
DEEP GRAPH REGULARIZED LEARNING FOR BINARY CLASSIFICATION

Minxiang Ye? Vladimir Stankovic? Lina Stankovic? Gene Cheung†

? Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
† Department of Electrical Engineering & Computer Science, York University, Toronto, Canada

ABSTRACT

With growing interest in data-driven classification, deep learning is
now prevalent due to its ability to learn feature mapping functions
solely from data. For very small training sets, however, deep learn-
ing, even with traditional regularization techniques, often overfits,
resulting in sub-par classification performance. In this paper, we
propose a novel binary classifier deep learning method, based on
an iterative quadratic programming (QP) formulation with a graph
Laplacian regularizer (GLR), combining the merits of model-based
and data-driven approaches. Specifically, the proposed network em-
ploys a convolutional neural network (CNN) to learn deep features,
which are used to define edge weights for a graph to pose a con-
vex QP problem. Further, we design a novel loss function to penal-
ize samples at the class boundary during semi-supervised learning.
Results demonstrate that, given a small-size training dataset, our net-
work outperforms several state-of-the-art classifiers, including CNN,
model-based GLR and dynamic graph CNN classifiers.

Index Terms— graph Laplacian regularization, binary classifi-
cation, semi-supervised learning, deep learning

1. INTRODUCTION

Given a sufficient amount of representative training data, data-driven
classifier learning based on deep neural networks (DNN) provides
state-of-the-art classification performance for various large-scale
learning tasks [1], [2]. However, in many practical cases, collecting
labeled data is either overly expensive or time-consuming. One
example is medical image analysis [3], where only a limited number
of images are annotated by experts, due to the tedious and costly
labelling process.

Given insufficient training data, robust classifier learning re-
mains a challenge. Data-driven techniques, like convolutional neural
networks (CNN) and recurrent neural networks (RNN) enable pow-
erful feature extraction, but tend to overfit given limited labeled data.
One remedy is regularization. In the literature, five regularization
types are investigated [4]: (1) regularization via data transformation
to augment the training dataset, e.g., in image classification tasks [5],
[6], data augmentations are performed on the training data by com-
bining different affine transformations and color transformations;
(2) regularization via networks by performing different sampling
and weight-sharing methods on the mapping functions within the
neural networks, such as dropout [7], skip-connections [8], [9], etc;
(3) regularization via regularization term that is independent of the
targets, such as adding weight decay or smoothness prior, method of
[1], etc; (4) regularization via optimization by adopting warm-start,
different update methods and termination methods, as reviewed
in [10]; and (5) regularization via the error function by departing
from classic, mean squared error or cross-entropy loss functions, to
better reflect data distribution by minimizing systematic empirical

risk, such as applying Dice coefficient optimization [11] to achieve
robustness to class imbalance.

In an orthogonal development, recent advance in graph signal
processing (GSP) [12] provides spectral tools to analyze and process
signals on graphs. Specifically, binary classifiers can be interpreted
as piecewise smooth signals on graphs [13], restored using a graph-
signal smoothness prior [14]. For example, in [15] negative edge
weights are introduced into the graph to achieve more robust classi-
fication. Given a set of features, [16] propose an alternating graph-
based binary classifier for interpolating missing labels by learning
relative weights of the features.

Motivated by the above, to address the problem of classifier
learning with small labeled data, we propose a novel neural network
based on iterative quadratic programming (QP) with graph Lapla-
cian regularizer (GLR), combining the merits of model-based and
data-driven approaches. Specifically, we use a CNN to learn deep
features organically, which are used to define a notion of “distance”
to compute edge weights in a sparse graph. The graph is used to
specify the GLR, resulting in a convex QP problem with numerical
stability guarantee [17]. Further, we design a modified loss func-
tion that reflects the quality of learned underlying graph used for
GLR, promoting connections between the nodes with the same la-
bels, and penalizing nodes at the class boundary during training to
improve generalization. Through extensive experiments, given small
labeled data, we show that our proposed network outperforms sev-
eral state-of-the-art binary classification methods, including support
vector machine (SVM) [18], GLR-based approaches [13], classic
CNN-based classifier, and more recent, deep metric based k near-
est neighbor (KNN) [19] and dynamic graph CNN classifier [20].

