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The antennae of mosquitoes are model systems for acoustic sensation, in that

they obey general principles for sound detection, using both active feedback

mechanisms and passive structural adaptations. However, the biomecha-

nical aspect of the antennal structure is much less understood than the

mechano-electrical transduction. Using confocal laser scanning microscopy,

we measured the fluorescent properties of the antennae of two species of

mosquito—Toxorhynchites brevipalpis and Anopheles arabiensis—and, noting

that fluorescence is correlated with material stiffness, we found that the

structure of the antenna is not a simple beam of homogeneous material,

but is in fact a rather more complex structure with spatially distributed dis-

crete changes in material properties. These present as bands or rings of

different material in each subunit of the antenna, which repeat along its

length. While these structures may simply be required for structural robust-

ness of the antennae, we found that in FEM simulation, these banded

structures can strongly affect the resonant frequencies of cantilever-beam

systems, and therefore taken together our results suggest that modulating

the material properties along the length of the antenna could constitute an

additional mechanism for resonant tuning in these species.

provided by University of Strathclyde Institutional R
1. Introduction
The exquisite sensitivity of animal sensory organs has been noted many times

[1–6]. However, little attention has been paid to the mechanical properties that

shape a sensor’s response as much, if not more, as the neuronal filters [7]. The

mosquito antenna is a well-known example of a highly sensitive particle-

velocity receptor [2,3,8,9], and in many species, the key function of the antenna

is to locate the flying conspecific mate [2,10–12]. Different models on how they

achieve complex mechanical behaviour, for example, active amplification, have

been proposed and are reviewed by Mhatre [13]. While knowledge of mechan-

ical behaviour, for some sensory organs, has increased in the last decade [7],

rather little is known about the material composition and properties underlying

these complex behaviours in terms of the geometry-defining distribution of

stresses and strains within the sensor [7].

The mosquito antenna comprises three parts—scape, pedicel and flagellum

[1] (figure 1). Control of the antennal direction is done in part by the scape, but

the scape is not relevant to the present study. The pedicel houses some 16 000

sensory neurons [14], the majority of which are used for acoustic detection.

These neurons connect to radially distributed prongs, attaching the neurons

to the base of the flagellum. The flagellum itself is the physical sensor—it

consists of 13 sequential flagellomeres that project distally. These act as vis-

cosity sensors, undergoing oscillatory displacement in the presence of
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Figure 1. Schematic of antenna morphology. (a) Head of T. brevipalpis. (b) Cross section of the pedicel scale bar 0.1 mm. (c) Schematic of the inside of the pedicel
(b,c) from Yack [15], simplified and modified. Image abbreviations: bp, basal plate; fb, fibrillae; fl, flagellum; pd, pedicel; pdw, pedicel wall; pr, prongs; s, scape.
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acoustic fluid flow. The flagellum is covered in hair-like struc-

tures known as fibrillae (or setae) in which case the antenna is

considered plumose—these fibrillae serve to increase the

viscosity of the sensor improving its performance [2]. It has

been shown that for biologically relevant sounds, the

flagellum moves like a paddle [2]. Taken together, the

whole system is resonantly tuned to respond maximally at

the wingbeat frequencies of flying conspecifics and is the

key sensor in the animal’s phonotactic mating behaviour [11].

Most research into mosquito audition focuses on the

biophysical basis for mechano-electrical transduction that

endows these sensors with high sensitivity and often assumes

that the flagellum is simply a stiff rod in which the material

properties are of negligible importance. However, we consider

material properties to be an overlooked and potentially impor-

tant factor in the biophysics of acoustic perception. As the

resonance of the whole system will undoubtedly be determined

by some contribution of the flagellum and the effective

stiffness of the pedicel attachment, it is possible that the way

in which the flagellum is built may be significant for resonance

tuning, and thus mating behaviour. Therefore, with no a priori
expectation on the spatial distribution of material properties,

we investigated the stiffness distribution in mosquito antennae

with confocal laser scanning microscopy (CLSM).

The use of CLSM for obtaining information about general

types of cuticle present is well established (e.g. [16–24]). It

enables us to visualize the insect exoskeleton using autofluor-

escences and to estimate material properties of structures.

Michels & Gorb formulated that it is capable of estimating

material properties, since well-sclerotized, flexible and resilin-

dominated regions are visualized differently [16]. It has also

been previously cross-validated using three-point bending

tests, AFM nanoindention and compression tests [17,22,23].

