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S. Freear, Senior Member, IEEE, and D. Cabric, Member, IEEE

Abstract

Energy detection is a simple and popular method of spectrum sensing in cognitive radio systems. It

is widely known that the performance of sensing techniques is largely affected when users experience

fading effects. This paper investigates the performance of an energy detector over the generalized κ−µ

and κ−µ Extreme fading channels which have been shown to provide remarkably accurate fading

characterization. Novel analytic expressions are derived for the corresponding average probability of

detection for the case of single user detection. These results are subsequently extended to the case of

square-law selection (SLS) diversity as well as for collaborative detection. As expected the performance

of the detector is highly dependant upon the severity of fading since even small variation of the

fading conditions affect significantly the corresponding average probability of detection. Furthermore,

the performance of the detector improves substantially as the number of branches, or collaborating users,

increase in both severe and moderate fading conditions while it is shown that the κ−µ Extreme model

is capable of accounting for fading variations even at low signal-to-noise (SNR) values. The offered

results are particularly useful in assessing the effect of fading in energy detection-based cognitive radio

communication systems and thus can be used to quantify the tradeoffs between the sensing performance

and energy efficiency of cognitive radio networks.
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Index Terms

Spectrum sensing, energy detector, fading channels, unknown signal detection, collaborative spectrum

sensing, κ−µ fading, diversity.

I. INTRODUCTION

The detection of unknown signals is an important topic of wireless communications. It is

typically realized in the form of spectrum sensing with energy detection (ED) constituting the

most simple and popular approach. The operating principle of ED is based on the deployment

of a radiometer which is a non-coherent detection device that measures the energy level of a

received signal waveform over an observation time window. Then, it compares it with a pre-

defined energy threshold and determines whether an unknown signal is present or absent [1]–[3].

H. Urkowitz was the first to address the problem of detecting unknown signals over a flat

band-limited Gaussian noise channel as he comprehensively derived analytic expressions for

the probability of detection and the probability of false alarm metrics [4]. These metrics are

based on the assumption that the decision statistics follow the central chi-square and the non-

central chi-square distribution, respectively. A few decades later, this problem was revisited

by Kostylev who considered quasi-deterministic signals operating in fading environments [5].

Thanks to its low implementation complexity and no requirements for knowledge of the signal,

the ED method has been widely associated with applications in RADAR systems while it has been

also shown to be largely applicable in emerging wireless technologies such as ultra-wideband

communications and cognitive radio [6], [7]. In the former, the energy detector is exploited

for borrowing an idle channel from authorized users, whereas in the latter it identifies the

presence or absence of a deterministic signal and decides whether a primary user is active or idle.

According to the corresponding decision, the secondary user either remains silent, or proceeds

in utilizing the unoccupied band until the state of the primary user becomes active [1], [8]. This

opportunistic method has been extensively shown to substantially increase the utilization of the

already allocated radio spectrum, offering a considerable mitigation of the currently extensive

spectrum scarcity [9].

Capitalizing on the above, numerous studies have been devoted to the analysis of the per-

formance of energy detection-based spectrum sensing in different communication scenarios.

Specifically, the authors in [10] derived closed-form expressions for the average probability
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of detection in Rayleigh, Rice and Nakagami fading channels for both single-channel and

multi-channel scenarios. Likewise, the ED performance in the case of equal gain combining

and Nakagami-m multipath fading has been investigated in [11] whereas the corresponding

performance in collaborative spectrum sensing and in relay-based cognitive radio networks has

been assessed in [12]–[16]. A novel semi-analytic method for evaluating the performance of

energy detection of unknown deterministic signals was reported in [17]. This important work is

based on the moment-generating-function (MGF) method and aims to overcome the analytical

difficulties that arise from the presence of the Marcum Q-function. This method was utilized in

the case of maximum-ratio combining (MRC) in the presence of Rayleigh, Rice and Nakagami-m

fading in [17] as well as for the useful case of correlated Rayleigh and Rician fading channels in

[18]. Finally, the detection of unknown signals in low SNR and in K-distributed (K), generalized

K (KG) and the very flexible η−µ fading channels has been recently analyzed in [19]–[22].

The κ−µ distribution is a generalized fading model that is distinctive for providing adequate

characterisation of multipath fading particularly for line-of-sight (LOS) communication scenarios.

