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Abstract 

Objectives: Before an intervention is publicly funded within the UK, the cost-effectiveness is 

assessed by the National Institute of Health and Care Excellence (NICE). The efficacy of an 

intervention across the patients’ lifetime is often influential of the cost-effectiveness analyses, but is 

associated with large uncertainties. We reviewed committee documents containing company 

submissions and evidence review group (ERG) reports to establish the methods used when 

extrapolating survival data, whether these adhered to NICE Technical Support Document (TSD) 14, 

and how uncertainty was addressed. 

Methods: A systematic search was completed on the NHS Evidence Search webpage limited to single 

technology appraisals of cancer interventions published in 2017, with information obtained from the 

NICE website. 

Results: 28 appraisals were identified, covering 22 interventions across 18 diseases. Every economic 

model used parametric curves to model survival. All submissions used goodness-of-fit statistics and 

plausibility of extrapolations when selecting a parametric curve. 25 submissions considered alternate 

parametric curves in scenario analyses. Six submissions reported including the parameters of the 

survival curves in the probabilistic sensitivity analysis. ERGs agreed with the company’s choice of 

parametric curve in nine appraisals, and agreed with all major survival-related assumptions in two 

appraisals. 

Conclusions: TSD 14 on survival extrapolation was followed in all appraisals. Despite this, the choice 

of parametric curve remains subjective. Recent developments in Bayesian approaches to 

extrapolation are not implemented. More precise guidance on the selection of curves and modelling 

of uncertainty may reduce subjectivity, accelerating the appraisal process.  
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1 Introduction 

Globally, health service providers are under pressure to deliver a continuously improving standard of 

care with a finite pool of resources. This results in a desire for funding decision-makers, such as 

National Institute of Health and Care Excellence (NICE) in England, Wales and Northern Ireland, to 

obtain value for money, often setting thresholds where the price the decision-maker is willing to pay 

is based on the efficacy of the drug. This requires a common scale on which all diseases and 

interventions can be contrasted. In the UK, quality-adjusted life years (QALY) are commonly used, 

where patients’ predicted life expectancy is multiplied by a value estimating the quality of their life 

across their lifetime. The resulting cost/QALY is considered alongside other factors, including 

whether an intervention can be considered to meet end-of-life criteria or an unmet need, before a 

decision on whether to reimburse a treatment in the National Health Service. Whilst unit prices are 

often fixed and contain little uncertainty, there is often considerable uncertainty over the clinical 

outcomes, such as life expectancy, and their associated resource use, with observed data often only 

spanning a couple of years. Commonly, progression-free survival (PFS) and overall survival (OS) data 

are modelled parametrically, with curves extrapolated across the patients’ lifetime time horizon. The 

choice of parametric curves is often one of the most influential factors of a cost-effectiveness model, 

with subtle differences between parametric fits over a short follow-up period often yielding large 

disagreement upon extrapolation. Survival related assumptions often influence the manufacturers 

discount on the list price (e.g. through a commercial access agreement or patient access scheme) to 

ensure that the cost-effectiveness results fall within the thresholds NICE considers to be cost-

effective. OS extrapolation is often more influential on a cost-effectiveness analysis, as PFS data are 

more mature with the PFS extrapolations containing less uncertainty. The NICE Decision Support 

Unit (DSU) has published Technical Support Document (TSD) 14 which suggests methods on how to 

assess the suitability of a survival model [1], though it remains unclear how closely this is adhered to. 

One of NICE’s types of appraisal is the single technology appraisal (STA), where a single intervention 

is assessed for a single indication. The manufacturer is invited to submit evidence to support the 



decision making process. This evidence is assessed by an interdisciplinary evidence review group 

(ERG), who produce an independent and unbiased report of the evidence that is presented alongside 

the manufacturer submission to a NICE appraisal committee. The committee then decide whether to 

fund the intervention, based on the clinical and cost-effectiveness evidence. Further information on 

the single technology process can be found on the NICE website [2].  