Merits of CLSM are that the technique allows one to take

sharp images of narrow sample planes by restriction of

light entering the camera. This is achieved by the appropriate

choice of pinhole size depending on the wavelength of the

light, creating optical sections of the object. This image

stack in turn then can be combined to create maximum inten-

sity projections—in one image—showing the structure

without loss of depth resolution (electronic supplementary

material, table S1). One can therefore image the whole

intact surface structure in great detail. In addition, the vary-

ing excitability of different unknown cuticle compounds

with different laser wavelengths provides an estimation of

material properties of the cuticle.
In many mosquito species, acoustic communication is

essential for mating [10–12,15] and many are vectors for

animal and human diseases, such as malaria, yellow fever

or the zika virus [12,25]—indicating how important it is to

understand their biology.

Antennae of two mosquito species of different size and

ecology—Toxorhynchites brevipalpis and Anopheles arabiensis—
were examined here. Many Anopheles species are swarming

mosquitoes in which acoustics is crucial during mating

[10,11,26,27]. However, T. brevipalpis is a solitary non-swarm-

ing species, in which their behaviour is scarcely documented

[28,29].

There is significant interest in the Toxorhynchites genus for

mosquito population control as its larvae predate on other

mosquito larvae, many of which are species that have

global importance [28,29]. As this mosquito is large, robust

and non-biting, it has been previously used as an amenable

model system in earlier studies of insect auditory systems

[8,9,26,30]. According to Gibson & Russell [30], the wingbeat

frequency of males and females synchronize during aerial

mating [12,26]—and this is termed distinct flight/wingbeat

frequency-matching during the mating display. As antennal

ears are part of detecting the mating partner, and beam-like

structures are most sensitive around their resonance, it is ben-

eficial to have the resonance of the sensory organ close to the

acoustic stimulus (the wingbeat frequency) [31]. Similar

acoustic behaviour has been observed in Anopheles, which

are responsible for the spread of diseases in cattle and

humans, and therefore play a substantial social and economic

role [27].

Neither of the two species mentioned above have, to our

knowledge, been studied for the potentially varying stiffness

along the length of the flagellum. As we will show, CLSM

proves to be very useful in demonstrating changes in material

stiffness along the flagellum. From the results of the CLSM

work detailed later, we used finite-element modelling

(FEM) to determine the effect of the measured stiffness

profiles along the antenna on a compliantly clamped beam.
2. Material and methods
2.1. Specimen preparation
Animals were deeply anaesthetized with CO2, and dissected in

PBS (Carl Roth GmbH & Co KG, Karlsruhe, Germany). The

antennae were treated with the surfactant Triton X-100 (Sigma-
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Aldrich Chemie GmbH, Steinheim, Germany), to ensure wetting

of the entire surface, a necessary step as the fibrillae of plumose

antennae easily trap air bubbles. Triton X-100 was washed off in

triple steps with PBS. Antennae or their parts were transferred to

glycerine (Carl Roth GmbH & Co. KG, Karlsruhe, Germany),

which is a suitable medium as it has a similar refractive index

to glass [16].

In the present study, only males are included. There are three

main reasons for this: (1) due to strong structural sexual

dimorphisms, morphological sex comparisons are difficult. (2)

While acoustics is important to both sexes (e.g. [30,32]), the

male antenna is the most studied with respect to their acoustic

response, lending itself to easier comparison. (3) CLSM as rela-

tive method benefits more from comparing two separate, but

structurally similar objects. Four individuals of each species

were used for the present study, not all of which were CLSM-

imaged, but it was confirmed the structures imaged are typical,

either under the CLSM Zeiss LSM 700 (Carl Zeiss Microscopy

GmbH, Jena, Germany) or a fluorescence microscope (Zeiss

Axioplan).

2.2. CLSM operation
Following an established standard method [16], which is applied

for many insect exoskeleton studies (e.g. [33–35]), antennae were

visualized using autofluorescences using the same excitation

wavelengths and emission filters applied in the referenced

studies. Michels & Gorb [16] demonstrated that the resilin auto-

fluorescence is excitable at the wavelength of around 405 nm.

