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New results on the single-differential and fully integrated cross sections for the process γvp → p′π+π− are

presented. The experimental data were collected with the CLAS detector at Jefferson Laboratory. Measurements

were carried out in the kinematic region of the reaction invariant mass W from 1.3 to 1.825 GeV and the photon

virtuality Q2 from 0.4 to 1.0 GeV2. The cross sections were obtained in narrow Q2 bins (0.05 GeV2) with the

smallest statistical uncertainties achieved in double-pion electroproduction experiments to date. The results were

found to be in agreement with previously available data where they overlap. A preliminary interpretation of

the extracted cross sections, which was based on a phenomenological meson-baryon reaction model, revealed

substantial relative contributions from nucleon resonances. The data offer promising prospects to improve

knowledge on the Q2 evolution of the electrocouplings of most resonances with masses up to ∼1.8 GeV.

DOI: 10.1103/PhysRevC.98.025203

I. INTRODUCTION

During the past several decades, experiments have been

performed in laboratories all over the world in order to investi-

gate exclusive reactions of meson photo- and electroproduction

off proton targets. This investigation is typically carried out

through the detailed analysis of the experimental data with the

goal of extracting various observables. Further theoretical and

phenomenological interpretations of the extracted observables

provide valuable information on nucleon structure and features

of the strong interaction [1–4].

A large amount of experimental data on exclusive meson

photo- and electroproduction has been collected in Hall B at

Jefferson Laboratory with the CLAS detector [5]. The analysis

of these data has already provided a lot of information on

differential cross sections and different single- and double-

polarization asymmetries with almost complete coverage of

the final hadron phase space.1 Some kinematic areas, however,

are still lacking this information.

This paper introduces new information on the fully in-

tegrated and single-differential cross sections of the re-

action γvp → p′π+π− at 1.3 GeV < W < 1.825 GeV and

0.4 GeV2 < Q2 < 1.0 GeV2. The cross sections were ex-

tracted along the standards of the CLAS data analysis and

added into the CLAS physics database [6]. They are also

available on GitHub [7]. High experimental statistics allow

for narrow binning (i.e., 0.05 GeV2 in Q2 and 25 MeV in W ),

as well as smaller statistical uncertainties than were achieved

in previous studies of double-pion electroproduction cross

1The numerical results on observables measured with the CLAS

detector are available in the CLAS physics database [6].

sections [8–10]. The conditions of the experiment and the data

analysis procedure are described in Secs. II–IV.

The kinematic region covered by the analyzed data has

already been partially investigated by measurements of double-

pion electroproduction cross sections [8,9]. The cross sections

reported in Ref. [8], although extracted in Q2 bins of the same

width (0.05 GeV2), overlap with the present results only in

the low region 0.45 GeV2 < Q2 < 0.6 GeV2 and W up to

∼1.55 GeV. The comparison of the present results with the

measurements from Ref. [8] is given in Sec. V B. The cross sec-

tions reported in Ref. [9] for 1.4 GeV < W < 1.825 GeV, that

have been extracted in much wider Q2 bins 0.5 GeV2 < Q2 <

0.8 GeV2 and 0.8 GeV2 < Q2 < 1.1 GeV2, also partially

overlap with the results reported here. However, since they

have been averaged over a large Q2 range, direct comparisons

with these data are not straightforward and are not shown

here.

One of the promising ways to move closer to the understand-

ing of nucleon structure and principles of the strong interaction

is the study of nucleon excited states [1–4]. The extracted cross

sections are of great significance for these studies because of

the essential sensitivity of the double-pion electroproduction

channel to the manifestation of resonances above �(1232).

Most of these excited states have a considerable branching

ratio to the Nππ final state, especially those with masses

above 1.6 GeV, which are known to decay mostly by the

emission of two charged pions. Beside that, the reported cross

sections benefit from a narrow Q2 binning, which is valuable

for investigating the resonant structure through establishing the

Q2 evolution of the resonance electrocouplings.

The most common way to investigate nucleon resonances

is to perform a phenomenological analysis of the observables

within a reaction model, as in the case of the double-pion

exclusive channel with the JLab - Moscow State University
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(Russia) model JM [11]. This model, which aims at the

extraction of resonance electrocouplings and the identification

of different reaction mechanisms, has proven itself as an

effective tool for the analysis of the experimental cross sections

[11–13].

Section V introduces the JM-model-based preliminary in-

terpretation of the extracted cross sections, which includes

the estimation of contributions from nucleon resonances. The

relative resonant contributions to the cross section are found to

range from 20% to 70% (depending on the kinematic region),

which is a very promising indication that a reliable extraction

of the resonance electrocouplings within the JM model will be

possible.

The complete analysis of the present cross sections within

the JM model, which aims to determine the evolution of

the electrocouplings of most nucleon resonances with masses

up to ∼1.8 GeV (including the new potential candidate state

N ′(1720)3/2+ [14]), will be the subject of a future publication.

II. EXPERIMENTAL SETUP

The data reported in this paper were acquired at Jefferson

Laboratory (JLab) Hall B with the CEBAF Large Acceptance

Spectrometer (CLAS) [5], which consisted of six sectors that

were operated as independent detectors. Each sector included

drift chamber (DC), a Čerenkov counter (CC), a time-of-flight

system (TOF), and a sampling electromagnetic calorimeter

(EC). The CLAS detector had a toroidal magnetic field that

bent charged particle trajectories and therefore allowed for the

determination of their momenta in the DC. The electron beam

was provided by the Continuous Electron Beam Accelerator

Facility (CEBAF). The measurements were part of the “e1e”

run period that lasted from November 2002 until January 2003

and included several datasets with different configurations

(hydrogen and deuterium targets as well as two different beam

energies of 1 and 2.039 GeV).

The experimental configuration for the analyzed dataset

was the following. The torus field setting was such as to

bend negative particles toward the beam line (in-bending

configuration). The data were obtained with a 2-cm-long liquid

hydrogen target, located at −0.4 cm along the z axis (near the

center of CLAS) and a 2.039-GeV electron beam.

The target was specific to the “e1e” run period and its setup

is presented in Fig. 1. In order to avoid bubble formation, the

target had a special conical shape that allowed draining the

bubbles away from the beam interaction region. The target

cell had 15-µm-thick aluminum entrance and exit windows.

In addition, an aluminum foil was located downstream of the

target. This foil was made exactly the same as the entry/exit

windows of the target cell and served for both the estimation

of the number of events that originated in the target windows

and the precise determination of the target z position along the

beam line.

The dataset included runs with the target cell filled with

liquid hydrogen (full) as well as runs with an empty target cell

(empty). The latter served to subtract the contribution from

the background events produced by the scattering of electrons

on the target windows. In Fig. 2, the distributions of electron

coordinate z at the interaction vertex are shown for events

15 µm Al
Target windows

Kapton cell wallsµmRadius = 0.35 − 0.60 cm 50
Nominal length = 2 cm

Torlon base

FIG. 1. The target cell and support structure used during the

CLAS “e1e” run period.

from both empty (dashed curve) and full (solid curve) target

runs. Both distributions are normalized to the corresponding

charge accumulated on the Faraday cup (FC). The value of

the vertex coordinate z was corrected for the effects of beam

offset2 at the stage of data calibration. Both distributions

in Fig. 2 demonstrate the well-separated peak around ze′ =

2.4 cm originating from the downstream aluminum foil. The

distribution of events from the empty target runs also shows

two other similar peaks that correspond to the windows of the

target cell. In addition to the empty target event subtraction, a

cut on the z coordinate of the electron was applied. This cut is

shown by the two vertical lines in Fig. 2: Events outside these

lines were excluded from the analysis.