2. RELATION TO PRIOR WORK

Deep learning has achieved success in various machine learning
tasks that involve natural images, video, speech and other data with
an underlying Euclidean structure [21]. More recently, with growing
interest in non-Euclidean data, deep learning is used to learn the ge-
ometric structure in various tasks, e.g., node classification in graph
structured data [22], image denoising of point cloud data tasks [17],
point cloud classification and segmentation [20].

In particular, tackling the problem of graph learning for non-
Euclidean data, [23] propose spectral convolutional layer that as-
signs degrees of freedom for each eigenvector of the graph Lapla-
cian. Spectrum-free methods [22], [24], [25] adopt polynomial of
the graph Laplacian as features into CNNs to perform classification
given a fixed irregular graph structure [21]. [26] employ an edge
convolutional layer to learn spatial features from neighboring nodes
given a fixed skeleton graph. [20] introduce an iterative KNN graph
reconstruction process based on learned features from multiple edge
convolutional layers. The results demonstrate the capability of edge
convolution operation in terms of feature generalization for classifi-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/199216445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cation tasks for non-Euclidean data, such as point-cloud data.
GLR [27] has been used for data classification, e.g., [13] propose

a supervised classification method by minimizing total variation on
graph where nodes of the graph are indexed by observed classifica-
tion labels, forming a graph signal, and are connected by positive
edge weights that reflect similarity between observed features. More
recently, by introducing the negative edge weights into the graph,
[15] show sufficient robustness of classification to noise in the labels
for small-scale datasets. Focusing on semi-supervised binary classi-
fication, [16] jointly optimize underlying graph construction and the
classifier graph-signal restoration. [17] propose a deep-image de-
noising framework that couples a fully-differentiable graph Lapla-
cian regularization layer with a lightweight CNN for pre-filtering
and learning 8-connected pixel adjacency graph structures based on
the learned features of CNN. The results demonstrate that given a
small dataset, the network outperforms CNN-based approaches by
avoiding overfitting and achieves comparable results when sufficient
data is available.

Unlike the regression task considered in [17], we employ the
GLR as a classifier using a partially labelled dataset for training. By
integrating deep metric learning and GLR within CNN, we propose
a novel deep graph regularized neural network that simultaneously
learns deep features and the graph structure to perform GLR.

3. DEEP GRAPH-BASED LEARNING

In this section, we present our proposed deep graph regularized neu-
ral network, for semi-supervised learning when the amount of la-
beled data available to train the model is very small. The main idea
is to iteratively use CNN to learn the deep features and the optimal
underlying graph for graph Laplacian regularization.

We start by defining the problem and introducing notation,
closely following related work [13], [15]–[17], [19]. Then, we
present the steps of our method, and finally show the proposed
network architecture used to implement the proposed method.

3.1. Problem Formulation and Notation

Let X = {x1, . . . , xN} be a set of samples or data instances to be
classified, where each instance xi is a vector of observed features.
Let Y = {y1, . . . , yN} be a set of corresponding binary labels, most
of them unknown. Given X = {x} and Y = {y}, the binary clas-
sifier should learn, during training, an approximate function F (x)
that maps each input instance x to a label y, which is then used to
determine the labels of new, testing samples. This is accomplished
by presenting to the classifier numerous examples of (x, y) pairs that
constitute the training set. Typically, for machine learning, the size
of the training set is at least equal to the size of the testing set. The
problem addressed in this paper is the case when the size of the train-
ing set is much smaller than that of the testing set.

Let Y = {Ẏ = {−1, 1}M ,0N−M} be a set of labelled ob-
servations, where we set to zero all N −M unknown labels (to be
estimated during testing), with N � M , and Ẏ = {−1, 1}M is a
set of known labels that correspond to instances {x1, . . . , xM} used
for training.