Moreover with a combination of different excitation wavelengths,

the method can estimate differences of material properties within

a properly adjusted image or images taken with same settings,

because in general well-sclerotized, flexible and resilin-

dominated regions are visualized differently [16]. The stack

construction was performed with ZEN 2009 (6.0 SP2) (Carl

Zeiss MicroImaging GmbH), which automatically corrects for

wavelength-dependent slice thickness and resulting in varying

overlap between stacks taken with different wavelengths.

After adjustment of excitation level according to existing

standards [16], the specimens were exposed sequentially to

four different excitatory wavelengths (405, 488, 555 and

639 nm), and emitted lights were filtered using a band-pass emis-

sion filter of 420–480 nm and long-pass emissions filters

transmitting light with wavelengths �490, �560 and �640 nm,

respectively.

Each sample was imaged only once to avoid the photobleach-

ing which could alter the resulting visualization of the material,

as different compounds are not similarly susceptible to this

effect. This is important for our case, since relatively high laser

power (up to max. 30%) was used in order to allow weakly flu-

orescent structures to be imaged. High laser power can lead to

pronounced bleaching if the sample were to be imaged multiple

times with the same laser [16].

2.3. Image colour coding
Confocal laser scanning micrographs were colour-coded according

to Michels & Gorb [16]. Blue, green and two red image colours

were assigned for each micrograph corresponding to excitation

wavelengths 405, 488, 555 and 639 nm, and filters 420–480,

�490, �560 and �640 nm, respectively. The two ‘red’ channels,

which provide similar results, were each set to 50% saturation

and combined into one red channel to compensate for the

double acquisition, a process required as otherwise the red auto-

fluorescence would unduly dominate the image making

assessment difficult. According to [16], material properties were

interpreted based on resultant micrographs as follows—in super-

imposed images of insect exoskeletal parts: (1) well-sclerotized

structures are usually red, (2) tough-flexible cuticular structures
are typically yellow-green, (3) relatively flexible parts containing

a relatively high proportion of resilin are light blue and (4) resilin-

dominated regions appear deep-blue. Note that the image colours

represent autofluorescence and code the intensity of light in

specific channels.

This interpretation was confirmed by observation of corre-

sponding samples under a stereomicroscope. Since assessment

of material based on CLSM are relative, not absolute, the com-

parison is only valid if images are taken with the same settings

(electronic supplementary material, figure S1 and table S1), or

if two structures are imaged in one single scan (figure 3b,c).

Therefore, when necessary we scanned multiple samples

simultaneously. Images are reproduced here with increased

brightness and contrast, to improve clarity (unaltered images

are available in the electronic supplementary material). The

exact imaging settings can be seen for each image in electronic

supplementary material, table S1.
2.4. Finite-element modelling
FEM with COMSOL 5.3a (Comsol Inc., Stockholm, Sweden) was

conducted in the frequency domain to investigate the vibrational

characteristics of the antennae using the Solid Mechanics module.

Simulations were performed on both desktop computers and the

ARCHIE-WeSt supercomputer.

The objective of these simulations was to ascertain the rel-

evance of the observed banded structure of the flagellomeres

on the overall frequency response of an idealized compliantly

clamped beam. We have reduced the mosquito antenna to a

simple system, and thus the simulations are solely to observe

the frequency-response changes due to the presence of hard

and soft rings in the flagellomeres.

Control simulations were done on uniform cylinders whose

expected resonant frequencies are well established from Euler–

Bernouilli beam theory. Once established that control simulations

yield appropriate results, a subdivided ringed structure seen in

the CLSM images was simulated (figure 3).

The fibrillae were not included in the model—they are appar-

ently stiffly coupled to the beam, so that for biologically relevant

frequencies, the fibrillae and flagellum move as one [2]. From a

mechanical perspective, these fibrillae add damping, but little

mass, and thus broaden the response of the whole antenna but

do not shift the resonance frequency appreciably. Additionally,

the densities of the materials modelled are identical, since

remarkable density differences are not known despite the

range of stiffnesses in chitinous structures [36].

The geometry of the model antenna was informed by the

images that indicated that the cuticle of the flagellum is a thin

sheet compared to the absolute volume, hence the flagellum is

represented by a 10%v wall hollow cylinder filled with tissue

(90%v, Young’s modulus 1 kPa), which we will describe as a

beam, to avoid confusing it with the biological structure. The

tissue was assumed to have a fraction of the literature value for

soft tissue as those values are given for pulling on tissue assemblies

in the direction of maximum resistance.

