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Abstract

Social media platforms allow users to express their opinions towards various top-

ics online. Oftentimes, users’ opinions are not static, but might be changed over

time due to the influences from their neighbors in social networks or updated

based on arguments encountered that undermine their beliefs. In this paper,

we propose to use a Recurrent Neural Network (RNN) to model each user’s

posting behaviors on Twitter and incorporate their neighbors’ topic-associated

context as attention signals using an attention mechanism for user-level stance

prediction. Moreover, our proposed model operates in an online setting in that

its parameters are continuously updated with the Twitter stream data and can

be used to predict user’s topic-dependent stance. Detailed evaluation on two

Twitter datasets, related to Brexit and US General Election, justifies the su-

perior performance of our neural opinion dynamics model over both static and

dynamic alternatives for user-level stance prediction.

Keywords: Natural language processing, Opinion mining, Social networks,

Dynamic modelling

1. Introduction

The proliferation of social media platforms such as Twitter enables users

to express themselves in various ways. A large proportion of users manifest
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themselves in following, commenting on or forwarding others’ texts (Wang et al.,

2014). This poses several new challenges to the field of opinion mining. Firstly,5

users may not explicitly express their opinions in text. Instead, they could show

endorsements of their support of others’ opinions through social interactions

such as retweet on Twitter or clicking on the “Like” button on Facebook (Thonet

et al., 2017). Secondly, users are not necessarily influenced by all the surrounding

contexts (Qiu et al., 2015). For example, users tend to ignore those tweets10

containing topics falling outside of their interests. It is difficult to identify

which post a user pays more attention to. Thirdly, users might update their

opinions over time. An individual’s opinion is an outcome of a combination of

their predisposition and the influence from their neighbors over a short period

of time (Cha et al., 2010).15

To tackle the aforementioned challenges, existing literatures have utilized

user relations (Thonet et al., 2017), contextual information about topics (Ren

et al., 2016; Xing et al., 2017) and temporally-ordered documents (He et al.,

2013; De et al., 2016; Chen et al., 2018) for opinion/stance detection. How-

ever, none of them integrated the three factors of social relations, context and20

temporality of documents into a unified framework. For example, the SNVDM

in (Thonet et al., 2017) improved the performance of VODUM (Thonet et al.,

2016) with relationships brought in, whilst they did not consider the temporal

order of tweets. Ren et al. (2016) introduced a topic-based context to aggre-

gate tweets for more accurate prediction and achieved the state of the art, but25

they ignored to leverage relationships. The dJST proposed in (He et al., 2013)

extended JST (Lin and He, 2009) to dynamically detect topic and stance shifts

over time on product reviews without considering user relations. Chen et al.

(2018) used an attention mechanism (Bahdanau et al., 2014) to weigh the impor-

tance of a user’s present tweet, previously published tweets and their neighbors’30

tweets and successfully predicted the tweet-level stance. However, they ignored

the fact that users’ tweets are topic-dependent, hence simply aggregating one’s

previous tweets and neighbors’ tweets for stance prediction may not give good

results.
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In contrast, we assume that a user’s opinion1 is topic-dependent and is35

formed based on one’s a priori perspective and social influence from their

friends. Also, users’ opinions are not static and could change over time. While

previous work mostly focused on tweet-level stance prediction, we instead work

on user-level stance prediction. Our rationale is that an individual tweet may

be ambiguous in expressing opinions (e.g., sarcastic tweets), however, user-level40

stance prediction by considering tweets at the global level would have a smooth-

ing effect which will potentially generate more accurate results. Moreover, user-

level stance prediction has an advantage that it is able to predict a user’s stance

towards a specific topic even though the user did not publish any tweets about

this topic in the current time window.45

We thus propose a Neural Opinion Dynamics (NOD) model built on Recur-

rent Neural Networks (RNNs) to capture the three key factors for the prediction

of user-level opinion dynamics: the user’s past opinions, the user’s neighborhood

opinions and contextual information about topics. In our proposed framework,

we split temporally-ordered tweets into sequential epochs and capture the rep-50

resentations of both users’ and their neighbors’ topical contextual information

using an attention mechanism. Users’ sequential posting behavior is simulated

by a Gated Recurrent Unit (GRU) (Cho et al., 2014) network. We train the

model through online learning that data stream is split into epochs temporally

and the model is updated at each epoch sequentially to allow for the prediction of55

user-level topic-related stances in the following epoch. Our source code is made

available at https://github.com/somethingx01/TopicalAttentionBrexit.

The contributions of this paper are summarized as follows.

• We propose a novel Neural Opinion Dynamics (NOD) model that jointly

models users’ posts, neighborhood and topical contextual information us-60

ing an attention mechanism.

1In our work here, we aim to detect a user’s stance (suppport, be neutral or go against)

towards a certain topic on Twitter and use opinion and stance interchangeably throughout

the paper.
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• Unlike previous approaches, a user’s sequential posting behavior is simu-

lated by a GRU, which fully exploits the temporal contextual information

for online learning.

• Experimental results on two Twitter datasets show that the proposed65

approach outperforms the state-of-the-art approaches and is effective in

tracking the user-level opinion dynamics.

