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Abstract

Specific purpose guarantee funds (SPGFs) such as pension guarantee funds are becoming
much popular among loss averse investors with common peculiar investment purpose, but
receive few academic attention regarding to its investment strategy, hedging technique
and performance. In this paper we propose a more practical constant proportion port-
folio insurance (CPPI) strategy, three-fund CPPI (hereafter 3F-CPPI) strategy, which
optimally allocates its assets in three funds: a risk-free fund, a stock-index fund and a
purpose-related stock fund, to maximize the loss averse investor’s utility and to control
the downside risk as well. Closed-form solutions of the optimal allocations of 3F-CPPI
and its outcome distribution have been derived first under the continuous time case, fol-
lowed by an extensive Monte Carlo simulation under the discrete time case to compare
3F-CPPI with other benchmark strategies such as CPPI. Our simulation results show that
the proposed 3F-CPPI dominates other benchmark strategies in almost all the aspects
such as the mean return, downside risk control and loss averse utility.

Keywords: Portfolio insurance strategies; Specific purpose guarantee funds; CPPI;
3F-CPPI.

1. Introduction

There is an increasing number of funds whose investors anticipate a minimum guar-
anteed return and plan a specific intended use of the investment, which is called special
purpose guarantee funds (SPGFs henceforth). Take the retirement purpose as an in-
stance, one typical SPGFs is the guaranteed minimum income benefit (GMIB) annuity
fund, which provides life-long pension payments to investors after retirement and guar-
antees a certain one-off payment in the case of early death. Another SPGFs example is
children future education expense fund, such as F&C’s Children’s Investment Plan, which
enables parents to contribute a monthly or lump sum investment today to cover children’s
education-related expenses in years, like the college education costs. The price inflation
with respect to the specific purpose of the investment outcome makes the SPGFs different
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Table 1: The difference between CPPI and 3F-CPPI

Composition Objective Allocation
Strategy

CPPI 3F-CPPI
Floor (risk-free) guaranteed return a risk-free fund X X

Cushion (risky) excess return
a market index fund X X

a special sector index fund X

from an ordinary guarantee fund. The SPGFs investors are expecting a minimum guar-
anteed return and achieve a high purchase power of the investment outcome at maturity
as well.

Although there are many types of SPGFs promising a minimum guaranteed return
participated by investors with a specific use of the investment, few academic attention
is paid to SPGFs’ investment strategy, hedging techniques and its performance. For
instance, GMIB annuity fund adopts only the CPPI strategy under the regulation of
Insurance Regulation Commission (CIRC) providing life-long pension to its investors.
CPPI dynamically allocates the funds on two funds, a risk-free fund and a risky one
such as stock index fund, to achieve a guaranteed return during the investment period.
However, CPPI strategy does not consider any purpose related risks, an essential factor
affecting the valuation of SPGFs for loss averse investors. Thus it is inappropriate and
impractical for SPGFs loss averse investors to adopt only the standard CPPI strategy.
Therefore, we firstly propose an adjusted CPPI strategy, 3F-CPPI, which allocates its
fund into not only a risk free asset and a risky portfolio but an extra purpose-related
asset with the aim of hedging against specific risks such as purpose-related inflation.

Investing in a third fund within an adjusted CPPI strategy has also been justified by
the high correlation between the purpose related inflation risk and the performance of
specific industry stocks. A bunch of empirical studies examine the relationship between
price inflation and stock return, which further justifies the feasibility of hedging inflation
risk by investing in highly correlated stocks. For example, a robust relationship has been
found between the inflation and certain industry sector stocks including the financial
sector stocks (Boyd et al., 2001), oil and gas industry sector stocks (Sadorsky, 2001;
Apergis and Miller, 2009; Kang et al., 2015) and real estate and real estate investment
trusts (REIT) (Rubens et al., 1989; Hoesli and Oikarinen, 2012; Bahram et al., 2004).
Thus, a natural way to hedge the inflation risk and maintain a relative stable purchase
power for SPGF investors is to allocate some assets into purpose-related stocks. As
indicated in Table 1, the main difference between CPPI and 3F-CPPI is that 3F-CPPI
invests in three funds: a risk-free fund, a second risky fund (e.g. market index fund)
and a third fund for hedging specific risks (e.g. industry stock fund). Intuitively, the
proposed 3F-CPPI strategy ensures a guaranteed performance while the funds allocated
on the third asset hedges the specific risk for the loss averse investors.