This paper presents a review of STAs of cancer treatments whose guidance was published by NICE in 

2017, focusing on the approaches to the extrapolation of survival data. It set out to achieve the 

following aims: 

 Identify methods used by companies in their approaches to survival extrapolation, and 

investigate whether these adhere to NICE guidance  

 Identify whether the methods used by company’s result in robust selection of extrapolation  

and investigate how uncertainty in extrapolations is accounted for 

To achieve these aims, we focused on appraisals of interventions targeting cancers to ensure 

relevant survival information would be present. We limited the search to STAs to maximise 

consistency in reporting standards.  

1.1 Summary of NICE TSD 14 on Survival Extrapolation 

NICE TSD 14 [1] is a report by NICE’s Decision Support Unit, providing guidance on survival analysis 

and extrapolation of survival data within economic evaluations. Section 3 of TSD 14 lists some 

suggested methods for assessing the suitability of survival models. These are: 

Visual Inspection: Comparing the parametric models to the observed Kaplan-Meier data. 

Log-Cumulative Hazard Plots: TSD 14 suggests plotting the observed log-cumulative hazard data, 

usually against log-time, to assess the behaviour of the hazard from the observed data, which can 

assess the suitability of the exponential or Weibull functions. The Log-Cumulative hazard plot can 

also be used to assess the hazard proportionality of different treatment arms, helping to decide 



whether an assumption of proportionality should be maintained in the extrapolation. Other plots 

such as Quantile-Quantile (QQ) and graphs of residuals (e.g. Martingale, Schoenfeld) can also be 

considered. 

Information Criterion: The most commonly used information criteria are the Akaike information 

criterion (AIC) and Bayesian information criterion (BIC). These both allow a comparison of non-

nested models, which is necessary due to the differing functional forms of the different parametric 

models.  

Clinical validity and External Data: Comparison of extrapolations of parametric models to predictions 

made by expert clinical opinion and to data with longer follow-up of similar patients and treatments, 

typically from other trials or registry databases. 

Unless separate forms are strongly justified with clinical expert opinion, biological plausibility and 

robust statistical analysis, the TSD recommends using the same parametric form for both the 

intervention and the comparator. An example of an appraisal where separate forms may have been 

appropriate was TA519 where pembrolizumab (an immunotherapy) was compared to 

chemotherapies in patients with urothelial cancer [3]. 

2 Methods 

2.1 Study Eligibility Criteria 

For inclusion in this review, only single technology appraisals of interventions for cancerous diseases 

published in 2017 were targeted.  

2.1 Search Strategy 

A systematic search was completed on the NHS Evidence Search webpage on 16/01/2018, using the 

terms neoplasm* or neoplasia or tumor* or tumour* or cancer* or carcinoma* or malignan* or 

adenocarcinoma* or metasta*, filtered to guidance published by NICE in the area of Drugs and 



Technologies in 2017. A broader search of additional electronic databases was not required due to 

the particular focus of this review.  

2.2 Search Selection 

PA and DG independently assessed whether the studies met the inclusion criteria initially at title and 

abstract, and then at full text, with any disagreements resolved through discussion or recourse to a 

third reviewer (MC). 

2.3 Data Extraction  

Information from each appraisal were collected from the initial set of relevant committee papers 

into a data extraction form (available on request), performed by DG. Median and maximum follow-

up durations were extracted from text where available, or from Kaplan-Meier plots. Where multiple 

trials were considered with a single appraisal, the trial with the longest follow-up was used for this 

analysis. 

2.4 Quality Assessment 

As all appraisals are scrutinised by an ERG and NICE technical team, it was not necessary to use 

further quality assessment tools.  

 

3 Results 

Figure 1 shows the outcomes of the search and screening process, including the reasons for 

exclusion, in a Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 

diagram [4] . 