It was reported in [23] along with the η−µ fading model which accounts for non-line-of-sight

(NLOS) communication conditions. The κ−µ fading model has been shown to be particularly

flexible and it includes as special cases the well known Rice, Nakagami-m, Rayleigh and one-

sided Gaussian distributions [23]. Its remarkable flexibility and usefulness are shown clearly

in [23, Fig. 9]. The known η−µ fading model is also depicted and one can notice how the

two models complement each-other. It also evident from this Figure that the κ−µ fading model

significantly outperforms the characterization capabilities of Rice, Nakagami-m and Rayleigh

distributions. Furthermore, it constitutes the basis for deriving the κ−µ Extreme distribution

which is a recently proposed remarkable fading model that provides accurate characterization

of radio propagation under severe fading conditions. Importantly, it has been shown that these

conditions, even worse than Rayleigh, typically occur in enclosed environments such as airplanes,

trains, buses and shopping malls [24], [25].

Nevertheless, in spite of the undoubted usefulness of the κ−µ and κ−µ Extreme fading

models, no studies related to the detection of unknown signals in these fading channels have been

reported in the open research literature. Motivated by this, this work is devoted to the analysis

of energy detection over κ−µ and κ−µ Extreme fading channels. Specifically, novel analytic

expressions are firstly derived for the average probability of detection for the conventional single
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user scenario. Subsequently, these expressions are extended to account for the collaborative

energy detection as well as for the square-law-selection (SLS) diversity scheme. As expected, the

performance of the energy detector is highly dependant upon the value of the κ and µ parameters.

This is evident in the whole average signal-to-noise (SNR) range, and particularly the positive

regime, as even small variations of the fading conditions affect significantly the performance of

the corresponding average probability of detection. In addition, it is shown that the κ−µ Extreme

model appears capable of accounting for fading variations even at low signal-to-noise (SNR)

values. Finally, it shown, that the detector’s performance is, as expected, substantially improved

in both severe and moderate fading conditions as the number of diversity paths or number of

users increase. Therefore, the offered results enable us to quantify the effect of fading in the

system performance in various communication scenarios and thus to determine the required

power levels for ensuring robust and accurate performance of energy detectors combined with

sufficient benefits in terms of energy efficiency.

The remainder of this paper is organized as follows: The system and channel model are

described in Section II. The average detection probabilities of the energy detector over κ−µ and

κ−µ Extreme channels are analyzed in Sections III and IV, respectively. Numerical results for

each communication scenario along with necessary discussions are provided in Section V, while

closing remarks are given in Section VI.

II. SYSTEM MODEL AND CHANNEL MODEL

A. Energy Detection

In narrowband energy detection, the received signal waveform follows a binary hypothesis

that can be represented as [18, eq. (1)],

r(t) =







n(t) : H0

hs(t) + n(t) : H1

(1)

where s(t) is an unknown deterministic signal whereas h is the amplitude of the channel

coefficient and n(t) is a white Gaussian noise process. The samples of n(t) are assumed to

be zero-mean Gaussian random variables with variance N0W with W and N0 denoting the

single-sided signal bandwidth and a single-sided noise power spectral density, respectively [18].
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The hypotheses H0 and H1 refer to the cases that a signal is absent or present, respectively. The

received signal is subject to filtering, squaring and integration over the time interval T which is

expressed as [10, eq. (2)], y , 2
N0

∫ T

0
| r(t) |2 dt.

The output of the integrator is a measure of the energy of the received waveform which acts

as a test statistic that determines whether the received energy measure corresponds only to the

energy of noise (H0) or to the energy of both the unknown deterministic signal and noise (H1).

By denoting the time bandwidth product as u = TW , the test statistic follows the central chi-

square distribution with 2u degrees of freedom under the H0 hypothesis and the non central

chi-square distribution with 2u degrees of freedom under the H1 hypothesis [4]. To this effect,

the corresponding probability density function (pdf) in the presence of Additive-white-Gaussian-

noise (AWGN) is given by [10, eq. (3)],

pY (y) =







1
2uΓ(u)

yu−1e−
y
2 : H0

1
2

(
y

2γ

)u−1
2

e−
y+2γ

2 Iu−1

(√
2yγ
)

: H1

(2)

where γ , h2Es/N0 denotes the SNR, u = TW is the time bandwidth product and Es, T are the

signal energy and the observation time interval, respectively. Also, Γ (a) ,
∫
∞

0
ta−1e−tdt is the

Euler’s gamma function while In (x) ,
1
π

∫ π

0
cos(nθ)ex cos(θ)dθ is the modified Bessel function

of the first kind [26].

As already mentioned, an energy detector is largely characterised by a predefined energy

threshold, λ. This threshold is critical in the decision process and is promptly associated to three

measures that overall evaluate the performance of the detector: i) the probability of false alarm,

Pf = Pr(y > λ | H0); ii) the probability of detection, Pd = Pr(y > λ | H1) and iii) the missed

detection probability, Pm = 1− Pd. The first two measures are deduced by integrating (2) over

zero to infinity yielding [10]

Pf =
Γ
(
u, λ

2

)

Γ(u)
(3)

and

Pd = Qu(
√

2γ,
√
λ) (4)
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where Γ (a, x) ,
∫
∞

x
ta−1e−tdt and Qm(a, b) ,

1
am−1

∫
∞

b
xme−

x2+a2

2 Im−1(ax)dx denote the upper

incomplete gamma function and the generalized Marcum Q-function, respectively [26], [27].

