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Abstract

The need for effective simulation methods for directional distributions has grown

as they have become components in more sophisticated statistical models. A new

acceptance-rejection method is proposed and investigated for the Bingham distribu-

tion on the sphere using the angular central Gaussian distribution as an envelope. It

is shown that the proposed method has high efficiency and is also straightforward to

use. Next, the simulation method is extended to the Fisher and Fisher-Bingham dis-

tributions on spheres and related manifolds. Together, these results provide a widely

applicable and efficient methodology to simulate many of the standard models in di-

rectional data analysis. An R package simdd, available in the online supplementary

material, implements these simulation methods.

Keywords: acceptance-rejection, angular central Gaussian distribution, Bingham distribu-
tion, bivariate von Mises sine distribution, matrix Fisher distribution, simulation efficiency.
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1 Introduction

Directional data analysis is concerned with statistical analysis on various non-Euclidean

manifolds, starting with circle and the sphere, and extending to related manifolds. Com-

prehensive monographs are available for statistical analysis in this setting; see, e.g., Fisher

et al. (1987), Mardia & Jupp (2000), Chikuse (2003). However, the subject of simulation

has received much less coverage, with the key contributions scattered through the literature.

The need for effective simulation methods has grown in recent years as directional

distributions have become components in more sophisticated statistical models, which are

studied using MCMC methods. For example, Green & Mardia (2006) used the matrix

Fisher distribution for random 3 × 3 rotation matrices in a Bayesian model to align two

unlabelled configurations of points in R
3, with an application to a problem of protein

alignment in bioinformatics.

In general there exist suitable direct methods of simulation, especially methods based

acceptance rejection, for the simpler directional models. However, it is necessary to resort

to cumbersome MCMC methods for the more complicated distributions. The purpose of

this paper is to extend availability of acceptance rejection methods to a wider class of

directional distributions. The starting point is a new acceptance rejection method for the

Bingham distribution, which can then be used as a building block in a wider range of

applications.

The paper is organized as follows. Following some background and preparation in

Section 2, the new acceptance rejection simulation method for the Bingham distribution is

proposed and analyzed in Section 3. Extensions and special cases are covered in Sections

4–7. Section 8 sets the results of this paper in context by reviewing the literature and

summarizing the best available methods in different settings. Some uses of this simulation

methodology are explored in Section 9. Earlier versions of this work appeared in Kent &

Ganeiber (2012) and Kent et al. (2012).

The unit sphere Sq−1 = {x ∈ R
q : xTx = 1}, q ≥ 2, comprises the unit vectors in

R
q. The surface area of Sq−1 is given by πq = 2πq/2/Γ(q/2) and the differential element of

surface area can be written as [dx]. Thus the uniform distribution on Sq−1 can be written

as π−1
q [dx]. A more explicit formula can be given using polar coordinates. For example, the
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circle S1 can be parameterized by θ ∈ [0, 2π) with uniform measure dθ/(2π). The sphere S2

can be parameterized by colatitude θ ∈ [0, π] and longitude [0, 2π) with uniform measure

sin θdθdφ/(4π). (1.1)

Strictly speaking a probability density on a manifold is a density with respect to an

underlying measure. In Euclidean space R
p the underlying measure is usually taken to be

Lebesgue measure dx without explicit comment. But on non-Euclidean manifolds more

care is needed. This paper is concerned with spheres and related compact manifolds for

which there is a natural underlying uniform measure with a finite total measure. To avoid

repeated occurences of normalizing constants such as πq and differential elements such as

[dx], all such probability densities will be expressed with respect to the uniform distribution.

Thus we will write the density for the uniform distribution on S2 as f(x) = 1 (with respect

to itself) rather than as f(x) = 1/(4π) (with respect to [dx]) or as f(x) = sin θ (with

respect to dθdφ).

2 Background

Recall the acceptance-rejection method of simulation. Consider two densities,

f(x) = cff
∗(x), g(x) = cgg

∗(x) (2.1)

where f ∗ and g∗ are known functions, but where the normalizing constants may or may

not have a known explicit form. Suppose it is possible to simulate easily from g, known

as the envelope, and it is desired to simulate observations from f . The key requirement is

that there is a known bound of the form

f ∗(x) ≤ M∗g∗(x) for all x (2.2)

for some finite constant M∗. The acceptance-rejection algorithm proceeds as follows.

Step 1. Simulate X ∼ g independently of W ∼ Unif(0, 1).

Step 2. If W < f ∗(X)/{M∗g∗(X)}, then accept X.
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Step 3. Otherwise go back to step 1.

Comments

(a) If we set M = cfM
∗/cg, then (2.2) can be expressed equivalently as f(x) ≤ Mg(x)

for all x.

(b) The bound M satisfies M ≥ 1. The number of trials needed from g is geometrically

distributed with mean M ≥ 1. The efficiency is defined by 1/M . For high efficiency

the bound M should be as close to 1 as possible.

(c) The algorithm can be used even if the normalizing constants do not have a known

explicit form. However, to compute the efficiency analytically, it is necessary to know

the normalizing constants.

(d) Suppose the density g(x) = g(x; b) depends on a parameter b with corresponding

bound M∗(b) in (2.2). If the normalizing constant cg = cg(b) has a known explicit

form, then it is possible to maximize the efficiency with respect to b, even if cf does

not have a known explicit form.

When developing acceptance-rejection simulation methods for directional distributions,

there are several issues to consider:

• the need for good efficiency for a wide range of concentration parameters for f ,

ranging from uniform to highly concentrated. In similar problems on R
p, the task is

simpler when distributions are closed under affine transformations; in such cases it is

sufficient to consider just a single standardized form of the distribution for f .

• the challenge in finding a tractable envelope distribution.

• the presence of trigonometric factors in the base measure when expressed in polar

coordinates, such as in (1.1).

The basic strategy in this paper is to bound certain exponential family densities using

tractable densities with heavier tails. A simple example in Euclidean space is given by the

multivariate normal density, which can be bounded using the multivariate Cauchy density.
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Figure 1: (a) The modified log function φ(u) in (2.3) (solid line) with q = 2. The upper

bound of 0 (dashed line) is attained when u = 1/2. (b) Scaled Cauchy envelope (solid line)

for a scaled normal density (dashed line) in p = 1 dimension. The two curves touch at

x = ±1.

This example is important both the illustrate the general procedure and to set the scene

for the Bingham distribution in the next section.

