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Concentrating Energy by Measurement
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Abstract. In a recent article [A. Kurczet al., Phys. Rev. A81, 063821 (2010)] we predicted an
energy concentrating mechanism in composite quantum systems. Its result is a non-zero stationary
state photon emission rate even in the absence of external driving. Here we discuss the possible
origin of the predicted effect. We attribute it to the presence of a non-trivial interaction between
different system components and to repeated environment-induced photon measurements.

Keywords: Open quantum systems, cavity-qed, rotating wave approximation.
PACS: 42.50.Lc, 42.50.Pq.

INTRODUCTION

Already in 1936, Dirac asked the question, whether conservation of energy holds in
atomic processes [1]. He commented on a theory of radiation which had been put
forward by Bohr, Kramers, and Slater [2] in 1924 and which violated the conservation
of energy. Their theory gave no conservation of energy for individual atomic processes,
though it gave statistical conservation of energy when large numbers of atomic processes
take place. Dirac argued in favor of some part of this theory and suggested that energy
might indeed not be preserved in processes involving large velocities, including radiative
processes. However, he also pointed out that there is a primitive theory of radiation
which gives information about the probability of aquantum jumpunder the influence of
external radiation which is equally consistent with the conservation laws and with the
main assumptions of the radiation theory by Bohret al. [2].

Another discussion on the conservation of energy in atomic processes can be found
by Milonni in his book on the quantum vacuum [3]. In Chapter 2.6, he considers a
linear dipole oscillator in the vacuum. Starting from the minimal coupling Hamiltonian
for the interaction between the particle and the surrounding free radiation field, he
calculates the time evolution of the position of the particle. Although he considers
a dipole in the vacuum without any external field acting on it,he observes a non-
trivial time evolution. Its origin is the effect of the vacuum field on the dipole [3].
Today we know that Milonni’s predictions cannot be verified easily experimentally. The
reason is that the so-called rotating wave approximation which makes the effect of the
vacuum onto a dipole disappear works in general very well in the situation considered
by Milonni. In this paper, we discuss a closely related energy concentrating effect
in composite quantum systemswhich should be observable experimentally, even with
currently available technology.

In classical physics, coupled systems prepared in their respective lowest-possible
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FIGURE 1. Experimental setup showing an large number ofN atoms trapped inside an optical cavity.
The atoms should be well localised within an optical coherence domain so that their behaviour becomes
collective. The spontaneous decay rate of atomic excitation is then given byNΓ. The optical resonator cou-
ples separately to an orthogonal set of modes of the free radiation field withκ denoting the corresponding
spontaneous decay rate.

energy state cannot exchange energy. However, this statement does not necessary apply
to quantum systems. The energy ground state of a composite quantum system is in
general not the product of the energy ground states of its parts. Due to interactions
between different components, the energy ground state of a composite quantum system
is in general an entangled state. The energy expectation value for the product of the
energy ground states of the individual systems is hence in general higher than the ground
state energy of the system. In such a case, a composite quantum system with each of its
components initially prepared in its respective energy ground state evolves in time, even
in the absence of external driving. If a measurement is performed, for example, on one
of the system components whether it is in its ground state or not, there is a non-zero
probability to find this component in an excited energy eigenstate. When this happens,
it might look as if energy appears from nowhere [4, 5].

In this paper, we discuss a concrete example of the above described energy-
concentrating mechanism in composite quantum systems. As illustrated in Figure 1,
we consider a large number of atoms trapped inside an opticalcavity. We then show
that the energy ground state of the atom-cavity system differs indeed from the product
of the energy ground state of an ensemble of non-interactingatoms and the energy
ground state of an optical cavity field. The reason for this are the normally-neglected
counter-rotating terms in the atom-cavity interaction Hamiltonian. Moreover, we point
out that the environment probes the energy of the individualcomponents of this com-
posite quantum system. The reason is that atoms and cavity couple to different parts of
the surrounding free radiation field. It is argued that detecting either the atoms or the
cavity in their respective energy ground states pumps energy in the system. Repeated
environment-induced photon measurements hence manifest themselves in the contin-
uous leakage of photons through the cavity mirrors, even in the absence of external
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driving.1

The energy-concentrating mechanism discussed in this paper with a single atom in-
side an optical cavity was first pointed out by Werlanget al.[7] in 2008. In a recent paper
[8], we analyzed the predicted effect in much more detail. Considering a collectively en-
hanced version of the energy concentration in atom-cavity systems based on the trapping
of not only one but many atoms inside the resonator, we predicted stationary state photon
emission rates whose observation is in principle feasible with current technology. The
reason for this is the recent development of atom-cavity systems mounted on atom chips
with relatively large atom-cavity coupling constants (dueto very small cavity mode vol-
umes) and relatively large spontaneous cavity decay rates [9]. Experimental evidence
for the presence of the counter-rotating terms in atom-cavity interaction Hamiltonians
in the form of level shifts has recently been observed in systems which combine a su-
perconducting qubit with a microwave resonator [10]. Such systems are hence another
promising candidate for the experimental verification of the possibility of concentrating
energy by measurement [11].

