deterrence. Independent snare surveys are sometimes
undertaken, but these require substantial investment,

and there are still challenges with factors such as variable
snare detectability (O’Kelly et al. 2018a). Various alter-
native approaches have been used, including indirect

inference from levels of local bushmeat consumption
(Hodgkinson 2009), hunter interviews (Gandiwa 2011;

St. John et al. 2015), and correlations between observed
incidences of poaching and patrol effort (e.g., Leader-
Williams et al. 1990; Steinmetz et al. 2014; Moore et al.

2018). Unfortunately, each approach has limitations.
Reported behavior is not likely to be as strong a proxy
for deterrence as observed changes in either behavior or

the state of the ultimate target for conservation (wildlife
populations; De Nicola & Giné 2014). In reality, questions
of patrol effectiveness are therefore usually addressed by

analyzing the records collected by ranger patrols or other
enforcement agents as they go about their duties (e.g.,
Hilborn et al. 2006; Jachmann 2008; Johnson et al. 2016).

Law enforcement monitoring software packages, such
as MIST (Management Information SysTem) and SMART
(Spatial Monitoring and Reporting Tool), are widely and

increasingly used worldwide to collate, organize, and
present these data (e.g., Pimm et al. 2015; Critchlow

et al. 2016; Hötte et al. 2016). Outputs are frequently
expressed as the number of illegal activities (encounters
with poachers or poaching signs), controlling for patrol

effort (usually measured as patrol days, or area covered),
termed catch per unit effort (CPUE) (Stokes 2010), but
the interpretation of these data is not straightforward.

Any form of encounter data, even when collected under
rigorously designed sampling protocols, is subject to
biases, including variable detection rates across seasons

and habitats and between observers (Keane et al. 2011;
Critchlow et al. 2015). In patrol data, effort is usually
deliberately biased toward areas or times where rangers

expect to encounter greatest poaching activity (Stokes
2010; Watson et al. 2013).

Widely used basic metrics from patrol data can be

particularly misleading (Keane et al. 2011). Catch per
unit effort can decline over time in the absence of any de-
terrence via several different mechanisms. The simplest

is a decrease in poaching activity for reasons unrelated

to enforcement. Holmern et al. (2007) suggested that the

monthly variation in illegal activity which they detected
was driven largely by animal migrations, and hence varia-

tion in the availability of prey, and Risdianto et al. (2016)
reported similar exogenous fluctuations in the frequency
of poaching, this time driven by seasonal changes in

demand for meat. A similar effect can come about if the
frequency of activities is constant but their detectability
falls, for example due to a switch in the methods or

timing of hunting (Gibson & Marks 1995; Henson et al.
2016).

Recognizing that CPUE over time is a relatively poor

measure of deterrence, some authors argue that detecting
a negative correlation between CPUE and patrol effort
may be a more robust way of identifying deterrence

(e.g., Leader-Williams et al. 1990; Hilborn et al. 2006).
However, this metric is vulnerable to the possibility that
both variables show similar sorts of linear trends over

time for other reasons, leading to spurious correlation.
Furthermore, time-series data display temporal autocor-

relation, violating independence assumptions of standard
statistical tests. A final challenge is presented by time
lags between cause (patrol presence) and effect (hunter

behavioral change), which may not be known and which
may not align well with the temporal resolution of data
collection (e.g., Hötte et al. 2016).

