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ABSTRACT

Recently spiral wave patterns (SWPs) have been detected in 3-min oscillations of
sunspot umbrae, but the nature of this phenomenon has remained elusive. We present
a theoretical model which interprets the observed SWPs as the superposition of two
different azimuthal modes of slow magnetoacoustic waves driven below the surface in an
untwisted and non-rotating magnetic cylinder. We apply this model to SWPs of the line-
of-sight velocity in a pore observed by the Fast Imaging Solar Spectrograph installed
at the 1.6 m Goode Solar Telescope. One- and two-armed SWPs were identified in
instantaneous amplitudes of line-of-sight Doppler velocity maps of 3-min oscillations.
The associated oscillation periods are about 160 seconds, and the durations are about
5 minutes. In our theoretical model, the observed spiral structures are explained by the
superposition of non-zero azimuthal modes driven 1600 km below the photosphere in
the pore. The one-armed SWP is produced by the slow body sausage (m = 0) and kink
(m = 1) modes, and the two-armed SWP is formed by the slow body sausage (m = 0)
and fluting (m = 2) modes of the magnetic flux tube forming the pore.

Keywords: Sun: chromosphere — sunspots — Sun: oscillations — magnetohydrody-
namics — waves

1. INTRODUCTION

Wave motions are a conspicuous dynamic phenomenon observed in sunspots. The first detection
of sunspot waves in the chromosphere was reported by Beckers, & Tallant (1969). Subsequent
works revealed that the predominant period of the waves is five minutes in the umbral photosphere
(Bhatnagar et al. 1972), and three minutes in the chromosphere (Beckers, & Schultz 1972). Sunspot
waves were also observed in the transition region and corona with the periods of less than three
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minutes (e.g. De Moortel et al. 2002; Sych et al. 2009; Tian et al. 2014). Furthermore, a radially
propagating wave pattern was detected in the sunspot penumbra that is known as running penumbral
waves (RPWs) (Giovanelli 1972; Zirin, & Stein 1972). A comprehensive review of sunspot waves can
be found in Khomenko, & Collados (2015).

The nature of 3-min chromospheric oscillations has been attributed to upward propagating slow
magnetoacoustic waves (Lites 1984; Centeno et al. 2006). Centeno et al. (2006) clearly showed the
propagating property of the waves by measuring the phase difference between the time series of the
line-of-sight (LOS) velocity in the photosphere and that in the chromosphere. In the same context,
the RPWs have been interpreted as the slow waves propagating along the inclined magnetic field
lines (Bloomfield et al. 2007; Löhner-Böttcher, & Bello González 2015).

The plausible driving sources of sunspot waves are external p-modes and internal magnetoconvec-
tion. The external driving scenario assumes that f - and p-mode waves in a quiet Sun propagate into
a sunspot. A fraction of the energy of the incident f - and p- mode is absorbed by its conversion
into a slow magnetoacoustic mode at the plasma-β equal to one layer (e.g., Cally et al. 1994; Cally,
& Bogdan 1997; Cally et al. 2003). Zhao, & Chou (2013) successfully observed the absorption of
the f - and p- mode wave energy in a sunspot in the k − ω diagram. In the internal driving model,
magnetoconvection occurring inside a sunspot can excite the waves. The radiative magnetohydrody-
namics simulations of the magnetoconvection showed that multi-frequency waves can be generated
in a magnetic concentration region such as a sunspot (Jacoutot et al. 2008). Chae et al. (2017) found
that the wave energy flux was enhanced around the light bridge and umbral dots, and they concluded
that the magnetoconvection may be the driving source of 3-min oscillations. The internal excitation
was further supported by Cho et al. (2019, in preparation)’s identification of several patterns char-
acterized by oscillation centers and radial propagation above individual umbral dots that are under
substantial changes. Recent works suggested that an internal driving source may be located below
the sunspot photosphere down to 5 Mm in the sunspot’s flux tube, by analyzing the photospheric
fast moving wave patterns (Zhao et al. 2015; Felipe, & Khomenko 2017).