The final 28 pieces of guidance covered 22 primary interventions across 16 different diseases. NICE 

recommended funding through the NHS for 18 of the appraisals [5-22], eight were recommended for 

funding through the CDF [23-30] and two were not recommended for funding [31, 32]. 



An overview of appraisals included in this review is presented in Table 1 and a summary of the 

findings is shown in Table 2.  

 Four submissions used a Markov multistate model to assess cost-effectiveness [13, 19, 20, 30], and 

21 used a Partitioned Survival model [5-12, 14, 16-18, 21-28, 31, 32]. It was unclear for two 

submissions which modelling approach was implemented [15, 17], and for a further submission both 

a semi-Markov model and partitioned survival model were presented [29]. 

Every appraisal used frequentist parametric models to extrapolate at least one set of time-to-event 

data. In one appraisal splines were submitted as the company base case [25], however all others 

opted for a standard parametric form, either exponential, Weibull, log-normal, log-logistic, gamma, 

generalised gamma or Gompertz. Piecewise modelling featured in 11 appraisals [5, 6, 8, 10, 12, 14, 

19, 22-25], usually featuring initial KM data being implemented into the economic model, followed 

by a parametric curve after a certain point in time. This approach was more commonly preferred by 

ERGs (8 appraisals) than companies (4 appraisals). Occasionally, a combination of distinct parametric 

curves were used to model the same survival outcome, e.g. when specific groups of patients had 

differing levels of risk, which was more common in the Markov models [7, 12, 15, 20, 29]. In one 

appraisal a company choose to model a survival outcome without extrapolating using a parametric 

form, and instead modelled observed KM data [28], compared with ERGs favouring this approach in 

three appraisals [16, 28, 32]. 

The time horizon of 27 models was reported, ranging from 10 to 100 years, with a mean of 31 years. 

All models used survival data from at least one clinical trial. The length of maximum observed follow-

up periods of the main contributing trials, ranged from 1.4 years to 6.8 years, with a mean of 3.1 

years. The percentage of each model’s time horizon supported by observed data ranged from 5.8% 

to 37.5% with a mean of 12.4%. When the analysis was repeated using only reported median follow-

up, the observed periods ranged from 0.4 years to 5.9 years, mean 2.0 years and corresponding 

observed time horizon percentages ranged from 2.0% to 11.6%, mean 6.5%. 



All submissions reported using goodness of fit statistics (e.g. AIC and BIC) and plausibility of 

predictions when selecting the parametric curve. Eighteen reports also considered visual fit of 

parametric curves to the observed data, predominantly overlaid on a KM plot [8-11, 13, 18-23, 25-

31]. Six submissions compared extrapolations to external sources of data [12, 17, 18, 24, 25, 28]. Five 

presented log-cumulative hazard plots [6, 10, 14, 21, 27], and two considered QQ-plots [6, 21]. Only 

two submissions reported verifying the consistency between PFS and OS curves [15, 26]. All 

appraisals used the same functional form for all modelled comparators. 

Three company submissions did not present cost-effectiveness results for alternative parametric 

curves [5, 10, 14]. Five appraisals reported the inclusion of the survival distribution parameters in 

their probabilistic sensitivity analysis (PSA) [18, 19, 21, 29, 32] although it was common for reports to 

omit the full list of parameters included in the PSA, and it is possible that more PSAs did include 

survival parameters. 

Each submission was critically appraised by an ERG who agreed with the company’s choice of 

parametric fits in nine appraisals [8, 10, 14, 15, 18, 19, 21, 26, 31]. In two appraisals it was unclear 

whether the ERG maintained the company’s choice or chose different curves [9, 16], meaning in 

most appraisals the ERG disagreed with the company’s choice. In terms of broader survival 

assumptions (including choice of parametric curve), in three appraisals the ERG agreed with all major 

assumptions made by the pharmaceutical company [8, 18, 26], and in one of these cases the NICE 

committee preferred different survival assumptions to those agreed by the ERG and company [26]. 