Given the central role of deterrence in PA management
effectiveness, there is an urgent need for methods that
can identify whether it is present, and techniques for this

purpose must be simple to use and applicable to patrol
data if they are to be of practical value to PA managers.
Analysis of ranger-collected CPUE data is unlikely to

achieve the performance of more targeted studies
involving, for example, the experimental manipulation
of patrol effort, but patrol data will typically be the

only source of information available to managers,
meaning that every effort should be made to maximize

its utility. Problems caused by temporal trends could
be minimized by differencing—computing the change
between consecutive observations (Shumway & Stoffer

2017)—potentially yielding a more robust version of
the CPUE-effort plot without the need for complicated
analysis. The paucity of independent data against which

patrol data may be validated provides an obstacle
to investigating options for more this robust metric,
which can be overcome using model-derived simulated

data (Zurell et al. 2010). We used a simple model of
poacher-patrol interactions to compare CPUE-effort plots
(hereafter basic plots) with their �CPUE-�E counterparts

(hereafter differenced plots) in terms of their ability
to identify deterrence. We stress tested the metrics by
adding exogenous changes in the level of illegal activity at

the same time as enforcement-induced changes, thereby
simulating processes (e.g., economic factors) separate
from law enforcement that may affect law-breaking

behavior.

Conservation Biology
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Methods

The appraisal of a potentially biased observation process
requires independent, unbiased data. Here we used a

highly simplified model of poaching and patrolling in
a protected area to simulate time series that comprised
poacher-generated illegal activities, levels of patrol effort,

and patrol-generated CPUE data. We put aside spatial con-
siderations and treated the PA as 1 unit for the sake of
simplicity. The model was run in discrete time steps, with

and without deterrence. Deterrence was characterized
as a reduction in the rate of illegal activity caused by
an increase in patrol effort. We also simulated exogenous

changes (linear increases or decreases) in the appearance
of illegal activities. We generated basic and differenced
CPUE-effort plots for all simulated data and assessed their

ability to detect deterrence. Initially, evidence of illegal
activities committed in each time step was assumed to
disappear at the end of the time step and hence was not

detectable in subsequent time steps. We ran further simu-
lations in which detectability persisted to varying degrees

and reappraised CPUE-effort plot performance. In all
cases, we assumed an individual activity could only be de-
tected once (in reality there may be multiple detections of

a given activity, but patrol records should be able to distin-
guish between new and previously detected activities).

Model

The number of illegal activities, A, available to be de-
tected by patrols at time t is given by Eq. (1), where At

is the product of the number of hunters and their rate
of committing illegal activities in time t, added to the

number of activities still available to be detected from
the previous time step:

At = αt H +
[

p
(

At−1 − Dt−1

)]

, (1)

where H is the number of potential poachers, αt is the

number of illegal activities carried out per poacher at time
t (default = 5), Dt−1 is the number of detected activities
at time t − 1, and p is the persistence rate of the evidence

of activities between time steps (default = 0).
Evidence of illegal activities is detected and removed

according to Eq. (2), in which Dt is a saturating function

of effort:

Dt =
[

1 −
(

(1 − z)E t
)]

At , (2)

where z is the probability of detecting an activity given
that a patrol occurs in the immediate vicinity (0 < z < 1;

default = 0.1), and Et is the patrol effort at time t (e.g.,
proportion of PA covered by patrol per time step).

There is no obvious empirical default value for α;

the choice here was arbitrary but had no impact on
the results. Absolute values of E in the model were also
arbitrary, but they determined the maximum value of

Dt/At, the total number of snares detected by all patrols

per time step as a fraction of those present in the whole
area at Emax (hereafter δ). We set appropriate values

of effort by estimating δ in a real data set (Hötte et al.
2016) and adjusting E in the model to obtain a matching
value of δ (0.06) (Supporting Information). Among the

few studies for which it was possible to calculate δ, we
found 1 instance where it was much higher (Moore et al.
2018), so we assessed the impact of higher values in the

sensitivity analysis.
Changes in the abundance of activities are either

caused by deterrence (i.e., a relationship between the

rate of appearance of activities [αt] and patrol effort
in the previous time step [Et−1]) or by an unspecified
exogenous factor (a consistent change in αt over time).

