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Abstract 

 

Effective and transparent monitoring of rotating plant assets is essential to the continued 

reliable operation of power stations. Rotating plant monitoring generally includes analysis of 

vibration signals, where operations and maintenance engineers use the output from vibration 

sensors to justify the continued operation of the plant or plan for maintenance interventions 

where necessary. One common approach to such vibration monitoring is the adoption of alarm 

driven strategies where certain operational or mechanical interventions are performed when 

thresholds are triggered due to deviations from a predefined operational envelope. This reactive 

intervention approach, however, does not provide operators or equipment manufacturers with 

any insight into the long-term degradation of a rotating plant item, which could be used to 

mitigate unplanned stoppages. This paper proposes the novel implementation of Empirical 

Mode Decomposition to boiler feed pump vibration signals, alongside subsequent statistical 

analysis of the decomposed signals to estimate time-frames associated with alarm violations 

and entry into predefined zones of operation. Such a technique provides pump operators with 

information that can be used to plan for future maintenance interventions and pump 

manufactures with insight into the likely degradation of their product during sustained 

operation. 

 

1.  Introduction 

 
1.1 Context 

 

The ability to conduct effective and transparent monitoring of plant items in power generation 

is essential to continued operation; rotating plant assets make up a significant proportion of the 

monitoring to ensure the station's safe operation(1)(2). Through implementation of condition-

based maintenance the aim is to avoid unplanned outages, which would result in decreased 

power output and subsequently a decrease in revenue for the operator. 

 

Increases in the data made available to monitoring systems alongside the desire of both plant 

operators and manufactures to gain greater insight into the health status of plant items has led 

to the development and introduction of intelligent data-driven techniques and systems. These 

use modern, advanced algorithms and approaches to extract useful information from the ever 

increasing volume of on-going and historical operational data related to monitored plant. 

Rotating plant assets are no exception to this rule with a number of new systems being 

developing for gas turbines(3), centrifugal pumps (4) and electrical motors(5) amongst others(6). 

 

The power generation industry employs rotating plant in a variety of different roles, including 

the movement of water in pumps, electrical motors and turbines, and fans or gas circulators. A 
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specific example is the boiler feed pump. Boiler feed pumps move liquid water from a 

condenser to a boiler. As these pumps are essential to the continued operation of the station 

they are subjected to a significant number of data-related condition monitoring activities. Also, 

as there are generally multiple boiler feed pumps on each station the analysis of monitored data 

represents a significant burden on the analyst responsible for their safe operation(7). 

 

While condition monitoring has mainly focused on diagnosing existing faults or abnormal 

modes of operation a further goal is to develop the means of predicting the remaining useful 

life of plant items(8)(9). Such techniques or procedures would be valuable to the power 

generation industry as plant item failures could be identified earlier and planned for. Moreover, 

by corroborating the likely degradation of the asset against known operational conditions it 

may be possible to extend the asset's operational life.  

 

This paper proposes a novel technique to estimate the time-scale associated with degradation 

of boiler feed pumps. The approach is based upon the deconstruction of a real boiler feed 

pump's vibration signals by applying Empirical Mode Decomposition (EMD), plus subsequent 

statistical analysis to determine predictive metrics. These metrics are based upon a boiler feed 

pump's real operational envelop and associated alarm driven strategy(10), providing real insight 

for pump operators and manufacturers. 

 

2.1 Related Work 

 

Rotating machinery prognostics is an on-going field of study that is actively pursued by many 

organisations and industries, with several existing reviews that cover the subject(8)(11)(12). 