In all other appraisals, the ERG disagreed with at least one major assumption of the survival 

extrapolation, for reasons including the methods used for adjusting for crossover, the consideration 

of internal and external data and the duration of treatment effect.  

4 Discussion 

This review of 28 NICE technology appraisal submissions showed that pharmaceutical companies 

generally take a transparent approach in their modelling and extrapolation of survival data in their 



economic analyses. We found that extrapolation and curve selection were in line with TSD 14, with a 

range of parametric models use to predict future survival. We avoided making inference on the 

specific parametric curves chosen in each appraisal due the wide variety of cancers and 

interventions covered. 

Frequently the reporting of methods of curve selection was not comprehensive with only a couple of 

the recommended methods by NICE TSD 14 presented in a company submission. It was unclear why 

other methods were not presented, perhaps due to their discordance with the presented methods, 

for brevity or the fact that they were never utilised.  

NICE STAs can often go on for many months, requiring multiple committee meetings and generating 

numerous sets of committee documents for a single appraisal. Inconsistency in NICE’s provision of 

these documents meant it was unclear at how many committee meetings an appraisal was 

discussed, and masked the identity of the major points of contention. In addition, key information 

was often redacted, e.g. life-year estimates and resulting ICERs, meaning it was difficult to ascertain 

precisely how influential the survival curves were, and prevented a more quantitative analysis. It was 

also unclear whether the same definition of median follow-up was used across each appraisal [33]. It 

is possible that either the company or ERG changed their position on survival assumptions based on 

additional arguments or data being put forward, which were not captured by this review.  The 

conduct of future reviews would be enhanced with uniformity in the presentation of documentation 

by NICE, and greater consistency across companies in their presentation of survival extrapolation 

and justification.  

The strengths of this review are that it captures the most up-to-date methods to extrapolate from 

survival data, across a wide range of interventions and cancers, as well as the types of economic 

model used. The systematic search identified all relevant appraisals, and summarised their methods 

of extrapolation and assessing uncertainty. 



The limitations of this review are that it covers appraisals from a single year and is specific to cancer. 

This timeframe may mean it has missed other techniques used by companies.   

The findings of this review are generaliseable to other disease areas where extrapolations of time-

to-event outcomes are of primary concern to the decision-maker, particularly where partitioned 

survival models are suitable. They may not be representative of submissions to other decision 

makers who do not base decisions on patient population lifetime horizon.  

One implication of this review is that the current version of TSD 14 may be insufficient in its 

instructions for the extrapolation of survival curves, due to the level of disagreement between 

companies and ERGs.  

TSD 14 does acknowledge some limitations to its own recommendations, with an associated paper 

stating that the model selection algorithm “should not be viewed as a finished product” [34]. The 

limitations include that the AIC/BIC, visual fit and log-cumulative hazard plots only comment on the 

observed follow-up period, and do not necessarily infer on the suitability of the predictive ability of a 

model. These have also been discussed elsewhere [35, 36]. We agree with Bagust and Beale [35] in 

their response to TSD 14, and feel that assessing the visual fit against a KM plot and log cumulative 

hazard plots alone can be challenging as several parametric fits can often appear very similar, 

especially for late observations on the log-time scale. There are few alternative recommendations 

for robust extrapolations,  for example Tremblay et al. (2015) [37] published five criteria for 

transparent extrapolation of survival data, though they are broadly similar to TSD 14. Their fourth 

criterion was to establish uncertainty in the estimate of marginal difference in treatment effects 

using bootstrapping, with high uncertainty indicating low robustness. The fifth criterion was to 

compare the similarity of the observed and extrapolated gains, using a rule of thumb that the ratio 

of relative difference in the extrapolated period divided by the number of months extrapolated 

(post-observed period) should not exceed the ratio of the incremental difference for the observed 

period over the duration of the observed period. These criteria are relatively untested, it is uncertain 



whether they are suitable for discriminating between different parametric models or whether 

following them would recommend a different model to following TSD 14.  