As already pointed out above, we attribute the energy concentration in atom-cavity
systems to the counter-rotating terms in the atom-cavity interaction Hamiltonian as
well as to the effect of the environment onto the surroundingfree radiation field. The
detection of a single photon can indeed spontaneously increase or decrease the energy of
asinglequantum system. To illustrate this, we now consider a singletwo-level atom with
ground state|1〉 and excited state|2〉. Suppose the atom is initially in a superposition and
its state can be written as

|ψ〉 = α |1〉+β |2〉 (1)

with |β |2 < 1. Denoting the energy of the excited state|2〉 by h̄ωa and the energy of the
ground state by zero, one can easily see that the energy stored in the atom is given by
|β |2 h̄ωa. Whenever the atom spontaneously emits a photon, i.e. when aquantum jump
occurs, the atom releases in general a larger amount of energy into the environment,
since the energy of the emitted photon equalsh̄ωa. However, there is also the possibility
that the atom does not emit a photon. In this case, the atom releases no energy. Instead
it undergoes a non-radiative transition into its ground state |1〉 [12]. This spontaneous
creation of energy is an effect of the quantum vacuumand of the environment which
detects the photon.

There are five sections in this paper. In the next Section we introduce the theoretical
model used throughout this paper. We then summarize the results of Ref. [8] and
emphasize the role of the counter-rotating terms in the system dynamics. Afterwards,
we emphasize the role of environment-induced photon measurements for the above
mentioned energy concentrating mechanism. Finally, we summarize our results and
point out related effects, like the Casimir effect and the well-known existence of Lamb-
shifts, in other quantum systems.

1 From our calculations below we see that these measurements are not frequent enough to suppress the
internal system dynamics, as predicted by the Quantum Zeno effect [6].
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THEORETICAL MODEL

Let us now have a closer look at the experimental setup shown in Figure 1 which
contains a large numberN of identical tightly confined atoms inside an optical cavity.
The energy of this composite system is the sum of the free energy of both subsystems,
their interactions with the surrounding free radiation field, and the interaction between
the atoms and the cavity field. The HamiltonianH of the system in dipole approximation
and in the Schrödinger picture can hence be written as

H = H0+Hint (2)

with

H0 = h̄ ωc c†c+ h̄ωa S+S−+∑
kλ

h̄ωk a†
kλ akλ ,

Hint = ∑
kλ

h̄
(
gkλ akλ + g̃kλ a†

kλ
)(

c+c†)+
√

Nh̄
(
qkλ akλ + q̃kλ a†

kλ
)(

S++S−
)

+
√

Nh̄gc
(
c+c†)(S++S−

)
. (3)

HereS−, c, andakλ are bosonic annihilation operators for collective atomic excitations,
cavity photons and photonic excitations of the mode(k,λ ) of the free radiation field,
respectively. The variablesgc, gkλ , g̃kλ , qkλ and q̃kλ denote coupling constants and
ωc, ωa, and ωk are frequencies. The vectork is as usual a wave vector andλ is a
polarization. Here the cavity photon states have been chosen such thatgc is automatically
real. The atoms should be well localized within an optical coherence domain. Such high
mode densities lead to a strong coupling regime which is responsible for the collective
enhancement factor

√
N in front of atomic interaction terms [13, 14, 15].

Proceeding as usual [12, 16, 17], the Hamiltonian in Eq. (2) can be used to predict the
time evolution of the density matrixρ of the atom-cavity system alone in the presence
of non-zero spontaneous decay rates. It is given by the master equation of the form [8]

ρ̇ = − i
h̄

[
Hcondρ −ρH†

cond

]
+R(ρ) (4)

with

Hcond = h̄
(

ω̃c−
i
2

κ
)

c†c+ h̄
(

ω̃a−
i
2

NΓ
)

S+S−+
√

Nh̄gc
(
c+c†)(S++S−

)
,

R(ρ) = κ cρc†+NΓ S+ρS− . (5)

Here ω̃c and ω̃a denote the bare atom and cavity frequencies,κ is the cavity decay
rate, andΓ is the decay rate of the excited state of a single atom. In the derivation of
this equation, we neglected the counter-rotating terms in the system-bath interaction in
Eq. (3). These are known to lead in general only to very small effects and neglecting
them is in good agreement with actual quantum optics experiments.