Here a change in the abundance of activities is equivalent
to, and conceptually interchangeable with, a change
in the number of poachers. We simulated deterrence

by multiplying αt by 1 − βEt−1, where β is a scaling
parameter (0 < β � 1) that controls the maximum extent

of deterrence; the default value caused a 20% reduction
in poaching activity at the maximum patrol effort level.
Exogenous changes in the abundance of illegal activities

were simulated firstly by increasing or decreasing
αt in a linear manner over time; αt is multiplied by
1 + [γ ∗(t/tmax)] for the exogenous increase and by

1 − [γ ∗(t/tmax)] for the decrease, where the default
value of γ is 0.5 (Supporting Information); and secondly
by using a sine curve with peak-to-peak amplitude γ

and period 80 (the number of time steps; see below)
to represent a seasonal pattern of change (Supporting
Information). The maximum extent of exogenous change

was deliberately made greater than the maximum extent
of deterrence (±0.5 vs. 0.2) to provide a suitably
stringent test of the CPUE-effort metrics’ abilities to

identify the latter in the presence of the former.

Simulations

Patrol effort is often distributed unevenly over time (e.g.,
Hilborn et al. 2006; Risdianto et al. 2016). We simulated

the detection of illegal activities over 3 distinct effort
profiles, each lasting for 80 time steps (an arbitrary
number with no implications for the results): stable (no

slope), linearly increasing, and linearly decreasing. All had
random noise added, but the mean efforts for each profile
were the same (0.2); identical profile series were used

for each simulation. Coefficient of variation (CV) in the
stable profile was 0.08; for the increasing and decreasing
profiles CV = 0.2 (Supporting Information). The profiles

introduced deliberate temporal autocorrelation, thereby
producing a more stringent test for our metrics. For each
of the 3 profiles, we ran 8 simulations, encompassing

all possible combinations of deterrence and exogenous
change. The CPUE was calculated for each time step,
and 2 sets of plots were created. The first is the standard
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Figure 1. Basic (black circles) and differenced (blue circles) plots (defined in Table 1 footnote) of catch per unit

effort (CPUE) against patrol effort in simulated patrol detections of poaching activity under decreasing effort in 8

scenario combinations of deterrence of poaching and exogenous change in poaching activity (n = 80 and t is

1–80 in each graph). The graph with no letter label in the top-left shows the effort profile used in the simulations.

The blue lines represent the shape of an ideal plot for distinguishing between the presence and absence of

deterrence. No-deterrence slopes are 0, and slopes in deterrence-graph pairs ([c,d], [g,h], [k,l], and [o,p]) are the

same for each member of the pair. The y-axes are standardized such that deterrence and no-deterrence pairs have

the same range (e.g., [a,c] and [b,d]). Graphs with obvious misattributions have a pale red background; deterrence

would incorrectly be inferred in the scenario depicted in (e) and incorrectly missed in (k) and (o). Plots with the

stable and increasing effort profiles are in the Supporting Information.
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plot of CPUEt against effortt−1 and the second is the

plot of differenced CPUE (CPUEt − CPUEt−1) against
differenced effort (effortt−1 − effortt−2).

The default time lag in response by poachers to
changes in ranger effort was equivalent to 1 time step.
However, we also explored a more realistic scenario

where we assumed imperfect knowledge of these lags
and therefore compared �CPUE with average patrol
effort calculated over a moving window of time steps

(q). For these simulations, effortt was recalculated as
the mean of effortt−(q−1): effortt. In default simulations,
q = 5. The resultant plots are hereafter referred to as

MA (i.e., moving average) plots to contrast with the
default (t − 1) plots. We also considered the influences
of temporal persistence of individual illegal activities

between multiple time steps by repeating simulations
for different (nonzero) values of p.

In the presence of deterrence, we expected ideal plots

to show a negative correlation, indicating that the rate
of appearance of illegal activities decreased as patrol ef-

fort increased; where deterrence was absent, the slope
should be 0, since the frequency of illegal activities was
independent of effort. The value of the slope under de-

terrence can be calculated (Supporting Information), and
we present these ideal values alongside the results. The
higher the r2 value, the more reliable the diagnostic. We

appraised the 2 metrics according to these criteria.