To develop a bound for the normal density, consider first a version of the log function,

which has been modified to simplify a later inequality,

φ(u) =
q

2
log(1 + 2u/b)− u− q

2
log(1 + 2u0/b) + u0, u ≥ 0, (2.3)

where q ≥ 2 and 0 < b < q are fixed constants and u0 = (q − b)/2. The last two terms

on the righthand side of (2.3) are constants, chosen so that φ(u0) = 0. The value of u0 is

chosen so that the function q
2
log(1 + 2u/b) has slope 1 at u = u0; hence φ′(u0) = 0. Also

note that φ′′(u) < 0 for u ≥ 0 so that φ(u) is a concave function. Therefore, φ(u) ≤ 0 for all

u ≥ 0; see Figure 1(a). After exponentiating, the inequality φ(u) ≤ 0 can be re-arranged
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Table 1: Efficiency 1/M , where M is given in (2.7), of the A/R simulation method for

the multivariate normal distribution in p dimensions using a multivariate Cauchy envelope.

Here q = p+ 1.

p 1 2 3 4 5 10 50 100

q 2 3 4 5 6 11 51 101

eff. 66% 52% 45% 40% 36% 26% 12% 9%

as

e−u ≤ e−(q−b)/2

(

q/b

1 + 2u/b

)q/2

. (2.4)

The multivariate normal distribution Np(0,Σ) has density

f(x; Σ) = f(x) = cff
∗(x), f ∗(x) = exp(−1

2
xTΣ−1x), cf = cf (Σ) = |2πΣ|−1/2, (2.5)

for x ∈ R
p. The multivariate Cauchy distribution Cp(0,Ψ) has density

g(x; Ψ) = g(x) = cgg
∗(x), g∗(x) = (1 + xTΨ−1x)−q/2, cg = cg(Ψ) =

Γ(q/2)

πq/2
|Ψ|−1/2, (2.6)

(Mardia et al. 1979, p. 57), where here and elsewhere q = p+ 1.

If we set Ψ = bΣ so that the scatter matrix for the Cauchy is a scalar multiple of the

covariance matrix for the normal, and if we set u = 1
2
xTΣ−1x, then the inequality (2.4)

leads to a bound on the densities, f(x; Σ) ≤ M(b)g(x; Ψ), with

M(b) = 2−(q−1)/2qq/2e−q/2π1/2b−1/2eb/2/Γ(q/2).

Minimizing over 0 < b < q yields the optimal parameter b = 1 with optimal bound

M = M(1) =
√
2πe

( q

2e

)q/2
/

Γ(q/2). (2.7)

Figure 1(b) illustrates the comparison between the two densities. Table 1 gives a collection

of efficiencies 1/M as a function of dimension p. For large p, M ∼
√

pe/2 by Stirling’s

formula.

Note that the efficiency declines slowly with the dimension, but is still high enough to

be feasible even for dimension p = 100. Of course, this is just a toy example since there

are better ways to simulate the normal distribution. However, it is important for the next

section, both as a motivating example and as a limiting case.
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3 The key building block: simulating the Bingham

distribution

For the purposes of this paper, the starting point for the simulation of directional distri-

butions is the Bingham distribution. In this section we describe the “BACG” acceptance

rejection method to simulate the Bingham distribution using the angular central Gaussian

distribution as an envelope. In later sections, we show how the simulation of the Bingham

distribution can be used as a building block to simulate other directional distributions.

The Bingham distribution, Bingq−1(A) on Sq−1, q ≥ 2, where the parameter matrix A

is q × q symmetric, has density

fBing(x) = cBingf
∗

Bing(x), f ∗

Bing(x) = exp(−xTAx). (3.1)

Note the distribution is antipodally symmetric, f(x) = f(−x). The normalizing constant

cBing = cBing(A) can be expressed as a hypergeometric function of matrix argument (Mardia

& Jupp 2000, p. 182), but is not sufficiently tractable to be of interest here. The use of

a minus sign in the exponent is unconventional but simplifies later formulae. Since A and

A+ cI define the same distribution for any real constant c, we may assume without loss of

generality that the eigenvalues of A satisfy

0 = λ1 ≤ λ2 ≤ · · · ≤ λq. (3.2)

In q = 3 dimensions, this distribution can exhibit isotropic bipolar behavior (0 = λ1 < λ2 =

λ3), girdle behavior (0 = λ1 = λ2 < λ3), and intermediate behavior. Provided λ1 < λ2

the density is unimodal in terms of the axis ±x (or equivalently, bimodal in terms of the

direction x), with the mode lying along the axis given by the eigenvector for the eigenvalue

λ1. See Section 5.1 for more about the distinction between a direction and an axis.

The angular central Gaussian distribution, ACG(Ω) on Sq−1, where the parameter ma-

trix Ω is q × q symmetric positive definite, takes the form

fACG(x) = cACGf
∗

ACG(x), f ∗

ACG(x) =
(

xTΩx
)−q/2

, cACG = |Ω|1/2. (3.3)

The angular central Gaussian distribution is simple to simulate. If y ∼ Nq(0,Σ), where Σ

is positive definite, then x = y/||y|| ∼ ACG(Ω) with Ω = Σ−1 (e.g., Mardia & Jupp 2000,

p. 182).
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Setting u = xTAx in (2.4) and setting Ω = Ω(b) = I +2A/b, b > 0, yields the following

envelope inequality on the starred densities,

f ∗

Bing(x) = e−u

≤ e−(q−b)/2

(

q/b

1 + 2xTAx/b

)q/2

= e−(q−b)/2

(

q/b

xTΩx

)q/2

= e−(q−b)/2(q/b)q/2f ∗

ACG(x),

(3.4)

using the constraint xTx = 1. The corresponding bound M(b) takes the form

M(b) = cBinge
−(q−b)/2(q/b)q/2|Ω(b)|−1/2. (3.5)

Since |Ω(b)| =
∏q

i=1(1 + 2λi/b), the function logM(b) and its first two derivatives take

the form

logM(b) =
1

2
b− 1

2

q
∑

i=1

log(b+ 2λi) + const.,

{logM(b)}′ = 1

2
− 1

2

q
∑

i=1

(b+ 2λi)
−1,

{logM(b)}′′ = 1

2

q
∑

i=1

(b+ 2λi)
−2,

where prime denotes differentiation. Note {logM(b)}′′ > 0; hence logM(b) is convex for

b ∈ (0,∞). Since {logM(b)}′ increases monotonically from −∞ to 1/2 as for b ∈ (0,∞), it

follows that the equation {logM(b)}′ = 0 has a unique solution b0, say, which is therefore

the unique minimum of logM(b). The equation {logM(b0)}′ = 0 can be rewritten as

q
∑

i=1

1

b0 + 2λi

= 1. (3.6)

It is not difficult to check that 1 ≤ b0 ≤ q.