This beam, illustrated in figure 2, was subdivided into 13

long elements of constant size separated by 12 triplets of small

elements, to represent the segment joint areas of the antenna.

Size of the individual elements was 1/13 of the antenna length

(3.3 mm for T. brevipalpis and 1.7 mm for An. arabiensis) and the

diameter was 120 mm for T. brevipalpis and 15 mm for An. arabien-
sis. Of importance for the present study is ensuring the spatial

distribution of elements of different stiffnesses was matched to

the results of the CLSM imaging.

The articulation in the pedicel, which unquestionably con-

tributes to the mechanical behaviour of the antenna, is

represented by the round disc (figure 2) for simplicity and is

modelled with an effective stiffness that takes into account the
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Figure 2. Three-dimensional representation of our antenna model. This
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on elements 2 – 13. Image abbreviations, with morphological terms in brack-
ets if applicable: ‘bd’ basal disc (approximating the pedicellar articulation); fl,
beam (flagellum); j, three small elements ( joint); sg, long element
(segment).
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diameter of the prongs and an approximation of their stiffness.

This compound quality of the pedicel articulation is later on

referred to as ‘basal stiffness’. It is important to note that our

‘basal disc’ is not matched in size or any other way to the

basal plate, but its allometric relation to the beam length and

diameter ensures it stays constant in relative size between

species.

As estimations of Young’s modulus of insect cuticle vary

greatly between different reports (see [36,37] as examples), only

the ratio of Young’s moduli between the materials was used

for simulations, while keeping values in the natural range. The

large and small segments were allocated stiffnesses within the

range of the material property estimation according to CLSM

images and literature values [36].

Taken together, the model beam is as follows: for T. brevipal-
pis the large elements are of medium stiffness (0.5 GPa) and the

triplet of small elements is a stack of hard (5 GPa), soft (1 MPa)

and hard element (5 GPa), followed by the next ‘large element’.

For An. arabiensis the large elements are soft (1 MPa) and all

three of the triplet of small elements are hard (5 GPa). Vibrational

characteristics of the modelled antennae were simulated in 10 Hz

steps (figure 6) over the frequency range of 10–2720 Hz, which

includes the typical hearing range of these insects. Only the

range 20–2000 Hz is shown.
49
3. Results
Results are presented separately for each species and high-

light differences and similarities in antennal structure as

well as its putative material properties. According to the

colour scheme of [16], areas shown in blue are likely to be

resilin-dominated structures, relatively soft structures will
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ipalpis (a,b) and An. arabiensis (c,d). Higher resolution images available in the
12 more-or-less regular subunits and a varying 13th one. Inset: Zoomed image

gment) and (c) An. arabiensis (4th to 8th segment), with increased brightness.
cle with small, relatively flexible (blue) and hard (red/orange) rings, while An.
d rings. In both species, the area where the fibrillae emerge is hard (orange). In
t the base of the segments (white arrow). (d ) Overview of An. arabiensis with
areas, interspaced with comparatively hard bands where fibrillae insert. Image
rs, ring structure; sg, segment.
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Figure 4. Maximum intensity projection of An. arabiensis, with increased
brightness, showing detail of two flagellomeres and the insertion position
of fibrillae. Males of this species can erect the fibrillae depending on diurnal
cycle and activity, due to the presumably soft, sac-like structure that is out-
lined by the granulae (gr) below the hard ring structure (rs). The
combination of these two structures can potentially provide the mechanical
basis to inflate by hydraulic pressure and erect the fibrillae. Fibrillae sockets
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hard (red arrowhead) and the prongs run over a ridge (white arrowhead),
which appears as hard as the prongs themselves. Image abbreviations:
pdw, pedicel outer wall; pr, prongs; rg, ridge (white arrowhead).
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appear light blue, tough structures in yellow-green and

sclerotized structures in red.
3.1. Toxorhynchites brevipalpis male
The flagellum consists of 13 segments, each of which, except

the first that articulates in the pedicel and therefore cannot be

observed directly, has a blue ring followed by a yellow-

reddish arrowhead or coronal structure that appears to be

more sclerotized. At the tip of this structure, fibrillae

emerge in a pattern shown in figure 3a,b. Distal to the coronal

structure, a comparatively weakly fluorescent material is

located. The thin final ring-like structure, observable in

detail in red, is interpreted as being part of the lower segment

(figure 3b), and the next segment therefore begins with a blue

ring structure. The segments continuously decrease in length

and diameter from proximal to distal locations.