Sensitivity Analyses

We repeated simulations for different values of β and γ ,
increasing and decreasing each by 10%. We also repeated
simulations with greater amplitude of variation (CV =

0.19, 0.28, and 0.25 for stable, increasing, and decreasing
profiles, respectively) to assess its impact on CPUE-effort
relationships. The impact of q, the width of the window

of moving average, was assessed with differenced plots.
The range of variation found in our estimates of δ in

the few published studies available meant that we ran
simulations for the full range to assess its impact.

All modeling and analyses were conducted using R

software, version 3.2.3 (R Core Team 2017).

Results

Differenced (t − 1) plots consistently returned a clear
negative correlation when deterrence was present and
a slope close to 0 when it was absent, regardless of the

presence or absence of exogenous changes in the appear-
ance of illegal activities, across all effort profiles (Fig. 1 &
Table 1). Basic plots yielded at least 1 diagnosis error in

each effort profile and yielded far greater variation in both
r2 values and slope than differenced plots (Fig. 2a and c).
Differenced MA plots were less reliable than differenced
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Figure 2. Parameters from basic (black circles and

rectangles) and differenced (blue circles and

rectangles) plots (defined in Table 1 footnote) of catch

per unit effort (CPUE) against patrol effort in

simulated patrol detections of poaching activity: (a, c)

t − 1 plots, poaching activity at time t is plotted

against patrol effort at t − 1; (b, d) MA plots, poaching

activity at time t is plotted against the average patrol

effort in the previous 5 time steps (Bas., basic plots;

Dif., differenced plots; no deterr., no deterrence;

deterr., deterrence present). In (a) and (b) r2 values

are from CPUE-effort plots across all combinations of

patrol effort profile and exogenous change in

poaching activity (n = 12 for each x-axis category)

with and without deterrence of poaching (whiskers,

lowest point within 1.5 interquartile ranges of the

lower quartile and highest point within 1.5

interquartile ranges of the upper quartile). In (c) and

(d) slope is of CPUE-effort (green line, ideal values: 0

slope when deterrence is absent [left side of each

graph] and negative slope when deterrence is present

[right side]). Calculations used to determine the ideal

slope are in Supporting Information.

(t − 1) plots for identifying deterrence (compare r2,
Fig. 2a and b), but the slopes were consistently

informative in differenced MA plots and widely variable
(hence unreliable) in basic MA plots (Fig. 2d).

Differenced (t − 1) plots had relatively low r2-values

when deterrence was absent; median r2 was higher
for basic plots than differenced plots (Fig. 2a, left of
figure & Table 1). This is not apparent from plots of
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Table 1. Mean slope and r
2 values for basic (CPUE-E) and differenced (�CPUE-�E) plotsa of illegal activities detected per unit of patrol effort

(CPUE) against patrol effort in simulated patrol detections of poaching activity from the 12 scenario combinations of patrol effort profile and
exogenous change in poaching.

Deterrence No deterrence

Plot type Effort typeb slope (SD) r2 (SD) slope (SD) r2 (SD)

Basic (CPUE-E) t − 1 −0.06 (0.14) 0.59 (0.4) −0.01 (0.17) 0.47 (0.36)
MA −0.06 (0.18) 0.56 (0.42) −0.02 (0.21) 0.55 (0.42)

Differenced (�CPUE-�E) t − 1 −0.05 (0.01) 0.89 (0.16) 0 (0) 0.08 (0.05)
MA −0.07 (0.02) 0.1 (0.01) 0.01 (0.01) 0.16 (0.1)

aBasic plots are plots of CPUE over patrol effort. Differenced plots are plots of differenced CPUE (CPUEt − CPUEt−1) over differenced patrol
effort (effortt−1 t − 1 effortt−2).
bThe t − 1 plots are those wherein CPUE (or differenced CPUE) at time t is plotted against patrol effort (or differenced effort) at time t − 1. The
MA plots are those wherein CPUE (or differenced CPUE) at time t is plotted against the average patrol effort (or differenced effort) across time
steps t − 4:t.