Let M(b0) denote the optimal bound. Curiously, the same value of b0 also appears

in the saddlepoint approximation of Kume & Wood (2005) for the Bingham normalizing

constant (where b here is the same as −2t there), and leads to the approximate formula,

M̂(b0) =
2π1/2

Γ(q/2)

( q

2e

)q/2

Q1/2, Q =

q
∑

i=1

1

(b0 + 2λi)2
. (3.7)
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Caution is needed with this approximation because it is not exact in either the limiting

case of uniformity or the limiting case of high concentration. For the parameter values in

Table 2, the saddlepoint approximation overestimates the efficiency by between 4% and

9%.

However, it is possible to say exactly what happens in the limiting cases. If all the λi

converge to 0, then b converges to q. Both the Bingham density and the ACG envelope

converge to the uniform distribution and the efficiency converges to 1.

To deal with the high concentration case, it is simplest to replace A in (3.1) by βA and

think of A as a fixed matrix as β > 0 gets large. Provided the q − 1 largest eigenvalues of

A are strictly positive, the ACG distribution (restricted to a hemisphere about the mode)

converges to a (q − 1)-dimensional multivariate Cauchy distribution, the Bingham distri-

bution converges to a (q− 1)-dimensional multivariate normal distribution, b0 converges to

1 and the bound M(b0) converges to the bound (2.7), with p = q − 1.

Empirically, it has been noticed that the limiting case is the worst possible case. For

smaller values of the concentration matrix A, the efficiencies will be higher. The lefthand

column of Table 2 illustrates the pattern for q = 3. The efficiency is never lower than

52%, the value from Table 1 for p = 2. This limiting value is attained in the concentrated

bipolar case (when λ2 = λ3 is large). The girdle case (λ2 = 0) has higher efficiencies.

Similar conclusions are reached from the righthand side of Table 2 for q = 4. The efficiency

is never lower than 45%, the value from Table 1 for p = 3. Each entry in this table has

been constructed from one million simulations, so that the standard errors are negligible.

This general pattern persists for higher values of q. The efficiency lies between the entry

in Table 1 under high concentration and 1 under uniformity. Other than the slow decline

in efficiency under high concentration as q increases and questions of computer storage,

there seems to be no upper bound to the feasible values of q. For example, we have found

no problems for q = 1000.

4 The Fisher-Bingham model on Sq−1

Simulation of the Bingham distribution is important in its own right. However, it can also

serve as a building block to simulate a wider class of directional distributions, both on the

9



Table 2: Efficiency of the BACG A/R simulation method on S2 with A = diag(0, λ2, λ3),

and on S3 with A = diag(0, λ2, λ3, λ4), for the Bingham distribution with an ACG envelope.

Efficiency on S2 Efficiency on S3

λ2 λ3 Efficiency λ2 λ3 λ4 Efficiency λ2 λ3 λ4 Efficiency

0 0 100% 0 0 0 100% 0 100 100 69%

0 10 84% 0 0 10 89% 10 10 10 53%

10 10 58% 0 0 100 86% 10 10 100 50%

0 100 80% 0 10 10 75% 10 100 100 48%

100 100 53% 0 10 100 72% 100 100 100 45%

sphere and on related manifolds. For each of these manifolds there is a unique invariant

measure which can be used to define a uniform distribution.

This section focuses on the Fisher-Bingham distribution on Sq−1 with density

f ∗

FB(x) = exp(κµT
0 x− xTAx) = exp{κ(µT

0 x− xTA∗x)}, (4.1)

where κ > 0, µ0 ∈ Sq−1 and A(q× q) is symmetric. Without loss of generality the smallest

eigenvalue of A can be taken equal to 0. In the second form, κ has been factored out of

the exponent, with A∗ = A/κ; this form will be useful when considering efficiency in the

limiting case κ → ∞ with A∗ held fixed.

The full FB family is too general to be of much interest statistically; practical interest

is centered on various special cases of the aligned Fisher-Bingham family, for which µ0 is

an eigenvector of A. For this paper we are interested in distributions with a unique mode

at x = µ0, which from the Appendix occurs if and only if I + 2A∗ is positive semi-definite.

When studying simulation efficiency, it is also important to distinguish the nonsingular

case (where I + 2A∗ is positive definite) from the singular case (where I + 2A∗ has some

zero eigenvalues).

Important examples of unimodal aligned models include the following, with some sim-

ulated patterns given in Figure 2. For theoretical purposes, the aligned models are easiest

to describe if the coordinate system is rotated so that µ0 = [1, 0, . . . , 0]T lies on the first

coordinate axis and A = diag(λ1, . . . , λq) is diagonal.
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Simulated Fisher distribution

(a)

●

●

●

●

●

●

●

●

●

●

● ●●
● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

● ●

●
●

●

●
●

● ●

●
●●

●
●

●

●

●

●
●

●

●
●

●

●●
●

●
●● ●

●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

● ●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●
●

●
●
●

●

●
● ●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●
●

● ●

●
●

●
●

●

● ●

●●
●

●

●●

●

●

●
● ●● ● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●●●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●
●

●

●

● ●

●

●
●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

● ●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●
●

●●●

●

●●
●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●
● ●

●

●

● ●
●

●

● ●●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●●
●

●

● ●

●

●

●

●

●
●

● ●
●

● ●
●

●
●

●
●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●● ●●●

●

●
●

●

●

● ●●

●

●

●

●

●

●
●

●

● ●●
● ● ●

●
●

●

●

● ●

●

●

●

●
●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●
●

● ●

●

●●
●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●
●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●
●

●
● ●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●● ●
●

●

●

●

●● ●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●
● ●

●

●

●

●

● ●●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●
●

Simulated Bingham distribution
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Simulated Kent distribution

(c)
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Simulated FB5e distribution

(d)

Figure 2: Simulated point clouds for various distributions on S2. (a) Fisher distribution;

(b) Bingham distribution; (c) balanced 5-parameter Fisher-Bingham(FB5b or Kent) dis-

tribution; (d) extreme FB5 (FB5e) distribution. Points in gray lie on the opposite side of

the sphere.