Our paper echoes the researches focusing on improving the performance of CPPI from
different aspects. Boulier and Kanniganti (2005) propose and further evaluate modifi-
cations of standard CPPI. At the expense of complexity, Lee et al. (2008) adjust CPPI
parameter based on “momentum” of market performance and they find such constructed

2



variable proportion portfolio insurance (VPPI) outperform the standard CPPI. Chen et al.
(2008) propose a dynamic proportion portfolio insurance (DPPI) strategy by identifying
risk variables that are related to market conditions and used to build the equation tree
for the risk multiplier by genetic programming.

Also as SPGFs investors tend to be loss averse, a feature which is quite different from
the classical mean-variance framework, thus mutual fund separation derived from mean-
variance framework might be inappropriate for SPGFs. Dichtl and Drobetz (2011) find
that the investors who prefer guarantee funds are proven to be loss averse and the popu-
larity of PI strategies can only be explained in a behavioural finance context. The most
popular CPPI strategy firstly proposed by Black and Jones (1987) and Black and Perold
(1992) is a two-fund investment strategy by investing assets into a risk-free fund and a
diversified asset. The CPPI strategy seems to follow the logic or principle of the famous
two-fund separation, however, they are not belong to the same investment categories.
The two-fund separation is firstly developed by Tobin (1958) and Markowitz (1959) un-
der a mean-variance framework, and further proved by Merton (1973) in continuous-time
capital asset pricing model independent of preferences, wealth distribution, and time hori-
zon. Nevertheless, there has been plenty much discussion questioning the hold of mutual
fund separation: for instance, some literatures believe that when agents do not have
mean-variance preferences or the investment opportunities are not constant, alternative
assumptions are needed in support of mutual fund separation.2

Further, three-fund or even K-fund separation theorem has been developed as the
invalidity of mutual fund separation.(Merton, 1973; Cairns et al., 2006; Dahlquist et al.,
2016; Dybvig and Liu, 2018). Our innovative solution for SPGFs by investing in an ex-
tra fund is inspired by the loss aversion feature of SPGFs investors, a utility framework
which is quite different from the classical mean-variance one. However, we do not claim
3F-CPPI is a direct application of three-fund separation theorem, neither do we state
the optimal allocation strategy for SPGFs investors be necessarily 3F-CPPI. Most impor-
tantly, proposing an innovative 3F-CPPI for loss averse SPGFs investors and testing its
superiority over benchmark PI strategies are the main contributions of this paper.

Within the general portfolio insurance setting featuring loss averse utility, we have
derived the explicit optimal allocation rule for the 3F-CPPI strategy and its final payoff
distribution as well. Further extensive Monte Carlo simulations have been conducted to
give further intuitive insights of 3F-CPPI’s superiority over other benchmark strategies.
More specifically, the proposed 3F-CPPI strategy outperforms the standard CPPI and
other strategies in various aspects such as mean return, expected fall and protection ratio
etc. Despite both 3F-CPPI and CPPI are well able to hedge against the downside risk,
3F-CPPI proves to be superior to the CPPI strategy with regards to reshaping return
distribution and investor’s utility. We prove further that the 3F-CPPI are most favoured
by loss averse investors compared with other strategies.

The rest of the paper is structured as follows. Section 2 briefly introduces the financial
market. An innovative 3F-CPPI strategy with closed-form solutions for its optimal alloca-

2See details in Pye (1967), Samuelson (1967), Hakansson (1969) and Ross (1978) among others
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tion rules and leverage has been constructed in Section 3, followed by an extensive Monte
Carlo simulations comparing the 3F-CPPI strategy among several contrastive strategies
in Section 4. Finally, Section 5 concludes and the proof techniques can be found in the
Appendix.