the individual outputs, such as Fig. 1, where graphs (b),

(f), and (j) each appear to show an r2 approaching 1
because they were plotted with the same y-axis limits as

graphs (d), (h), and (l) to allow slopes to be compared
between deterrence and its absence. This may appear to
undermine the superiority of the differenced plots, but

an easy rule-of-thumb decision can be made: if there is a
clear negative slope, deterrence may be operating, and,
if not, deterrence is unlikely. No equivalent rule can be

formulated for basic plots.
Increasing persistence in the detectability of illegal

activities steadily reduced r2 values in differenced plots

(basic plots were not tested) and reduced the steepness
of the slope when deterrence was present (Fig. 3 &
Table 2), thereby diminishing the ability of the plots

to distinguish between the presence and absence of
deterrence. This occurred via a simple mechanism. When
activities persisted, changes in effort had impacts beyond

the consecutive time step, blurring the relationship
between effortt and CPUEt+1 where a relationship
was present and adding random noise where it was

absent.
A related mechanism explains the fact that r2 values of

the differenced plots diminished as the width of the win-
dow, q, for calculating the moving average in MA plots
increased from 1 to 4 (Supporting Information); random

noise was introduced by the averaging of additional time
steps that actually had no predictive value. Sensitivity
tests revealed no meaningful influence of changes in β or

γ , or of increased variance in effort profiles, on the rel-
ative or absolute performances of basic and differenced
t − 1 plots, though greater amplitude did cause a slight

increase in r2 of differenced MA plots, as well as a more
negative slope when deterrence was present (Supporting
Information). The performance of differenced plots was

insensitive to the maximum value of δ, the total number of
snares detected by all patrols per time step as a fraction of
those present in the whole area at Emax (Dt/At); however,

interpretation of the differenced plots was easiest for
values δ � 0.06. As δ increased, both the ideal and realised

slopes tended toward 0 (i.e., became less negative) under

deterrence, making deterrence progressively less clearly

identifiable (Supporting Information).
The threshold of 0.06 is a practical rule of thumb as

opposed to an essential criterion but, if applied, will
effectively impose a constraint on the ratio of time-step
length to patrol effort per time step (for a given detection

rate). In the model, the value of δ was set with reference
to the absolute values of E, but when applying the
method to real data, the patrol effort will be a known

value, meaning that it is the length of the time step that
must be deliberately chosen (Supporting Information).

Discussion

Deterrence is a fundamental aim of conservation law-
enforcement patrols, but it is difficult to identify, such
that very few convincing analyses exist that demonstrate

deterrence empirically in the field (but see Moore et al.
2018). Observed declines in CPUE over time, which
are frequently taken as evidence of deterrence, may

be caused by exogenous processes that have little or
nothing to do with behavioral responses to patrol effort.
Here we demonstrate that basic CPUE-effort plots,

which are often presented as a remedy to this issue, are
vulnerable to the same forms of bias, and we show how

differenced plots (�CPUE-�E) are more informative.
Differenced plots reliably distinguished between the
presence and absence of deterrence, regardless of

the temporal distribution of effort or any exogenous
change in illegal activity levels. These plots are no more
conceptually complicated than the basic CPUE-effort

plots and require no specialist knowledge or software to
produce.

Differenced plots were most effective when the time

lag between patrol effort and subsequent behavioral
change among offenders was known. If the lag between
a patrol and its effect on hunter behavior is equiva-

lent to x time steps, then the differenced CPUE should
ideally be plotted against the differenced effort x time
steps earlier. When data were averaged over a longer
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Figure 3. Impact of the persistence of evidence of poaching activity on differenced plots (defined in Table 1

footnote) of catch per unit effort (CPUE) against patrol effort in simulated patrol detections of poaching activity

(n = 80; t is 1–80). The scenario is deterrence of poaching with concurrent exogenous decline in poaching activity

under the stable patrol-effort profile. Graph (a) is equivalent to graph (l) in Fig. 1. The equivalent plots without

deterrence and plots with other combinations of exogenous change and effort profile are in Supporting

Information.