We construct a graph G = (X,E,W), where each instance,
xi, corresponds to a node i, in G. E = {ei,j}, i, j ∈ {1, . . . , N},
denotes a set of graph edges, with ei,j = 1 if there is an edge be-
tween nodes i and j, and otherwise ei,j = 0, and W is the matrix
of the corresponding edge weightswi,j . The graph Laplacian matrix
is given by L = D−A, where A is a symmetric adjacency matrix
with each entry ai,j = aj,i = max(wi,j · ei,j , wj,i · ej,i), and D

is a degree matrix with entries di,i =
∑N
j=1 ai,j , and di,j = 0 for

i 6= j. Note that ei,j and wi,j are problem specific, and have been
the subject of optimization, for example, in [16].

Our first task is to learn ei,j and wi,j . Once we know ei,j and
wi,j , we can employ graph Laplacian regularization, similarly to
[15]–[17], to regularize CNN used to learn deep features. In addi-
tion, we estimate the quality of the learned graph, expressed as edge
and weight loss, and feed this loss back to the Optimization mod-
ule of CNN to drop training samples that potentially sit at the class
boundary and would worsen generalization.

3.2. Deep Metric Learning

Let F(x) be a feature representation function that projects the orig-
inal feature space of x into a deep metric feature space [19]. That
is, first, for each training sample xi, we use CNN to find the optimal
‘deep’ features F(xi), without regularization.

Next, we design a graph G, using F(xi) as samples and cor-
responding labels Ẏ as graph signal. To learn the optimal set of
edges and edge weights of the graph, we need a cost function that
promotes connecting nodes that correspond to the same labels and
penalizes connections between the nodes with opposite labels, while
constraining the graph to be sparse and connected, needed for effi-
cient graph Laplacian regularization.

It has been shown that triplet loss-based deep networks achieve
better classification accuracy than conventional DNNs for image
classification, person re-identification and face recognition, as triplet
loss effectively learns a deep metric to better represent the distance
between any two instances [19], [28], [29]. Using triplet loss, we
formulate the loss function of graph edge E’s connectivity learning
as:

LossE =

N∑
a,p,n

[
αE−‖F(xa)−F(xn)‖22+‖F(xa)−F(xp)‖22

]
+
,

(1)
where a and p are the nodes with the same label, i.e., ya = yp ∈ Ẏ,
and node n is with the opposite label, i.e., ya 6= yn ∈ Ẏ. Operator[
·
]
+

is a ReLu activation function which is equivalent to max(·, 0).
The loss function (1) promotes small/large Euclidean distance be-
tween the nodes with the same/opposite labels, while keeping min-
imum margin αE between these two Euclidean distances. The loss
value of error function-based regularization term (1) will be fed to
ADAM optimizer for updating CNN to find improved deep features,
F∗(xi), that take into account graph construction.

As in [15], [17], in order to obtain a sparse connected graph,
we introduce a constraint that the graph must be a KNN graph and
define a graph edge ei,j between the i-th and j-th node as:

ei,j =

{
1, if xi ∈ Bγ(xj) or xj ∈ Bγ(xi)

0, otherwise,
(2)

where Bγ(xj) is the γ nearest nodes to node j, based on distance
‖F∗(xi) − F∗(xj)‖22 , used to control the sparsity of graph con-
nectivity (see Sec. 3.2 in [30]). We iteratively optimize (1) to learn
F∗(·) by back propagation via ADAM Optimizer. We then adopt
(2) to find the optimal degree of the nodes γ by decreasing γ from a
fully connected graph, based on the classification accuracy measured
on the validation set.

Note that, given insufficient data, deep metric function F∗
would quickly overfit, calling for extra regularization that would
penalize samples that sit at the class boundaries and could poten-
tially otherwise lead to poor model generalization. Typically, in the
deep learning framework, a combination of l1 or l2 regularization,
dropout, and/or batch normalization are performed as a part of the
loss function [31]. Instead, we hypothesize and show in Section 4

that these techniques are ineffective when the training set is very
small, and therefore employ graph Laplacian regularization to add
extra regularization to the loss function. Given γ found via (2), first,
we assign edge weight {wi,j} by:

wi,j = exp
(
− ‖Fr(xi)−Fr(xj)‖

2
2

2σ2

)
, (3)

where Gaussian kernel function is used to limit edge weights within
an appropriate range. Fr(x) denote regularized deep features ob-
tained via a CNN. Once W is found, we define weight loss as:

LossW =

M∑
a,p,n

[
αW − ‖Fr(xa)−Fr(xn)‖22 · πa,n

+ ‖Fr(xa)−Fr(xp)‖22 · πa,p
]
+

Π ={πi,j} = Θ(Ÿ, Ẏ),

(4)

where Θ is the activation function (see (6)) that estimates how much
attention should be given to each edge, and Ÿ is a solution of

argmin
U
{‖U− Ẏ‖22 + µULUT }. (5)

Note that (5) is the graph Laplacian regularization step that attempts
to find the smoothest graph signal, U, for a given graph, that is close
to the observed set of labels, Ẏ. πa,p and πa,n are the amount of
attention, i.e., edge loss weights, given to edge nodes with the same
and opposite labels, respectively. To guarantee that the solution Ÿ to
the quadratic programming (QP) problem (5) is numerically stable,
we adopt Theorem 1 from [17] by setting an appropriate conditional
number κ. The resulting smoothness prior factor µ is then calculated
as: µ = (κ − 1)/(2dmax), where dmax is the maximum degree of
the vertices in graph G.

The obtained loss, LossW, is fed back to the CNN for regular-
ization. By calculating iteratively (3), (5), (4), batch-by-batch, and
feeding back the loss to CNN to update Fr the loss of graph edge
weight is minimized based on the edges with high attention value,
while learning the optimal regularized deep metric function Fr .

3.3. Implementation: Proposed Network Architecture

To solve the above deep metric learning problem we propose a deep
graph regularized network (DGR-Net), shown in Fig. 1, comprising
two sub-networks: (I) KNN-Net (deep metric learning-based KNN
classifier): used to estimate the optimal γ, see (2), where an undi-
rected KNN graph is constructed by learning a deep metric function
through minimization of LossE (1). (II) Graph-Net (graph-based
binary classifier): used to learn edge weights W via (3) and (4) to
construct a weighted undirected graph, G, constrained by the opti-
mal γ, to perform graph Laplacian regularization to obtain the solu-
tion Ÿ (5). To guarantee the solution Ÿ to (5) is numerically stable,
we heuristically set conditional number, κ, as defined in [17], to 50
in all our experiments.

The proposed CNNs are shown in Fig. 2, which differ only in
the loss function used: CNNF within KNN-Net uses edge loss (1),
while CNNFr weight loss (3), both trained via ADAM optimizer
with initial learning rate of 0.002 linearly decreasing with the num-
ber of epochs. We use the same distance margin of 10 for both αE

and αW in (1, 3). For each epochs, we use batch size of 6, each batch
comprising 120 nodes, thus we randomly sample 6·120 samples into
the network. This results in 6 graphs to regularize the training.

Note that to achieve sparse, connected graph, we disconnect rel-
atively low weighted edges that are most likely connecting incor-
rectly labeled nodes. We adopt KNN-graph construction based on
(2), where optimal maximum number of neighbors γ is obtained via
grid-search by evaluating classification error of an KNN-classifier
on the validation set. The resulting γ is then used in the GR-Net

X CNNF

Initializer

Sampler Eq. (1)

ADAM Optimizer

CNNFr

Initializer

γ Estimation Eq.(2)

Ysub

weights biases

weights biases

ADAM Optimizer

Graph Construction QP Solver Eq.(5) Ẏ

F(X)

F(xa)

F(xp)

F(xn)

LossE

update

L
µ

Sampler Eq.(4)

γ

LossW

update

Fr(X)

Fr(xa)

Fr(xp)

Fr(xn)

Ÿ Edge Attention

Π

KNN-Net

GR-Net
Fig. 1: Overall block diagram of the proposed DGR-Net. KNN-Net
first learns a deep metric function CNNF by minimizing LossE. We
adopt a Sampler to extract triplets: F(xa) - random instances in X,
F(xp) - random instance subsets of X with the same label asF(xa),
F(xn) - random instance subsets of X with the opposite label to
F(Xa). Once we obtain F∗(·), we construct KNN graphs using (2)
given a subset of training data (Xsub|Ysub) not used for minimizing
LossE, i.e., Xsub ⊂ X and Ysub ⊂ Ẏ. An optimal γ is then es-
timated by evaluating KNN classification accuracy on those KNN
graphs where random subsets of nodes are manually unlabeled. γ is
then used as maximum degree of undirected KNN-graph constructed
in the following GR-Net by minimizing LossW. GR-Net learns a
regularized deep metric function CNNFr to assign edge weights and
constructs undirected KNN graphs constrained by γ. Then, it uses
GLR to estimate Ÿ given Ẏ via (5). Attention is then computed by
an activation function to penalize LossW.