Interestingly, recent observational works reported that in the horizontal plane, 3-min oscillations
often appear in sunspot umbrae as one- and two-armed spiral wave patterns (SWPs) (Sych & Nakari-
akov 2014; Su et al. 2016; Felipe et al. 2019). SWPs apparently propagate radially out at the velocity
of around 20 km s−1, and also propagate upward (Su et al. 2016). Since these propagating properties
are similar to RPWs, Su et al. (2016) concluded that observed SWPs could be associated with the
slow waves propagating along a twisted magnetic field. Sych & Nakariakov (2014), however, pointed
out that the magnetic field should be uniformly twisted in low-β plasma of sunspots, and it cannot
contribute to the non-uniformity of a SWP. Moreover, the observed SWPs highlight the structure of
the wavefront in a certain horizontal cross-section of the magnetic flux tube, which does not require
the flux tube twisting. Very recently, Felipe et al. (2019) also concluded that although the
twist can affect the shape of the observed SWPs. it is not their main cause.

In this paper we present a simple model that SWPs can naturally appear in an untwisted magnetic
flux tube when non-axisymmetric disturbances from below the surface are taken into account. We
observationally identify one- and two-armed SWPs in a pore in Doppler velocity maps of the Hα
line profiles, and develop a theoretical model explaining the appearance of SWPs. In section 2,
we describe the observations, and summarize observational results. In section 3 we describe the
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theoretical model that reproduces the SWPs, together with their simulation. Finally, in Section 4 we
discuss and conclude the main results.

2. OBSERVATION

We observed a pore in NOAA 12078 on 2014 June 3 from 16:48:41 to 17:56:32 UT with the 1.6 m
Goode Solar Telescope. The target was located at x = 160′′, y = −300′′ when we started the
observation. In this study, we used the data acquired by the Fast Imaging Solar Spectrograph (FISS)
in the Hα band, and this is the same data analyzed previously in Chae et al. (2015). The FISS
scanned the pore with a spectral sampling of 0.019 Åand spatial sampling of 0.′′16, covering a field
of view of 20′′ by 40′′. The exposure time was 30 ms, and the time cadence of the data was 20 s.
The basic calibration was performed as described by Chae et al. (2013). We measured the LOS
Doppler velocities for all data pixels by using the lambdameter method (Chae et al. 2013) with the
lambdameter chord of 0.4 Å. To highlight 3-min oscillations, we filtered the data in frequency, leaving
only the frequencies of 5.5 to 9 mHz.

From the filtered Doppler velocity maps, we identified three SWPs, but we deal with only the
two cases among them here for the case studies of an one- and two-armed SWPs. The left panels
of Figure 1 show the one- and two-armed SWPs measured from the velocity maps at 17:18:20 UT
and 17:44:47 UT respectively. The time evolution of these patterns during one cycle is illustrated
in Figure 4 and Figure 5, and associated movies are available online. These wave patterns rotated
in the counter-clockwise direction. The spiral arm structures are seen to move outward, and their
amplitude become to zero near the boundary of the pore. On the other hand, the center of the arms
moved abruptly inward direction while rotating, like a spiral; hereafter we call this as spiraling. We
determined the duration of the SWPs by the visual inspection of the rotating motion. It was found
to be about 4 minutes for the one-armed spiral and 5 minutes for the two-armed spiral. From the
wavelet analysis, we estimated the oscillation period of SWPs at about 120 seconds at
the center of the pore and at about 250 seconds near its boundary. The period averaged
over the pore is about 165 seconds.

To identify the spatial fluctuations of the patterns in the azimuthal direction, the discrete Fourier
transform was applied along the dashed line. The Figure 1 shows the time-averaged azimuthal
power spectra of the two SWPs constructed along the two circles marked by the dashed
curves. At these two radii, the power of non-zero azimuthal mode m is the biggest. In
the case of the one-armed SWP, most of the power is concentrated at m = 0 and m = 1 (panel (b)).
For the two-armed spiral, the power is concentrated at the m = 0 and m = 2 (panel (d)). These
indicate that the SWPs are composed of at least two azimuthal modes. We found that during
each event, both the azimuthally symmetric modes (m = 0) and the non-symmetric
mode (m = 1 or 2) appeared and disappeared together. The power of m = 0 mode at
the chosen radius fluctuated much with the period of about 80 s, whereas the power of
m = 1 or 2 mode changed slowly with time.