B. The κ−µ Fading Model

As already mentioned in Sec. I, the κ−µ fading model has been shown to represent effectively

the small-scale variations of a fading signal in NLOS communications. Physically, the κ−µ

fading model considers a signal composed of clusters of multipath waves, propagating in a non-

homogeneous environment. Within any one cluster, the phases of the scattered waves are random

and have similar delay times with delay-time spreads of different clusters being relatively large.

The clusters of multipath waves are assumed to have scattered waves with identical powers

while each cluster consists of a dominant component with arbitrary power. To this effect, the

parameters µ and κ correspond to the number of multipath clusters and the ratio between the

total power of the dominant components and the total power of the scattered waves, respectively.

These two parameters render this model remarkably flexible as its capturing range is particularly

broad [23, Fig. 9]. This is also evident by the fact that the widely known Rice and Nakagami-m

fading models are included as special cases for µ = 1 and κ = 0, respectively [23]. Therefore,

this model can provide a meaningful insight on how fading affects the performance of an energy

detector which ultimately leads to a significant improvement on the design of cognitive radio

system in terms of energy efficiency and cost.

For a fading signal with envelope P = R/r̂ and r̂ =
√

E(R2), the envelope pdf of κ−µ

distribution is expressed as [23, eq. (1)],

p
P
(r) =

2µ(κ+ 1)
µ+1
2

κ
µ−1
2 eµκ

rµ

r̂µ+1
e−µ(1+κ) r

2

r̂2 Iµ−1

(

2µ
√

κ(κ+ 1)
r

r̂

)

(5)

where E(R) denotes expectation and r̂ is the root-mean-square (rms) value of R. The corre-

sponding pdf of instantaneous SNR per symbol γ is given by [23, eq. (10)],

pγ(γ) =
µ(κ+ 1)

µ+1
2 e−µκ

γκ
µ−1
2 eµ(1+κ) γ

γ

(
γ

γ

)µ−1
2

Iµ−1

(

2µ

√

κ(κ+ 1)
γ

γ

)

(6)

where γ represents the average SNR per symbol. Finally, the parameters κ and µ are related to

each-other by the following relationship [23],
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µ =
E2(R2)

Var(R2)

1 + 2κ

(1 + κ)2
=

E2(P )

Var(P )

1 + 2κ

(1 + κ)2
(7)

with Var(.) denoting mathematical variance.

III. AVERAGE DETECTION PROBABILITY OVER κ−µ FADING CHANNELS

It is recalled that (3) and (4) account for the case of AWGN channels. For communication

scenarios over fading channels the average probability of detection is obtained by averaging (4)

over the corresponding SNR fading statistics, namely,

Pd =

∫
∞

0

Qu(
√

2γ,
√
λ)pγ(γ)dγ. (8)

Based on this, analytic expressions for the case of Rayleigh, Rice, Nakagami-m, K, KG, log-

normal and η−µ fading channels where derived in [8]−[14], [17]−[22]. Therefore, the average

probability of detection in the case of generalized κ−µ fading can be obtained by averaging (4)

over the statistics of (6). To this effect, by substituting (6) in (8) yields,

Pdκ−µ =
µ(κ+ 1)

µ+1
2

κ
µ−1
2 eµκ γ

µ+1
2

∫
∞

0

γ
µ−1
2 Qu

(√

2γ,
√
λ
)

e−µ(1+κ) γ
γ Iµ−1

(

2µ

√

κ(κ+ 1)
γ

γ

)

dγ. (9)

An analytic expression for (9) can be derived by expressing the involved Marcum Q-function

according to [28, eq. (29)] and [29, eq. (6)], as follows1

Qu(
√

2γ,
√
λ) = e−γ

∞∑

l=0

γlΓ
(
l + u, λ

2

)

Γ(l + 1)Γ(l + u)
. (10)

Hence, by substituting (10) into (9) Pdκ−µ can be re-written as,

Pdκ−µ =
µ(κ+ 1)

µ+1
2

κ
µ−1
2 eµκ γ

µ+1
2

∞∑

l=0

Γ
(
l + u, λ

2

)

Γ(l + 1)Γ(l + u)

∫
∞

0

γ
µ−1
2

+le−γ(1+µ(1+κ)
γ )Iµ−1

(

2µ

√

κ(κ+ 1)
γ

γ

)

dγ

︸ ︷︷ ︸

I1

.

(11)

1One can alternatively use the accurate polynomial approximation in [29, eq. (7)], [41, eq. (3.39)] which reduces to [29, eq.