 !!"(#)

Fig. 2: CNNF and CNNFr neural network. FC denotes fully con-
nected layer.

for pruning edge weights W during graph weighting. Like in [15],
[17], we adopt Gaussian kernel as normalization function P in (3)
for assigning edge weights W of graph G. Once W is defined, E is
computed as a mask matrix for undirected KNN graph, where only
top γ entries {ei,j1 , . . . , ei,jγ} of the i-th node are set to 1.

As mentioned in Sec. 3.2, we then solve the MAP problem (5),
passing graph Laplacian L and partial labeled observations Ẏ. In
case of insufficient training data, edge attention activation Θ, im-
plemented as a nonzero thresholded step as in (6), will be used to
dropout some edges with relatively large changes between Ÿ and
original Ẏ after applying graph Laplacian regularization. This fa-
cilitates to penalize learning on edges with relative low confidence
(outliers). Therefore, the overall training regularizes CNNFr better
than typically dropout random neural units in the network.

Θ(Ÿ, Ẏ) =

{
1, if |Ÿ − Ẏ| > ε

0, if |Ÿ − Ẏ| ≤ ε,
(6)

where threshold ε is used to measure how confident a node’s label is
and also helps to control the sparsity of edge attention matrixΠ . Un-
der the assumption of ineffective graph Laplacian regularization dur-
ing the early training, we adopt a decayed ε decreasing linearly from
2 to 0.6 during training to ensure that we start regularizing CNNFr
until we obtain acceptable Laplacian matrix L without influence the
earlier training.

4. RESULTS

In this section, we evaluate our proposed network benchmarked
against different classifiers using classification error rate as perfor-
mance metric. We select two binary-class datasets from Knowledge
Extraction based on Evolutionary Learning dataset (KEEL) [32]: (1)
Phoneme: classification of nasal (class 0) and oral sounds (class 1),
consisting of 5404 instances (frames) described by 5 phonemes of
digitized speech. (2) Spambase: determining whether an email is
spam (class 0) or not (class 1), with 4597 email messages summa-
rized by 57 particular words or characters.

We compare the proposed DGC network against the following
classifiers: (1) linear SVM (2) SVM with radial basis function ker-
nel (denoted by SVM-RBF) (3) a purely graph-based classifier with
smoothness prior (Graph) (4) a classical CNN, consisting of one
CNN with two fully connected layers at the end; CNN block has
a convolutional layer, a max pooling layer, and one dropout layer
before each fully connected layer; l2 regularization is applied to all
trainable layers (denoted by CNN) (5) a graph-based CNN with mul-
tiple KNN graph construction blocks, which also learns the optimal
graph structure as the proposed method but using edge convolution
(denoted by DynGraph-CNN) [20]; batch normalization, l2 regular-
ization and dropout are all used (6) a KNN classifier using deep met-
ric learning [19] (DML-KNN) with l2 regularization and dropout.

We conduct our experiments by randomly splitting each dataset
into training, validation and testing sets. We select 10, 15, 20, 25,
30% of instances as training sets, 10%, instances as validation set,
and the remaining instances contribute towards the testing set. Clas-
sification error rates are measured by running 20 experiments for
each dataset. We use the same random seed setting across all clas-
sification methods and remove all duplicated instances to ensure a
fair comparison. Hyper-parameters used for each experiment are
obtained from the validation set by grid search.

As shown in Tables 1 & 2, given insufficient amount of data,
DGC consistently outperforms the other 6 benchmarks, as observed
by lower classification error rates. One reason is that all other neu-
ral network-based classifiers overfit to the insufficient training data.
Indeed, the proposed method uniformly outperforms all benchmarks

Table 1: Classification Error Rate (%) for the Phoneme Dataset for
various sizes of the training dataset expressed as the proportion of
the total dataset (%).