• If A = 0 the model reduces to the von Mises (q = 2), the Fisher (q = 3), or the von

Mises-Fisher (any q ≥ 2) distribution. This model is the spherical analogue of the

isotropic (q − 1)-dimensional normal distribution.
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• The case λ1 = 0,
∑q

j=2 λj = 0 is known as the Kent distribution. On S2, it is also

known as the balanced 5-parameter Fisher-Bingham (FB5b) distribution (Kent 1982).

If max |λj| < κ/2, the distribution is nonsingular unimodal and forms a spherical ana-

logue of the general (q − 1)-dimensional normal distribution. The adjective balanced

has been added recently to distinguish this model from the following choice.

• On S2 the case λ1 = λ2 = 0, λ3 = δ ≥ 0 is known as the extreme FB5 (FB5e)

distribution (Kent et al. 2016) and is always nonsingular unimodal. It is also a

spherical analogue of the general bivariate normal distribution, but is better than

the balanced model at describing unimodal behaviour closely concentrated near a

great circle. For an application see Section 9.2.

The proposed simulation method is defined for any model in the full Fisher-Bingham

family. To describe the method, start with the von Mises-Fisher density (4.1) with A = 0.

The elementary inequality (1− y)2 ≥ 0, with y = xTµ0, can be re-arranged to give

f ∗

F(x) ≤ exp
[

(κ/2)
{

(

xTµ0

)2
+ 1

}]

= exp
{

κ− (κ/2) xTAx
}

= eκf ∗

Bing(x),

(4.2)

where A = Iq −µ0µ
T
0 . Hence an acceptance rejection simulation method for the von Mises-

Fisher distribution can be constructed using a Bingham envelope.

The two sides of (4.2) match when x = µ0 so that it is not possible to get a tighter

bound. In relative terms, the two starred densities are maximally different when x = −µ0.

This difference matters most when κ is large, when the efficiency of acceptance-rejection

with a Bingham envelope drops to 50%; the efficiency rises to 100% as κ → 0. Empirically

the efficiency lies between these two extremes for intermediate values of κ.

The inequality (4.2) can be combined with Section 3 to provide a method to simulate

the von Mises-Fisher distribution with an ACG envelope. Of course there is no need for a

new method for the von Mises-Fisher distribution. Good methods are already available; see

the Section 8 for a discussion. However, the bounds of this section can be combined with

the previous section to simulate the Fisher-Bingham distribution with an ACG envelope.
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The Fisher-Bingham density in (4.1) can be bounded by a Bingham density

f ∗

FB(x) ≤ exp(κ− xTA(1)x),

where A(1) = A + (κ/2)(I − µ0µ
T
0 ). Then Section 3 can be used to bound this Bingham

density by an ACG density. We shall call the resulting acceptance-rejection algorithm the

FBACG algorithm. Some comments on efficiency are given in Section 8.

5 Special cases of the Bingham distribution

There are a number of “accidental isomorphisms” in differential geometry in which a quo-

tient manifold becomes identified with another familiar manifold through a quadratic map-

ping. These isomorphisms are called “accidental” because there does not seem to be any

systematic pattern. In each case the uniform distribution on the first manifold maps to the

uniform distribution on the new manifold, and the Bingham distribution maps to a distri-

bution related to the von Mises-Fisher distribution on the new manifold. The implications

for simulation are laid out in the next subsections.

5.1 RP1 = S1

Real projective space is defined as the quotient space RPq−1 = Sq−1/{1,−1} in which two

antipodal points or “directions” ±x are identified with one another to represent the same

“axis”. Since the Bingham and ACG densities have the property of antipodal symmetry,

f(x) = f(−x), they can also be viewed as densities on RPq−1.

Next specialize to the circle S1. A point on the circle can be represented by an angle

θ ∈ [0, 2π) or in Euclidean coordinates x = (x1, x2)
T where x1 = cos θ, x2 = sin θ. Consider

a two-to-one map from S1 to a new circle defined by φ = 2θ, with Euclidean coordinates

y = (y1, y2)
T where y1 = cosφ = x2

1 − x2
2, y2 = sinφ = 2x1x2. Note that the antipodal

directions θ, θ+π map to the same value of φ, so that the map is in fact a one-to-one map

between RP1 and S1. A quadratic form in x can be rewritten as

xTAx =
1

2
(a11 − a22)y1 + a12y2 +

1

2
(a11 + a22),
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which is a linear function of y. Hence a Bingham distribution, whose density is quadratic

in x on RP1 can be identified with a von Mises distribution, whose density is linear in y,

on S1. Similarly, in the ACG density the quadratic form xTΩx becomes a linear function

of y, so the density in y reduces to the wrapped Cauchy density (Mardia & Jupp 2000, p.

52).

Suppose A is diagonal, A = diag(0, λ), λ ≥ 0. In this case the dominant axis of the

Bingham distribution is the x1-axis. The corresponding von Mises density takes the form

fVM(y) ∝ exp(κy1), κ = λ/2,

so that the corresponding von Mises density has its mode in the y1-direction. The corre-

sponding wrapped Cauchy density, with Ω = I + 2A/b, takes the form,

fWC(y) =
(1− ρ2)

1 + ρ2 − 2ρy1

where ρ = (β − 1)/(β + 1) (Mardia & Jupp 2000, p. 52).

Hence the simulation method for the Bingham distribution with an ACG envelope can

be recast as a simulation for the von Mises distribution with a wrapped Cauchy envelope.

It turns out that this latter method is identical to the proposal of Best & Fisher (1979),

even up to the choice of the optimal tuning constant b.

5.2 CP1 = S2

Another quotient space of the sphere is complex projective space, CPq−1 = S2q−1/S1. To

understand this space, suppose a unit vector x ∈ R
2q, is partitioned as xT = (xT

1 , x
T
2 )

where x1 and x2 are q-dimensional. The information in x can also be represented by a q-

dimensional complex vector z = x1+ix2. Then CPq−1 is obtained from S2q−1 by identifying

the scalar multiples eiθz with one another for all θ ∈ [0, 2π).

If the 2q × 2q symmetric concentration matrix A for a Bing2q−1 distribution can be

partitioned in the form

A =





A1 −A2

A2 A1



 ,

where A1 is symmetric and A2 is skew symmetric, then then the quadratic form −xTAx

in the exponent of the Bingham density can be expressed in complex notation as −z∗ACz
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where AC = A1 + iA2. In terms of z, the density possesses complex symmetry, f(z) =

f(eiθz) for all θ ∈ [0, 2π). When expressed in complex notation this distribution is known

as the complex Bingham distribution CBq−1(AC); it can also be viewed as a distribution

on CPq−1 (Kent 1994).