(7)] for k → ∞.
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Notably, the above integral is identical to [30, eq. (6.643.2)] which can be expressed in terms

of the Whittaker hypergeometric function, Mν,µ(z) given by,

I1 = (µ)l e
κ(1+κ)µ2

γ+µ(1+κ)M
−

1
2
−l,µ

2
−

1
2

(
κ(1 + κ)µ2

γ + µ(1 + κ)

)

(12)

where (µ)l , Γ(µ+ l)/Γ(µ) is the Pochhammer symbol [26]. With the aid of [30, eq. (9.220.2)],

equation (12) can be equivalently expressed as

I1 = (µ)lµ
µκ

µ
2 (1 + κ)

µ
2 1F1

(

µ+ l;µ;
κ(1 + κ)µ2

γ + µ(1 + κ)

)

. (13)

where 1F1(a; b; x) is the Kummer’s confluent hypergeometric function [26]. Hence, by substi-

tuting (13) into (11), the following infinite series representation for Pdκ−µ is deduced:

Pdκ−µ =
∞∑

l=0

µµ(1 + κ)µe−µκΓ(l + µ)γ lΓ
(
l + u, λ

2

)

Γ(l + 1)Γ(u+ l)Γ(µ)(γ + µ+ κµ)µ+l 1F1

(

µ+ l;µ;
κ(1 + κ)µ2

γ + µ(1 + κ)

)

. (14)

Importantly, the above expression can be expressed in closed-form as follows:

Pdκ−µ =
µµ(1 + κ)µe−µκ

(γ + µ+ κµ)µ

{

FA

(

µ; 1;µ, 1;
γ

γµ+ κµ
,
κ(1 + κ)µ2

γ + µ(1 + κ)

)

− λu

u!2u
HA

(

µ, u; u, u+ 1, µ;
λγ

2(γ + µ+ κµ)
;−λ

2
;
κ(1 + κ)µ2

γ + µ(1 + κ)

)}

.

(15)

where FA() and HA() denote the Lauricella hypergeometric function of two variables and the

complete triple hypergeometric function of the first kind, respectively [30], [33]–[36]. A detailed

proof of (15) is provided in APPENDIX A.

A. Square-Law Selection (SLS)

Square-Law selection, also known as selection combining, is an efficient diversity scheme that

is highly regarded for its simple realization. Its principle of operation is based on selecting the

output of the branch with maximum decision statistic, ySLS = max {y1, y2, . . . , yL}, [31]. Based

on this, the corresponding P d in the case of κ−µ fading can be obtained by averaging P SLS
d in

[10, eq. (15)] over L independent κ−µ branches, namely,
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Pd
SLS

κ−µ = 1−
L∏

i=1

∫
∞

0

[

1−Qu

(√

2γi,
√
λ
)]

pγi(γi)dγi. (16)

Therefore, by substituting (6) in (16) it follows that

Pd
SLS

κ−µ = 1−
L∏

i=1

[∫
∞

0

pγi(γi)dγi −
∫

∞

0

Qu

(√

2γi,
√
λ
)

pγi(γi)dγi

]

. (17)

By recalling that
∫
∞

0
p(γ)dγ , 1, it is noticed that the integral that needs to be evaluated in

(17) is the same as the integral in (9). Therefore, by following the same procedure as in the

derivation of Pdκ−µ, a closed-form expression for (17) is deduced,

Pd
SLS

κ−µ = 1−
L∏

i=1

{
1− Pdκ−µ(γi)

}

= 1−
L∏

i=1

{

1− µµ(1 + κ)µe−µκ

(γi + µ+ κµ)µ

[

FA

(

µ; 1;µ, 1;
γi

γiµ+ κµ
,

κ(1 + κ)µ2

γi + µ(1 + κ)

)

− λu

u!2u
HA

(

µ, u; u, u+ 1, µ;
λγi

2(γi + µ+ κµ)
;−λ

2
;

κ(1 + κ)µ2

γi + µ(1 + κ)

)]}

.

(18)

As always, the corresponding Pf is independent of the fading statistics and is given by [10, eq.

(14)], namely,

P SLS
f = 1−

[

1− Γ
(
u, λ

2

)

Γ(u)

]L

. (19)

B. Collaborative Detection

It has been extensively shown in the research literature that the performance of energy detection

based spectrum sensing can be significantly improved when secondary users collaborate by

sharing their information. In this case, the probability of detection and probability of false-alarm

for a scenario with n collaborating users are given by Qd , 1−(1−Pd)
n and Qf , 1−(1−Pf )

n,

respectively [13]. Based on this, the average probability of detection of a system with no diversity

and κ−µ fading in a collaborative scenario n−users is given by
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Qdκ−µ = 1−
[
1− Pdκ−µ

]n

= 1−
[

1− µµ(1 + κ)µe−µκ

(γ + µ+ κµ)µ

{

FA

(

µ; 1;µ, 1;
γ

γµ+ κµ
,
κ(1 + κ)µ2

γ + µ(1 + κ)

)

− λu

u!2u
HA

(

µ, u; u, u+ 1, µ;
λγ

2(γ + µ+ κµ)
;−λ

2
;
κ(1 + κ)µ2

γ + µ(1 + κ)

)}]n

.