III. EXCLUSIVE REACTION EVENT SELECTION

To identify the reaction ep → e′p′π+π−, the scattered

electron and at least two final-state hadrons need to be detected,

while the four-momentum of the remaining hadron can be

2The beam offset is the deviation of the beam position from the

CLAS central line (x, y ) = (0, 0) that can lead to the inaccurate

determination of the vertex position.
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FIG. 2. Distributions of the electron z coordinate at the vertex for

full (solid curve) and empty (dashed curve) target runs. The vertical

lines show the applied cuts. Both full and empty target distributions are

normalized to the corresponding charge accumulated on the Faraday

cup (FC).
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FIG. 3. Sampling fraction distributions for the data (top plot) and

the Monte Carlo (bottom plot). Both plots correspond to CLAS sector

1. Events between the curves were treated as good electron candidates.

calculated from energy-momentum conservation. The fastest

particle that gives signals in all four parts of the CLAS detector

(DC, CC, TOF, and EC) was chosen as the electron candidate

for each event. To identify hadrons, only signals in the DC and

TOF were required.

A. Electron identification

To reveal good electrons from all electron candidates,

electromagnetic calorimeter (EC) and Čerenkov counter (CC)

responses were analyzed.

According to Ref. [15], the overall EC resolution as well

as uncertainties in the EC output summing electronics lead to

the fluctuation of the EC response near the hardware threshold.

Therefore, to select only reliable EC signals, a minimal cut on

the scattered electron momentum Pe′ (which is known from the

DC) should be applied at the software level. As was suggested

in Ref. [15], this cut was chosen to be Pe′ > 0.461 GeV.

In the next step, a so-called sampling fraction cut was

applied to eliminate in part the pion contamination. To develop

this cut, the fact that electrons and pions had different energy

deposition patterns in the EC was used. The energy deposited

by an electron (Etot) is proportional to its momentum (Pe′ ),

while a π− loses a constant amount of energy per scintillator

(≈2 MeV/cm) independently of its momentum. Therefore,

for electrons the quantity Etot/Pe′ plotted as a function of Pe′

should follow a straight line that is parallel to the x axis (in

reality this line has a slight slope). This line is located around

the value 1/3 on the y axis, since by the EC design an electron

loses about 1/3 of its energy in the active scintillators.

In Fig. 3, the total energy deposited in the EC divided

by the particle momentum is shown as a function of the

particle momentum for the data (top plot) and the Monte

Carlo (bottom plot). In this figure, a cut on the minimal

scattered electron momentum is shown by the vertical line

segment, while the other two curves correspond to the sampling

fraction cut that was determined via a Gaussian fit to different

momentum slices of the distribution. The distributions for the

10 15 20 25 30 35 40 45
 (deg)ccθ

25−
20−
15−
10−
5−
0

5

10
15

20

25

 (
d
e
g
)

c
c

ϕ

FIG. 4. The CC regions with reliable detection efficiency are

shown in black as a function of the polar (θcc) and azimuthal (ϕcc)

angles in the CC plane for CLAS sector 1. These regions were selected

according to the criterion (1). The curves, which are superimposed on

the distribution, show an overall fiducial cut that was applied in the

CC plane.

experimental data and the Monte Carlo simulation differ, since

the former is plotted for inclusive electrons, while the latter is

for simulated double pion events only. The mean value of the

simulated distribution turned out to be slightly below that of

the experimental one due to the approximations used in the

reproduction of electromagnetic showers in the Monte Carlo

reconstruction procedure.

To improve the quality of electron candidate selection

and π−/e− separation, a Čerenkov counter was used. As

was shown in Ref. [16], there was a contamination in the

measured CC spectrum that manifested itself as a peak at

low number of photoelectrons (the so-called few photoelectron

peak). The main source of this contamination was found to

be the coincidence of accidental photomultiplier tube (PMT)

noise with a pion track measured in the DC [16].

It turned out that the CC had some inefficient zones that

could not be simulated by the Monte Carlo technique as being

too dependent on specific features of the CC design. Signals

from these zones, being depleted of photoelectrons, shifted

the measured CC spectrum toward zero and therefore add up

to the few photoelectron peak. Thus the inefficient zones can be

differentiated from the efficient ones by a more pronounced few

photoelectron peak. The following criterion for the geometrical

selection of the efficient zones in the CC was used (see Ref. [17]

for details)

NNph. el.>5(θcc, ϕcc)

Ntot(θcc, ϕcc)
> 0.8, (1)

where the denominator corresponds to the total number of

events in the particular (θcc, ϕcc) bin, while the numerator

corresponds to the number of events with more than five

photoelectrons in the same (θcc, ϕcc) bin. The polar (θcc) and

azimuthal (ϕcc) angles of the electron candidate are defined in

the CC plane.

In Fig. 4, the distribution of the CC regions with reliable

detection efficiency, which were selected according to the

criterion (1), are shown in black as a function of θcc and ϕcc for

CLAS sector 1. As is seen in Fig. 4, there was an inefficient

area in the middle of the sector (shown in white). This was
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FIG. 5. Number of photoelectrons for the left-side PMT in seg-

ment 10 of sector 1 of the CC. The black curve shows the fit by

the function given by Eq. (2). The vertical line shows the applied cut.

Regions that are needed to calculate the correction factor [see Eq. (3)]

are shown as hatched and in black.

expected since two CC mirrors were joined there. The curves,

which are superimposed on the distribution, show an overall

fiducial cut that is applied in the CC plane. Then, within that

overall cut, for both the experimental data and the Monte Carlo

simulation, only electron candidates that originated from the

black regions were analyzed.

Although being substantially reduced after elimination of

signals from the inefficient zones, the few-photoelectron peak

was still present in the experimental CC spectrum as shown

in Fig. 5. This peak in the photoelectron distribution was cut

out for each PMT in each CC segment individually. The cut

position for one particular PMT is shown by the vertical line in

Fig. 5. Since there was no way of reproducing the photoelectron

spectrum by a Monte Carlo simulation, this cut was applied

only to the experimental data, and good electrons lost in this

way were recovered by the following procedure. The part of

the distribution on the right side of the vertical line was fit

by the function given by Eq. (2), which is a slightly modified

Poisson distribution,

y = P1

⎛

⎝

P
x

P2

3

Ŵ
(

x
P2

+ 1
)

⎞

⎠e−P3 , (2)

where P1, P2, and P3 are free fit parameters.

The fitting function was then continued into the region on

the left side of the vertical line. In this way, the two regions,

shown in black and hatched in Fig. 5, were determined. Finally,

the correction factors were defined by Eq. (3) and applied as

a weight for each event which corresponded to the particular

PMT:

Fph. el. =
hatched area + black area

hatched area
. (3)

The correction factor Fph. el. depended on PMT number and

was typically on the level of a few percent.

B. Hadron identification

The CLAS TOF system provided timing information, based

on which the velocity (βh = vh/c) of the hadron candidate was

1
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FIG. 6. βh vs momentum distributions for positively charged

hadron candidates (top plot) and negatively charged hadron candidates

(bottom plot) for scintillator number 34 in CLAS sector 1. The black

solid curves correspond to the nominal βn given by Eq. (4). Events

between the dashed and dot-dashed curves were selected as π+ (π−)

and protons, respectively.

calculated. The value of the hadron candidate momentum (ph)

was in turn provided by the DC. The charged hadron can be

identified by a comparison of βh, determined by the TOF, with

βn given by

βn =
ph

√

p2
h + m2

h

, (4)

where βn is the nominal value that is calculated using the

hadron candidate momentum (ph) and an exact hadron mass

assumption mh.

The experimental event distributions βh versus ph were

investigated for each TOF scintillator in each CLAS sector.