The TSD is critical of using -2 log-likelihood statistic, instead favouring the AIC and BIC both of which 

use this statistic in their calculation. Both AIC and BIC favour a parsimonious model, that is 

considering both the fit to the data and the number of parameters in the model. Whilst such an 

approach should be encouraged when adjusting for confounding effects, it is unclear whether using 

AIC/BIC over -2*log-likelihood statistic leads to a more accurate extrapolation when comparing 

different parametric forms which have similar numbers of parameters. 

 

 We would suggest also comparing a smoothed hazard plot against predicted hazards from the 

parametric models, without necessarily rescaling time on the log scale. This would allow for easier 

identification of deviation from the predicted hazards at the later stages of follow-up, and for easier 

distinction between the parametric curves. This should be done in consideration with the number of 

patients remaining at risk, as late events may incorrectly make a model appear to be a poor fit. 

Another implication is that there is clear potential for companies to implement modern approaches 

into their economic models. Due to lengthy timelines of the appraisal process, it is possible that the 

most recent approaches to extrapolating and capturing uncertainty are unlikely to be seen in a STA. 

There may be resistance to change, with manufacturers perhaps wary of experimenting with new 

techniques when the approval of their intervention is at stake. 

The appraisals in this review all used frequentist methodology to extrapolate survival data and 

explore uncertainty, despite alternative approaches being available. These approaches may fail to 

capture uncertainty or unusual hazard behaviour, and often exclude prior information. Poly- models, 

such as the Poly-Weibull model [38], assume the presence of multiple independent sources of risk 

that operate additively. The Poly-Weibull hazard function emerges as the sum of the independent 

Weibull hazards. Demiris et al found the Poly-Weibull gave a better fit compared to a single Weibull 



model in their examples, however Poly-model fitting can be challenging in the absence of causes of 

event or when the multiple hazards do not appear distinctly within the modelled data [38].  

Negrin et al [39] use Bayesian Model Averaging (BMA) to capture the uncertainty in the 

extrapolation of survival curves, which may be superior to conducting separate PSA and scenario 

analyses with the survival curves. Using BMA to combine the estimates of each parametric fit can 

produce a prediction for mean survival and a credible interval, removing the need to focus on a 

single parametric model. Jackson et al review methods of including external data into survival 

extrapolations [40], which may further improve their accuracy. 

This review highlights the vast uncertainty that remains in many technology assessments, and raises 

the question of whether clinical trials should be designed with greater consideration of the funding 

decision-maker.  

Further research is recommended into when survival data are mature enough to produce reliable 

extrapolations. It is plausible that before a certain length of follow-up and number of events, 

extrapolation is not reliable. This could reduce the need for adjustments to extrapolations, such as 

waning treatment effects, which are often applied when initial extrapolations are implausible but 

introduce additional uncertainty for the company, ERG and appraisal committee. Appraisals 

submitted prior without mature data could be made on a temporary basis, similar to the current 

running of the Cancer Drugs Fund (CDF) in the UK, where the CDF allows patients access to 

interventions, which have demonstrated potential to be cost-effectiveness, but where uncertainty 

remains. 

5 Conclusion 

Cancer STAs use frequentist parametric approaches to extrapolate survival and explore uncertainty. 

Despite adhering to TSD 14, pharmaceutical companies specify parametric curves and other 

assumptions that are routinely rejected by ERGs. More thorough guidance is recommended to 



ensure methods of curve selection are consistent across appraisals. As extrapolations account for 

such a high proportion of an economic model’s time horizon, it is critical that extrapolations are 

supported with strong justification. . Recent developments in Bayesian approaches to extrapolation 

and uncertainty were not implemented. 
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Table 1: Overview of Single Technology Appraisals included in this review. 