The complex projective space CPq−1 arises in the study of shape for configurations of

q + 1 landmarks in the plane, and the identification with S1 when q + 1 = 3 was used to

visualize the shape space for triangles of landmarks (Kendall 1984). Kent (1994) showed

that the complex Bingham distribution on CP1 can be identified with the Fisher distribution

on S2.

5.3 RP3 = SO(3)

The special orthogonal group SO(r) is the space of r× r rotation matrices, SO(r) = {X ∈
R

r×r : XTX = Ir, |X| = 1}. A natural parametric distribution is given by the matrix

Fisher distribution MFr(F ), with r × r parameter matrix F . The density is given by

f ∗(X) = exp{tr(F TX)}. (5.1)

To describe the concentration properties of this distribution, it is helpful to give F a signed

singular value decomposition

F = U∆V T . (5.2)

The adjective “signed” means that U and V are constrained to be r × r rotation matrices

and the elements of the diagonal matrix ∆ satisfy δ1 ≥ · · · ≥ δr−1 ≥ |δr|, where the final

element δr is negative if and only if det(F ) < 0. If X ∼ MFr(F ), and if V FUT = exp(S)

is written in terms of the matrix exponential of a skew symmetric r × r matrix S, then

under high concentration the linearly independent elements of S have asymptotic normal

distributions, sij ∼ N(0, (δi + δj)
−1), 1 ≤ i < j ≤ r. See also Section 5.3 below for further

discussion of the case r = 3.

There is a quadratic mapping taking an unsigned 4-dimensional unit vector ±x to a
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3× 3 rotation matrix X = M(x) = M(−x), say. More specifically

M(x) =











x2
1 + x2

2 − x3
3 − x2

4 −2(x1x4 − x2x3) 2(x1x3 + x2x4)

2(x1x4 + x2x3) x2
1 + x2

3 − x2
2 − x2

4 −2(x1x2 − x3x4)

−2(x1x3 − x2x4) 2(x1x2 + x3x4) x2
1 + x2

4 − x2
2 − x2

3











(5.3)

(Mardia & Jupp 2000, p. 285). Further a random axis ±x on RP3 follows a Bingham

distribution if and only if the corresponding random matrix M(x) follows a matrix Fisher

distribution. In particular, if A = Λ is diagonal, then F = ∆ in (5.2) is also diagonal with

the parameters related by

λ1 = 0, λ2 = 2(δ2 + δ3), λ3 = 2(δ1 + δ3), λ4 = 2(δ1 + δ2). (5.4)

Kent et al. (2012) gives some further details.

A simple way to simulate a rotation matrix from the matrix Fisher distribution MF3(F )

for a general parameter matrix F with signed singular value decomposition (5.2) is given

as follows. Using the BACG method, simulate x from Bing3(Λ) with Λ given by (5.4), and

let M(x) denote the corresponding rotation matrix using (5.3). Then UM(x)V T follows

the matrix Fisher distribution MF3(F ). From Table 1, the efficiency will always be at least

45%.

6 The matrix Bingham distribution on the Grassmann

manifold Gr,q

Let 1 ≤ r < q. The Grassmann manifold Gr,q is defined to be the set of all r-dimensional

subspaces of R
q. It can be described as a quotient space of a Stiefel manifold Gr,q =

Vr,q/O(r), where the Stiefel manifold,

Vr,q = {X ∈ R
q×r : XTX = Ir},

denotes the space of q×r column orthonormal matrices X, say. It is convenient to represent

an element of Gr,q by a matrix X, where X is identified with XR for all r × r orthogonal

matrices R. It should be noted that the notation for this manifold is not standardized;

e.g., some authors write Gr,q−r instead of Gr,q.

16



The matrix Bingham distribution on Vr,q is defined by the density

fMB(X) ∝ exp{tr(−XTAX)}. (6.1)

Since tr(XTAX) = tr(RTXTAXR) for all r× r orthogonal matrices, it can also be viewed

as a distribution on the Grassmann manifold Gr,q. The q × q concentration matrix A has

the same form as for the Bingham distribution in Section 3.

For every r-dimensional subspace in R
q, there is a unique complementary (q − r)-

dimensional subspace orthogonal to it. If X and X⊥ are column orthonormal matrices,

whose columns are bases of these subspaces, then [X X⊥] is a q × q orthogonal matrix.

Further X follows a matrix Bingham distribution on Gr,q with parameter matrix A if and

only if X⊥ follows a matrix Bingham distribution on Gq−r,q with parameter matrix −A (but

note that the eigenvalues of −A will not have the standardized form given in (3.2)). Hence

for simulation purposes, we may without loss of generality suppose that r ≤ q/2.

The matrix ACG distribution, denoted MACGr,q(Ω), where Ω is a positive definite

symmetric q × q matrix, is also lies on Vr,q. It is also invariant under rotation on the right

and hence can also be viewed as a distribution on Gr,q. The density takes the form

g∗MACG(X) = |XTΩX|−q/2, cg = |Ω|r/2

(e.g. Chikuse 2003, p. 40). Simulations from this distribution can be constructed as follows.

Let Y be a q×r matrix whose columns are independently normally distributed, Nq(0,Ω
−1).

Set X = Y (Y TY )−1/2 using the symmetric square root of a positive definite matrix. Then

X ∼ MACGr,q(Ω).

If Ω is related to A by Ω = Ω(b) = Iq +2A/b as in Section 3, then the matrix Bingham

density can be bounded by the matrix ACG density by using the inequality in (2.4) r

times. Namely, let the eigenvalues of XTAX be denoted 0 ≤ u1 ≤ · · · ≤ ur. Since

f ∗

MB(X) = exp(
∑

ui) and f ∗

MACG(X) = {
∏

(1 + 2ui/b)}−q/2, applying (2.4) r times yields

the envelope bound

M1(b) = cMB-bal{M∗

1 (b)|Ω(b)|−1/2}r where M∗

1 (b) = {e−(q−b)/2(q/b)q/2}r. (6.2)

Optimizing (6.2) over b yields the same equation (3.6) as before with the same value for

the optimal value b0.
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Unfortunately, this bound decreases quickly with r, 1 ≤ r < q. However, under high

concentration, it is possible to tighten the bound substantially using the following two

results.