Prognosis in this capacity is defined as the prediction of the remaining useful life of an asset 

(or asset's component) or estimating the probability that an asset can maintain functionality 

until failure occurs(13).  Prognostic models can be categorised into model-based, data-driven 

based, and combination models(14). Data-driven approaches make use of condition monitoring 

data, instead of building particular physical models based upon predetermined system 

physics(6). A data-driven approach is selected for this research, as a substantial quantity of 

vibration data is available as a matter of operational course. Development of prognostic 

techniques, which can be applied to non-linear and non-stationary operating conditions, such 

as those associated with boiler feed pumps, is a non-trivial task(15). Boiler feed pumps are 

complex machines and the power stations they are deployed on usually have a range of complex 

operating conditions requiring similar considerations to be taken into account(7). 

 

Various techniques and processes have been developed for the purpose of estimating 

prognostic metrics on rotating plant based upon vibration data(16)(17). However, to overcome 

the complexity of the plant and system under investigation a technique based upon EMD(18) 

has been selected. EMD has mainly been utilised in rotating machine diagnosis tasks(19). 

However, an initial study has been conducted to extract data trends in an unsupervised 

manner(20). EMD has been used extensively in the fault diagnosis of rotating machine 

components including rolling element bearings, gears and rotors. Energy operator 

demodulation(21) and amplitude energy acceleration(22) investigation based upon decomposition 

outputs have been used as a basis of bearing fault diagnosis. Early fault detection based upon 

IMF kurtosis'(23) and adaptive angle-domain signals(24) have been proposed for rotating gears. 

Rotor-to-stator rub and fluid excitation faults have been also been proposed using EMD(25)(26). 

Alongside the standard EMD technique, improved EMD methods have also been developed to 

increase the effectiveness of rotating machine fault diagnosis, these include ensemble EMD(27) 

and b-spline EMD(28). 



 

With respect to the existing related work in the field of rotating machinery prognostics, the 

research discussed in this paper presents a novel application of EMD to boiler feed pump 

vibration signals, alongside subsequent statistical analysis of the decomposed signals to 

estimate time-frames associated with alarm violations and entry into predefined zones of 

operation. The proposed technique is also transferable to other rotating machine platforms that 

utilise vibration monitoring. 

 

2.  Problem Definition 

 
2.1 Rotating Plant Monitoring 

 

Monitoring of rotating machines is often time intensive for analysts to diagnose the state of the 

machine and vibration analysis is a standard part of the diagnosis process. Generally vibration-

based condition monitoring of rotating plant follows a standard process where analysis is 

performed on the asset's monitored vibration and operational parameters following the 

triggering of an alarm. Both time-domain features (amplitudes and phases) and frequency-

domain features (such as fast Fourier transforms) are widely used in the vibration analysis. 

These parameters are correlated to operational parameters to determine if the alarm is a 

consequence of an expected station operation. If the alarm can be attributed to an expected 

change then it is written off as 'routine'. Alternatively the asset will be subjected to further 

mechanical inspection to determine the reason for the change in monitored behaviour. This 

type of reactive maintenance strategy does not permit engineers to proactively plan for 

interventions that could be identified by deeper analysis of monitored data. Moreover, this 

process does not provide insight into (or indication of) any longer-term degradation processes. 

An example of a standard monitored vibration parameter is shown in figure 1. From this figure 

different modes of operation (on, off, etc.) can be seen alongside the noise and outliers 

associated with a data capture of approximately two years.  

 

 
 

Figure 1. Example vibration signal 

 

Boiler feed pumps (BFP) are rotodynamic pumps that are intensively monitored and are 

responsible for circulating water around the water-steam loop of a power station. 

Understandably, their health is subject to high levels of scrutiny throughout their entire 

operational life. Due to the importance of BFP operations on power station availability (and 

also the trend for power stations life extension programmes(29)) associated condition 

monitoring has seen a rise in the volume of monitoring data being acquired and stored, 

alongside an increased analysis of this data for the purpose of diagnosis and prognosis studies.  