(20)

IV. ENERGY DETECTION OVER κ−µ EXTREME FADING CHANNELS

A. The κ−µ Extreme Fading Model

As already mentioned in Sec. I, the κ−µ Extreme distribution was recently proposed as a fading

model that is capable of accounting adequately for severe fading conditions which are mainly

encountered in enclosed environments such as airplanes, buses, trains and shopping malls, [24],

[25]. Unlike propagation in traditional outdoor and indoor environments, propagation in enclosed

environments has been shown to present only a small number of multipath components. To this

effect, the use of the Central Limit Theorem (CLT) becomes inappropriate and as a consequence,

the corresponding wireless channel can not be accurately characterized by the well known small-

scale fading distributions such as Rayleigh, Nagakami−m, Hoyt and Weibull [24], [25], [32].

The κ−µ Extreme distribution emerges as a special case of the κ−µ distribution and its

normalized pdf is given by [25, eq. (6)], namely,

p
P
(ρ) = 4me−2m(1+ρ2)I1 (4mρ) + e−2mδ(ρ) (21)

where m = Var−1 (R2) is the Nakagami−m parameter and δ(ρ) denotes for the Dirac delta

function [26]. According to [25, eq. (13)] and with the aid of [23, eq. (10)], the corresponding

power pdf is expressed as follows:

pγ(γ) =
2m√
γγ

e−2m(1+ γ
γ )I1

(

4m

√
γ

γ

)

+
e−2m

2
√
γγ

δ(γ). (22)

B. Average Detection Probability in κ−µ Extreme Fading

The average detection probability in the presence of κ−µ Extreme fading, Pdκ−µExt., can be

derived by following the same procedure as in the derivation of Pdκ−µ in Sec. III. To this end,
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by substituting (22) into (8), setting x =
√
2γ and noticing that due to the δ(ρ) function the

second term in (22) reduces to zero for γ ̸= 0, one obtains

Pdκ−µExt. =
2
√
2m√

γe2m

∫
∞

0

Qu(x,
√
λ)e−

m
γ
x2

I1

(

2m

√
2

γ
x

)

dx

︸ ︷︷ ︸

I2

. (23)

Notably, the above integral belongs to the same class as the I1 integral. To this effect, by setting

x =
√
2γ in (10) and substituting in (23) yields the following analytic expressions for I2,

I2 =
∞∑

l=0

Γ
(
l + u, λ

2

)

2lΓ(l + 1)Γ(l + u)

∫
∞

0

x2le−
x2

2 (1+
2m
γ )I1

(

2m

√
2

γ
x

)

dx. (24)

Therefore, by substituting [30, eq. (6.643.2)] into (24) and with the aid of [30, eq. (9.220.2)],

the following analytic expression for Pdκ−µExt. is deduced,

Pdκ−µExt. =
∞∑

l=0

4m2Γ
(
l + u, λ

2

)

1F1

(

l + 1; 2; 4m2

γ+2m

)

e2mΓ(l + u)
(

1 + 2m
γ

)l

(2m+ γ)
. (25)

Importantly, the above series can be equivalently expressed in closed-form as follows,

Pdκ−µExt. =
4m2e−2m

γ + 2m

{

FA

(

1; 1; 2, 1;
1

1 + 2m
γ

,
4m2

γ + 2m

)

− λu

u!2u
HA

(

1, u; 1, 2, u, u+ 1;
λ

2 + 4m
γ

,−λ

2
,

4m2

γ + 2m

)} (26)

the derivation of (26) is given in APPENDIX B.

C. Square-Law Selection (SLS)

As in the case of (SLS) diversity in κ−µ fading, the average probability for κ−µ Extreme

fading is obtained by averaging Pd,SLS in [10, eq. (15)] over L independent κ−µ Extreme

branches. To this effect, by substituting (22) in (16) and utilizing (24), it follows that Based on

this and with the aid of (25), one obtains the following closed-form expression,
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Pd
SLS

κ−µExt. = 1−
L∏

i=1

{
1− Pdκ−µExt.(γi)

}

= 1−
L∏

i=1

{

1− 4m2e−2m

γi + 2m

[

FA

(

1; 1; 2, 1;
1

1 + 2m
γi

,
4m2

γi + 2m

)

− λu

u!2u
HA

(

1, u; 1, 2, u, u+ 1;
λ

2 + 4m
γi

,−λ

2
,

4m2

γi + 2m

)]}

.