(a) Let X⊥(q× (q− r)) be a complementary matrix to X satisfying X⊥TX⊥ = Iq−r and

XTX⊥ = 0. Then Z = [X X⊥], is a q × q orthogonal matrix, ZTZ = Iq. Hence

the eigenvalues of ZTAZ are the same as those of A, namely, λ1, . . . , λq, ordered as

in (3.2). Further, XTAX is a principal submatrix of ZTAZ. Hence by the Cauchy-

Poincaré separation or interlacing theorem (e.g. Magnus & Neudecker 1999, pp. 209–

211), the eigenvalues of XTAX satisfy

u1 ≥ λ1 = 0, . . . , ur ≥ λr.

(b) With b = b0, the function φ(u) in (2.3) is monotone decreasing for u ≥ (q− b0)/2. In

particular, φ(uj) ≤ φ(λj) provided λj ≥ (q − b0)/2. Hence the bound M∗

1 (b0) can be

tightened to

M∗

2 (b0) =
r
∏

j=1

Cj,

where

Cj =











e−(q−b0)/2(q/b0)
q/2, λj ≤ (q − b0)/2

e−λj(1 + 2λj/b0)
q/2, λj > (q − b0)/2.

The efficiency is expected to decline as r increases. However, as noted before, we may

restrict attention to the case r ≤ q/2. More numerical investigation is needed of the

efficiency in this setting.

7 von Mises sine model on the torus

Finally consider the setting of product manifolds, where multivariate versions of directional

models can be defined. There are a few special cases where acceptance rejection methods are

available (e.g. Mardia et al. (2007, supplementary material) for the sine and cosine versions

of the bivariate von Mises distribution on the torus). However, to get good efficiency, it
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is often necessary to divide the parameter domain into different regions, each of which

requires separate treatment.

To illustrate the potential for the results in this paper, we consider the bivariate von

Mises sine model, with density proportional to

f ∗(θ, φ) = exp{κ1 cos θ + κ2 sinφ+ α sin θ sinφ}, 0 ≤ θ, φ ≤ 2π. (7.1)

For example, this distribution is useful in the study of protein structure to model pairs of

angles describing the relative orientation of bonds between atoms in amino acids (Mardia

et al. 2007). For the discussion here it is supposed that κ1 > 0, κ2 > 0 and α2 < κ1κ2 so

that the distribution mimics a bivariate normal distribution under high concentration. The

proposed simulation method proceeds in two steps: (a) first simulate θ from its marginal

distribution (7.2) as discussed below, and (b) simulate φ given θ from its conditional von

Mises distribution; see Section 5.1. We focus on step (a) here.

Integrating (7.1) over φ yields the Bessel marginal density for θ, proportional to

f ∗

1 (θ) = exp{κ1 cos θ}I0
(

√

κ2
2 + α2 sin2 θ

)

, (7.2)

where I0(·) denotes the modified Bessel function of the first order. The derivative of the

logarithm of the Bessel function takes the form

d/dx{log I0(x)} =
I1(x)

I0(x)
= A(x), say,

where it is known that A(x) increases monotonically from 0 to 1 as x ranges from 0 to ∞.

Let Amax = A(
√

κ2
2 + α2). Also note that by a Taylor expansion,

(

κ2
2 + α2 sin2 θ

)1/2
= κ2

{

1 + (α2/κ2
2) sin

2 θ
}1/2 ≤ κ2 +

α2

2κ2

sin2 θ.

Hence by another Taylor expansion,

log

{

I0

(

√

κ2
2 + α2 sin2 θ

)

/I0(κ2)

}

≤ Amaxα
2

2κ2

sin2 θ. (7.3)

Combining (7.3) with the Bingham bound for the von Mises density in (4.2) and the ACG

bound for the Bingham density in (3.4) and (3.6) yields

f ∗

1 (θ) ≤ I0(κ2) exp{
κ1

2
(1 + cos2 θ) +

Amaxα
2

2κ2

sin2 θ}

≤ I0(κ2) exp{κ1 − β sin2 θ}

≤ M∗(1 + 2β sin2 θ/b0)
−1,
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where β = 1
2
(κ1 − Amaxα

2/κ2), and

M∗ = (2/b0)I0(κ2)e
κ1−1+b0/2.

That is, the Bessel density can be bounded by the ACG density. Numerical simulations

indicate the efficiency is generally at least 30% under the assumptions given here. The

exception is that the efficiency deteriorates under high concentration as α2/(κ1κ2) increases

towards 1. Note that if α2/(κ1κ2) = 1, the bivariate density behaves as a singular normal

distribution under high concentration.

8 Review and commentary on different simulation meth-

ods

Since the simulation literature for directional distributions is widely scattered, it is useful

to summarize the best simulation methods for various distributions of interest. Table 3 lists

several common distributions on different spaces, together with the recommended method

of simulation. Of course, a uniform envelope can always be used in an acceptance/rejection

algorithm. This is a reasonable course of action under low or medium concentration, but

the efficiency will decline as the concentration increases; hence a uniform envelope is not

recommended when there are better algorithms.

Recently, some MCMC simulation methods on manifolds have been proposed by Kume

& Walker (2009) (Fisher-Bingham on Sq−1), Green & Mardia (2006) and Habeck (2009)

(matrix Fisher on SO(3)), Hoff (2009) (matrix Fisher-Bingham distributions on Stiefel and

Grassmann manifolds) and Byrne & Girolami (2013) (more general distributions). How-

ever, there is still an ongoing investigation into the efficiency of different MCMC methods,

so that the table entry will just state “uniform/MCMC” when there is not a simpler more

specific recommendation. Further details are given in the following subsections.

Two principles have guided the recommendations for the acceptance-rejection algo-

rithms given here:

(a) good efficiency across the range of possible concentration parameters, in particular

under high concentration and near uniformity, and
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Table 3: Recommended simulation methods various distributions on different directional

spaces

Distribution Space Simulation method

von Mises-Fisher Sq−1 Wood (1987)

Bingham Sq−1 or RPq−1 BACG

complex Bingham S2q−1 or CPq−1 Kent et al. (2004)

complex Bingham quartic S2q−1 or CPq−1 Kent et al. (2006)

Kent S2 Kent & Hamelryck (2005)/FBACG

aligned Fisher-Bingham Sq−1 FBACG

general Fisher-Bingham Sq−1 uniform/MCMC

matrix Fisher SO(3) BACG

matrix Fisher SO(r), r > 3 uniform/MCMC

matrix Bingham Vr,q or Gr,q BACG-based

bivariate von Mises sine S1 ⊗ S1 BACG-based

(b) simplicity (when the efficiencies for different algorithms are similar).