We detected such SWPs in other sunspots as well. Roughly speaking, from an one hour observation,
two or three SWPs occurred inside each sunspot. The rotation direction of the SWPs did not have
any hemispheric dependence. In some cases, in fact, two SWPs of opposite rotation directions were
observed in the same sunspot at two different times. Even though such SWPs were detected in any
types of sunspots, the spiral arms were simply shaped in small axisymmetric sunspots. The details
of these observational results will be described in a subsequent paper.



4 Kang et al.

�	

�

	
��
��
��
��
��

��	��	����

���

���

��	

���

�
��
�
��
��
��
��
��
��

�
�

�	 � 	

���������

�	

�

	

��
��
��
��
��

��	��	����

���

� � � � � 	 

�

���

��	

���

�
��
�
��
��
��
��
��
��

���

Figure 1. Snapshots of the LOS Doppler velocity maps (left panels), and their time-averaged azimuthal
power spectra in the azimuthal direction along the dashed line (right panels). Blue (red) color represents
upflows (downflows), and the saturation amplitude of velocity is 3 km s−1. The black contour represents
the boundary of the pore. The cross symbol indicates the center of the dashed line, and this position is set
to be the origin. The radius of the dashed line is 2′′ for the one-armed SWP (a) and that is 3′′ for
the two-armed SWP (c).

3. MODELING

To interpret the detected SWPs, we first consider azimuthal wave modes in an untwisted uniform
thick magnetic cylinder with the magnetic field along the z direction, following Edwin, & Roberts
(1983). The observed pore is well compatible with this assumption because it contains a straight
field that is confined to the pore’s boundary. The internally-oscillatory solution (body waves) of the
transverse and longitudinal velocity components in cylindrical coordinates (r, θ, z) are given as
follows (Spruit 1982; López Ariste et al. 2016)

vr =−ω
2 − k2c2s
ω2n2

AmJ
′
m(nr) exp i (kz +mθ − ωt), (1)

vz =−ikc
2
s

ω2
AmJm(nr) exp i (kz +mθ − ωt), (2)
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Figure 2. Schematic images of the longitudinal velocities vz in the m = 1 mode in the x − z plane. The
driving source of the wave is located at the center of the bottom. Blue (red) color represents the upflows
(downflows). The black solid line indicates the β = 1 layer and the dashed line denotes the detection layer
(D layer). Magnetic field lines are shown by the grey arrows. The propagating direction of the fast (slow)
wave is shown by the blue (red) arrow.

where k is the wavenumber along the field, ω is the frequency, cs is the sound speed, Am is the
amplitude of an azimuthal mode m, Jm is the Bessel function of the first kind and J ′m is its
derivative. In this study, we follow the general naming convention for the integer azimuthal modes:
sausage mode for m = 0, kink mode for m = 1 and fluting modes for m ≥ 2.

The effective radial wavenumber n is given by (Edwin, & Roberts 1983)

n2 =
(ω2 − c2sk2) (ω2 − c2Ak2)
(c2s + c2A) (ω2 − c2Tk2)

, (3)

where cA is the Alfvén speed and cT is the tube speed, c2T = c2sc
2
A/(c

2
s + c2A). For slow body waves n2

must be positive. In the low-β plasma, the phase speed ω/k lies between the tube speed and sound
speed (Roberts 2006).

In addition, we assume that the driving source of the wave is located below the photosphere inside
the flux tube. This approach is in line with the suggestion of Zhao et al. (2015) and Felipe, &
Khomenko (2017) made to interpret the photospheric fast moving radial wave patterns. In this
scenario a fast mode wave is driven at the high-β region, then it propagates quasi-isotropically to the
β = 1 layer (see Figure 2). Thus, the arrival time tA(r) at the β = 1 layer is given as a function of
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the transverse distance r from the center of the source,

tA(r) =

√
r2 + d2

vfast
, (4)

where d is the depth of the source and vfast is the averaged propagation speed of the fast wave in
the high-β region. Here for simplicity, we have assumed the constancy of the propagation speed and
neglected the effect of refraction and reflection. After arriving at the β = 1 layer, a portion of the
fast wave is converted to the slow wave (Cally 2001) which then propagates along the field. For
that reason, we can observe the radially propagating wave patterns when the slow mode reaches the
detection layer. With the use of this effect, we can re-write the Equation (2) as follows

vz = −ikc
2
s

ω2
AmJm(nr) exp i (kz +mθ − ω (t− tA(r))). (5)