The rest of the paper is organized as follows. We first review in Section 2 the

three lines of research on incorporating social relations for stance detection, neu-

ral networks for stance prediction and stance/opinion dynamics detection using70

dynamic approaches. We then present our proposed neural network architecture

in Section 3 followed by experimental results in comparison with baselines on

two datasets relating to Brexit and US General Election in Section 4. Finally,

we conclude the paper and outline directions for future research.

2. Related Work75

Our work is related to three lines of research: incorporating social relations

and context for sentiment/stance detection, neural networks for stance detection

and stance/opinion dynamics tracking.

2.1. Incorporating social relations and context for sentiment/stance detection

Early attempt of using social relations for user-level sentiment detection was80

made by (Tan et al., 2011) who proposed a probabilistic graphical model in

which the observed sentiment labels of users were propagated to users without

sentiment labels along the edges in their social network. Hu et al. (2013) ob-

served that connected individuals are more likely to hold similar opinion and

incorporated this as a constraint into a probabilistic optimization model for85

sentiment classification on microblogs. More recently, Thonet et al. (2017) took

the re-tweet and re-tweeted status as the observed variables, which were in turn

sampled from viewpoint-specific distributions. They ran the proposed model on

two political corpora for topic-specific stance classification.
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Apart from social networks, contexts such as topics and opinion targets have90

also been proven useful in stance classification (Vo and Zhang, 2015; Ren et al.,

2016; Xing et al., 2017; Tang et al., 2019). The integration of context is typically

achieved by the attention mechanism, which was originally proposed in (Mnih

et al., 2014), which can be viewed as a selector for the most relevant part of

the input. For example, in (Ren et al., 2016), hashtags were viewed as topics95

and attention signals were allocated to neighborhood tweets which share similar

hashtags. Neighborhood tweets with higher attention signals contribute more

towards the sentiment of the tweet of interest. Ma et al. (2018) considered stance

as aspect-associated. For each sentence they computed the aspect representation

from aspect words and used it together with the sentence representation to100

generate an aspect-stance vector.

2.2. Neural networks for stance detection

In recent years, neural networks such as Long-Short Term Memory (LSTM)

networks (Hochreiter and Schmidhuber, 1997) and Convolutional Neural Net-

works (CNNs) have been used widely for stance classification (Wang et al.,105

2016; Du et al., 2019). In SemEval2016 Task 6 (Detecting Stance in Tweets),

the top ranked system (Zarrella and Marsh, 2016) was built based on a transfer

learning framework with two RNNs. A similar network architecture was pro-

posed in (Baziotis et al., 2017) where an attention layer was added on top of

the BiLSTM to generalize the hidden states. Chen et al. (2016b) introduced a110

sentence-level attention to an LSTM-based classifier and demonstrated its ef-

fectiveness in user-level stance classification. Yang et al. (2018) incorporated

topics for relevant emotion ranking. Some other works considered transferring

external sentiment knowledge via sentimental word embeddings (Bandhakavi

et al., 2017; Li et al., 2017). More recently, Majumder et al. (2018) employed115

a memory neural network to model the inter-aspect dependency, which showed

effectiveness on classifying multi-aspect sentences.

5



2.3. Opinion/Stance Dynamics Tracking

Early work to opinion/stance dynamics tracking utilized variants of topic

models such as Latent Dirichlet Allocation (LDA) (Blei et al., 2003) or stochastic120

processes. For example, He et al. (2013) proposed the dynamic Joint Sentiment-

Topic (dJST) model built upon LDA by adding a sentiment layer between the

topic layer and words and assuming that the Dirichlet prior of the sentiment-

topic-word distribution in the current epoch is influenced by the statistics col-

lected in the previous n epochs. Their approach can track the evolution of125

both topics and topic-associated stances from reviews. Sasaki et al. (2014) com-

bined Twitter-LDA with a variant of Dynamic-LDA to detect the topic trend

over time. Dermouche et al. (2014) also modified LDA by additionally adding

documents’ timestamps as observed variables. Volkova and Van Durme (2015)

explored an active learning setup for user-level stance classification. De et al.130

(2016) forecast user-level opinion dynamics via stochastic processes based on

the intuitive idea that opinions are hidden variables conditioned on neighbors’

shared opinions. Another stochastic influential model was proposed in (Jia et al.,

2017). More recently, Chen et al. (2016a, 2018) leveraged temporally-ordered

tweets by introducing an attention layer to weigh the importance of a user’s135

previous tweets, their current tweet and their neighbors’ tweets for tweet-level

stance prediction. They also used an LSTM layer to capture historical influence

from past epochs. Tweets in their model were represented by the bag-of-opinion-

words where opinion words were detected using a sentiment lexicon.