 

A problem that arises during the analysis of operational signals is determining an appropriate 

means of representing and visualising signals such that important characteristics can be 

identified and assessed in an informative manner. If any BFP vibration level reaches predefined 

limits it will be taken offline for inspection and refurbishment within a short timescale. The 

design and maintenance philosophy for BFPs has resulted in very few instances of failures, or 

maintenance interventions being required. Therefore there is limited failure data for 

prognostics studies. However, using vibration data related to the limited number of degraded 

BFP states alongside extensive historical data, long term degradation information may be 

characterised by features of the component parts of a deconstructed parent signals. 

 

3.  Signal Decomposition 

 
Traditional signal processing techniques, including time-domain and frequency-domain 

analysis, are based on the assumption that the process generating the signals are stationary (i.e. 

inherent features do not change when shifted in time) and linear (i.e. the vibration signal 

responds in a linear fashion to any change in operational state). This can result in false 

information when the technique is applied to signals corresponding to mechanical faults or 

degradation processes, as these events or processes can be non-stationary and generate transient 

events. To deal with non-stationary signals, several advanced time-frequency analysis 

techniques have been introduced and applied to fault diagnosis of rotating machinery. For the 

purpose of this study, one specific technique has been utilised: EMD, as it is regarded as a 

robust tool for analysing non-stationary, nonlinear data. 

 
3.1 Empirical Mode Decomposition 

 

EMD is a powerful time-frequency analysis techniques due to being computationally efficient 

and also conserving the features of the parent signal. It is based on the local characteristic time 

scales of a signal and can decompose the parent signal into a set of complete and almost 

orthogonal components signals that are denoted intrinsic mode functions (IMF). The IMFs 

represent natural oscillatory modes embedded in the parent signal and serve as representative 

functions, which are determined by the signal itself, rather than predetermined kernels.  

 

The technique is an intuitive means of investigating the underlying structure of an oscillating 

signal and naturally adapts to the features of the signal under investigation. EMD automatically 

decomposes the original signal (x(t)) into a finite number of band-limited oscillations 

(IMFs)(18). The decomposition technique defines each decomposed oscillation as an IMF if it 

satisfies two conditions: 

 

1. The number of extrema and the number of zero crossings must be equal or differ at 

most by one; 

2. The local average is zero, i.e. the envelop mean of the upper envelop and lower envelop 

is zero; 

 
Therefore x(t) can be represented by the linear sum of the constituent IMFs plus a residual 

term: 

 

𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑘(𝑡) + 𝑟𝑁(𝑡)
𝑁
𝑘=1     (1) 

 



where IMFk(t) denotes the kth IMF and rN(t) is the residual. 

The EMD process can subsequently be defined as: 

 

1. Identify the local extrema of x(t); 

2. Determine the two functions defined by the local maxima (max(t)) and local minima 

(min(t)); 

3. Calculate the average of the two functions defined by the local maxima and local 

minima, 𝑎𝑣𝑒(𝑡) =
(max(𝑡)−min(𝑡))

2
; 

4. Subtract the mean from the signal to form a candidate IMF signal, 𝑐(𝑡) = 𝑥(𝑡) −
𝑎𝑣𝑒(𝑡); 

5. Determine if the candidate signal is an IMF: 

a. Yes - return to step 1. with the residual deduced from the original signal, 

𝑟𝑒𝑠(𝑡) = 𝑥(𝑡) − 𝑐(𝑡) 

b. No – replace x(t) with c(t) and return to step 1. 

 

The IMFs determined from the above process (IMF1(t), IMF2(t), … IMFn(t)) are representative 

of frequency bands of decreasing frequency. The components contained within each frequency 

band are different and vary with the signal x(t).The final residual term rN(t) represents the 

central trend of the signal in general, i.e. increasing or decreasing. 

 
3.2 Boiler Feed Pump Vibration Signal Decomposition 

 

The main benefit of adopting an EMD approach to signal decomposition is that the resultant 

IMFs preserve the time-variant oscillatory modes that exist in the parent signal. This property 

of the technique can henceforth be used to determine underlying features present in the signal 

and also to potentially remove any noise. An example of a real vibration signal decomposed 

by EMD is shown in Figure 2. The subplot at the top of the figure depicts the parent signal and 

the subsequent eight subplots correspond to the eight IMFs that result from the decomposition. 