Figure 4. Decisions involved in

generating differenced plots (defined in

Table 1 footnote) of catch per unit effort

(CPUE) over patrol effort from basic

antipoacher patrol data and

management actions taken as a result.

period to compensate for a potential lack of this knowl-
edge, the plots became much noisier, though they could
still be used to distinguish between deterrence and its

absence.
Time lags are difficult to specify, given the current

state of our understanding of the relationship between

enforcement effort and illegal behavior. In the absence
of independent data, it might be appropriate under some
circumstances to make numerous plots, each at different

time lags, and appraise all of them for signals of deter-
rence, but there is a danger of data-mining and produc-
ing spurious positive results by chance. We recommend

choosing a small set of plausible potential time lags to

explore, based on poacher interviews, expert judgement
or other lines of available evidence.

Persistence also affected the diagnostic ability of the

CPUE-E plots and is likely to exist to some extent in all
patrol data. At one extreme, a wire snare may remain in
a landscape for many months after the hunter who set it

has left the scene (Coad 2007). At the other extreme, a
gun-hunting trip only exists while the hunter is present,
and its detectability thereafter depends on the hunter’s

discarding of empty cartridges or other paraphernalia,
some of which may be less obviously associated with a
hunt (an exception is the killing of large fauna, where

the majority of the carcass is likely to remain). However,
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Table 2. Mean slope and r
2 values for differenced plots (�CPUE-�E)a of illegal activities detected per unit of patrol effort (CPUE) against patrol

effort in simulated patrol detections of poaching activity from the 12 scenario combinations of patrol effort profile and exogenous change in poaching
under varying persistence times for evidence of poaching.

Deterrence No deterrence

slope (SD) r2 (SD) slope (SD) r2 (SD) Persistence

−0.05(0.01)b 0.89 (0.16) 0 (0) 0.08 (0.05) 0
−0.05 (0.01) 0.87 (0.18) 0 (0) 0.01 (0.01) 0.1
−0.05 (0.01) 0.84 (0.2) 0 (0) 0 (0) 0.2
−0.04 (0.01) 0.8 (0.22) 0 (0) 0.03 (0.02) 0.3
−0.04 (0.01) 0.74 (0.24) 0 (0) 0.04 (0.02) 0.4
−0.04 (0.01) 0.65 (0.25) 0 (0) 0.02 (0.02) 0.5
−0.04 (0.01) 0.46 (0.21) 0 (0) 0.01 (0.01) 0.6
−0.04 (0.01) 0.2 (0.12) 0 (0) 0 (0) 0.7
−0.04 (0.01) 0.06 (0.05) −0.01 (0) 0 (0) 0.8
−0.04 (0.01) 0.02 (0.02) −0.01 (0) 0 (0) 0.9

aDefinitions in Table 1 footnotes.
bThe first row is equivalent to row 3 of Table 1.

persistence may be an easier problem to manage than un-

known time lags. The potential solutions are to conduct
field experiments to determine how long various signs of
illegal activity—from snares and gun cartridges to animal

carcasses—remain detectable (fairly simple experiments
may suffice) and to aggregate patrol data only across
classes of activity that have similar persistence times.

A further complication, not addressed here, is that of
spatial displacement. In the context of PA management,
3 broad outcomes of such displacement are possible.

First, displacement occurs within the PA (no net
reduction in illegal hunting). Second, displacement
occurs from the entirety of the PA into surrounding areas

of similar, unprotected habitat (hunting pressure may
not be reduced). Third, displacement occurs from the

entirety of the PA into surroundings that are unsuitable
for hunting of the species of concern, but may still be
good for other resource uses (displacement effectively

constitutes a cessation of conservation-relevant hunting
[i.e., deterrence]). In practice, the second and third
outcomes are indistinguishable when no data from

outside the PA are available, and the first outcome may
not be obvious unless patrols include sufficient variety
in their routes (Watson et al. 2013; Critchlow et al.