Our proposed model is different from the aforementioned models in the fol-140

lowing aspects: (1) our model considers topical information and generates the

representations of tweets using an attention mechanism; (2) our model incorpo-

rates contextual information from neighbors to capture the social influence; (3)

as opposing to (Chen et al., 2016a, 2018) which applies an attention layer to

distinguish between a user’s previous tweets and current tweets, we model the145

user’s tweets as a posting sequence which naturally captures the user’s posting

behavior. As will be shown in the experiments section, our model outperforms

the existing approaches in stance dynamics tracking.
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3. Neural Opinion Dynamics (NOD) Model

…… e-1 e

d1
e,u dt

e,u dT
e,u

Posting sequences in an epoch

Epoch stream

… …

Context per post

d1
e, dt

e, dT
e,… …

… … …
user 1

user u

…

Topic
embeddings

Tweet
representations

…

…
Neighborhood tweets Own

zt
e
,
,
1
u zt

e
,
,
2
u zt

e
,
,
0
u

ct
e
,
,
1
u ct

e
,
,
2
u ct

e
,
,
0
u

zt
e
,
,
N
u

ct
e
,
,
N
u

e+1

Figure 1: The problem setup for opinion dynamics prediction.

In this section, we present the Neural Opinion Dynamics (NOD) model which150

leverages content and context information for the tracking of user-level stance

dynamics over time. We assume that tweets arrived in a temporal order and can

be split into epochs. Each epoch stretches for a fixed window size which can be

either time-based (e.g., a day) or count-based (e.g., 10k tweets). In each epoch

e, a user u posted a sequence of tweets {de,u1 , de,u2 , . . . , de,uT }. Each tweet de,ut155

has a tweet representation ce,ut,0 derived from its content and the associated topic

embedding ze,ut,0 . We will discuss in Section 3.3 how to generate topic embeddings

for tweets. In addition, we assume that when user u posts a tweet de,ut at

epoch e, their opinion is also influenced by the most recent N tweets posted

by their neighbors in their social network. Therefore, the context information160

of the tweet de,ut is captured by their neighbors’ tweets in the form of a tweet

representation sequence {ce,ut,1 , c
e,u
t,2 , . . . , c

e,u
t,N} along with the corresponding topic

embeddings {ze,ut,1 , z
e,u
t,2 , . . . , z

e,u
t,N}.

In our problem setup here, the parameters of NOD are updated online, i.e.,

NOD is updated using the data in the current epoch and is used for predicting165
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a user’s topic-related stance in the subsequent epoch. By doing so, NOD can be

used for tracking the user-level stance dynamics. The problem setup is depicted

in Figure 1. In what follows, we first describe the overall architecture of NOD

model and then present each of its components in details.

3.1. Overall Architecture170
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Figure 2: The overall architecture of the proposed Neural Opinion Dynamics (NOD) model.

The overall architecture of the NOD model is shown in Figure 2. Here, the

input is a user’s timeline of tweets or posts. An LSTM layer is first used to gen-

erate the representation for each tweet. The tweet representation and the corre-

sponding topic embedding is concatenated and subsequently combined with the

context information captured by the neighbors’ tweets using an attention mech-175

anism to generate the integrated representation for tweet de,ut posted by user u

at time t in epoch e. Each user u has a sequence of posts {de,u1 , de,u2 , . . . , de,uT }

in epoch e, which are passed to a GRU layer to obtain the user representation.

Finally the user representation is used as features to predict the topic-stance
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distributions using a Softmax layer. To model the influence of the training180

data from previous epochs, the last state of the GRU in epoch e− 1 is used to

initialize the GRU for the current epoch e.

3.2. Tweet Representation

We generate the representation of a tweet using an extensively exploited

LSTM (Sutskever et al., 2014; Tang et al., 2015; Wang et al., 2016; Baziotis185

et al., 2017), which corresponds to the LSTM Layer in Figure 2. LSTM is

more effective dealing with language modelling compared with other architec-

tures (Jozefowicz et al., 2015). We use the 300-dimensional word embeddings

pre-trained on 20 million tweets (Barbieri et al., 2016)2.

Suppose the l-th word we,u
t,nl

is mapped into its embedding we,u
t,nl
∈ R300,

given the previous cell state Ce,u
t,nl−1

, hidden state he,ut,nl−1
and the current input

word we,u
t,nl

, the transition function of the LSTM is calculated as follows:

fe,ut,nl
= σ(Wf · [he,ut,nl−1

,we,u
t,nl

] + bf ) (1)

ie,ut,nl
= σ(Wi · [he,ut,nl−1

,we,u
t,nl

] + bi) (2)

oe,ut,nl
= σ(Wo · [he,ut,nl−1

,we,u
t,nl

] + bo) (3)

C̃e,u
t,nl

= tanh(WC · [he,ut,nl−1
,we,u

t,nl
] + bC) (4)

Ce,u
t,nl

= fe,ut,nl
� Ce,u

t,nl−1
+ ie,ut,nl

� C̃e,u
t,nl

(5)

he,ut,nl
= oe,ut,nl

� tanh(Ce,u
t,nl

) (6)

where · stands for the matrix multiplication and � is an element-wise multipli-190

cation operator. W and b are the parameters to be trained. The LSTM layer

outputs a sequence of hidden states {he,ut,n1
, he,ut,n2

, . . . , he,ut,nL
}, which are conveyed

to an average pooling layer to obtain a tweet representation ce,ut,n .