(27)

D. Collaborative Detection

It is recalled that when the energy detection is performed by n collaborating users, the

corresponding average probability of detection is given by Qd = 1 − (1 − Pd)
n. Therefore,

for the case of n users collaborating over κ−µ Extreme fading, the following relationship is

deduced,

Qdκ−µExt. = 1−
[

1− 4m2e−2m

γ + 2m

{

FA

(

1; 1; 2, 1;
1

1 + 2m
γ

,
4m2

γ + 2m

)

− λu

u!2u
HA

(

1, u; 1, 2, u, u+ 1;
λ

2 + 4m
γ

,−λ

2
,

4m2

γ + 2m

)}]n

.

(28)

E. Asymptotic Analysis for small SNR values

One of the major issues in spectrum sensing techniques for cognitive radio is the detection

of unknown signals in the low SNR regime. This task is often problematic since for SNR ≪ 0

(linear scale) the detector can not typically distinguish the energy of the signal from the energy

of the noise unless the number of samples asymptotically scales as 1/SNR2, [38]. Furthermore,

the detection becomes significantly harder below -20dB, [39]. In the next Section, it is shown

that the κ−µ Extreme model characterizes acceptably the extreme fading conditions experienced

by the detector even at the low SNR regime.

Therefore, it is considered essential to derive asymptotic expressions for γ ≪ 0. To this end,

for γ ≤ −10dB i.e γ ≤ 0.1 and given that typically m ≥ 0.5, it immediately follows that

γ + 2m ≈ 2m as well as 1 + 2m/γ ≈ 2m/γ and 2 + 4m/γ ≈ 4m/γ. Hence, by substituting
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these tight approximations into (25) and (26) and after some basic algebraic manipulations one

obtains2,

lim
γ→0

Pdκ−µExt. =
∞∑

l=0

γlΓ
(
l + u, λ

2

)

1F1(l + 1; 2; 2m)

e2mΓ(l + u)2l−1ml−1

=
2m

e2m

[

FA

(

1; 1; 2, 1;
γ

2m
; 2m

)

− λu

u!2u
HA

(

1, u; 1, 2, u, u+ 1;
λγ

4m
,−λ

2
, 2m

)]

.

(29)

With the aid of the above expression and by recalling that Pd
SLS

= 1−∏L

i=1

[
1− Pd(γi)

]
and

Qd = 1 − (1 − Pd)
n, asymptotic expressions for small SNR values can be straightforwardly

deduced for the case of SLS diversity and collaborative spectrum sensing, namely,

lim
γ→0

Pd
SLS

κ−µExt. = 1−
L∏

i=1

{

1− 2m

e2m

[

FA

(

1; 1; 2, 1;
γi
2m

, 2m

)

− λu

u!2u
HA

(

1, u; 1, 2, u, u+ 1;
λγi
4m

,−λ

2
, 2m

)]}

.

(30)

and

lim
γ→0

Qdκ−µExt. = 1−
[

1− 2m

e2m

{

FA

(

1; 1; 2, 1;
γi
2m

, 2m

)

− λu

u!2u
HA

(

1, u; 1, 2, u, u+ 1;
λγi
4m

,−λ

2
, 2m

)}]n

.

(31)

respectively.

V. RESULTS AND DISCUSSIONS

This section is devoted to the description of the behaviour of an energy detection in κ−µ and

κ−µ Extreme fading channels. Its performance is quantified for different scenarios of interest

through both P d versus γ curves and complementary receiver operating characteristics (ROC)

curves (Pm versus Pf ).

Fig. 1 demonstrates P d vs γ curves for κ−µ fading for different κ and µ values with Pf = 0.1

and u = 2. One can observe that the energy detector performs better as κ and µ increase due

2The value of γ is in linear scale when dB is not indicated.
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to the higher dominance of the LOS component and the advantage of the multipath effect,

respectively. For example, for the case of γ = 15 dB and κ = 1.0 (fixed), the P d for µ = 0.7

is about 10% higher than for µ = 0.5. In the same context, when µ = 0.7 (fixed), the P d for

κ = 3.0 is 9% higher than for the case of κ = 1.0.

As the value of γ decreases to negative values, the effect of varying κ and µ is shown to

reduce. This can be also observed in Fig. 2 which illustrates complementary ROC curves for

the case of a five branch SLS diversity assuming u = 2, µ = 0.5 and κ = 1.0 and average SNR

for each branch set to γ1 = 0 dB, γ2 = 1 dB, γ3 = 2 dB, γ4 = 3 dB and γ5 = 4 dB. Clearly,

the effect of each fading scenario on Pm is greater as γ increases while the performance of the

detector is highly depended on the number of branches. For example, the value of Pm for L = 1

and Pf = 0.15 (fixed), is about 80% larger compared to the case of L = 5.