In the following, we are especially interested in the mean number of photons inside
the optical cavity. To analyze the dynamics induced by the above master equation we
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therefore consider the expectation values

µ1 ≡ 〈c†c〉 µ2 ≡ 〈S+S−〉 , η1,2 ≡ i〈(S−±S+)(c∓c†)〉 ,
η3,4 ≡ 〈(S−∓S+)(c∓c†)〉 , ξ1 ≡ i〈c2−c†2〉 , ξ2 ≡ 〈c2+c†2〉 ,
ξ3 ≡ i〈S−2−S+2〉 , ξ4 ≡ 〈S−2+S+2〉 . (6)

Using Eq. (4), one can show [4, 8] that the time evolution of these variables is given by
a closed set of rate equations. These are

µ̇1 =
√

Ngcη1−κµ1 , µ̇2 =
√

Ngcη2−NΓµ2 ,

η̇1 = 2
√

Ngc(1+2µ2+ ξ4)+ ω̃aη3+ ω̃cη4− 1
2ζη1 ,

η̇2 = 2
√

Ngc(1+2µ1+ ξ2)+ ω̃aη4+ ω̃cη3− 1
2ζη2 ,

η̇3 =−2
√

Ngc(ξ1+ ξ3)− ω̃aη1− ω̃cη2− 1
2ζη3 ,

η̇4 =−ω̃aη2− ω̃cη1− 1
2ζη4 , ξ̇1 = 2

√
Ngcη4+2ω̃cξ2−κξ1 ,

ξ̇2 =−2
√

Ngcη1−2ω̃cξ1−κξ2 , ξ̇3 = 2
√

Ngcη4+2ω̃aξ4−NΓξ3 ,

ξ̇4 =−2
√

Ngcη2−2ω̃aξ3−NΓξ4 (7)

with ζ ≡ κ +NΓ. Calculating the stationary state photon emission rate of the atom-
cavity system can now be done by setting all of the above time derivatives equal to zero
and calculating the stationary state of the above rate equations.

THE ATOM-CAVITY INTERACTION

Let us now have a closer look at the atom-cavity interaction Hamiltonian. The crucial
difference to the usual Jaynes-Cummings model [18] is the presence of thecS− and the
c†S+ term in (3) which vanish in the rotating wave approximation (RWA). In the RWA,
the ground state of the atom-cavity system would simply be given by |E0〉 = |0a〉|0c〉
which is the product of the zero-excitation state|0a〉 of the atoms and the vacuum state
|0c〉 of the cavity field. However, taking the counter-rotating terms into account, we find
instead that the energy ground state of the atom-cavity systems is of the form

|E0〉 = |0a〉|0c〉+O

(√
Ngc

ωc

)
(8)

when atoms and cavity are on resonance, i.e. whenωc = ωa. This is an entangled state
[19]. Let us now have a closer look at what this implies.

Suppose, the atom-cavity system is initially prepared in|0a〉|0c〉. This state is one
of the possible outcome of an environment-induced measurement on the atomsandon
the cavity, whether each of these two system components is inan excited state or not.
Since this measurement does not project the composite quantum system into one of
its energy eigenstates, its state evolves in time due to the counter-rotating terms in the
atom-cavity interaction Hamiltonian. These include a termproportional toS+c† and
simultaneously create atomic and photonic excitations. This behavior of atom-cavity
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FIGURE 2. Time evolution of the mean number of photons in the cavity obtained from a numerical
solution of the rate equations in Eq. (7) forω̃c = ω̃a = 384.2 · 1012s−1 (D2 line), gc = 6.1 · 108s−1,
Γ = 1.9 · 107s−1, andκ = 1.3 · 1010s−1. This means, the experimental parameters considered here are
the same as in Ref. [9]. The atoms and the cavity were initially both in their respective lowest energy
eigenstate|0a〉 and|0a〉, respectively. On average there is always a non-negligibleamount of population
inside the cavity field. Although being small, this population can result in a relatively large stationary state
photon emission rate when multiplied with a sufficiently large spontaneous cavity decay rateκ .

systems is illustrated in Fig. 2 which shows the time evolution of the mean cavity photon
numberµ1. The average cavity photon number is of the order ofNg2

c/ω2
c . Its result is

the spontaneous emission of photons even in the absence of external driving.
Using the rate equations in Eq. (7) and calculating the stationary state cavity photon

emission rate we find that it equals [8]

Iκ =
Nζκ g2

c

[
8ζ g2

c+ ζ 2Γ+4Γ (ω̃a− ω̃c)
2
]

16ζ 2g2
cω̃aω̃c+2ζ 2κΓ (ω̃2

a + ω̃2
c )+4κΓ (ω̃2

a − ω̃2
c )