3.3. Topic Embedding Generation

The topic embedding in Figure 2 captures the topic information of each tweet.195

The generation of the topic embedding is separated from the learning process.

2https://drive.google.com/drive/folders/0B13VF_-CUsHPd3FqdVJ2c1ZJaXc
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We use the Hierarchical LDA (HLDA)3 for hierarchical topic detection4. In

HLDA, each document is allocated with a set of topics which is essentially a

path from the root to a leaf in a topic tree, where higher level nodes are more

general topics. The topic tree is generated using a nested Chinese Restaurant200

Process (nCRP) (Blei et al., 2010). Each document is generated by drawing

words from its assigned topics. For each tweet, we chose its level-2 topic in

order to achieve balanced topic granularity. In HLDA, each topic is represented

as a distribution over a fixed vocabulary. We sort the vocabulary by word

frequency, keeping the normalized first 100 dimensions as the representation for205

each topic. Finally, each tweet is associated with a topic represented as a vector,

which is denoted as z in Figure 2.

3.4. Context Attention

We assume that when a user posts a tweet, they would pay more attention to

their neighbors’ tweets carrying topics of their interests. Context-based atten-

tion mechanism has been demonstrated effective in a variety of tasks including

topic aware response generation (Xing et al., 2017), sentiment analysis (Ren

et al., 2016) and geolocation prediction (Miura et al., 2017). In the context

attention layer of NOD shown in Figure 2, the input consists of a fixed number

of neighborhood tweets {ce,ut,1 , c
e,u
t,2 , . . . , c

e,u
t,N}, their respective topic embeddings

{ze,ut,1 , z
e,u
t,2 , . . . , z

e,u
t,N}, the user’s current tweet ce,ut,0 and topic ze,ut,0 . First, for each

tweet, its final representation is generated by combining the tweet representation

with its corresponding topic embedding by:

ge,ut,n =
α1z

e,u
t,n ⊕ α2c

e,u
t,n

α1 + α2
(7)

where αi captures the importance between topic and content. Note that if α1 �

α2 then the model degenerates to the one entirely relying on the textual infor-

mation. The combined representations are then passed to a user attention layer

3http://www.cs.columbia.edu/~blei/downloads/hlda-c.tgz
4We did not use LDA here as it requires pre-setting the topic number while HLDA can

automatically infer the topic number from data.
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whose output de,ut is a normalized weighed sum of {ge,ut,1 , g
e,u
t,2 , . . . , g

e,u
t,N, g

e,u
t,0 }:

de,ut =

N∑
n=0

βng
e,u
t,n (8)

βn =
exp(vTue,ut,n)∑N
n=0 exp(vTue,ut,n)

(9)

ue,ut,n = tanh(Wge,ut,n + b) (10)

where βn, (n > 0), represents the user’s attention towards n-th neighborhood

tweet. In other words, βn essentially measures the degree of influence from the210

n-th neighborhood tweet and β0 is the attention signal on the user’s current

tweet. v is the weight vector, ue,ut,n functions as a smoothing factor calculated

from ge,ut,n by a fully connected layer.

3.5. User-Level Stance Prediction on Streaming Data

It was previously demonstrated that GRU outperforms LSTM in all tasks

except for language modelling (Jozefowicz et al., 2015). As such, we feed the

integrated representations of user e’s post sequence in epoch e, {de,u1 , de,u2 , . . . ,

de,uT }, to a GRU layer for user-level stance prediction. Let he,ut denote the hidden

state, the current state he,ut is updated based upon the previous state he,ut−1 as

follows:

se,ut = σ(Ws · [he,ut−1, d
e,u
t ] + bs) (11)

re,ut = σ(Wr · [he,ut−1, d
e,u
t ] + br) (12)

h̃e,ut = tanh(Wh · [re,ut � he,ut−1, d
e,u
t ] + bh) (13)

he,ut = (1− se,ut )� he,ut−1 + se,ut � h̃e,ut (14)

where se,ut is the update gate, re,ut is the reset gate, Ws,Wr,Wh are the weight

matrices and bs, br, bh are the biases. The hidden states are then passed to an

average pooling layer to obtain a user representation he,u, which is transformed

with the following equation:

oe,u = Wout · he,u (15)
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where Wout maps the user representation he,u into a dimension of C categories.

The output is normalized by a Softmax layer:

ye,uc =
exp(oe,uc )∑C
i=1 exp(oe,ui )

(16)

which is a distribution over C categories. The loss function is the KL-divergence (Kull-

back, 1997) loss described as:

L =

U∑
u=1

C∑
i=1

KL(ye,ui ||g
e,u
i ) (17)

where ge,u is the ground truth distribution over categories. Assuming there are215

K topics and each topic has S stance labels, then there are essentially C = K×S

categories. We can map the C-length vector ye,u into a K ×S matrix to obtain

the topic-stance distribution.

To model the impact from previous epochs, we initialize the state of GRU

for user u in epoch e with the final state of GRU for user u in epoch e− 1, that220

is, he,u0 = he−1,u
T . The process is repeated for each epoch and this results in a

long RNN transition chain.