Fig. 3 illustrates the complementary ROC for energy detection with up to eight collaborating

users. The fading scenarios considered are the same as in the previous case while the average

SNR is set to γ = 3 dB. As expected, the performance of the energy detector improves as the

number of users increase.

Regarding the effect of κ−µ Extreme fading conditions, Fig. 4 illustrates the behaviour of the

energy detector with respect to the SNR. Evidently, the performance of the detector is highly

dependant upon the severity of fading and improves substantially as m increases. Indicatively,

by increasing the fading severity from m = 0.7 to m = 0.5 for γ = 10 dB and Pf = 0.1, renders

a 16% performance reduction.

Fig. 5 demonstrates the significant performance improvement when the SLS diversity scheme

is employed. Evidently, for Pf = 0.2, the value of Pm, over the single branch operation, reduces

by about 30% and 58% for L = 2 and L = 3, respectively, for both m = 0.6 and m = 1.8.

In the case of collaborating spectrum sensing with up to four users for u = 2, γ = 3 dB, the

value of Qm reduces as the number of users increases for any value of m. For example, Fig. 6

illustrates that for a single user detection for Pf = 0.2 and m = 0.6, the value of Pm is 67%

higher compare to the case that n = 4.

It is also important to note that the κ−µ Extreme fading model can provide adequate char-

acterization of the fading effect in the low SNR regime. It is recalled that energy detection in

γ = 20dB is a challenging task since the detector can not distinguish unknown signals with low

power from noise power. Fig. 7, depicts the behaviour of the energy detector in κ−µ Extreme
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fading conditions with respect to the fading severity and SLS diversity. It is clearly seen that the

value of Pm decreases substantially as the number of diversity branches increases. For example,

for Pf = 0.3, u = 2, γ − 20dB and L = 6, it is seen that 0.18 ≤ Pm ≤ 0.28 for 0.5 ≤ m ≤ 1

and Pm < 0.17 for m > 1. For larger numbers of branches (L > 6), the value of Pm continues

to reduce but at a much smaller rate and thus a small benefit will be gained at the expense of

significantly higher complexity.

Finally, the dramatic effect of the different fading conditions modelled by the κ−µ and κ−µ

Extreme distributions is also demonstrated through comparisons with results from existing works.

For example, for γ = 10dB and u = 2, Pf = 0.1 in Fig. 1, one obtains P d = 0.77 for Rayleigh

fading in [10], P d = 0.95 for light fading (yellow curve) and P d = 0.68 for severe fading

conditions (blue curve). Similarly, for γ = 5dB and u = 2, Pf = 0.1 in Fig. 4, one obtains

P d = 0.51 for Rayleigh fading and P d = 0.59 for m = 0.5 (yellow curve) and P d = 0.4 for

m = 3.0 (blue curve). It is also evident that the results lie within a significantly wider range in

comparison with Nakagami-m fading as results in [17] since the value of P d is smaller even

for larger values of u and γ. However, apart from the differences on the behaviour of P d over

different fading conditions, there are also differences in the algebraic representation between the

proposed and recently reported results. Specifically, the works in [17]–[19], [22] represent the

average probability of detection in a semi-analytic form due to the presence nth derivative term.

This renders the derived expressions in the present work more straightforward to use as well as

less computationally laborious and exhaustive.

VI. CONCLUSION

This work analyzed of the performance of energy detection in κ−µ and κ−µ Extreme fading

channels. Novel analytic expressions where derived for the average probability of detection for

both cases. The overall performance of the detector is largely affected by the value of the

corresponding fading parameters since it is very sensitive even at small variations particularly

as the average SNR increases. It was also shown that a significant performance improvement is

achieved in both severe and moderate fading conditions as the number of diversity branches or

number of users increases. Furthermore, it is shown that the κ−µ Extreme fading model provides

adequate fading characterization of the fading effect in the low SNR regime and thus improves

the performance of the energy detector. As a result, the offered results are useful in quantifying
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the effect of fading in energy detection spectrum sensing which will lead in improved and/or

more energy efficient cognitive radio-based communication systems.