An example of these distributions is shown in Fig. 6 for

positively charged hadron candidates (top plot) and negatively

charged hadron candidates (bottom plot). The example is given

for scintillator 34 of CLAS sector 1. In Fig. 6, the solid

curves are given for βn calculated according to Eq. (4) for

the corresponding hadron mass assumptions. The event bands

of the pion and proton candidates are clearly seen around the

corresponding βn curves. The dashed curves show the cuts that

were used for pion identification, while the dot-dashed curves

serve to identify protons.
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During the run, some TOF scintillator counters worked

improperly and therefore their signals were considered to be

unreliable and were removed from consideration in both data

and simulation. For properly working counters, the hadron

identification cuts were chosen to be the same as shown in

Fig. 6. They were applied on both experimental and recon-

structed Monte Carlo events. It was found that for some

scintillators the hadron candidate bands in the experimental

distributions were slightly shifted from the nominal positions.

A special procedure was developed to correct the timing

information for the affected TOF counters [17].

C. Momentum corrections

Because of slight misalignments in the DC positions, small
inaccuracies in the description of the torus magnetic field, and
other possible reasons, the measured momentum and angle
of particles had some small systematic deviations from the
real values. Since the effects were of an unknown origin, they
could not be simulated, and therefore a special momentum
correction procedure was needed for the experimental data.
According to Ref. [18], the evidence of the need of such
corrections is most directly seen in the dependence of the
elastic peak position on the azimuthal angle of the scattered
electron. It is shown in Ref. [18] that the elastic peak position
turns out to be shifted from the proton mass value and this
shift depends on CLAS sector.

The significance of the above effect depends on the beam
energy. It was found that in this dataset, with the beam energy
of 2.039 GeV, a small shift (∼3 MeV) in the elastic peak
position took place, while Ref. [18] demonstrated that in the
case of 5.754-GeV beam energy, this shift reached 20 MeV.
Moreover, Ref. [18] also showed that this effect became
discernible only if the particle momentum was sufficiently
high (e.g., for pions the correction was needed only if their
momentum was higher than 2 GeV). Here, because of the
small beam energy and the fact that in double-pion kinematics
hadrons carry only a small portion of the total momentum,
the correction is needed only for electrons, while deviations
in hadron momenta can be neglected.

The electron momentum corrections used for this dataset
were developed according to Ref. [18] for each CLAS sector
individually and included an electron momentum magnitude
correction, as well as an electron polar angle correction.
Although the corrections were established using elastic events,
they were applied for all electron candidates in the dataset.
The influence of these corrections on the elastic peak position
is shown in Fig. 7. The corrections bring the position of the
elastic peak closer to the proton mass for all six CLAS sectors.

The above effects do not lead to substantial distortions of
the hadron momenta. However, hadrons lose a part of their
energy due to their interaction with detector and target media,
and hence their measured momentum appears to be lower than
the actual value. Simulation of the CLAS detector correctly
propagates hadrons through the media and, therefore, the effect
of the hadron energy loss is included into the efficiency and
does not impact the extracted cross section value. However,
in order to avoid shifts in the distributions of some kinematic
quantities (e.g., missing masses) from their expected values,
an energy loss correction was applied to the proton momentum
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FIG. 7. Elastic peak position for six CLAS sectors before

(squares) and after (stars) the electron momentum correction. The

horizontal line shows the proton mass.

magnitude, since the low-energy protons were affected the
most by energy loss in the materials. The simulation of the
CLAS detector was used to establish the correction function,
which then was applied for both experimental and recon-
structed Monte Carlo events.

D. Other cuts

1. Fiducial cuts

The active detection solid angle of the CLAS detector was

smaller than 4π [5] as the areas covered by the torus field coils

were not equipped with any detection system, thus forming

gaps in the azimuthal angle coverage. In addition, the detection

area was also limited in polar angle from 8◦ up to 45◦ for

electrons and up to 140◦ for other charged particles. The edges

of the detection area, being affected by rescattering from the

coils, field distortions, and similar effects, should be excluded

from consideration by applying specific (fiducial) cuts on the

kinematic variables (momentum and angles) of each particle.

These cuts were applied for both real events and Monte Carlo

reconstructed events.

The “e1e” run period used a torus magnetic field config-

uration that forced negatively charged particles to be inbend-

ing. For these particles, sector-independent, symmetrical, and

momentum-dependent cuts were applied. Figure 8 shows the

number of detected electrons (top plot) and π− (bottom plot)

as a function of the angles ϕ and θ for CLAS sector 1 in a

specific momentum slice. The angles ϕ and θ were taken at the

interaction vertex. The solid black curves correspond to the

applied fiducial cuts that select the regions with a relatively

flat particle density along the azimuthal angle.

For positively charged particles, which were outbending

in the “e1e” run period, momentum-independent and slightly

asymmetrical fiducial cuts are the best choice. These cuts were

established in the same way as for negatively charged particles,

i.e., by selecting the areas with a relatively flat particle density

along the ϕ angle. In Fig. 9, these cuts are shown by the

black curves that are superimposed on the ϕ versus θ event

distributions for protons (top plot) and π+ (bottom plot). All

angles are given at the interaction vertex.
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corresponds to that for π−. Both distributions are given for sector 1

of CLAS and the range over momentum specified in the plots. The

solid black curves show the applied fiducial cuts.

Some additional inefficient areas, not related to the CLAS

geometrical acceptance, were revealed in this dataset. These

areas were typically caused by the DC and TOF system

inefficiencies (dead wires or PMTs). To exclude them from

consideration, additional fiducial cuts on the θ versus momen-
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FIG. 9. Fiducial cuts for positively charged particles. The top plot

shows the ϕ vs θ distribution for protons, while the bottom plot

corresponds to that for π+. Both distributions are given for sector

1 of CLAS and the range over momentum specified in the plots. The

solid black curves show the applied fiducial cuts.
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FIG. 10. θ vs momentum distribution for π+ in CLAS sector 1.

The angle θ was taken at the point of the interaction. The black curves

show the applied fiducial cuts.

tum distributions were applied, where θ was taken at the point

of the interaction. These cuts were different for each CLAS

sector. An example of the cut for a π+ in sector 1 of CLAS is

shown by the black curves in Fig. 10.

2. Data quality check

During a long experimental run, variations of the exper-

imental conditions, e.g., fluctuations in the target density or

changes in the response of parts of the detector, can lead to

fluctuations in event yields. Only the parts of the run with

relatively stable event rates should be considered. Therefore,

cuts on data acquisition (DAQ) live time and number of events

per Faraday cup (FC) charge need to be established.

The FC charge was updated with a given frequency, and

hence the whole run time could be divided into blocks. Each

block corresponded to the portion of time between two FC

charge readouts. The block number ranged from one to a certain

maximum number over the run time.

The DAQ live time is the portion of time within the block

during which the DAQ was able to accumulate events. A

significant deviation of the live time from the average value

indicates event rate alteration.

In Fig. 11, the number of blocks is shown as functions of

the DAQ live time and the yields of inclusive and elastic events

normalized to FC charge (from top to bottom). The blocks

between the vertical black lines in Fig. 11 were taken into

consideration.

3. Exclusivity cut

For picking out the reaction ep → e′p′π+π−, it is sufficient

to register two final-state hadrons along with the scattered

electron. The four-momentum of the remaining unregistered

hadron can be recovered using energy-momentum conserva-

tion (the “missing mass” technique). Thus one can distinguish
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FIG. 11. Data quality check plots. The number of blocks as a

function of the DAQ live time (top plot), and the yields of inclusive

(middle plot) and elastic (bottom plot) events normalized to FC charge

are shown. The vertical black lines show the applied cuts.

between four different event topologies depending on the

specific combination of registered final hadrons (X is the

undetected part):

(1) ep → e′p′π+X,

(2) ep → e′p′π−X,

(3) ep → e′π+π−X, and

(4) ep → e′pπ+π−X.