8.1 Uniform distribution on the sphere and Stiefel manifold

The simplest general method to simulate a uniform distribution on the unit sphere Sq−1, q ≥
2, is to set x = u/||u|| where u ∼ Nq(0, Iq). In low dimensions there are sometimes simpler

methods using polar coordinates. E.g. on the circle S1, let θ ∼ Unif(0, 2π). On the

sphere S2 with colatitude θ and longitude φ, let cos θ ∼ Unif(−1, 1) independently of

φ ∼ Unif(0, 2π).

On the Stiefel manifold Vr,q, 1 ≤ r ≤ q, q ≥ 2, the easiest approach is to simulate U(q×
r) with independent N(0, 1) entries, and set X = U(UTU)−1/2 using e.g. the symmetric

square root of a positive definite matrix. Then X is uniformly distributed on Vr,q. The

same approach works on the Grassmann manifold Gr,q, 1 ≤ r < q, q ≥ 2.
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8.2 von Mises-Fisher distribution Fq−1(κ, µ0) on Sq−1

For general q ≥ 2, the recommended method of simulation is an acceptance/rejection

method due to Ulrich (1984), as modified by Wood (1994). This method uses a fractional

linear transformation of a beta variate to provide an envelope for u = xTµ0. It gives good

efficiency across the whole range of values for κ. In particular, for large κ the distribution

of 2(1− u) is approximately the squared radial part of a multivariate normal distribution

under the von Mises-Fisher model and of a multivariate Cauchy distribution under the

envelope model, mimicking the efficiency calculations in (2.7).

Once the distribution of u ∈ [0, 1] has been simulated, it is straightforward to simulate

the whole von Mises-Fisher distribution by incorporating a uniformly distributed random

direction y, say, on Sq−2 (so y is a (q − 1)-vector). More specifically, if R = [R1 µ0] is any

q × q rotation matrix whose last column equals µ0, let x = uµ0 + (1− u2)1/2RT
1 y.

For q = 2 the Ulrich-Wood method is essentially identical to the Best & Fisher (1979)

method. One small exception to the recommendation to use the Ulrich-Wood method is

the case q = 3 dimensions when u follows a truncated exponential distribution and can be

simulated more simply by the inverse method without any need for rejection (Fisher et al.

1987, p. 59).

8.3 Bingham distribution Bing
q−1(A) on Sq−1 or RPq−1

The BACGmethod developed in this paper is the first general-purpose acceptance/rejection

simulation method for the Bingham distribution. However, earlier methods have been

discussed in the literature for some special cases. In particular if q = 2, the BACG method

reduces to the Best & Fisher (1979) method for the von Mises distribution as noted in

Section 5.1.

If q = 3 and either 0 = λ1 < λ2 = λ3 (bipolar case) or 0 = λ1 = λ2 < λ3 (girdle

case), the simulation problem can be reduced to a one-dimensional problem. Best & Fisher

(1986) developed effective envelopes in these cases, with efficiencies broadly comparable to

the BACG method.

If the eigenvalues appear in pairs then the methods for the complex Bingham can be

used. Kent et al. (2004) developed several simulation methods and the best of these is
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generally better than BACG. In particular, the efficiency of their “Method 1” approaches

100% under high concentration in contrast to the limiting efficiencies in Table 1 for BACG.

The BACG method here supersedes the MCMC method of Kume & Walker (2006).

Motivated by the accidental isomorphism in Section 5.2, Kent et al. (2006) developed

a complex Bingham quartic (CBQ) distribution on CPq−1, q ≥ 2. When q = 2, this

distribution reduces to the FB5b distribution. Ganeiber (2012) developed an effective and

reasonably efficient simulation method for the CBQ distribution for q > 2. However, since

the technique is not based on an angular central Gaussian envelope, details will not be

given here.

8.4 Fisher-Bingham distribution FB(κ, µ0, A) on Sq−1

For the Fisher-Bingham distribution on Sq−1 and the corresponding FBACG algorithm of

Section 4, it is convenient to split the assessment into special cases. When considering

efficiency under high concentration, good efficiencies are obtained for the nonsingular uni-

modal aligned distributions. However, the efficiency can deteriorate to 0 in the singular or

nonaligned cases.

• FB5b on S2, with parameters κ > 0, 0 ≤ β ≤ κ/2. An efficient simulation algorithm

(KH) for FB5b was developed by Kent & Hamelryck (2005); see also Kent (2012).

For small κ, approximately for κ < 10, FBACG is a bit better than KH, where the

FBACG efficiency is at least 34%; for large κ KH is a bit better, with an efficiency

of at least 26%. The singular case where κ is large and 2β/κ is very close or equal

to 1 needs special consideration; KH maintains its efficiency whereas the efficiency of

BACG deteriorates to 0 as κ → ∞.

• FB5e on S2, with parameters κ > 0, δ ≥ 0. The efficiency is always at least 26% (half

the entry in Table 1 for q = 3) and increases both as κ decreases and as δ increases.

• More general aligned case on Sq−1. Most of the time, if the Fisher-Bingham density

(4.1) is unimodal aligned, then the Bingham envelope usually has an efficiency of

at least 50% (and so the ACG envelope has an efficiency of at least half the entry

in Table 1). The efficiency falls below this level only under high concentration in
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the singular or near-singular setting, when the density is excessively flat at its mode.

Under high concentration this situation corresponds to the case where the limiting

normal distribution would have a singular covariance matrix.

In particular, with the exception of the recommendation to use KH for FB5b on

S2 for large κ, the FBACG method supersedes earlier acceptance-rejection methods

developed by Wood (1987) for various unimodal aligned Fisher-Bingham distributions

on S2. It also supersedes the acceptance rejection method of Scealy & Welsh (2011,

Appendix A4) for a higher-dimensional version of the Kent distribution, for which the

efficiency drops to 0 under high concentration when q > 3. In addition it supersedes

the MCMC method of Kume & Walker (2009) in the aligned case.

There is also an non-unimodal aligned Fisher-Bingham distribution on S2 whose mode

is a small circle. This case is covered by Wood (1987); the efficiency of the FBACG

algorithm drops to 0 under high concentration.