2. Financial market and loss averse utility

2.1. Financial market

First, a stock market index, denoted by SIt , has been established using all n stocks in
the financial market. Further, we assume the dynamic process of the stock index SIt and
risk free asset Sft are captured by geometric Brownian motions as follows

dSIt
SIt

= µidt+ σsi dZs, (1)

dSf = rSfdt, (2)

where µi is the expected growth rate, σi is the volatility of the stock market, r is the
risk-free interest rate and Zs is the Brownian motion which drives the stock market.

We further assume there exists a market sector consisting of m (m < n) stocks and it
is closely related to the special purpose of a given SPGFs. As in the example of pension
funds, the sector that consists medicine and health-related industry stocks is defined as
the purpose-related market sector. Similar to the stock market index, the dynamic process
of the purpose-related market sector index, denoted by SPt , is given by

dSPt
SPt

= µpdt+ σspdZs + σppdZp

= µpdt+ σPdZP , (3)

where Zs and Zp are two orthogonal Brownian motions, and σPdZP = σspdZs + σppdZp.
Thus, Brownian motion ZP is correlated with Zs :

dZPdZs =
σsp√

(σsp)
2 + (σpp)2

dt. (4)

The SIt fund and SPt fund are driven by two different but correlated Brownian motions.
For simplicity, we hereafter refer the market index fund SIt and the specific purpose related
index SPt to I-fund and P -fund respectively.

As the SPGFs’ payoff is to be used for a specific purpose such like hedging medical
costs for pension funds, the inflation of purposed-related expense shall definitely reduce
investors’ utility from the investment. More specifically, we denote the given SPGFs’
purpose related expense inflation index as Yt, and refer it to the purpose-related expense
inflation index. As Yt represents the price level, we normalize Y0 = 1 for simplicity, it’s
generally expected that YT > 1 at maturity due to inflation.
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We assume further Yt is jointly driven by stock market risk and other risk (e.g. id-
iosyncratic risk) that has not been traded in the stock market. The process of Yt is given
by:

dYt
Yt

= µydt+ σsydZs + σpydZp + σeydZe, (5)

where Zi, Zp, Ze are orthogonal Brownian motions. It is noteworthy that Yt can not be
perfectly hedged by neither the I-fund nor the purpose-related P -fund.

By SDE process (5), one can write stochastic integration:

Yt = Y0 exp{(µy −
1

2
(σsy)

2 − 1

2
(σpy)

2 − 1

2
(σey)

2)t+ σsyWst + σpyWpt + σeyWet}

= Y0 exp{µY t+ σYWY t}, (6)

where Y0 = 1, and µY = µy − 1
2
(σiy)

2− 1
2
(σpy)

2− 1
2
(σey)

2, σYWY t = σsyWst + σpyWpt + σeyWet.

So far, we have introduced SDE process of Yt, Zi and Zp, which are jointly driven by
three orthogonal BMs Zi, Zp and Ze. To write down as a unified form, we define:

dNt = µNdt+ σsndZs + σpndZp + σendZe, (7)

where Nt = SIt , S
P
t , Yt, and n = i, p, y correspondingly. −→σ n = (σsn, σ

p
n, σ

e
n) is the volatility

vector of process of Nt, thus, −→σ i = (σsi , 0, 0), −→σ p = (σsp, σ
p
p, 0) and −→σ y = (σsy, σ

p
y , σ

e
y).

2.2. Loss averse utility

Generally, investors of guaranteed funds tend to be loss averse, which explains the
popularity of guaranteed funds and portfolio insurances (Dichtl and Drobetz, 2011). In
contrast to the expected utility theory, the guaranteed fund investors are proven to be
loss averse with the following behavioural characteristics: 1. evaluate investment outcome
by its deviation from some specific reference point; 2. value potential gains and losses
asymmetrically, i.e. the marginal utility of the potential is higher than that of the gains.
Therefore, we adopt the loss averse utility defined as follows in our framework.