ID Intervention Disease 
Time 

Horizon 

Max 
Observed 
follow up 
(months) 

Analysis 
Type 

Used 
Goodnes

s of fit 
statistics 

Assesse
d Visual 

Fit 

Checked 
Plausibilit

y 

Checked 
Consistenc

y with 
external 

data 

Checked 
Consistenc
y between 
OS and PFS 

curves 

Used Log-
cumulativ
e hazard 

plots 

Use
d 

QQ 
plots 

Included 
Survival 
Curve 

Parameters 
in 

probabilisti
c sensitivity 

analysis 

Other 
curves 
explore

d 

ERG 
agreed 

with 
curves 

ERG agreed 
with all 
major 

survival 
assumption

s 

Company 
Preferred 
Parametri

c Fit 

ERG 
Preferred 

Parametric 
Fit 

TA427 
[21] 

Pomalidomide Myeloma 15 years 
29 

Partitione
d Survival 

Model 

Yes Yes Yes No No Yes Yes Yes Yes Yes No 

PFS: Expo 

OS: Gen 

Gamma  

PFS: Expo 

OS: Gen 

Gamma 

TA428 
[10] 

Pembrolizumab 
Non-Small Cell 

Lung Cancer 
20 years 

 
24 

Partitione
d Survival 

Model 

Yes Yes Yes No No Yes No Unclear No Yes No 

PFS: KM + 

Gen 

Gamma 

OS: KM + 

Expo 

PFS: KM + 

Gen 

Gamma 

OS: KM + 

Expo 

TA429 
[19] 

Ibrutinib 
Chronic 

Lymphocytic 
Leukaemia 

20 years 
18 

Markov 
Multistate 

Model 

Yes Yes Yes No No No No Yes Yes No No 

PFS: 

Weibull 

OS: 

Lognormal 

+ Expo 

PFS: Expo 

OS: Expo 

TA432 [9] Everolimus 
Renal Cell 
Carcinoma 

12 years 
19.6 

Partitione
d Survival 
Analysis 

Yes Yes Yes No No No No Unclear Yes 
Unclea

r 
Unclear 

PFS: 

Weibull 

OS: 

Weibull 

Unclear 

TA440 
[32] 

Pegylated 
liposomal 
irinotecan 

hydrochloride 
trihydrate 

(nal iri) 

Pancreatic 
Cancer 

10 years 
36 

Partitione
d Survival 

Model 

Yes Yes Yes No No No No Yes Yes No No 

PFS: 

Lognormal 

OS: 

Lognormal 

Preferred 

KM data 

without 

any 

parametri

c fit 

TA446 
[22] 

Brentuximab 
vedotin 

Hodgkin’s 
Lymphoma 

A = 70 
years 
B = 80 
years 

84 
Partitione
d Survival 

Model 

Yes Yes Yes No No No No Unclear Yes 
Unclea

r 
Unclear 

PFS: 

Lognormal 

OS: KM + 

Expo 

Unclear 



TA447 
[14] 

Pembrolizumab 
Non-Small Cell 

Lung Cancer 
20 years 

19.7 
Partitione
d Survival 

Model 

Yes Yes Yes No No Yes No Yes No 
Unclea

r 
No 

PFS: KM + 

Weibull 

OS: KM + 

Expo 

Unclear 

TA450 
[18] 

Blinatumomab Leukaemia 50 years 
36 

Partitione
d Survival 

Model 

Yes Yes Yes Yes No No No Yes Yes Yes Yes 

PFS: Gen 

Gamma 

OS: 

Gompertz 

PFS: Gen 

Gamma 

OS: 

Gompertz 

TA451 
[20] 

Ponatinib Leukaemia 100 years 
NR 

Markov 
Multistate 

Model 

Yes Yes Yes No No No No Unclear Yes No No 

PFS: 

Multiple 

OS: 