Comparing the parent signal to the IMFs it is evident that the first two IMFs are representative 

of signal noise. Features that are more interesting can be identified in the subplots related to 

IMFs five, six, seven and eight - here it becomes evident that the original signal contains lower 

frequency features that are more representative of phenomena such as the machine's response 

to operational changes. 

 

3.3 Prognosis: Statistical Analysis, Regression and Extrapolation 

 

By comparing the statistical features of the lower frequency IMFs during multiple periods of 

similar BFP operational state it is possible to derive an impression of how the BFP state is 

changing over time. If linear regression is then applied to the statistical features and this trend 

is extrapolated in time, it is possible to make an estimate of the longer term degradation trends 

or when BFPs may potentially require a maintenance intervention, hence producing a 

prognostic tool. 

 

The first step in this process requires the identification of multiple similar BFP operational 

states. To achieve this five periods of stable BFP operation have been selected based upon the 

ground truth of the pump speed. When the pump speed is operating within predefined upper 

and lower speed limits it can be regarded as being in normal operation. EMD is then applied to 

each period of normal operation and the IMFs determined. An example of this process is shown 

in Figure 3. Similar to the data depicted in Figure 2 it can be seen that the parent signal is 



dominated by the magnitudes in the first two or three IMFs, however there are significant 

statistical artefacts in the remaining IMFs (four through eight) to permit further analysis. 

 

 
Figure 2. Vibration signal decomposed by EMD 

 

A statistical analysis based upon the decomposed signals is now performed on IMFs four 

through eight at each of the five periods of normal BFP operation. The first step of the statistical 

analysis is to assess the first four statistical moments associated with each IMF. For the same 

operational periods considered in Figure 3 the values for each of the first four statistical 

moments associated with IMFs four through eight are depicted in Figure 4. From Figure 4 it is 

not easy to interpret any change in the BFP's state due to multiple time series for each IMF 

being present. However the qualitative similarity across many of the IMFs can be seen, 

implying underlying trends; the exception being IMF eight, which varies considerably in 

comparison to the others. This is not surprising as IMF eight represents considerably lower 

frequency features of the decomposed signals with any non-stationary feature being more 

prominent. The second step of the statistical analysis is now performed on the second, third 

and fourth moments of the decomposed signals. The first moment is excluded due to the first 

condition associated with the EMD process requiring the mean value of IMFs to always be 

equal (or close to) zero (see section 3.1). To determine any underlying trends associated with 

the data presented in Figure 4 the mean and standard deviation are calculated based upon the 

data for IMFs four through eight, again at each of the five periods of normal operation. The 

results of this second phase of assessment are shown in the six lower plots in Figure 5. 



 

Figure 5 depicts the original vibration signature (upper) and the results from the two step 

statistical analysis. By including a first order linear regression for each of the six statistical 

measures it can be seen that there is a tendency for each of the measures to increase. It is noted 

that the positive gradient for the mean of the skewness indicator is based upon negative 

numbers approaching zero. This implies that the data is becoming less negatively skewed over 

the time periods analysed. By comparing the original vibration signal with the six outputs from 

statistical analysis it can be seen that there are underlying trends in the data that cannot be 

easily assessed manually. This analysis hence forms the basis of the process for estimating a 

long term state change in BFPs. 

 

 
Figure 3. Five Successive EMDs on one vibration signal 

 

 
Figure 4. Statistical moments for IMF four through eight 

 



 

To provide a bench mark for when the BFP is approaching undesirable levels of vibration it is 

necessary to conduct the same analysis described above on a case study where the same BFP 

is known to have degraded. For the BFP in question there is one instance where vibration levels 

exceeded acceptable operational levels (as defined by BS ISO standard 10816-7 2009) and 

required a maintenance intervention. This case study is depicted in Figure 6, with the vertical 

red lines indicating the time when the maintenance intervention occurred, both in terms of the 

original vibration signature and the six prognostic indicators. It is noted that the signal 

decomposition and subsequent analysis were performed on five time periods prior to the 

maintenance intervention. 