2015). Investigation of this phenomenon requires a
spatially explicit model, ideally with individual agents
representing patrols and potential offenders, and

programmed responses linking enforcement effort with
behavior of the latter. The spatial unit over which
data are aggregated must also be considered in light of

displacement; where fine-scale information is lacking, the
PA boundary is probably the most parsimonious choice.

There are also factors we did not consider, such as vari-
ation in patrol motivation and efficiency, that could either
mask or mimic a signal of deterrence, and that merit

investigation. The effects of deterrence and other aspects
of law enforcement on hunter behavior are also likely to
be dependent upon the socioeconomic circumstances

of potential law-breakers, as well as the availability of

alternative economic opportunities (Nasi et al. 2008;
Cawthorn & Hoffman 2015). In the meantime, wherever
patrol data forms the basis of decisions (a common situ-

ation, given the rapid trend toward their widespread use
for monitoring law-enforcement effectiveness), we sug-
gest a set of rules of thumb to apply to the analysis and in-

terpretation of patrol data. First, do not use plots of CPUE
against effort to determine the presence of deterrence.
These plots are liable to yield both false-positive and false-

negative errors in a wide range of circumstances. Plots
of CPUE over time carry even less reliable information.
Second, use differenced CPUE-effort plots. Only suspect

deterrence if there is a clear negative slope. Bear in mind
that differenced plots work best for low values of δ; set

the length of the time step over which to aggregate data
accordingly. Third, if in doubt, do not interpret changes
in CPUE with effort as evidence for deterrence. Be aware

of the different persistence times of different types of
illegal activity and the interactions between activity
persistence in the landscape and the spatial pattern of

patrolling. Depending on sample sizes, analysis of distinct
types of activity could be made separately, with the
caveat that if the analysis is carried out on only 1 type of

activity, a simple switch in technology or prey species in
response to patrol effort may be mistaken for deterrence.
Overlaps in patrols in time and space are also complicat-

ing factors which may preclude the use of simple metrics.
In practical applications, producing these plots from

real patrol data sets will require a number of decisions to

be made, including the subset of infractions to be inves-
tigated, the time period and area to be investigated, the

unit of patrol effort to be used and the level of spatial and
temporal aggregation (Fig. 4). Some, such as the choice
of time lags, have already been discussed. The choice of

effort unit may be guided by hypotheses about the mech-
anism by which patrol presence causes deterrence. The
extents of spatial and temporal aggregation are likely to
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be influenced by sample size, but the total area and total

time frame to be assessed could require careful consid-
eration (see the second rule of thumb, above), especially

if effort levels have varied across time and in space.
Choices should be based on a substantive understanding
of the patrol context and be fully recorded and justified.

A lack of negative slope in the differenced plots does
not “necessarily” indicate that there is no deterrent
effect of patrolling. Deterrence may occur in a binary

fashion: present when there are at least some patrols and
absent when there are not. However, the management
response to a flat plot might be similar whether or

not deterrence of the sort described is suspected; in
either case careful consideration should be given as
to whether increasing the frequency (or visibility) of

patrols is the best way to deter hunters. If deterrence
is not realistically achievable, patrol resources could be
better directed toward tasks that may not be expected

to cause deterrence but that may otherwise be useful,
such as clearing snares, or toward different approaches

to promoting deterrence, such as intelligence-led raids.
In the longer run there are no quick fixes to un-

derstanding the drivers of success for law enforcement

in PAs. The CPUE-based metrics derived from ranger
patrol data cannot replace more detailed studies in
which at least some of the potentially confounding fac-

tors are either measured or held constant. More, and
better, information is needed about the dynamic rela-
tionships between ranger and poacher behavior, tem-

porally and spatially, in order to plan and implement
effective interventions.
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