As the wave frequency is constrained by the observation, we can derive the wave numbers k for
each azimuthal mode m from the dispersion relation of (Edwin, & Roberts 1983)

ρne

(
ω2 − k2c2A

) K ′m(neR)

Km(neR)
= ρen

(
ω2 − k2c2A,e

) J ′m(nR)

Jm(nR)
, (6)

where the subscript e represents the exterior of the flux tube, Km is the modified Bessel function
of the second kind, K ′m is its derivative andR is the radius of the tube, which is 5′′ in our case. We
take ω = 2π/160 s−1 from the observation, cs = 9 km s−1 from Maltby et al. (1986), cA = 300 km s−1

from Khomenko, & Collados (2006), cs,e = 1.5cs and cA,e = 0.5cs from Edwin, & Roberts (1983),
then the k is approximately 4.36×10−6 rad m−1 for all azimuthal modes.

Substituting these parameters into Equations (1) and (2), the ratio between the amplitudes of vz
and vr is estimated as vz/vr ∼ 5× 103 for all azimuthal modes. It means that every azimuthal slow
body mode is predominantly longitudinal in the chromosphere. Figure 3 shows snapshots of vz for
m = 0, 1, and 2 modes in the x − y plane with d = 1600 km and vfast = 20 km s−1. For the case
of m = 0, the ring-like pattern is generated, and this ring apparently propagates radially outward.
On the other hand, m = +1 and +2 modes produce apparently rotating patterns in the counter-
clockwise direction with one and two-armed structures, respectively. Since the ring-like pattern
of m = 0 mode propagates radially, the power of this changes with time and radius,
while the power of non-zero modes depends only on the radius because the patterns of
these modes do not move out (movie 1).

To reproduce the observed one-armed spiraling pattern, we summed up perturbations with m = 0
and m = 1 which are the most powerful modes according to the Fourier analysis, with the amplitude
ratio of A0/A1 = 0.54, the source depth of d = 1600 km and averaged propagation speed of vfast =
20 km s−1. In addition, we introduce the reference time t0 and reference angle θ0 terms to set the
origin of the simulation, then the t is replaced by t− t0, and θ is substituted by θ− θ0 in Equation 5.
Figure 4 indicates that the temporal evolution of the one-armed SWP from the observation (top)
can be fairly well modeled by the simulation (bottom) with t0 = −20 s and θ0 = 170◦. Like the
observation, the simulation can make the one-armed SWP. The red or blue arms abruptly change
the trajectory to inward around x = 2′′, y = 1′′ in both the observation and the simulation.

We can successfully model the observed two-armed SWP as well. Since the wave power is concen-
trated at m = 0 and 2, we reproduce this pattern by summing up vz of m = 0 and m = 2 with the
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Figure 3. Snapshots of the simulated parallel velocity component for the azimuthal wave modes m = 0,
+1 and +2 at t = 0 in x − y plane. Speeds are normalized by the amplitude of each mode. An associated
movie is available online.
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Figure 4. Time evolution of observed (top) and simulated (bottom) one-armed SWP from 17:17:20 UT to
17:20:00 UT. The observed Doppler maps are filtered in frequency bands from 5.5 to 9 mHz. The speeds in
simulation are normalized by the maximum value. The boundary of the pore is shown by the solid line in
both cases. An associated movie is available online.

amplitude ratio of A0/A2 = 0.54, the reference time of t0 = 30 s and the reference angle of θ0 = 30◦.
In this simulation, the source is located at 1600 km below the β = 1 layer and the averaged phase
velocity is about 20 km s−1. Figure 5 and associated animation represent the temporal evolution of
the two-armed SWP. The observation and simulation show quite similar two-armed spiraling features.
The two blue and red arms abruptly move inward around x = −1′′, y = 2.5′′ and x = 1′′, y = −2.5′′.