Because of the experimental conditions, topology 1 with a

π− missing contains about 50% of the total statistics, while

the remaining half of the total is relatively equally distributed

among the other topologies that require a π− detection. This

uneven distribution of the statistics between the topologies

originates from the fact that CLAS does not cover the polar

angle range 0 ◦ < θlab < 8 ◦ [5]. The presence of this forward

acceptance hole does not affect much the registration of the

positive particles (p and π+), since their trajectories are bent

by the magnetic field away from the hole, whereas the negative

particles (e and π−) are inbending so that their trajectories

are bent in the forward direction. Electrons, having generally

a high momentum, undergo small track curvature, and the

presence of the forward hole leads for them only to a constraint

on the minimal achievable Q2. However, for negative pions, the

situation is dramatic: Being heavier and slower, they are bent

dominantly into the forward detector hole and therefore most

of them cannot be detected. This leads to the fact that the π−

missing topology contains the dominant part of the statistics.

The topologies were defined so that they did not overlap. For

example, the topology ep → e′p′π+X required the presence

of e′, p′, and π+ candidates and the absence of π− candi-

dates, avoiding in this way double counting. In most of the

CLAS papers on double-pion electroproduction [8–10], only

topologies 1 and 4 were used. However, in this study all four

topologies were used in combination. This approach allowed

not only an increase of the analyzed statistics (about 50%),

but also population of events in a broader part of the reaction

phase space, since the topologies had nonidentical kinematic

coverage.

For the case when one of the final hadrons was not detected,

the missing mass MX for the reaction ep → e′h1h2X is

determined by

M2
X =

(

Pe + Pp − Pe′ − Ph1
− Ph2

)2
, (5)

where Ph1
and Ph2

are the four-momenta of the registered

final-state hadrons, Pe and Pp the four-momenta of the initial

state electron and proton, and Pe′ is the four-momentum of the

scattered electron.

For topology 4, the missing mass MX for the reaction ep →

e′p′π+π−X is given by

M2
X = (Pe + Pp − Pe′ − Pπ+ − Pπ− − Pp′ )2, (6)

where Pe, Pp, Pe′ , Pπ+ , Pπ− , and Pp′ are the four-momenta of

the initial- and final-state particles.

The distributions of the missing mass squared (M2
X) for

various topologies are shown in Fig. 12 for 1.675 GeV < W <

1.7 GeV in comparison with the Monte Carlo. The stars show

the experimental data, while the curves are from the simulation.

The plots in Fig. 12 represent the topologies 1 to 4 from

top to bottom. The arrows show the applied exclusivity cuts.

Each distribution in Fig. 12 is normalized to the corresponding

integral.

Figure 12 demonstrates good agreement between the exper-

imental and the Monte Carlo distributions, since the simulation

included both radiative effects and a background from other ex-

clusive channels. The former was taken into account according

to the inclusive approach [19]. The main source of the exclusive

background was found to be the reaction ep → e′p′π+π−π0.

The events for that reaction were simulated along with the

double-pion events, considering the ratio of three-pion/double-

pion cross sections taken from Ref. [20]. The simulation of

double-pion events was carried out based on the JM05 version

of double-pion production model [21–23], while for three-pion

events a phase space distribution was assumed.
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FIG. 12. Missing mass squared (M2
X) distributions for the four

event topologies for 1.675 GeV < W < 1.7 GeV and 0.45 GeV2 <

Q2 < 0.5 GeV2 in comparison with the Monte Carlo. The stars show

the experimental data, while the curves are from the simulation. The

plots show the topologies 1 to 4 from top to bottom. The arrows show

the applied exclusivity cuts. Each distribution is normalized to the

corresponding integral.

For the purpose of the cross section calculations, experi-

mental events from all four topologies were summed up in

each multi-dimensional bin. With respect to the simulation,

the reconstructed Monte Carlo events were also subject to the

same summation.

IV. CROSS SECTION CALCULATION

A. Kinematic variables

Once the selection of the double-pion events has been

carried out, the four-momenta of the final-state hadrons are

known (either detected or calculated as missing) and defined in

the laboratory frame that corresponds to the system where the

target proton is at rest and the axis orientation is the following:

zlab, along the beam; ylab, pointing upward with respect to the

Hall floor; and xlab, along [�ylab × �zlab].

The cross sections were obtained in the single-photon

exchange approximation in the center-of-mass frame of the

virtual photon–initial proton system (c.m.s.). The c.m.s. is

uniquely defined as the system where the initial proton and

the virtual photon exchanged in the scattering move towards

each other with the axis zc.m.s. along the photon and the net

momentum equal to zero. The axis xc.m.s. is situated in the

electron scattering plane, while yc.m.s. is along [�zc.m.s. × �xc.m.s.].

To transform the laboratory system to the c.m.s., two

rotations and one boost should be performed [17]. The first

rotation situates the axis x in the electron scattering plane. The

second one aligns the axis z with the virtual photon direction.

Then the boost along z is performed.

The kinematic variables that describe the final hadronic state

are calculated from the four-momenta of the final hadrons in

the c.m.s. [8,10]. The three-body final state is unambiguously

determined by five kinematic variables. Beside that, the vari-

ables W and Q2 are needed to describe the initial state.

There are several ways to choose the five variables for

the description of the final hadronic state. In this study, the

following generalized set of variables is used [8,10,11,17,24]:

(1) invariant mass of the first pair of hadrons Mh1h2
;

(2) invariant mass of the second pair of hadrons Mh2h3
;

(3) the first hadron solid angle �h1
= (θh1

, ϕh1
);

(4) the angle αh1
between the two planes (i) defined by

the three-momenta of the virtual photon (or initial

proton) and the first final-state hadron and (ii) defined

by the three-momenta of all final state hadrons (see the

Appendix).

The cross sections were obtained in three sets of variables

depending on various assignments for the first, second, and

third final hadrons:

(1) first p′, second π
+, third π

−:

Mp′π+ , Mπ+π− , θp′ , ϕp′ , αp′ (or α(pp′ )(π+π− )),

(2) first π
−, second π

+, third p′:

Mπ−π+ , Mπ+p′ , θπ− , ϕπ− , απ− (or α(pπ− )(p′π+ )), and

(3) first π
+, second π

−, third p′:

Mπ+π− , Mπ−p′ , θπ+ , ϕπ+ , απ+ (or α(pπ+ )(p′π− )).

B. Binning and kinematic coverage

The kinematic coverage in the initial-state variables is

shown by the Q2 versus W distribution in Fig. 13. The

distribution represents the number of exclusive double-pion

events left after the cuts and corrections described above. The

white boundary limits the analyzed kinematic area, where the

double-pion cross sections were extracted, and encompasses
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FIG. 13. Q2 versus W distribution populated with selected

double-pion events. The cross section was calculated in two-

dimensional (2D) cells within the white boundaries.

about 1.2 million events. The black grid demonstrates the

chosen binning in the initial-state variables.

The binning in the hadronic variables is listed in Table I.

It was chosen to maintain reasonable statistical uncertainties

of the single-differential cross sections for all W and Q2 bins.

The binning choice also takes into account the cross section

drop near the double-pion production threshold at ≈1.22 GeV,

as well as the broadening of the reaction phase space with

increasing W .

Special attention is required for the binning in the invariant

masses. The upper and lower boundaries of the invariant mass

distributions depend on the hadron masses and W as

Mlower = mh1
+ mh2

and

Mupper(W ) = W − mh3
, (7)

where mh1
, mh2

, and mh3
are the masses of the final hadrons.

Since the cross section is calculated in a bin Wleft < W <

Wright, the boundary of Mupper is not distinct. For the purpose

of binning in mass, the value of Mupper was calculated using

Wcenter, at the center of the W bin. As a result, some events with

W > Wcenter turned out to be located beyond Mupper. Hence, it

was decided to use a specific arrangement of mass bins with

the bin width �M determined as

�M =
Mupper(Wcenter) − Mlower

Nbins − 1
, (8)

where Nbins is the number of the bins specified in the first row

of Table I.

The chosen arrangement of bins forces the last bin to be

situated completely out of the boundaries given by Eq. (7) using

TABLE I. Number of bins for each hadronic variable.