By contrast, the fibrillae have a relatively uniform length

and autofluorescence along the flagellum. The long fibrillae

are absent on the 13th segment, giving the antenna a some-

what rounded appearance (figure 3a). The 13th segment is

different from the others; it continues for five to six times

the length of the 12th, is noticeably thinner, and shows

little tapering.

The 13th segment only sprouts a limited amount of

much-shorter fibrillae (figure 3a). Externally, the pedicel

autofluorescence is rather uniformly green, except the upper-

most ridge, where the flagellum emerges (figure 3a). Where

the pedicel and flagellum join, the material appears orange,

due to a higher contribution of red autofluorescence com-

pared to the pedicel’s outer wall (figure 5 red arrowhead

and electronic supplementary material, figure S1a).
The inside of the pedicel is dominated by centrally

attached prongs. Note that the prongs are uniform in their

green autofluorescence (and thickness) with their neighbours,

as far as can be assessed (figure 5 and electronic supplemen-

tary material, figure S1), indicating that prongs are of uniform

stiffness.

An optical section (electronic supplementary material,

figure S1a) of the pedicel indicates that the prongs either

attach to, or pass over, a cuticular ridge. The thickness of

the whole articulation point is less than approximately

2 mm (electronic supplementary material, figure S1).

However, it should be noted that across individuals and

depending on experimental settings, the colour of autofluores-

cence varies—the difference in settings between experiments

makes comparison across individuals difficult.

3.2. Anopheles arabiensis male
Segments 2–12 are very similar, albeit gradually tapering to

about half the initial diameter by segment 12. Each segment

consists of a blue part (figures 3 and 4), followed by a broad-

ened ring-like sclerotized structure in orange-brown-red

circumventing the flagellum from which the fibrillae crest of

each segment emerges (figure 3d white arrowhead figure 4).

The first segment is of similar structure, but along the flagel-

lum axis, the segment first tapers after insertion, then becomes

medially swollen (figure 3d). The 13th segment is filamentous

(figure 3c), showing overall low autofluorescence.

Details of the more strongly orange-red fluorescent ring

structure include the socket that each individual fibrilla inserts

into (figure 4 white arrowheads). At the site where the ring

joins the flagellum, a deep-blue fluorescent small band of simi-

lar width as the ring is present (figure 4*), followed by a more

yellow-orange fluorescent band (figure 4**) before the segment

continues to show a light blue material fluorescence. Note that

the area proximal to the ring structure and surrounding the

flagellum is lacking autofluorescence, with the exception of

scattered orange fluorescent granulae which outline the cuticle
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sac area (figure 4, gr below rs). The rather sclerotized articula-

tion of the flagellum in the pedicel is approximately

hemispherical and at the upper end of the distalmost part of

the pedicel (figure 3d grey arrowhead). With CLSM, further

internal structure, except the crest of uniformly fluorescent

prongs, cannot be visualized (electronic supplementary

material, figure S1b).

3.3. Toxorhynchites brevipalpis and Anopheles arabiensis
male comparison

Comparison of the second segment in T. brevipalpis (figure 3b)

to the sixth to 10th segments of the antenna in An. arabiensis
(figure 3c) shows a noticeable difference in size. These seg-

ments in T. brevipalpis are 120–150 mm wide and 200 mm

long. The antenna of An. arabiensis is much smaller with

each segment about 100 mm long, and only 10–20 mm

wide. The long fibrillae inserting on the orange structure cir-

cumventing the flagellum lack an autofluorescence gradient

and are barely visible in both species as autofluorescence is

overall low in the fibrillae.

Whereas large parts of T. brevipalpis show nearly no signal

in contrast autofluorescence in An. arabiensis is in general

stronger, every part of the antenna is either likely flexible

(blue) or putatively sclerotized (orange) with no areas of

intermediate properties. As a further difference, it can be

stated that the most red part in T. brevipalpis is a coronal
structure, while it appears more annular in An. arabiensis
(figure 4). Both antennae are almost mirror images in the

respect that in T. brevipalpis a rather small band (ca 10 mm)

of a slightly deeper shade of blue is in between each segment,

while the whole 100 mm long segment in An. arabiensis shows

light blue autofluorescence. An antennal cross section shows

that a rather thin surface layer constitutes the highest proportion

of the blue autofluorescence (electronic supplementary material,

figure S2) in both species.