3.6. A Variant of the Proposed Model

The NOD model described so far outputs topic-associated stance labels for

each user. We also perform coarse-level stance classification in which the output

is a three-class stance label (‘oppose’, ‘neutral ’ or ‘support ’) with topics ignored.

This is achieved by modifying the output layer and the loss function of NOD.

Concretely, the output oe,u is a 3-dimensional vector and the loss function is

changed to cross-entropy loss defined as:

L = −
U∑

u=1

log

(
exp(oe,uge,u)∑3
i=1 exp(oe,ui )

)
(18)

where ge,u is the ground truth three-class stance label. We call such a variant

NOD Coarse.225
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4. Experiments

4.1. Experimental Setup

Data. We constructed two datasets by crawling tweets related to Brexit and US

General Election 2016 using the Twitter Streaming API with relevant hashtags.

For Brexit, tweets were crawled between 2nd and 21st of June 2016 using hash-230

tags #EURef, #EU, #Referendum, #Brexit, #VoteRemain and #VoteLeave.

For US General Election, tweets were crawled between November 6th and 7th

2016 using keywords Trump, Clinton and Hillary. Only English tweets were kept

and duplicate tweets including re-tweets were removed. Users’ social networks

(following and follower relations) were also collected. The Brexit dataset was235

split into epochs every other day, which resulted in a total of 9 epochs with each

epoch consisting of 40,440 tweets on average. The Election dataset contains

a total of 452,128 tweets and were split into 11 count-based epochs with the

epoch size set to 40,000 and on average 16,019 users per epoch. The statistics

of the two datasets are summarized in Table 1. The distribution of opposed,240

neutral and supportive users per epoch is shown in Figure 3. It can be observed

that the Election dataset has more polarized users compared to the Brexit

dataset.

Pre-processing. We pre-process tweets by tokenization, lowercasing, removing

URLs, user handles (@user) and email addresses. Recall that in our model each245

Table 1: Statistics of the two Twitter datasets. ‘user/epoch’ is the average number of users

per epoch and ‘tweet/user/epoch’ is the averaged number of tweets per user in an epoch.

Brexit Election

#user 38,335 108,689

#tweet 363,961 452,128

#epoch 9 11

user/epoch 10,802 16,019

tweet/epoch 40,440 40,000

tweet/user/epoch 3.7 2.5
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Figure 3: The number of opposed, neutral and supportive users versus epochs.

user is a training instance consisting of a sequence of posts. In our experiments,

we set each user’s post sequence to a fixed length by either padding null tweets

for users with few tweets or trimming extra tweets for users with too many

tweets. The same rule was also applied when dealing with a user’s neighborhood

context. In our datasets, we observe that less than 11% of the users have250

posted more than 3 tweets in any epoch. As such, we set the length of a user’s

posting sequence in any epoch to 3. We also observe that users on average

possess a neighborhood context of 5 tweets in each epoch. Therefore, we set

the neighborhood context size to 5 in our experiments. The maximum length

of each tweet was set to 24 since over 88% tweets have less than 24 words.255

Topic Setting. As mentioned before, we used HLDA to extract topics from

tweets. As there might be potentially a large variety of topics discussed in

tweets, we only kept the most prominent topics and merged topics with fewer

than 10,000 associated tweets as ‘Others’. The prominent topics are illustrated

in Table 2, where we removed common stop words5 and manually assigned a260

5https://github.com/somethingx01/TopicalAttentionBrexit/blob/master/

postCommonStopWords.txt
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Table 2: Top ten words in the discovered topics on two datasets.

Brexit

Sovereignty leave EU vote UK stay Europe country control borders independence

Economy EU UK economy jobs brexit trade free NHS money tax

Boris&Farage Boris gove voteleave Johnson Farage brexit Michael Cameron David Geldof

Immigration brexit UK EU EURef leaveEU voteleave England migrants refugees muslim

Campaign brexit campaign remain racist political MP JoCox murder working class

BBCdebate debate remain BBCdebate voteremain watching voteleave Boris ITVEURef

argument tonight

Polls referendum EU brexit EURef UK remain news debate poll polls

Vote EURef vote referendum Thursday week today debate voting days June

Election

Vote voting people win president candidate supporters supporter voted vote

America

Email scandal Hillary rigged emails FBI Comey director Trump talking guy things

Jobs election polls vote state signs jobs tax plan steel China

Email scandal Hillary Clinton emails FBI wikileaks email foundation state money server

Slogans Trump Donald MAGA Clinton president vote election final Hillary

IMWITHHER

Campaign rally Donald campaign Trump Nugent Ted Clinton sign Reno protester

Election Donald USA president world Clinton vote united win states campaign
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Table 3: Accuracy of the ground truth acquisition methods.

Brexit Election

DataStories 0.906 0.895

Sentiment140Lex 0.579 0.562

Vader 0.538 0.481

label to each topic for easy understanding. We further introduced a ‘Null ’ topic

for those null tweets added to the training data. We ended up with 10 topics

for the Brexit data and 9 topics for the Election data.