Hadronic variable W range (GeV)

1.3–1.35 1.35–1.4 1.4–1.45 >1.45

M Invariant mass 8 10 12 12

θ Polar angle 6 8 10 10

ϕ Azimuthal angle 5 5 5 8

α Angle between planes 5 6 8 8

d
σ

d
M

h
1
h
2

MNbins−1

left Wleft − mh3
MNbins−1

right Wright − mh3
Mh1h2

Wleft < W < Wright

FIG. 14. Schematic representation of the invariant mass distri-

butions ending in Mupper calculated according to Eq. (7) for three

choices of W at Wleft (dot-dashed), Wcenter (solid), and Wright (dashed).

The black points at M
Nbins−1
left and M

Nbins−1
right show the left and right

boundaries of the next to last bin, respectively.

Wcenter. The cross section for this extra bin was very small, but

it was kept so that no events were lost. When integrating the

cross section over the mass distribution, these events in the

extra bin were included, but a cross section for this bin is not

reported.

The cross section in the next to last bin (labeled as bin

number Nbins − 1) should be treated carefully. This is best il-

lustrated in Fig. 14, which shows schematically the distribution

of events in mass, ending in Mupper for three choices of W

at Wleft (dot-dashed), Wcenter (solid), and Wright (dashed). The

black points at M
Nbins−1
left and M

Nbins−1
right show the left and right

boundaries of the next to last bin, respectively. In the next to

last bin events with W < Wcenter are distributed over a range,

which is less than �M defined by Eq. (8). However, when

extracting the cross sections, the event yield was divided by

the full bin width �M , thus leading to an underestimation of

the cross section.

The correction for this effect was made using the TWOPEG

double-pion event generator [25], because the statistics of the

experimental data were not sufficient for this purpose. The

correction factor to the cross section in the next to last bin is

the ratio of the simulated cross sections calculated with fixed

�M defined by Eq. (8) and with �̃M = W − mh3
− M

Nbins−1
left ,

which was different for each generated event. This factor

provided the correction to the cross section in the next to last

bin that varied from 5% to 10%.

In addition to the above procedure, one more binning issue

should be considered. The cross section extracted within the

bin in any kinematic variable was assigned to its central

point. In the areas with nonlinear cross section behavior, the

finite bin size caused the distortion of the cross section value

due to its averaging within the bin. To cure this effect, a

binning correction was applied that included a cubical spline

approximation for the cross section shape [17]. The typical

value of the correction was ∼1% rising up to 4% for some data

points at low W .

C. Cross section formula

In the single-photon exchange approximation, the virtual

photoproduction cross section σv (which is the focus of this

paper) is connected with the experimental electron scattering
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cross section σe via

d5σv

d5τ
=

1

Ŵv

d7σe

dWdQ2d5τ
,

d5τ = dMh1h2
dMh2h3

d�h1
dαh1

. (9)

Here d5τ is the differential of the five independent variables

of the final π+π−p state that were described in Sec. IV A, Ŵv

is the virtual photon flux given by

Ŵv(W,Q2) =
α

4π

1

E2
beamm2

p

W
(

W 2 − m2
p

)

(1 − εT)Q2
, (10)

where α is the fine structure constant (1/137), mp is the proton

mass, Ebeam = 2.039 GeV is the energy of the incoming elec-

tron beam, and εT is the virtual photon transverse polarization,

given by

εT =

[

1 + 2

(

1 +
ν2

Q2

)

tan2

(

θe′

2

)]−1

. (11)

Here ν = Ebeam − Ee′ is the virtual photon energy, while

Ee′ and θe′ are the energy and the polar angle of the scattered

electron in the laboratory frame, respectively.

The experimental electron scattering cross section σe intro-

duced in Eq. (9) was calculated as

d7σe

dWdQ2d5τ
=

1

ER

(

Nfull

Qfull
−

Nempty

Qempty

)

�W�Q2�5τ
(

lρNA

qeMH

) , (12)

where Nfull and Nempty are the numbers of selected double-

pion events inside the seven-dimensional bin for runs with

hydrogen and empty target, respectively. Each event was

weighted with the corresponding photoelectron correction

factor given by Eq. (3). Also Qfull = 5999.64 µC and Qempty =

334.603 µC are the values of the charge accumulated on the

Faraday cup for runs with hydrogen and empty target, respec-

tively, and qe = 1.6 × 10−19 C is the elementary charge, ρ =

0.0708 g/cm3 is the density of liquid hydrogen at a temperature

of 20 K, l = 2 cm is the length of the target, MH = 1.00794

g/mol is the molar density of the natural mixture of hydrogen,

and NA = 6.02 × 1023 mol−1 is Avogadro’s number.

In Eq. (12), E = E (�W,�Q2,�5τ ) is the detector effi-

ciency for the seven-dimensional bin coming from the Monte

Carlo simulation and R = R(�W,�Q2) is the radiative cor-

rection factor described in Sec. IV E.

The electron scattering cross section in the left-hand side of

Eq. (12) was assumed to be obtained in the center of the finite

seven-dimensional kinematic bin �W�Q2
�

5τ .

The limited statistics of the experiment did not allow

estimates of the five-fold differential cross section σv with a

reasonable accuracy. Therefore, being obtained on the multi-

dimensional grid, the cross section σv was then integrated

over at least four hadron variables. Hence only the sets of

the single-differential and fully integrated cross sections are

presented as a result here.

For each bin in W and Q2, the following cross sections were

obtained:

dσv

dMh1h2

=

∫

d5σv

d5τ
dMh2h3

d�h1
dαh1

,

dσv

dMh2h3

=

∫

d5σv

d5τ
dMh1h2

d�h1
dαh1

,

dσv

d
(

−cosθh1

) =

∫

d5σv

d5τ
dMh1h2

dMh2h3
dϕh1

dαh1
,

dσv

dαh1

=

∫

d5σv

d5τ
dMh1h2

dMh2h3
d�h1

, and

σ int
v (W,Q2) =

∫

d5σv

d5τ
dMh1h2

dMh2h3
d�h1

dαh1
. (13)

Since the cross sections were obtained on the five-

dimensional kinematic grid, integrals in Eq. (13) were cal-

culated numerically on that grid.

D. Efficiency evaluation

For the Monte Carlo simulation, the GENEV event gener-

ator [26] developed by Genova group was used. This event

generator uses the JM05 model [23] for the investigated

double-pion channel, while for the background channel ep →

e′p′π+π−π0, which was generated along with the main one,

GENEV assumes a phase-space distribution for all kinematic

variables. The simulation accounts for radiative effects accord-

ing to the approach described in Ref. [19].

The generated events were passed through the GEANT-

based detector simulation and reconstruction procedures. The

efficiency factor E from Eq. (12) was then calculated in each

�W�Q2
�

5τ bin as

E (�W,�Q2,�5τ ) =
Nrec

Ngen

, (14)

where Ngen is the number of generated double-pion events

(without any cuts) inside the multi-dimensional bin, while Nrec

is the number of reconstructed either double- or three-pion

events that survived in the bin after event selection. This

definition of the efficiency factorE accounted for the three-pion

background that was negligible at W < 1.6 GeV and increased

up to a few percent at W ≈ 1.8 GeV. The averaged (over all

analyzed multi-dimensional cells) value of the efficiency was

found to be about 11%.

Because of the blind areas in the geometrical coverage of

the CLAS detector, some kinematic bins of the double-pion

production phase space turned out to have zero acceptance.

In such bins, which are usually called empty cells, the cross

section cannot be experimentally defined. The empty cells

contribute to the integrals in Eq. (13) along with the other

kinematic bins. Ignoring the contribution from the empty

cells leads to a systematic cross section underestimation and,

therefore, some model assumptions for the cross section in

these cells are needed. This situation causes a slight model

dependence of the final result.