4. DISCUSSION

In this letter, for the first time, we have presented a model that can explain the observed SWPs
as slow MHD waves in an untwisted magnetic field. In our model, the apparently rotating pattern
is associated with the superposition of non-zero-m azimuthal slow modes. A non-zero-m mode has a
right-handed (left-handed) helical shaped wavefront for the case of positive (negative) m. Since this
wave propagates upwardly along the straight field in a vertical magnetic flux tube, the wave pattern
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Figure 5. Similar to Figure 4, but for the case of two-armed SWP from 17:44:07 UT to 17:46:47 UT. An
associated movie is available online.

observed at some height shows an apparent rotation in the counter-clockwise (clockwise) direction.
This kind of a rotating wave pattern was observed for the case of m = 1 kink mode (Jess et al. 2017),
and the related vortex dislocations were detected in a time-distance map along the slit placed in the
center of the axis (López Ariste et al. 2016).

The spiral structures and outward propagating wave patterns are formed by the internal driving
sources, i.e. situated inside the magnetic flux tube forming the umbra, which are placed below
the photosphere. Since the wave propagates quasi-isotropically in the high-β region, the longer the
horizontal distance from the wave source to the observation point, the later the wave arrives. The
difference in the arrival times in the photosphere results in an apparent radially moving ring pattern
in the case of m = 0 (sausage) mode. In non-zero-m modes, the trailing spiral arm structures are
formed because of the wave patterns rotate earlier as it is closer to the axis of the waveguiding
flux tube. The number of arms depends on the absolute value of m. Thus, the observed apparent
spiraling motion is not caused by the wave propagation in the azimuthal direction, but by the oblique,
spiral-shaped wavefront of vertically propagating perturbations.

Because of the abrupt spiraling motion of the one-armed spiral, Su et al. (2016) proposed that this
pattern may be caused by the reflection at a light bridge. In our case, however, there was not light
bridge at all and, nevertheless, such SWPs were detected. Our simulation clearly shows that the
spiraling patterns are formed by the superposition of the wavefronts of an m = 0 and a higher-m
modes. The one-armed SWP is generated by an m = 0 sausage mode and an m = 1 kink mode, and
the two-armed SWP is formed by an m = 0 sausage mode and an m = 2 fluting mode.

We surmise that the driving source of a SWP may be associated with the downflows
caused by the local magnetoconvection inside the sunspot. According to the 3D radiative
MHD simulation of Kitiashvili et al. (2019), acoustic waves can be generated by the
converging downflows at 1.5 Mm beneath the surface inside a pore. This depth is very
close to the depth of the source used for our model. Furthermore, since there is no time
lag between the two azimuthal modes in our simulation, it seems that these modes are
excited simultaneously by the same driver.



We need to stress that the kink wave in a sunspot umbra or a pore, considered here should not be
confused with the kink waves studied in coronal loops. In the loop, the kink mode is a transverse
wave (Aschwanden et al. 1999; Nakariakov et al. 1999), while the sunspot kink mode considered here
is a longitudinal wave associated with a slow magnetoacoustic wave (López Ariste et al. 2016; Jess
et al. 2017). As a slow wave in a low-β plasma, the kink wave in a sunspot is mainly characterized
by parallel, field-aligned plasma flows. The radial flows, vr, in this wave are quite small, because the
ω2− k2c2s factor in Equation (1) tends to zero as the phase speed is about the sound speed. Another
difference is connected with the wave polarization. Kink oscillations of coronal loops are usually
linearly polarized, while the spiral wave structure in a sunspot requires the kink oscillation to be
circularly polarized, i.e. the azimuthal wave number is m = +1 or m = −1. The sign is determined
by the sense of rotation of the wavefront.

Since the mechanism does not require additional assumptions such as the flux tube twisting or
rotation, we expect that such SWPs may be generally detected in any sunspots. As we accumulate the
observation of those patterns, we can infer more physical parameters in sunspots such as propagating
speed of fast wave and depth of the wave driving source. Furthermore, those wave patterns can be
considered as the evidence of the internal excitation of 3-min oscillations in sunspots. Further study
of the SWPs may provide us with the clues to how magneto-convection inside a sunspot generates
such waves.
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