Ground Truth Stance Labels. As it is very difficult to manually annotate

over 800k tweets in our datasets, we resorted to training a stance classifier us-265

ing distant supervision. In particular, for Brexit, we collected over 4 million

tweets6 between May 16th and June 2nd 2016 with hashtags clearly indicating

stances. Concretely, we assign stance label ‘support ’ to tweets if they exclusively

carry hashtags ‘#voteleave, #euistheproblem, #leaveeu, #betteroffout, #take-

control or #votebrexit ’, but do not contain ‘#voteremain, #strongertogether,270

#stayintheeu, #strongerin, #bettertogether or #remainineu’. We annotate op-

posite tweets vice versa. Tweets without stance-indicative hashtags and do not

contain any polarity words are assumed to be ‘neutral ’. This practice was in-

spired by the observation that most users use their own hashtags to manifest

their political preferences, when we were manually annotating 1,000 validation275

tweets in the initial pass. For example, both tweets ‘#TakeControl on 23rd in

#EUref ’ and ‘Great Britain is happy to trade with its neighbours, it does not

need their laws imposed upon #VoteLeave’ show a ‘support ’ stance, while tweet

‘Gove had enough of experts. Would rather listen to experts as won’t make as

many errors as gobby knowalls. #StrongerIn’ exhibits an ‘oppose’ stance. Sim-280

ilarly, for Election, we collected over 17 million tweets in the first week of

6Only the original tweets were accounted for the user-level ground truth acquisition.

Retweets and duplicate tweets were removed.
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November 2016 with stance-indicative hashtags such as ‘#votetrump, #trump-

willwin, #neverhillary, #crookedhillary, #draintheswamp and #notwithher ’ for

‘support ’ and ‘#votehillary, #nevertrump, #trumptapes, #imwithher, #vote-

blue and #trumpdown’ for ‘oppose’, and sampled neutral tweets in a similar285

way. We then trained an off-the-shelf stance classifier DataStories7 (Baziotis

et al., 2017), which gave the best result in the SemEval-2017 Task 4 on “Senti-

ment Analysis in Twitter”, using these external corpora. To assess the accuracy

of such externally-trained stance classifier, we manually annotate 1,000 tweets,

and report the results in Table 3. Since some studies rely on sentiment lexicons290

e.g., emoticons, for the acquisition of ground truth labels (Marchetti-Bowick and

Chambers, 2012; Lim and Buntine, 2014; Chen et al., 2018), we also compare the

results with those obtained using Sentiment140Lex (Mohammad et al., 2013),

a lexicon specially designed for Twitter sentiment analysis, and Vader (Gilbert,

2014), a lexicon-based sentiment classifier. It can be observed that DataStories295

significantly outperforms Sentiment140Lex and Vader by a large margin. This

is not surprising since sentiment lexicons are primarily used for sentiment clas-

sification, which is, however, quite different from stance prediction since tweets

containing positive words could express an ‘opposing ’ stance. To further obtain

the user-level topic-stance distributions, for each user we calculate the number300

of tweets under each topic with different stance labels and normalize the counts

to obtain the topic-stance distributions.

Baselines. Recall that in Section 1 we elaborated our motivation by analyzing

six related models. Here, we choose SNVDM as a static baseline which incorpo-

rates user relationships. CbNNM is chosen considering the utilization of context305

attention. As the dynamic baselines we employ dJST, SLANT and CSIM W.

We further add DataStories since it has been used for distant supervision. For

the methods which can only output tweet-level stance labels, we aggregate the

stance classification results by users to obtain the user-level stance labels.

dJST (He et al., 2013) is a weakly-supervised LDA-based generative model for310

7https://github.com/cbaziotis/datastories-semeval2017-task4

17

https://github.com/cbaziotis/datastories-semeval2017-task4


dynamic sentiment-topic detection. The model used the sentiment-topic-word

statistics gathered in the previous n epochs to modify the Dirichlet prior for the

sentiment-topic-word distribution in the current epoch. We incorporate into the

model the word prior polarity information obtained from Sentiment140Lex.

SLANT (De et al., 2016) is a supervised probabilistic generative model which315

models each user’s latent opinions over time as a multidimensional stochastic

process. Users’ extant messages and stance labels are considered as observations

for parameter estimation.

CSIM W (Chen et al., 2018) used an attention layer to weigh the importance of

a given user’s previously published tweets, their current tweet and their neigh-320

bors’ tweets and employed an LSTM layer to capture the influence in the previ-

ous epochs. They represented each tweet using the bag-of-opinion-words which

were identified using Vader (Gilbert, 2014). We also implemented a variant of

CSIM W, called CSIM W Rep, in which each tweet is represented by a sequence

of word embeddings as in our model.325

SNVDM (Thonet et al., 2017) is an unsupervised LDA-based generative model

where the sender/receiver information is regarded as observed variables, which

is generated by a hidden viewpoint variable. In our experiments, a user is a

sender and their followers are receivers.

CbNNM (Ren et al., 2016) considered hashtags as topics. In their model, the330

contextual information of a tweet (i.e., the neighbors’ tweets sharing the same

hashtag) serve as features for tweet-level stance classification.