A special procedure was developed in order to take into

account the contributions from the empty cells to the integrals

in Eq. (13). The map of the empty cells was determined using

the Monte Carlo simulation. A cell was treated as empty, if it

contained generated events (Ngen > 0) but did not contain any

reconstructed events (Nrec = 0).

Additionally, the efficiency in some kinematic bins could

not be reliably determined due to boundary effects, bin-to-bin

event migration, and limited Monte Carlo statistics. Such

cells were excluded from consideration and also treated as
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FIG. 15. The number of five-dimensional cells plotted as a func-

tion of the relative efficiency uncertainty vs efficiency. The example

is given for one particular bin in W and Q2 (1.625 GeV < W <

1.65 GeV and 0.5 GeV2 < Q2 < 0.55 GeV2).

empty cells. They can be differentiated from the cells with

reliable efficiency by a larger relative efficiency uncertainty
δE
E

(absolute efficiency uncertainty δE is defined in Sec. IV F).

In order to determine the criterion for the cell exclusion, the

distribution shown in Fig. 15 was produced for each bin in W

and Q2. This figure gives the uncertainty δE
E

versus efficiency

E , showing the number of multi-dimensional cells. As is seen

in Fig. 15, cells with relative efficiency uncertainty greater than

30% are clustered along the horizontal stripes. This clustering

originates from the fact that efficiency was obtained by the

division of two integer numbers and reveals the bins with

small statistics of the reconstructed events. Moreover, these

horizontal stripes contain many cells with unreliable extremely

small efficiency. Therefore, the multi-dimensional bins that are

located above the horizontal line in Fig. 15 were excluded from

consideration and treated as empty cells.

Once the map of the empty cells was determined, the cross

section produced by the TWOPEG event generator [25] was

used as a model assumption for these kinematic bins. This

event generator employs the double-pion cross sections from

the recent version of the JM15 model fit to the data [8,9,13,27],

as well as the data [20,28] itself and up to now provides the

best cross section estimation in the investigated kinematic

region. Reference [25] describes in detail the approach used

in TWOPEG in order to estimate the cross sections.

Figure 16 introduces the single-differential cross sections

given by Eq. (13) extracted for three sets of the kinematic

variables described in Sec. IV A. The empty squares corre-

spond to the case when the contribution from the empty cells

was ignored, and the black circles are for the case when that

was taken into account in the way described above. The black

curves represent the TWOPEG cross sections that were used

as a model assumption. The figure demonstrates a reasonably

small contribution from the empty cells (and therefore a small

model dependence of the results) that was achieved using all

four available reaction topologies in combination. Only the

edge points in the θ distributions reveal pronounced empty cell

contributions due to the negligible or zero CLAS acceptance

in the corresponding directions. To account for the model

dependence, the part of the single-differential cross section

that came from the empty cells was assigned a 50% relative

uncertainty. The corresponding absolute uncertainty δmodel was

combined with the total statistical uncertainty, as was done in

Refs. [10,27].

E. Radiative correction

The radiative correction to the extracted cross sections was

performed using the TWOPEG event generator for the double-

pion electroproduction [25], which accounts for the radiative

effects by means of the well-known approach of Ref. [19]. This

approach has successfully proven itself as an efficient tool to

calculate inclusive radiative cross section from the nonradiative

one. In Ref. [19], the approach is applied to the inclusive

case, while in TWOPEG, the double-pion integrated cross

sections are used instead. The radiative photons are supposed

to be emitted collinearly either to the direction of the initial or

scattered electron (the so-called “peaking approximation”).

In Refs. [19,25], the calculation of the radiative cross

section is split into two parts. The “soft” part assumes the

energy of the emitted radiative photon to be less than a certain

minimal value (10 MeV), while the “hard” part is for the

photons with an energy greater than that value. The “soft”

part is evaluated explicitly, while for the calculation of the

“hard” part, an inclusive hadronic tensor is assumed. The latter

assumption is, however, considered adequate, since approaches

that are capable of describing radiative processes in exclusive

double-pion electroproduction are not yet available.

The radiative correction factor R in Eq. (12) was determined

in the following way. The double-pion events either with or

without radiative effects were generated with TWOPEG, and

then the ratio given by Eq. (15) was taken in each �W�Q2

bin.

R(�W,�Q2) =
N2D

rad

N2D
norad

, (15)

where N2D
rad and N2D

norad are the numbers of generated events

in each �W�Q2 bin with and without radiative effects,

respectively. Neither N2D
rad nor N2D

norad are subject to any cuts.

This approach gives the correction factor R only as a

function of W and Q2, disregarding its dependence on the

hadronic variables. However, the need to integrate the cross

section at least over four hadronic variables [see Eq. (13)]

considerably reduces the influence of the final-state hadron

kinematics on the radiative correction factor, thus justifying

the applicability of the procedure [19,25].

The quantity 1/R, which is averaged over all considered Q2

bins, is plotted in Fig. 17 as a function of W . The dependence

of the correction factor on Q2 was found to be negligible.

The uncertainties associated with the statistics of the generated

events are very small and therefore not seen in Fig. 17.
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FIG. 16. The extracted single-differential cross sections for the cases when the contribution from the empty cells was ignored (empty

squares) and when it was taken into account (black circles). The former are reported with the uncertainty δtot
stat given by Eq. (19) (it is smaller

than the symbol size), while the latter are with the uncertainty δtot
stat,mod given by Eq. (20). The curves show the TWOPEG cross sections that were

used as a model assumption for the empty cell contribution. All distributions are given for one particular bin in W and Q2 (W = 1.6125 GeV,

Q2 = 0.475 GeV2).

F. Statistical uncertainties

The limited statistics of both the experimental data and

the Monte Carlo simulation are two sources of statistical

fluctuations of the extracted cross sections. The cut on the

efficiency uncertainty described in Sec. IV D was chosen in

a way that the latter source gives a minor contribution to the

total statistical uncertainty.

The absolute statistical uncertainty to the five-fold differ-

ential virtual photoproduction cross section caused by the

statistics of the experimental data was calculated as

δ
exp
stat (�

5τ ) =
1

E

1

R

1

Ŵv

√

(

Nfull

Q2
full

+
Nempty

Q2
empty

)

�W�Q2�5τ
(

lρNA

qeMH

) . (16)

The absolute uncertainty to the cross section due to the

limited Monte Carlo statistics was estimated as

δMC
stat (�5τ ) =

d5σv

d5τ

(

δE

E

)

, (17)

where E is the efficiency inside the multi-dimensional bin de-

fined by Eq. (14), while δE is its absolute statistical uncertainty.

Because Ngen and Nrec in Eq. (14) are not independent, the

usual method of partial derivatives is not applicable in order

to calculate δE . Therefore, the special approach described in

Ref. [29] was used for this purpose. Neglecting the event

migration between the bins, this approach gives the follow-

ing expression for the absolute statistical uncertainty of the

efficiency:

δE =

√

(Ngen − Nrec)Nrec

N3
gen

. (18)

The two parts of the statistical uncertainty given by Eqs. (16)

and (17) were combined quadratically into the total abso-

lute statistical uncertainty to the cross section in the multi-

dimensional bin:

δtot
stat(�

5τ ) =

√

(

δ
exp
stat

)2
+

(

δMC
stat

)2
. (19)
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averaged over all considered Q2 bins.

The uncertainties δtot
stat for the extracted single-differential

cross sections were obtained from the uncertainties δtot
stat(�

5τ )

of the five-fold differential cross sections according to the

standard error propagation rules.

Finally for the single-differential cross sections, the total

statistical uncertainty δtot
stat was combined with the uncertainty

δmodel, which accounted for the model dependence of the results

that came from the empty cell contribution (see Sec. IV D):

δtot
stat,mod =

√

(

δtot
stat

)2
+ (δmodel)

2. (20)

G. Systematic uncertainties

The systematic uncertainties of the obtained results domi-

nate the statistical ones and originate from several sources.