Multiple 

PFS: 

Multiple 

OS: 

Multiple 

TA457 
[17] 

Carfilzomib  Myeloma 40 years 
53 

Unclear 
Yes Yes Yes Yes No No No Unclear Yes No No 

PFS:  

Weibull 

OS: 

Weibull 

PFS: 

Weibull 

OS: 

Gompertz 

TA458 [8] 
Trastuzumab 

Emtansine 
Breast Cancer 15 years 

27 
Partitione
d Survival 

Model 

Yes Yes Yes No No No No Unclear Yes Yes Yes 

PFS:  KM + 

Gamma 

OS: 

Gamma 

PFS: KM + 

Gamma 

OS: 

Gamma 

TA462 
[15] 

Nivolumab 
Hodgkin 

Lymphoma 
40 years 

28 
Unclear 

Yes Yes Yes No Yes No No Unclear Yes Yes No 

PFS:  Expo 

or 

Lognormal 

OS: Expo 

or Weibull 

PFS: Expo 

or 

Lognormal 

OS: Expo 

or Weibull 

TA463 
[11] 

Cabozantinib Kidney Cancer 30 years 
28.7 

Partitione
d Survival 

Model 

Yes Yes Yes No No No No Unclear Yes No No 

PFS:  

Loglogistic 

OS: 

Loglogistic 

PFS: 

Loglogistic 

OS: 

Weibull 

TA465 
[28] 

Olaratumab 
Soft Tissue 
Sarcoma 

25 years 
47 

Partitione
d Survival 

Model 

Yes Yes Yes Yes No No No Yes Yes No No 

PFS: KM 

OS: Gen 

Gamma 

PFS: KM 

OS: 

Lognormal 

TA472 
[29] 

Obinutuzumab 
Follicular 

Lymphoma 
25 years 

54 
Company 

chose 
Semi 

Yes Yes Yes No No No No Unclear No No No 

PFS: 

Multiple  

PFS: 

Multiple 

OS: Expo 



Markov 
Model. 

 
ERG 

preferred 
Partitione
d Survival 

Model 

OS: 

Multiple 

TA473 [5] Cetuximab 
Head/Neck 

Cancer 
“lifetime” 

60 
Partitione
d Survival 

Model 

Yes No Yes No No No No Yes Yes No No 

PFS: 

Weibull 

OS: 

Weibull 

PFS: Expo  

OS: KM + 

Expo 

TA476 [6] Paclitaxel 
Pancreatic 

Cancer 
10 years 

45 
Partitione
d Survival 

Model 

Yes Yes Yes No No Yes Yes Unclear Yes No No 

PFS: 

Gamma 

OS: 

Gamma 

PFS: KM + 

Gamma 

OS: KM + 

Gamma 

TA478 
[16] 

Brentuximab 
Vedotin 

Lymphoma 60 years 
82 

Partitione
d Survival 

Model 

Yes Yes Yes No No No No Yes Yes No No 

PFS: 

Lognormal 

OS: 

Gamma 

PFS: KM  

OS: KM 

TA483 
[25] 

Nivolumab 
Non-Small Cell 

Lung Cancer 
20 years 

38 
Partitione
d Survival 

Model 

Yes Yes Yes Yes No No No Unclear Yes No No 

PFS: Spline 

OS: 

Loglogistic 

PFS: KM + 

Expo 

OS: KM + 

Expo 

TA484 
[24] 

Nivolumab 
Non-Small Cell 

Lung Cancer 
20 years 

24 
Partitione
d Survival 

Model 

Yes Yes Yes Yes No No No Yes No No No 

PFS: Gen 

Gamma 

OS: Gen 

Gamma 

PFS: KM + 

Expo 

OS: KM + 

Expo 

TA487 
[27] 

Venetoclax Leukaemia 20 years 
24.7 

Partitione
d Survival 

Model 

Yes Yes Yes No No Yes No Yes Yes No No 

PFS: 