DataStories (Baziotis et al., 2017) is the state-of-art method in tweet-level stance

classification.

Among the aforementioned baselines, dJST, SLANT, CSIM W and CSIM W Rep335

are dynamic models whose parameters are updated with the continuously ar-

riving data. The static models such as SNVDM, CbNNM and DataStories are

trained from the data in the current epoch and used to predict the stance labels

of tweets in the next epoch. Also, dJST and SNVDM are unsupervised models

that do not use any tweet label for training.340
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4.2. Results

We evaluate the performance of various models in terms of accuracy and

micro-F1 for coarse-grained (i.e., three-class) stance classification. For NOD,

the output topic-stance distributions are aggregated across topics to obtain the

user-level stance labels. For NOD Coarse, the output is already one of the three345

stance classes.

4.2.1. Brexit

Figure 4: Accuracy and micro-F1 versus epochs on Brexit.

We report in Figure 4 the accuracy and micro-F1 of our method against

baselines over epochs on Brexit. It can be observed that supervised models

generally outperform unsupervised or weakly-supervised models. In addition,350

we observe an upward trend for dynamic models owing to their ability in cap-

turing historical context in the previous epochs. Static models such as SNVDM

and CbNNM give more constant results as they only have the access to a fix

amount of training data in each epoch. We also observe that CSIM W was

beaten by CSIM W Rep which represents each tweet by word embeddings in-355
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stead of bag-of-opinion-words. DataStories outperforms all the other baselines.

Nevertheless, our proposed NOD and NOD Coarse perform similarly and they

both give superior results compared to DataStories in general across all the

epochs.

4.2.2. Election360

Figure 5: Accuracy and micro-F1 versus epochs on Election.

Figure 5 presents the accuracy and micro-F1 versus epochs on Election.

Again, we observe that supervised models are superior to unsupervised or weakly-

supervised models. Static models exhibit drastic fluctuations over epochs. It

is more noticeable for DataStories that it gives a significant drop at Epoch 6.

This may partly due to the mismatch of the training data in the neighboring365

epochs. SNVDM and CbNNM are relatively steady compared to DataStories

since they captured context information to some extent. Conversely, dynamic

models give more consistent results across epochs. NOD slightly outperforms

NOD Coarse and they beat all the other baselines across all epochs except for

epoch 6, where CSIM W produced comparable results. Nevertheless, CSIM W370

is inferior to NOD overall.
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Table 4: Wilcoxon T test statistics of the Wilcoxon signed-rank test on the classification

accuracy (Tacc.) and recall (Trec.) between NOD and the top 3 baselines, respectively.

Baselines
Brexit Election

Tacc. Trec. Tacc. Trec.

CSIM W 0.004 0.004 0.003 0.003

CSIM W Rep 0.008 0.008 0.003 0.003

DataStories 0.010 0.016 0.001 0.001

4.2.3. Statistical Significance Test

We notice in Figure 4 that the gaps between NOD and two baselines, CSIM W rep

and DataStories, are small at some points. To further verify that the proposed

model significantly outperforms the baseline approaches, we measure the statis-375

tical significance between NOD and the 3 top-performing baselines. Some past

research suggested using Wilcoxon signed-rank test rather than paired t-test for

the prediction over time series data (Mozetič et al., 2018; Oliveira et al., 2016).

Following the sequential validation setup in (Mozetič et al., 2018), we posit that

models trained by a training set are used to predict the user-level stance in the380

subsequent epoch, which is in line with our original experimental setup. The

null hypothesis is that the differences between NOD and a baseline follow a

symmetric distribution around zero. The significance threshold is chosen as 5%

in accordance with (Oliveira et al., 2016). We report the statistics in Table 4.

It shows that all the test statistics T fall into the rejection region. Therefore,385

we accept the alternative hypothesis that the proposed model outperforms the

baseline approaches, which is at the 1% significance level on Election. When

evaluated by recall on Brexit, NOD exceeds Datastories at the 5% level.

4.2.4. Analysis of Errors

We further analysed the wrongly predicted instances and found that these390

users typically have insufficient neighborhood context for the model to make

correct prediction. For example, a user did not post any tweets before and was

only linked to the author of the tweet “BBC debate well said. Brexit, take back
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control, vote leave”. With such limited neighborhood context information, our

model predicted that the user’s stance is to ‘support ’ Brexit. However, this395

user then posted a tweet “I will be voting remain. But I am not calling myself

a remainder.” in the next epoch showing the opposite stance. Due to the

training setup of our model (trained on a user’s previously posted tweets and

their neighborhood context and to predict the user’s stance in the next epoch

without seeing their future posted tweets), there is no way for our model to400

make correct prediction in such cases.

4.2.5. Impact of Contextual Attention

We studied the effect of contextual attention by either excluding the topical

attention or ignoring neighborhood context. More concretely, we set α1 to

0 so that the topical attention is not accounted for. We also examined the405

effect of ignoring neighborhood tweets by tying up β1:N to 0. We tested these

settings on the last epoch for both datasets and show the results in Table 5.