2 (9)

which applies forNΓ,
√

Ngc,κ ≪ ω̃a,ω̃c. For example, the parameters of the recent
cavity experiment with85Rb [4] combined withN = 104 are expected to result in anIκ
as large asIκ = 301 s−1. This rate is of the order of typical detector dark count rates.
The verification of the above predicted signal should therefore be feasible with current
technology. Important is to notice here thatIκ is a function of the atom-cavity system
parameters. Measuring such a system parameter dependence should make it possible
to distinguish background photons from photons which have been generated through
energy concentration by measurement.
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THE ROLE OF THE ENVIRONMENT

A crucial role in the energy concentration in atom-cavity system in Fig. 1 is played by
the environment. In fact, the derivation of the master equation in Eq. (4) requires the
assumption of a non-trivial coupling of the system to a surrounding free radiation field.
It also requires the assumption of a photon-absorbing environment. As in Refs. [12, 16,
17], we consider in the following a coarse grained time scale∆t. On this time scale, the
free radiation field is constantly re-set into its vacuum state |0ph〉. Immediately after such
a resetting, the total density matrixρ of the system and the radiation field can be written
as

ρ = |0ph〉ρS〈0ph| , (10)

whereρS is the state of the atom-cavity system. Assuming a resettingof the free radiation
field onto the zero-photon state requires the absence of thermal photons in the free
radiation field. One can check that this applies for photons in the optical regime even
at relatively high temperatures, like room temperature.

Between two resettings, the atom-cavity system and the surrounding free radiation
field evolve with the Hamiltonian given in Eq. (3). One can easily see that the system-
bath interaction terms in the Hamiltonian transfer energy from the atom-cavity system
into the free radiation field, whenever either the atoms or the cavity are excited. The
overall effect of this time evolution and the constant resetting of the free radiation field
on a coarse grained time scale∆t is the same as performing repeated measurements
whether the atoms and the cavity mode are in their respectivelowest energy eigenstates
|0a〉 and|0c〉, respectively [12]. The reason is that the atoms and the optical cavity couple
separately to the different modes of the free radiation field. This means, the environment
performs repeated energy-measurements on each component of the composite quantum
system considered here. It is therefore not surprising thatthe dynamics of the system
could be as described in the previous section.

CONCLUSIONS

From a general perspective a phenomenon like the energy concentration in a composite
quantum system can indeed be motivated physically. There exist processes, where there
is a redistribution of energy among different system degrees of freedom making possible
some amounts of system self-organization. In particular, one could examine the possi-
bility of concentrating the total energy of the system into asubset of degrees of freedom
producing a decrease of its entropy, which in order to avoid aviolation of the second
law of thermodynamics, would compel the release of energy tothe environment, thus
keeping the free energy constant. This is possible only if the system isopen.

As predicted in Refs. [8, 19], a leakage of energy from a quantum system can occur
among different degrees of freedom. This leakage is not necessarily triggered by an
external pump of energy, but could be also triggered by virtual photons coming from
the quantum vacuum as, e.g., it occurs in the Casimir effect or in the Lamb shift [3].
From the standpoint of the receiving system, the origin of the triggering energy is not
important as far as the balance between the variations of energy and entropy is satisfied
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so to keep the free energy constant. In this respect, it is to recall that the ratio between
these variations is just the temperature, as required by thethermodynamic definition

kBT =
dU
dS

. (11)

It is hence extremely appealing to study a dynamics, where a system is able to reach a
state having a lower energy jumping over a separating barrier with the help of excitations
from the vacuum. This will only become amenable, if the open system dynamics is
irreversible.

Indeed, in this context Lamb shift and Casimir effect [3], respectively, are widely
understood observations that show how non-trivial zero-temperature properties of the
system can arise due to the vacuum. However, in both of these examples the vacuum
plays an immanent role in terms of renormalizing the original parameters of the system.
Instead, the energy fluctuations which we focus on here cannot be obtained from the
uncoupled system simply by renormalizing its parameters. As mentioned before, a
closed system in its ground state does not fluctuate!

In this paper, we examined the effect of the counter-rotating terms in the context
of open quantum systems. The mathematical analysis we have done shows that in an
atom-cavity system decoherence can occur among different degrees of freedom. The
subsequent leakage of photons is not necessarily triggeredby an external pump of
energy, but could also be triggered by virtual photons coming from the quantum vacuum
and the presence of a photon detecting environment. Indeed,the interplay between the
microscopic quantum dynamics and the thermal properties ofa system are extremely
appealing. Concerning such an interplay, we observe that quantum optical systems
have the potential to simulate a variety of fundamental quantum effects, including for
example Hawking radiation and the Unruh effect, which wouldotherwise not be as easily
accessible experimentally [20, 21, 22].
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