Proportion (%) 10 15 20 25 30
SVM-Linear 25.73 25.79 25.62 25.63 25.60
SVM-RBF 20.81 20.32 19.78 19.45 19.05

Graph 23.09 22.92 22.72 22.34 22.17
CNN 20.69 20.22 19.51 19.12 18.91

DynGraph-CNN 22.12 20.20 19.39 19.21 18.40
DML-KNN 20.37 19.44 19.31 19.18 18.12

DGC 19.86 19.37 18.93 18.78 17.89

Table 2: Classification Error Rate (%) for the Spambase Dataset for
various sizes of the training dataset expressed as the proportion of
the total dataset (%).

Proportion (%) 10 15 20 25 30
SVM-Linear 10.26 9.83 9.52 9.06 8.94
SVM-RBF 10.04 9.30 9.00 8.61 8.41

Graph 20.22 20.10 19.68 19.13 18.72
CNN 9.72 9.18 8.75 8.65 8.26

DynGraph-CNN 11.84 10.71 9.52 9.38 9.09
DML-KNN 9.20 8.26 7.97 7.73 7.44

DGC 9.08 8.18 7.64 7.52 7.38

for the training dataset sizes between 10%-30% of the total dataset.
The Graph method, based on graph Laplacian regularization,

does not learn features, resulting in the worst performance among all
tested schemes. DynGraph-CNN network [20] performs worse than
CNN when the amount of training data is very low, since the network
is deeper than the CNN benchmark, closing the performance gap as
the training dataset size increases. DML-KNN is always the sec-
ond best method indicating that learning deep metric via triplet loss
provides performance gain. Further improvements of the proposed
DGC over DML-KNN are due to the effectiveness of the proposed
graph Laplacian regularization.

5. CONCLUSIONS

A deep graph regularized network architecture for binary classifier
learning for the case of insufficient training data is proposed and
benchmarked against classical and state-of-the-art classifiers. The
proposed solution embeds graph Laplacian regularization, a proven
method to combat insufficient training dataset, into a CNN archi-
tecture used for deep feature learning via new formulation of a loss
function that takes into account the quality of the underlying graph
used to calculate the graph Laplacian. The proposed network consis-
tently outperforms six benchmarks, including a prior graph Lapla-
cian regularization approach, conventional CNN and SVM classi-
fiers, as well as latest state-of-the-art dynamic graph CNN architec-
ture that uses geometric learning to find optimal graph structure.

Future work will comprise extending the work to handle noise
in the training dataset. Another direction is extending the work to
the multi-class classification problem.

6. ACKNOWLEDGMENT

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 734331. The
University of Strathclyde gratefully acknowledges the support
of NVIDIA Corporation with the donation of the Titan Xp
GPU used for this research.

References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,” in
Advances in neural information processing systems, 2012,
pp. 1097–1105.

[2] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recog-
nition with deep recurrent neural networks,” in ICASSP 2013,
2013, pp. 6645–6649.

[3] Y. Xu, T. Mo, Q. Feng, P. Zhong, M. Lai, and E. I. Chang,
“Deep learning of feature representation with multiple in-
stance learning for medical image analysis,” in ICASSP-
2014, May 2014, pp. 1626–1630.

[4] J. Kukačka, V. Golkov, and D. Cremers, “Regularization for
deep learning: A taxonomy,” ArXiv:1710.10686, 2017.

[5] L. Perez and J. Wang, “The effectiveness of data aug-
mentation in image classification using deep learning,”
ArXiv:1712.04621, 2017.

[6] A. Mikołajczyk and M. Grochowski, “Data augmentation for
improving deep learning in image classification problem,” in
2018 IIPhDW, May 2018, pp. 117–122.

[7] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by prevent-
ing co-adaptation of feature detectors,” ArXiv:1207.0580,
2012.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Pro.e IEEE Conf. Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[9] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks.,” in CVPR,
vol. 1, 2017, p. 3.

[10] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht,
“The marginal value of adaptive gradient methods in machine
learning,” in Advances in Neural Information Processing Sys-
tems, 2017, pp. 4148–4158.