It can be observed that neighborhood attention boosts the performance more

significantly while topical attention also helps increase the accuracy. This shows

that both topics and neighborhood context are indeed important for user-level410

stance prediction.

We argue that the neighborhood attention helps boosting the performance

because of homophily (McPherson et al., 2001). But we also acknowledge that a

user’s stance could be totally different from most of their friends’. That is why

our model simultaneously takes into account both the user’s previous tweets415

and their neighborhood context and learns attention weights automatically in

order to achieve an optimal decision for the user-level stance prediction. In our

future work, we will explore a more principled way to study the major factors

influencing the opinion formation.

4.2.6. Tracking Stance Dynamics420

To demonstrate that our model is able to track stance dynamically in a sen-

sible way, we carried out detailed studies on three example topics, ‘Economy ’,

22



Table 5: User-level stance prediction accuracy on the last epoch with or without contextual

information.

Brexit Election

Original 0.6786 0.6865

−Topics 0.6679 0.6794

−Neighbor Context 0.6451 0.6592

‘Boris&Farage’ and ‘Immigration’, from Brexit and displayed their stance

transition over epochs. To obtain the overall topic-stance, we first aggregated

by all users the stance distributions of a particular topic, normalized the aggre-425

gated scores and finally calculated the weighed sum as the overall stance score

towards the topic. Here, we assigned weights -1, 0 and 1 to opposed, neutral and

supportive stance respectively. For the user-level topic-stance, we calculated the

final stance score in a similar manner.

Figure 6: Global topic-stance and user-level topic-stance on Brexit.

Figure 6 shows the overall stance and example user stance towards these430

three topics. We can observe that the overall stance for ‘Economy ’ is more

towards opposing, indicating that people generally felt that Brexit would affect

economy negatively. The overall stance for ‘Immigration’ is however positive
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with more people switched to the positive view towards the end of Epoch 8.

This shows that more people thought Brexit would be good to control the im-435

migration. As for ‘Boris&Farage’, the overall stance slightly fluctuates around

neutral. For the user-level topic stance, User-A changed her views more drasti-

cally. She started with negatively views on all these three topics, but eventually

switched to positive views at Epoch 8.

Another ability of our model is to infer a users’ stance even if they posted440

no tweets in the current epoch. This is achieved by artificially arranging NULL

tweets for them while their neighborhood contexts are designed as contexts of

the user at several time points in the current epoch. As illustrated in Fig. 6,

User-A did not post any tweets in Epoch 6. Nevertheless, our model was still

able to predict her stance (marked with crosses). The prediction results were445

actually consistent with the stances revealed in User-A’s tweets in Epoch 7. One

of her tweets in Epoch 7 is “The eu immigration policy will definitely crash the

UK economy, taking us all with it. How many from turkey?#Brexit”, indicating

that she was worried about the immigration and wanted a Brexit.

4.2.7. Comparison With a Two-Class Problem Setting450

Some previous studies found that determining neutrality is difficult on social

media data (Tan et al., 2011; Hu et al., 2013; Zhu et al., 2019). They thus con-

fined their models to a two-polarity setup. To further confirm the effectiveness of

the proposed model, we also delve into the two-class scenario, where the neutral

tweets have been discarded. Since HLDA is an unsupervised non-parametric455

model, we retain the same topic embeddings that were used in the three-class

setting for NOD. Other configurations remain the same. Figure 7 plots the two-

class classification accuracy of different methods on both datasets. Compared

with the results in Figure 4, we can observe improved results for the supervised

methods and worse results for the LDA-based approaches, though the overall460

trend across epochs did not change much, especially on the Election dataset,

owing to its relatively small number of neutral tweets. Our proposed NOD and

NOD Coarse still outperform all the other models consistently across all the
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Figure 7: Two-class classification accuracy on Brexit and Election.

epochs on both datasets.

5. Conclusions and Future Work465

In this paper, we have proposed the Neural Opinion Dynamics (NOD) model

which can effectively take into account tweet content, topical and neighborhood

context for user-level stance prediction. In particular we model a user with a se-

quence of posts, each of which embodies the user’s own tweet. On this basis, we

propose an attention mechanism to better integrate the self content and social470

context information. Finally, we employ an RNN on the time series to model

user behaviors. Compared with static models which perform one-time predic-

tion, our model can dynamically track topic-dependent stances. Experiment

results on the two Twitter datasets verified the feasibility of NOD, showing

that both the context attention and the dynamic setup help improve stance475

classification results.
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In the future, we would like to explore following three directions. First, be-

sides the neighborhood information derived from the following-follower relations,

it is possible to construct the social networks using the re-tweeting or mention-

ing relations. However, such social networks might be more sparse and methods480

need to be investigated to tackle the sparsity problem. Second, in our current

approach, only a fixed number of neighborhood tweets are used to form the

neighborhood context. It is possible to also take into account each neighbor’s

social influence score since opinions from more influential users should carry

higher weight. Last, NOD assumed that topic information is obtained before-485

hand. In future work we could investigate a unified model for joint topic-stance

detection over streaming data.
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