 

 
Figure 5. Two step statistical analysis and 1st order regression 

 

From Figure 6 the regression lines associated with the six prognostic indicators show a clear 

positive gradient in five of the six indicators. The sixth indicator, associated with the standard 

deviation of the IMFs' skew values, indicates a negative gradient. This result is not unexpected 

as the individual IMF skew values are both positive and negative across the five different time 

periods. However, the magnitudes of the remaining five positive gradients associated with this 

data are larger than the gradients of the previous case. This implies that any underlying trend 

in state change is greater in the degraded case study than in the previous case where no 

degradation is known to be present. On each plot, from the position where the blue dashed 

regression lines intersects the red maintenance intervention date lines, the associated magnitude 

of the statistical indicators can be interpreted as an approximate threshold, representative of the 



magnitude each statistical parameter may reach when a maintenance intervention is required. 

The thresholds for each statistical indicator threshold are depicted by the horizontal green lines 

in Figure 6. Translating the thresholds determined from the analysis containing the 

maintenance intervention to the previous data set it is possible to gauge the time at which a 

likely intervention may be required by extrapolating the relevant regression lines until they 

pass their associated threshold. Extrapolated statistic indicators for the five prognostic 

indicators that follow a positive gradient are shown in Figure 7. In this figure, it can be seen 

that each of the five indicators exceed their associated thresholds at a range of projected future 

times. The indicators associated with skewness and kurtosis pass their thresholds first, with the 

indicators associated with standard deviation taking significantly longer. 

 

 
Figure 6. Statistical trends with event and thresholds 

 

4.  Discussion and Future Work 

 
Assessing the outputs from the proposed produces some interesting results. Firstly, although 

monitored vibration data may not seem to be varying from the perspective of a manual 

observer, it is possible to gain insight into underlying trends that exist within the data by 

decomposing the signal and conducting statistical analysis on the resulting components. By 

interpreting the relevant decomposed signals that are of statistical significance it may be 



possible to extract information regarding the health of the asset. Extrapolation methods then 

provide a means of estimating the potential degradation of the asset. 

 

However, the decomposition method does have limitations, as the decomposed signals are not 

easily associated with real physical phenomenon; hence requiring a statistical analysis to 

determine features of interest. It is noted that the statistical approach does not always produce 

an output that can be related to the asset's degraded state. For example, the decomposed 

skewness values do not evolve over time in a manner that readily lends itself to a long term 

trend. Also the kurtosis values do not change sufficiently to be interpreted as a significant 

degradation. These characteristics of the analysis result in a wide variation in prediction 

metrics. 

 

To develop this method further there exists a number of avenues for future work. First, there 

are other signal decomposition methods that should be assessed. These techniques each have 

their own benefits and drawbacks but may ultimately provide more insight into the decomposed 

signals interpretation. There also exists analysis techniques that can be used to combine the 

multiple predictive indicators into a single indicator representative of all the individual parts. 

Finally, it is suggested that the technique can be extended to multi-dimensional form, where 

multiple data signals are assessed simultaneously in order to determine a more holistic 

understanding of the asset under investigation. 

5.  Conclusions 

 
This paper has presented a new approach to predicting the health of BFPs using EMD and 

statistical analysis. The method moves away from standard methods of health prediction to 

determine underlying features which are not evident to a manual observer. In the case study 

discussed it has been shown that the original data stream does contain longer period trends that 

may be interpreted as asset degradation. It has also been shown that it is possible to make 

predictions about the future state of the asset even when there is relatively little data available. 

 

 
Figure 7. Extrapolation of statistical trends 
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