Furthermore, the optical sections (electronic supplementary

material, figure S1) show that the articulation structure remains

uniformly thin (ca 2–4 mm) and comparable in size between

the two species, despite the fact that the pedicel of An. arabiensis
is roughly half as large as the pedicel of T. brevipalpis.
3.4. FEM of the male antenna
Frequency-domain studies were performed in COMSOL to

observe the effect of the various segmental structures seen

in CLSM experiments, as well as other standard parameters

of an antennal system such as ‘base stiffness’ and geometry.

Figure 6a demonstrates the effect of changing ‘base stiffness’

on the frequency response of a simulated beam. It is clear that

increasing basal stiffness leads to an increase in the frequency

of the resonant peaks. As expected, further increases in basal

stiffness yield diminishing changes in the frequency response

as predicted by equation (4.1). In the investigated stiffness
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range for the base of 90 Pa (70 Hz)–100 kPa (1520 Hz), a

diminishing gain per decade stiffness increase is observed.

In Figure 6b, elements of different elasticity were added to

a beam, distributed in agreement with the CLSM results. It is

clear that the stiffness modification of segmented structures

in the antennal model influences resonant frequencies.

For the beam simulated in Figure 6b, softer segments are

shown to reduce the peak frequencies by 35, 240 and 525 Hz

as we decrease the stiffness by powers of 10. By contrast, the

addition of harder elements leads to an increase in the peak fre-

quencies, although to a lesser extent. Without hard elements

the resonant frequency is between 690 and 700 Hz and with

hard elements the resonant frequency shifts up to 700 Hz.

While figure 6a,b is already dimensionally matched to

T. brevipalpis, figure 6c,d shows simulations of frequency

responses in male T. brevipalpis and An. arabiensis, respect-

ively. The graph in figure 6c shows four lines associated

with four cases: (1) uniform beam, (2) uniform beam with

added stiff elements, (3) uniform beam with added soft

elements and (4) uniform with both stiff and soft elements.

The latter case is the most morphologically accurate. Clearly,

the addition of soft elements is the only case which allows for

significant changes in resonant frequencies, from approxi-

mately 695 Hz down to 390 Hz. By contrast, the addition of

hard elements is insufficient to affect the natural vibration

characteristics substantially, resulting in under a 10 Hz shift

from approximately 695 Hz. In figure 6d, the two lines rep-

resent: (1) a uniform small and soft beam of the same size

as the An. arabiensis antenna and (2) the same beam but

with added hard elements. The latter case is most faithful

to the antenna of An. arabiensis. The frequency shift appears

to be less than the 305 Hz shift shown in figure 6c for soft

elements in a harder beam. The addition of hard elements

increases the resonant frequency of the overall softer beam

from 160–190 Hz. While figure 6a demonstrates the model

representing the situation in a compliantly clamped beam,

figure 6b–d demonstrates that distribution of varying

material properties can have a strong effect on the overall

resonant frequency. By contrast, in a simple compliantly

clamped beam, the resonant frequency is mostly determined

by the beam dimensions and the stiffness of the clamp [38].

Figure 6c,d shows simulations based on stiffness ranges

obtained from CLSM autofluorescences in the two species,

as well as appropriate geometry. The example of T. brevipalpis
demonstrates how it is possible to reduce the resonant

frequency of a beam to match the observed frequencies

seen in the insects studied (i.e. in T. brevipalpis and

An. arabiensis resonant frequencies are 420+5 Hz [39] and

380+46 Hz (new experimental data not shown) for the

males, respectively). It is worth noting that within biologi-

cally relevant parameter ranges for antenna stiffness without
adding disc elements to the beam, it is difficult to obtain res-

onant frequencies in simulation that match those seen in

nature. Taken as a whole, the addition of elements of different

stiffness in comparison to the main beam can change beam

resonant frequency to a similar order of magnitude as

changing the basal stiffness (figure 6a).
4. Discussion
The goal of this work was to investigate the material proper-

ties of the mosquito antenna. We performed a CLSM study of
mosquito antennae and found that autofluorescence is not