Weibull 

OS: 

Weibull 

PFS: ERG 

Weibull 

OS: ERG 

Weibull 

TA488 [7] Regorafenib 

Gastro-
intestinal 
stromal 
tumours 

40 years 
45.9 

Partitione
d Survival 

Model 

Yes Yes Yes No No No No Unclear No No No 

PFS: 

Lognormal 

OS: 

Loglogistic 

PFS: 

Lognormal 

OS: 

multiple 



TA489 
[31] 

Vismodegib 
Basal Cell 

Carcinoma 
30 years 

45 
Partitione
d Survival 

Model 

Yes Yes Yes No No No No Yes Yes Yes No 

PFS: 

Weibull 

OS: 

multiple 

PFS: 

Weibull 

OS: 

multiple 

TA490 
[26] 

Nivolumab 
Head/Neck 

Cancer 
20 years 

17 
Partitione
d Survival 

Model 

Yes Yes Yes No Yes No No Unclear Yes Yes Yes 

PFS: Gen 

Gamma 

OS: 

Lognormal 

PFS: Gen 

Gamma 

OS: 

Lognormal 

TA491 
[30] 

Ibrutinib 

Walden-
stroms 

macroglobu-
linaemia 

30 years 
30 

Markov 
Multistate 

Model 

Yes Yes Yes No No No No Yes Yes Yes No 

PFS: 

Weibull 

OS: Expo 

PFS: 

Weibull 

OS: Expo 

TA492 
[23] 

Atezolizumab 
Urothelial 

cancer 
20 years 

24.5 
Partitione
d Survival 

Model 

Yes Yes Yes No No No No Unclear Yes No No 

PFS: Gen 

Gamma 

OS: Gen 

Gamma 

PFS: KM + 

Expo  

OS: KM + 

Weibull 

TA495 
[12] 

Palbociclib  Breast Cancer 40 years 
40.5 

Partitione
d Survival 

Model 

Yes No Yes Yes No No No Yes No No No 

PFS: 

Weibull 

OS: 

Weibull 

PFS: KM + 

Expo 

OS: 

Weibull 

TA496 
[13] 

Ribociclib  Breast Cancer 40 years 
34.75 

Markov 
Multistate 

Model 

Yes Yes Yes No No No No Yes Yes No No 

PFS: Expo 

OS: 

Unclear 

PFS: Expo 

OS: 

Unclear 

SUMMARY  
 

 
28 

(100%) 

26 

(93%) 

28 

(100%) 

6 

(21%) 

2 

(7%) 

5  

(18%) 

2  

(7%) 

6 

(21%) 

25 

(89%) 

9 

(32%) 

2  

(7%) 

  

* indicates max follow-up when median was not reported. 

ERG - Evidence Review Group; QQ – Quantile Quantile; Expo – Exponential; KM – Kaplan Meier; OS – Overall Survival; PFS – Progression Free Survival.  

Note: a semi-Markov model’s transition probabilities are dependent on the time spent in a health state. A Partitioned Survival Model estimates the proportion in each health state directly from survival curves using mutually exclusive health 

states. 

 

 

Table 2: Summary of additional findings of this review. 



 Range Mean  Median (IQR) 

Time Horizon (years) 10 to 100  31.4   25 (20, 40) 

Max Observed Follow-up (years) 1.4 to 6.8 3.1 2.9 (2.0, 3.8) 

Proportion of Time Horizon 
Observed using Max 

5.8% to 37.5% 12.4% 10.1% (8.2%, 15.0%) 

Median Observed Follow-up (years) 0.4 to 5.9 2.0 1.3 (1.2, 2.1) 

 Proportion of Time Horizon 
Observed using Median 

2.0% to 11.6% 6.5% 6.7% (4.0%, 8.8%) 

 

 

 

 

 



Figure 1:  PRISMA flow diagram
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