[11] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully
convolutional neural networks for volumetric medical image
segmentation,” in 2016 Fourth Intl. Conf. 3D Vision (3DV),
IEEE, 2016, pp. 565–571.

[12] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and
P. Vandergheynst, “Graph signal processing: Overview,
challenges, and applications,” in Proceedings of the IEEE,
vol. 106, no.5, May 2018, pp. 808–828.

[13] A. Sandryhaila and J. M. F. Moura, “Classification via reg-
ularization on graphs,” in 2013 IEEE Global Conference on
Signal and Information Processing, Dec. 2013, pp. 495–498.

[14] J. Pang and G. Cheung, “Graph Laplacian regularization for
image denoising: Analysis in the continuous domain,” IEEE
Transactions on Image Processing, vol. 26, no. 4, pp. 1770–
1785, 2017.

[15] G. Cheung, W. Su, Y. Mao, and C. Lin, “Robust semisuper-
vised graph classifier learning with negative edge weights,”
IEEE Transactions on Signal and Information Processing
over Networks, vol. 4, no. 4, pp. 712–726, Dec. 2018.

[16] C. Yang, G. Cheung, and V. Stankovic, “Alternating binary
classifier and graph learning from partial labels,” in Asia-
Pacific Signal and Information Processing Association An-
nual Summit and Conference 2018, Nov. 2018.

[17] J. Zeng, J. Pang, W. Sun, and G. Cheung, “Deep graph
Laplacian regularization for robust denoising of real im-
ages,” ArXiv 1807.11637, 2018.

[18] C. Cortes and V. Vapnik, “Support-vector networks,” Ma-
chine learning, vol. 20, no. 3, pp. 273–297, 1995.

[19] E. Hoffer and N. Ailon, “Deep metric learning using triplet
network,” in International Workshop on Similarity-Based
Pattern Recognition, Springer, 2015, pp. 84–92.

[20] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon, “Dynamic graph CNN for learning on point
clouds,” ICLR 2017, vol. abs/1801.07829, 2018.

[21] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P.
Vandergheynst, “Geometric deep learning: Going beyond
euclidean data,” IEEE Signal Processing Magazine, vol. 34,
no. 4, pp. 18–42, Jul. 2017.

[22] T. N. Kipf and M. Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” ArXiv:1609.02907,
2016.

[23] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G.
Monfardini, “The graph neural network model,” IEEE Trans-
actions on Neural Networks, vol. 20, no. 1, pp. 61–80, Jan.
2009.

[24] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spec-
tral networks and locally connected networks on graphs,”
ArXiv:1312.6203, 2013.

[25] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolu-
tional neural networks on graphs with fast localized spectral
filtering,” in Advances in Neural Information Processing Sys-
tems 29, Curran Associates, Inc., 2016, pp. 3844–3852.

[26] X. Zhang, C. Xu, and D. Tao, “Graph edge convolutional
neural networks for skeleton based action recognition,”
ArXiv:1805.06184, 2018.

[27] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing
on graphs: Extending high-dimensional data analysis to net-
works and other irregular domains,” IEEE Signal Processing
Magazine, vol. 30, no. 3, pp. 83–98, May 2013.

[28] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A uni-
fied embedding for face recognition and clustering,” in Pro-
ceedings of the IEEE Conf. Computer Vision and Pattern
Recognition, 2015, pp. 815–823.

[29] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet
loss for person re-identification,” ArXiv:1703.07737, 2017.

[30] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vava-
sis, “Separators for sphere-packings and nearest neighbor
graphs,” Journal of the ACM, vol. 44, no. 1, pp. 1–29, 1997.

[31] P. Lemberger, “On generalization and regularization in deep
learning,” ArXiv:1704.01312, 2017.

[32] J. Alcala-Fdez, A. Fernández, J. Luengo, J. Derrac, S.
Garc’ia, L. Sanchez, and F. Herrera, “Keel data-mining
software tool: Data set repository, integration of algorithms
and experimental analysis framework,” Journal of Multiple-
Valued Logic and Soft Computing, vol. 17, pp. 255–287, Jan.
2010.