The presence of the elastic events in the dataset helped with

the normalization verification of the extracted cross sections.

For this purpose, the elastic cross section was extracted and

compared with the parametrization [30], and a 3% fluctuation

was found. Therefore this value was included into the system-

atic uncertainty of the extracted double-pion cross sections as a

global factor. This factor takes into account inaccuracies in the

luminosity calculation (due to miscalibrations of the Faraday

cup, target density instabilities, etc.) as well as errors in the

electron registration and identification.

In order to study the systematic uncertainties, the double-

pion cross sections were obtained using an alternative method

of the topology combination. In contrast with the main method,

where events from all four topologies were summed up in each

multi-dimensional bin, the alternative one considers only those

events that come from the topology with the maximal efficiency

in the bin. The difference between the cross sections obtained

in these two ways was interpreted as a systematic uncertainty.

Since various topologies correspond to different detected final

hadrons, this uncertainty includes the errors due to the hadron

identification. This uncertainty was calculated for each bin in

W and Q2 and found to be of the order of 2%.

According to Sec. IV A, the double-pion cross sections

were extracted in three sets of the kinematic variables. The

difference between the cross sections obtained by integration

over these three kinematic grids was interpreted as a systematic

uncertainty. This uncertainty was computed for each bin in W

and Q2 and was typically of the order of 5%. For the final

results, the integrated cross sections averaged over these three

grids are reported.

As a common practice with CLAS [8,10], an extra 5%

global uncertainty was assigned to the cross section due to

the inclusive radiative correction procedure (see Sec. IV E).

The uncertainties due to the sources mentioned above

were summed up in quadrature to obtain the total systematic

uncertainty for the integrated double-pion cross sections.

The relative systematic uncertainty in each W and Q2 bin

can be propagated as a global factor to the corresponding

single-differential cross sections, which are reported with the

uncertainty δtot
stat,mod only [see Eq. (20)].

V. COMPARISON WITH THE MODEL AND PREVIOUSLY

AVAILABLE DATA

In Fig. 18, the W dependencies of the extracted integrated

cross sections of the reaction γvp → p′π+π− are shown by

the black circles for twelve bins in Q2. The gray shadowed

areas correspond to the total cross section uncertainty, which

is the uncertainty δtot
stat,mod given by Eq. (20) summed up in

quadrature with the total systematic uncertainty. The error bars

that correspond to the uncertainty δtot
stat,mod only are smaller than

the symbol size.

For each (W,Q2) point shown in Fig. 18, nine single-

differential cross sections [see Eq. (13)] are reported. An

example of these cross sections is presented in Fig. 19 for

the particular point W = 1.6375 GeV and Q2 = 0.525 GeV2,

where the black symbols are for the single-differential cross

sections, while the error bars show the uncertainty δtot
stat,mod.

The whole set of the extracted cross sections is available in

the CLAS physics database [6] and also on GitHub [7].

The extracted cross sections benefit from the minimal

statistical uncertainty and the minimal model dependence

among the previous studies of double-pion electroproduction

cross sections [8–10]. This was achieved due to the high

experimental statistics and the fact that four reaction topologies

were analyzed in combination.

A. Comparison with the model

A preliminary interpretation of the extracted cross sections

was based on the meson-baryon reaction model JM, which is

currently the only available approach for phenomenological

analysis of the double-pion electroproduction cross sections.

This model aims at extracting the resonance electrocouplings

as well as establishing the contributions from different reaction

subchannels and has proven itself as an effective tool for the

analysis of the experimental cross sections [11–13].

The preliminary interpretation of the results included the

estimations of the full double-pion cross sections (integrated

and single-differential), as well as their resonant parts. The

former is shown in Figs. 18 and 19 by the solid curves, while

the latter are shown by the dashed curves.

For this study, a fit of the obtained results within the

JM model was not performed, and therefore an estimation

of the full double-pion cross sections was obtained using
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obtained from TWOPEG [25], while the dashed curves correspond to the resonant contribution estimated within the unitarized Breit-Wigner
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the JM-model-based TWOPEG [25] event generator. This

generator employs the five-fold differential structure functions

from the recent version of the JM model fit to all existing

CLAS results on double-pion photo- and electroproduction

[8,9,13,27]. In the kinematic areas already covered by the

CLAS data, TWOPEG performs the interpolation of the model

structure functions and successfully reproduces the available

integrated and single-differential cross sections. In the areas

not yet covered by the CLAS data, special extrapolation

procedures have been applied that included additional world

data on the integrated photoproduction cross sections [20,28].

This event generator gives the absolute cross section values

(see Ref. [25] for details) that can be treated as a cross section

prediction. To perform a comparison with the reported cross

sections, TWOPEG predictions were adjusted to them using

their experimentally established Q2 dependence. The quality

of the description of the experimental results achieved in this

way is shown in Figs. 18 and 19 by the solid curves for the

integrated and single-differential cross sections, respectively.

The resonant contribution to the full cross section was

estimated using the unitarized Breit-Wigner ansatz of the

JM model [13]. The model considered that, in the inves-

tigated W range, the dominant part of the resonant con-

tribution to the cross section is formed by the following

nine resonances: P11(1440), D13(1520), S11(1535), S31(1620),

S11(1650), F15(1680), D33(1700), P13(1720), and P
′

13(1720),3

where P
′

13(1720) is a new potential candidate state [14].

The electrocouplings of these nine states in the investigated

Q2 range were evaluated using the functions of their Q2

dependences taken from the study [10]. These functions

were obtained as a polynomial fit of the available data on

the resonance electrocouplings including those at the photon

point [11,13,31–41]. Reference [10] describes in detail the

fit procedure. Because of the scarce data on electrocouplings

close to the photon point and the fact that the S1/2 does not

exist at the photon point, the fit for the S1/2 electrocoupling

of the resonances S31(1620), F15(1680), and P
′

13(1720) is

unreliable at Q2 � 0.6 GeV2. Therefore, for these three states

at Q2 � 0.6 GeV2, the constant value of the S1/2 taken at the

last available Q2 point was used.

Additionally, the states P33(1600), D15(1675), and

D13(1700),4 although giving an insignificant contribution

comparing with the nine resonances mentioned above, were

3In the updated PDG format N (1440)1/2+, N (1520)3/2−,

N (1535)1/2−, �(1620)1/2−, N (1650)1/2−, N (1680)5/2+,

�(1700)3/2−, N (1720)3/2+, and N ′(1720)3/2+, respectively.
4
�(1600)3/2+, N (1675)5/2−, and N (1700)3/2−, respectively.
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FIG. 19. The extracted single-differential cross sections (symbols) for one particular bin inW and Q2 (W = 1.6375 GeV, Q2 = 0.525 GeV2).

The error bars correspond to the uncertainty δtot
stat,mod given by Eq. (20). The solid curves are for the cross section prediction obtained from

TWOPEG [25], while the dashed curves correspond to the resonant contribution estimated within the unitarized Breit-Wigner ansatz of the JM

model [11,13] (see text for more details).

included into the calculations with the values of their electro-

couplings taken from the studies [11,23] for Q2 = 0.65 GeV2.

In order to partially take into account a contribution from

the tails of the high-lying states, the resonances F35(1905)

and F37(1950)5 were also introduced into the model with the

values of their electrocouplings taken from the study [23] for

Q2 = 0.65 GeV2. These two states give from 2% to 20% of the

total resonant contribution as W grows from 1.7 to 1.8 GeV.

For all resonance states, the unitarized Breit-Wigner ansatz

[13] was used and the hadronic decay widths to the π� and

ρp final states were taken from Ref. [11].

The estimation for the resonant part of the cross section is

shown by the dashed curves in Figs. 18 and 19 for the integrated

and single-differential cross sections, respectively. The relative

5
�(1905)5/2+ and �(1950)7/2+, respectively.

resonant contribution to the integrated cross section is shown

in Fig. 20 as a function of Q2 for various ranges in W . It

was obtained as the ratio of the evaluated resonant part to

the TWOPEG estimation for the full cross section. Figure 20

demonstrates the growth of the relative resonant contribution

with increasing W , consistent with previous studies [11,12].