homogeneous along the antenna, but instead these antennae

comprise repeating bands of harder and softer elements. In

general, the presence of harder and softer elements in the

antenna is similar between the two mosquito species—

however, their distribution is inverted: An. arabiensis has

large rather flexible bands interspaced with harder ring

elements, while T. brevipalpis is medium-hard overall and

has short flexible ring elements wedged between two hard

rings. Given the nature of the results, we also simulated

these geometrical configurations to determine whether these

material changes and spatial distribution has any effect on

the overall resonant frequency of the antenna, a property of

significant importance to the animal, as sensitivity of these

ears is best around the resonant frequency and acoustic per-

ception is essential for mating [10,11,26,27,30,31]. It is

possible that the different sizes of the animals studied may

influence the material properties of the antennae, as the

larger antennae perhaps have different mechanical con-

straints to ensure robustness and structural stability. It is

not clear in general whether the observed geometrical differ-

ences are driven by behavioural or other constraints unique to

each species. These questions could be answered with studies

on similarly sized and more behaviourly similar species, and

are not addressed here. Some interpretation on how the

observed stiffness distribution along the modelled beam

could play a role in the resonant characteristics, and the

implications of this, might be inferred from FEM simulations

discussed below.

4.1. Confocal laser scanning microscopy
In T. brevipalpis males, the larger of the species investigated,

the overall structure is relatively tough and there exist small

flexible to well-sclerotized ring structures. In An. arabiensis
males, the combination of a sclerotized ring structure, on

which the fibrillae are present in each segment, and the area

of the membrane sac proximal to it is believed to play a role

in the behaviour of male Anopheles antenna, in which they col-

lapse and extend their fibrillae at different times of the day

using hydraulic pressure [40]. Our images are taken after sus-

pension in fluid and show only antennae with extended

fibrillae. This position in nature is only assumed during the

active swarming phase [40] and therefore is directly related

to the detection of conspecifics. Pedicels both internally and

externally look similar in structure, but in An. arabiensis the

intensity of autofluorescence is higher. In male T. brevipalpis,
a hard area (figure 5 red arrowhead) is visible, where the fla-

gellum leaves the pedicel. The prongs on the inside appear

similar in the two species regarding fluorescence and dimen-

sions compared with prongs of the same animal in the same

image. Comparison between images demonstrates that differ-

ent CLSM settings are necessary for proper visualization of

material differences this does not allow judgement of material

properties between species imaged individually. However,

we can say with some confidence that the prongs are neither

particularly flexible nor stiff and are all consistent in their

autofluorescence and dimensions within the animal.

This is in agreement with Avitabile et al. [41], in that the

prongs act more or less as rigid-body extensions of the flagel-

lum. Possible variations inside the pedicel would likely be due

to the scolopidia, which have recently been shown, by direct

measurement using atomic force microscopy, to be motile

[42], having long been suspected as the source of stiffness
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gating. Further studies have shown the importance of the sco-

lopidia for both power gain of the antenna, and the intra- and

interspecifc variations seen in antennal mechanics [32].

However, the present study demonstrates that the flagel-

lum itself cannot be approximated as a rigid beam of

uniform stiffness, but that it consists of repeating units of

stiff and soft elements. A limitation of the present study is

the lack of direct correlation of CLSM-based autofluorescence

analysis with mechanical measurements, which is to be tackled

in follow-up investigations.
rnal/rsif
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4.2. Significance of material property differences
in antennae

Since Johnston (1855) [1], the nerve and cuticle structure inside

the pedicel has been investigated regarding its auditory and

general function. In this study, we visualized the antenna of

An. arabiensis, a species where males form swarms and females

fly into the swarm and are acoustically located by the males.

Toxorhynchites brevipalpis is a solitary mosquito, where acous-

tics also plays a role in mating [30]. Within individuals,

consistency of the uniform prongs inside the pedicel has

been found across both species, and remarkable differences

in material distributions were found in the flagellum.

A sensory organ exposed to the environment such as an

insect antenna (that can move autogenously without stimu-

lus) is potentially under continuous mechanical stress. This

may explain the presence of resilin, a protein known to be

used to protect from ‘wear and tear’ in insects [43,44].

The FEM results indicate a potential for resonant tuning

by alteration of material distributions along the flagellum.