• Non-aligned case. For non-aligned Fisher-Bingham distributions, it is difficult to

make any firm theoretical statements about the behaviour of the FBACG algorithm.

However, under moderate concentration it is still likely to be preferable to the MCMC

methods of Kume & Walker (2009).

8.5 Matrix Fisher distribution MF(F ) on SO(r)

When r = 2, SO(2) is the same as S1 and the matrix Fisher on SO(2) is identical to the

von Mises distribution on S1, so no new methodology is needed.

When r = 3 the accidental isomorphism in Section 5.3 reduces this case to the Bingham

distribution on S3, which can be simulated by the BACG method. Hence the efficiency is

always at least 45% for all values of the parameters.

Earlier methods to simulate the matrix Fisher distribution on SO(3), now superseded

by BACG, were based on MCMC algorithms. These include Green & Mardia (2006) and

Habeck (2009).

The cases r > 3 are at least partly covered by the next subsection.
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8.6 Matrix Fisher-Bingham distribution on Vr,q

A general matrix Fisher-Bingham distribution can be defined on on Vr,q; see, e.g. Mardia

& Jupp (2000, p. 292). There is not yet a convenient and efficient A/R algorithm other

than for the matrix Bingham case, where a solution was given in Section 6. However, the

recent MCMC algorithms of Hoff (2009) and Byrne & Girolami (2013) can deal with this

case.

9 Applications

Simulation often forms part of the machinery in a larger statistical algorithm. In this

section we sketch two ways in which the methodology can be used.

9.1 Markov chain Monte Carlo updating for a rotation matrix

Motivated by problems in protein bioinformatics, Green & Mardia (2006) developed a

Bayesian alignment model to match two configurations of “landmarks” {xj, j = 1, 2, . . . ,m}
and {yk, k = 1, 2, . . . , n}, in r-dimensional space Rr. The main parameters are: a matching

matrix M(m× n) , a shift parameter µ and a rotation matrix R taking one configuration

to the other. The matching matrix M consists of zeros and ones, with at most a single

one in each row and column. Thus M picks out a subset of pairs of landmarks from the

two configurations which can be matched together. Given M , µ and σ2, the basic model

states that for the paired landmarks, one configuration is a rigid body transformation of

the other, up to noise. That is, if two landmarks xj and yk are paired, i.e. if Mjk = 1,

then the “error” term yk − R(xj − µ) ∼ N(0, σ2) is normally distributed, with the errors

independent for different pairs.

Green & Mardia (2006) specified prior distributions for each parameter and developed

an MCMC algorithm to simulate the posterior distribution. In particular, a Fisher matrix

prior was assumed for R, with density proportional to exp{tr(F T
0 R)}. They showed that

the posterior distribution for R given the rest of the parameters has the same form with
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Figure 3: (a) Latitude and longitude for 1000 final orbital positions from noisy initial

conditions using orbital dynamics. (b) 1000 simulated values from the FB5e distribution

with κ = 68, δ = 2.7e6. The axes are in degrees and the vertical axis has been blown up

by a factor of 100 for clarity.

F0 replaced by

F = F0 + (1/2σ2)
∑

j,k:Mjk=1

(xj − µ)yTk ,

where σ2 is a variance parameter. In their work in r = 3 dimensions, Green & Mardia

(2006) used a cumbersome internal MCMC algorithm to simulate R in terms of its Euler
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angles; the BACG method developed here is more direct.

9.2 Visualization

One of the key uses of simulation is to visualize distributions that are difficult to under-

stand analytically. Figure 2 illustrates the behaviour of some of the standard directional

distributions. Another example arises from recent work on orbital dynamics (Kent et al.

2016). Using the laws of Newtonian motion, it is possible to propagate an initial uncer-

tainty of an object in orbit about the earth to a later time. The predicted path lies near

an ellipse but with much greater spread along the path of the ellipse than perpendicular to

the path.

Figure 3 shows a simulated point cloud following orbital dynamics and a simulated

dataset matched to it from the FB5e distribution (with a sample acceptance ratio of of

27%). For plotting purposes the data have been rotated so that the mode lies at the

intersection of the Greenwich meridian and the equator, and the principal axis lies along

the equator. In both cases the longitude has a spread of about 60o, but the latitude is

very concentrated with a spread of less than 0.2o. The FB5e distribution of Section 4 was

designed to model this type of pattern. It can be seen that the two plots are very similar.

A common step in particle filtering involves the the approximation of a point cloud by a

parametric distribution. The ability to simulate easily from the extreme FB5 distribution

facilitates this task.

Appendix

Lemma 1. Consider the function g(θ) = cos θ + α sin2 θ, defined on the circle θ ∈ (−π, π],

where α ∈ R is a parameter. Then g is uniquely maximized over θ at θ = 0 if and only if

α ≤ 1/2.

Proof. Write g(θ) as a function of t = cos θ, to give h(t) = t+α(1− t2), with derivative

h′(t) = 1 − 2αt. If α > 1/2, then h′(t) < 0 for t near to 1; hence h is not maximized at

t = 1. If 0 ≤ α ≤ 1/2, then h′(t) > 0 for −1 < t < 1 , so h(t) is uniquely maximized at

t = 1; that is, g(θ) is uniquely maximized at θ = 0. Similarly, if α < 0, then h(t) < t < 1
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for −1 < t < 1 , so again h(t) is uniquely maximized at t = 1.

Lemma 2. Let µ0 ∈ Sq−1, q ≥ 2 be a unit vector and let A∗ be a symmetric q × q

matrix such that A∗µ0 = 0. The function f(x) = µT
0 x− xTA∗x is uniquely maximized over

x ∈ Sq−1 at x = µ0 if and only if the matrix I + 2A∗ is positive semi-definite.

Proof. It is sufficient to verify the theorem on each great circle passing through µ0. Let γ

denote a unit vector perpendicular to µ0, γ
Tµ0 = 0, and let g(θ) = f((cos θ)µ0+(sin θ)γ) =

cos θ + α sin2 θ, where α = −γTA∗γ. By Lemma 1, g is uniquely maximized at θ = 0 if

and only if α ≤ 1/2, i.e. 1 + 2γTA∗γ ≥ 0, which is true for all γ if and only if I + 2A∗ is

positive semi-definite.

Supplementary material

R-package simdd: The package simdd (Kent 2016) contains code in R (R Core Team

2017) to implement the methods described in the article for the simulation of direc-

tional distributions (GNU zipped tar file).
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