For small W ∼ 1.45 GeV, this contribution stays on a level

of 20%, while at higher W ∼ 1.75 GeV it reaches 70%.

The resonant contribution at W ∼ 1.75 GeV is somewhat

underestimated, since the resonances with masses above 1.8

GeV were not fully taken into account in this estimation.

The estimated resonant part of the cross section depends

on the assumption for the Q2 behavior of the resonance

electrocouplings. Since a fit within the JM model was not

performed, the uncertainty for this estimation can hardly be

evaluated explicitly. A recent JM model fit of the data [10]

gives an uncertainty for the resonant part of about 6%.
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double-pion cross section as a function of Q2 (see text for details).

The different symbols connected with lines correspond to different

W ranges.

B. Previously available data

In Fig. 21, the extracted integrated double-pion cross

sections are compared with the available data [8]. The cross

sections [8] were obtained with a 1.515-GeV electron beam en-

ergy, which is different from that of the data reported here. This

introduces a small systematic distortion into the comparison

caused by a beam energy dependence of the longitudinal cross

section part. The kinematic coverages of these two datasets

overlap only in three bins in Q2. Meanwhile, the cross sections

presented here should be treated as more reliable, since they

were extracted with a more advanced technique—i.e., the

combination of all four available topologies was used instead

of only two in Ref. [8], the map of the empty cells was better

determined using the cut on the efficiency uncertainty, the

contribution from the empty cells was accounted for by the

advanced method using TWOPEG [25], and furthermore, finer

binning in the hadronic variables was achieved. Nevertheless,

Fig. 21 demonstrates reasonable agreement between these two

sets of the cross sections within the total uncertainties.

VI. CONCLUSIONS AND OUTLOOK

In this paper, new results on the integrated and single-

differential cross sections of the reaction γvp → p′π+π−

at W from 1.3 to 1.825 GeV and Q2 from 0.4 to 1 GeV2

are reported. The results are a significant improvement over

previously available data [8,9] in this kinematic region due

to the extension in the W coverage and due to the in-

creased statistics, thereby achieving a finer binning in Q2

(0.05 GeV2). The whole set of the obtained cross sections

is available in the CLAS physics database [6] and also on

GitHub [7].

The kinematic coverage of the extracted cross sections

overlaps with that of the previously available results [8] in

three Q2 points 0.475, 0.525, and 0.575 GeV2 for W from 1.3

to ≈1.5 GeV. In this region of overlap, the two cross section sets

were found to be in agreement, as Fig. 21 demonstrates. The

double-pion cross sections reported in Ref. [9] also partially

overlap with the results presented here, but since they were

obtained in much wider Q2 bins, a comparison with them is

not straightforward.

The cross section extraction procedure has some improve-

ments in comparison with previous studies [8–10]. An original

method of revealing cells with unreliable efficiency via a cut

on the relative efficiency uncertainty was applied. The cross

sections in kinematic cells with zero acceptance were estimated

using a recently developed event generator TWOPEG [25].

All available reaction topologies were combined together to

minimize statistical uncertainties as well as the contribution

from kinematic cells with zero acceptance, in this way achiev-

ing a very modest model dependence of the obtained cross

sections.

The obtained cross sections are compared with the pre-

dictions of the JM-model-based TWOPEG event generator,

which currently provides the best double-pion cross section

estimation in the investigated kinematic region. The compar-

isons presented in Figs. 18 and 19 show reasonably good

agreement between the TWOPEG estimations (solid curves)

and the experimental cross sections (symbols). The resonant

contributions to the cross section (dashed curves in Figs. 18

and 19) were evaluated using the unitarized Breit-Wigner

ansatz of the JM model, which includes all well-established

resonances in amplitude form. This estimation shows a sizable

resonant contribution (see Fig. 20) that indicates the possibility

of reliable extraction of the resonance electrocouplings.

The experimental results presented here will be further

analyzed within the framework of the reaction model JM
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FIG. 21. The W dependencies of the extracted cross sections (black circles) in comparison with the available data [8] (open squares) for

three points in Q2. The total cross section uncertainty (which includes both systematic and statistical uncertainties) is shown by the gray

shadowed area for the new results (“e1e”), while for the results from Ref. [8] (“e1c”) it is shown by the bands.
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[11–13]. This analysis will eventually allow a determination

of the Q2 evolution of the electrocouplings of most nucleon

resonances with masses up to ∼1.8 GeV for photon virtualities

Q2 from 0.425 to 0.975 GeV2. For those resonances with mass

greater than 1.6 GeV, which decay preferentially to the pπ+π−

final state, this information will be obtained for the first time.

These efforts are under way and the results will be presented

in a future publication on the subject.
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APPENDIX: THE DEFINITION OF THE ANGLE α

The calculation of the angle απ− from the second set

of hadron variables mentioned in Sec. IV A is given below.

The angles αp′ and απ+ from the other sets of variables are

calculated analogously [17].

A

B

π+

p
p

βπ−

δ
γ απ−

e
γ

e

FIG. 22. Definition of the angle απ− . The plane B is defined by the

three-momenta of all final-state hadrons, while the plane A is defined

by the three-momenta of the π− and initial proton. The definitions of

the auxiliary vectors �β, �γ , and �δ are given in the text.

The angle απ− is the angle between the two planes A and

B (see Fig. 22). The plane A is defined by the initial proton

and π−, while the plane B is defined by the momenta of all

final-state hadrons. Note that the three-momenta of the π+,

π−, and p′ are in the same plane, since in the c.m.s. their total

three-momentum has to be equal to zero.

To calculate the angle απ− , first two auxiliary vectors �γ

and �β should be determined. The vector �γ is the unit vector

perpendicular to the three-momentum �Pπ− , directed toward

the vector (−�nz) and situated in the plane A. �nz is the unit

vector directed along the z axis. The vector �β is the unit vector

perpendicular to the three-momentum of the π−, directed

toward the three-momentum of the π+ and situated in the plane

B. The angle between the two planes απ− can be calculated as

απ− = arccos( �γ · �β ), (A1)

where arccos is a function that runs between zero and π , while

the angle απ− may vary between zero and 2π . To determine the

α angle in the range between π and 2π , the relative direction

between the π− three-momentum and the vector product
�δ = [ �γ × �β] of the auxiliary vectors �γ and �β should be taken

into account. If the vector �δ is collinear to the three-momentum

of the π−, the angle απ− is determined by Eq. (A1), and in the

case of anticollinearity by

απ− = 2π − arccos( �γ · �β ). (A2)

The defined above vector �γ can be expressed as

�γ = aα (−�nz) + bα �nPπ− with

aα =

√

1

1 −
[

�nPπ− · (−�nz)
]2

and

bα = −
(

�nPπ− · (−�nz)
)

aα , (A3)

where �nPπ− is the unit vector directed along the three-

momentum of the π− (see Fig. 22).

Taking the scalar products ( �γ · �nPπ− ) and ( �γ · �γ ), it is

straightforward to verify that �γ is the unit vector perpendicular

to the three-momentum of the π−.

The vector �β can be obtained as

�β = aβ �nPπ+ + bβ �nPπ− with

aβ =

√

1

1 − (�nPπ+ · �nPπ− )2
and

bβ = −(�nPπ+ · �nPπ− )aβ , (A4)

where �nPπ+ is the unit vector directed along the three-

momentum of the π+.

Again taking the scalar products ( �β · �nPπ− ) and ( �β · �β ), it

is straightforward to see that �β is the unit vector perpendicular

to the three-momentum of the π−.

Further detailed information about the kinematics of the

reactions with three-particle final states can be found in

Ref. [24].
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