This is perhaps not that surprising, as the influence of differ-

ently stiff elements partially can be expected as the resonant

frequency (v/2p) of a beam [38] is dependent on Young’s

modulus through

v ¼ k2

ffiffiffiffiffiffi
EI
rA

s
, ð4:1Þ

where k is the wavenumber, I is the area moment of inertia, r is

the density, A is the cross section of the beam, and E is Young’s

modulus. In a composite beam, Young’s modulus would likely

be an effective Young’s modulus of the whole beam, which will

be different when elasticity is not uniform. Furthermore, the

non-homogeneous material distribution as suggested by

CLSM results along the antenna could affect the area moment

of inertia. Given the densities are suspected to be similar, the

likelihood of this being important is low. Regardless, by chan-

ging the distribution of stiffnesses, a further mechanism to

control the resonant frequency of the antenna is possible.

There are potential benefits to this mechanism in conserving

structural integrity in comparison to changing the material.

FEM models of material property distributions in the

antennae of the studied insects have been compared to a uni-

form beam structure. This shows different mechanical

behaviours, suggesting that a more rigid antenna, presum-

ably like that of T. brevipalpis (figure 6a), and a soft

antenna, like that of An. arabiensis (figure 6b), can both be

tuned significantly by basal stiffness and distribution of stiff-

ness along the beam. However, the effect of hard elements in

soft beams seems less than that of soft elements in hard

beams. How this different tuning affects behaviour requires

further research.
Interestingly, in order to make our model show resonant

frequencies that are found in these insects, the addition of the

triplet rings was essential. We found it difficult to reproduce

the resonant frequencies found in T. brevipalpis and An. ara-
biensis (420+5 Hz [39] and 380+ 46 Hz (data not shown)

for the males, respectively) using only the known geometry

and typical biological values for material properties—it was

somewhat surprising that only the addition of the triplet

rings allowed one to bring down the resonant frequencies

in T. brevipalpis to observed values. The deviation in An. ara-
biensis is due to the other contributing factor—basal stiffness.

Our FEM model shows a very weak first bending mode at

the main resonant peak and a pendulum mode at lower fre-

quencies. In particular, in the case of a small angular

displacement, the weak bending mode can easily be per-

ceived as a pendulum mode, as while tip displacement is

largest, displacement overall is fairly uniform in both of

these mode shapes. This is in line with earlier experiments

in different species reporting a pendulum mode [2,7].

Generally speaking, there are many factors that may con-

tribute to the antennal mechanical behaviour. An exhaustive

list would include the stiffness of the base articulation, the

cell attachments to the scolopidia, prongs and scolopidia, geo-

metry, and viscous effects of the fibrillae, among other things.

For example, it has been shown in stick insects that tapering of

their non-plumose antennae has the largest tuning effect, at

least in the static case [44]. The current study suggests that

the configuration of spatial distribution of flexibility along

the antenna does influence the antenna’s mechanical behaviour

within the frequency range of the animal’s hearing. More

in-depth experimental and theoretical investigations of antenna

bending are required, which will add to our understanding of

mechanical properties of insect hearing systems.
5. Conclusion and outlook
Generally, the highly variable and interesting material proper-

ties of insect cuticle have not gone unnoticed (e.g. [21,45,46]).

However, in the field of insect auditory systems, the fine detail

of material properties and distribution is overlooked. The

primary goal of this work was to observe and describe

morphological and material differences and similarities in

antennal hearing organs of the investigated species. While it

is possible to consider the antenna as a simple beam, we

have shown that the actual material properties of these

antenna are more complex. We also show that these material

complexities have the potential to modify the frequency

responses of the acoustic sensors, providing a different mech-

anism to the animal to evolve and direct—mating-critical—

frequency selectivity. The addition of soft elements to a hard

beam shifts the resonant frequencies to lower values, while

adding stiff elements to a soft beam does the opposite and

shifts the frequency of resonant upwards. The study of vary-

ing material distribution of insect hearing organs with CLSM

has a high potential for improving our understanding of the

evolution and development of acoustic sensors in nature,

especially if combined with FEM and possibly mechanical

tests of materials and laser vibrometry, to characterize

native system behaviour. The very high variability of mechan-

ical and therefore acoustic properties in these insects studied

suggests a potential for many interesting future findings

and biomimetic engineering exploitation.
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