APPENDIX A

DERIVATION OF EQUATION (15)

According to [30, eq. (8.354.2)], the upper incomplete gamma function can be expressed as

Γ(a, x) , Γ(a) −
∑

∞

n=0
(−1)nxa+n

n!(a+n)
. By also recalling that Γ(a + 1) = a! and 1F1(a; b; x) ,

∑
∞

n=0
(a)n
(b)n

xn

n!
and performing the necessary change of variables, equation (15) can be re-written

as follows:

Pdκ−µ =
∞∑

l=0

∞∑

j=0

µµ(1 + κ)µγlΓ(µ+ l + j)κj(1 + κ)jµ2je−µκ

l!Γ(µ+ l)(γ + µ+ κµ)µ+lj!(γ + µ(1 + κ))j

︸ ︷︷ ︸

I3

(A.1)

−
∞∑

l=0

∞∑

i=0

∞∑

j=0

(−1)iµµ+2j(1 + κ)µ+jΓ(µ+ l + j)λl+i+uγκje−µκ

l!j!i!Γ(l + u)2l+i+uΓ(µ+ j)(l + i+ u)(γ + µ+ κµ)µ+l+j

︸ ︷︷ ︸

I4

By recalling that the Pochhammer symbol is defined as (a)n , Γ(a + n)/Γ(a), the Gamma

functions in I3 and I4 can be expressed as Γ(µ + l + j) = (µ)l+jΓ(µ), Γ(µ + l) = (µ)lΓ(µ),

Γ(l + u) = (u)lΓ(u) and Γ(µ + j) = (µ)jΓ(µ). Furthermore, the (l + i + u) term in I4 can be

equivalently expressed as,

l + i+ u =
(l + i+ u)!

(l + i+ u− 1)!
=

Γ(l + i+ u+ 1)

Γ(l + i+ u)
(A.2)

By expressing each Gamma function in terms of the Pochhammer symbol it follows that,

l + i+ u =
(u+ 1)l+iΓ(u+ 1)

(u)l+iΓ(u)
=

(u+ 1)l+i(u)1
(u)l+i

(A.3)

By substituting accordingly in I3 and I4 and carrying our some long but basic algebraic

manipulations, one obtains,

Pdκ−µ =
µµ(1 + κ)µe−µκ

(γ + µ+ κµ)µ

∞∑

l=0

∞∑

j=0

(µ)l+j

(µ)j

(
γ

γ+µ+κµ

)l

l!

(
κ(1+κ)µ2

γ+µ+µκ

)j

j!
︸ ︷︷ ︸

I5

(A.4)
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− µµ(1 + κ)µλue−µκ

2uu!(γ + µ+ κµ)µ

∞∑

l=0

∞∑

i=0

∞∑

j=0

(µ)l+j(u)l+i

(u)l(u+ 1)l+i(µ)j

(
λγ

2(γ+µ+κµ)

)l

l!

(
−λ

2

)i

i!

(
κ(1+κ)µ2

γ+µ(1+κ)

)j

j!
︸ ︷︷ ︸

I6

Importantly, the algebraic form of I5 s the same as the representation of the Lauricella hyper-

geometric function in [30, eq. (9.19)], [36, eq. (1)]. Similarly I6 can be expressed in terms of

the complete triple hypergeometric function of the first kind in [35, eq. (1.1)]. To this effect, by

performing the necessary variable transformation, equation (15) is deduced.

APPENDIX B

DERIVATION OF EQUATION (26)

The proof follows immediately from APPENDIX A.
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LIST OF FIGURES

Figure 1: P d vs γ for i.i.d κ−µ fading with Pf = 0.1, u = 2 and different values for κ and µ.

Figure 2: Complementary ROC curves for SLS diversity in κ−µ fading for different κ, µ and L branches with

u = 2, γ1 = 0 dB, γ2 = 1 dB, γ3 = 2 dB, γ4 = 3 dB and γ5 = 4 dB.

Figure 3: Complementary ROC curves for κ−µ fading with u = 2, κ = 3, µ = 1.8, γ = 3 dB and n collaborating users.

Figure 4: P d vs γ for different m values under i.i.d κ−µ Extreme fading with Pf = 0.1 and u = 2.

Figure 5: Complementary ROC curves for SLS based κ−µ Extreme fading for different m and L branches with

u = 2, γ1 = −2 dB, γ2 = 0 dB and γ3 = 2 dB.

Figure 6: Complementary ROC curves for κ−µ Extreme fading with different m values, u = 2, γ = 3 dB and

n collaborating users.

Figure 7: Pm vs m for κ−µ Extreme fading with Pf = 0.3, u = 2 and γ = −20 dB and L diversity branches.
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Fig. 1. P d vs γ for i.i.d κ−µ fading with Pf = 0.1, u = 2 and different values for κ and µ.
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γ2 = 0 dB and γ3 = 2 dB.
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Fig. 6. Complementary ROC curves for κ−µ Extreme fading with different m values, u = 2, γ = 3 dB and n collaborating

users.
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Fig. 7. Pm vs m for κ−µ Extreme fading with Pf = 0.3, u = 2 and γ = −20 dB and L diversity branches.