More specifically, loss averse investors have an S-shaped utility function being concave
for gains and convex for losses. Investment outcome has been considered as either positive
or negative deviations from a reference point. Following Dichtl and Drobetz (2011) and
Tversky and Kahneman (1992), the loss averse utility function is defined as follows:

ν(∆V ) =

{
(∆V )γ

−λ(−∆V )γ
for ∆V > 0
for ∆V < 0

, (8)

where ∆V is the deviation from reference point, 1 > γ > 0 and λ > 1. It’s noteworthy
that the concave part of utility (8) is equivalent to the form of Constant Relative Risk
Aversion (CRRA) utility 3 given by

uCRRA(∆V ) =
1

γ
(∆V )γ, where 0 < γ < 1. (9)

3In fact, the concave part of utility in (8) can also take the form of other utility functions, e.g. a
Constant Absolute Risk Aversion (CARA) function.
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Due to the specific investment purpose, the investors’ utility is not only determined by
the investment outcome, but also by the inflation of purpose-related expense, YT . As the
price index YT at maturity dramatically affects the real wealth level of the investment.
Similar to the concept of real income, the SPGFs investors’ utility or subject value of
SPGFs should be deflated by the price inflation index as well.

After considering the purpose-related inflation risk, at time t, the SPGFs investor’s
loss averse utility is defined as follows

U(VT , YT ) =

{
(VT−PT

YT
)γ

−λ · (−VT−PT
YT

)γ
for VT > PT
for VT < PT

, (10)

where γ is the risk averse parameter of the SPGFs investors. The relative risk aversion

(RRA) coefficient of utility U(∆V ) is R = −xU
′′
2

U
′
2

= 1− γ.

We add the reference point and the purpose-related inflation risk in our utility func-
tion (10) for the following two reasons4. First, Dichtl and Drobetz (2011) demonstrates
that the investors of guarantee funds are loss averse and the reference point is based on
the principal investment which is related to the absolute return of the guarantee funds.
Second, the impact of inflation on consumption or utility has been commonly captured
as the denominator in most economic literature.

3. Three-fund CPPI strategy

In this section, we briefly review the standard CPPI strategy in 3.1, followed by a
detailed construction of the innovative 3F-CPPI strategy in 3.2. Further 3.3 proposes the
loss averse investors’ utility maximisation problem and presents explicitly results as well.

3.1. Standard CPPI strategy

Constant proportion portfolio insurance (CPPI) is a trading strategy that allows a
portfolio to maintain an exposure to the upside potential of a risky asset while providing
a capital guarantee against downside risk. The outcome of the CPPI strategy is somewhat
similar to a call option. Since CPPI is firstly proposed by Black and Jones (1987), it is
widely used in many guaranteed funds as it maintains the portfolio value above a certain
predetermined level (floor) and allows upside potential as well.

CPPI, a self-financing strategy, not only guarantees a fixed payoff PT at maturity but
chases the upside potentials via dynamic trading using leverage as well. According to
the CPPI strategy, the fund value Vt is invested on the risk free fund (often referred as

4Admittedly, the reference point with a guaranteed utility is also a potential candidate form, but
this alternative choice leads to a fluctuating amount of PT and lacks literature supports. Moreover, the
simulation result shows that the 3F-CPPI outperforms CPPI in the manners of achieving a higher mean
return, better protecting the downside risk, and higher utility level as well. It rules out the possibility
that our conclusion on the superiority of 3F-CPPI strongly relies on our utility assumption.
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“floor”) and the mutual fund (the “cushion”). Denote Pt and Ct as the floor and cushion
invested at time t respectively, then, they satisfies

Ct = Vt − Pt, t ∈ [0, T ]. (11)

We assume the capital amount to be guaranteed at maturity is PT , then a typical floor
strategy at time t is a fixed-rate floor, which is given by,

Pt = e−d(T−t)PT , t ∈ [0, T ], (12)

where d is the required return by investors for risk free asset and d 6 r. Also d is referred
as the fixed rate of floor strategy, and d < r reflects a conservative case which allocates
more assets in the risk-free fund. The most common floor strategy is to allocate the
minimum amount of assets into the risk-free fund, i.e. d = r, then the floor amount at
time t is determined by

Pt = e−r(T−t)PT , t ∈ [0, T ]. (13)

The cushion, the difference between portfolio value and floor, will be invested in the
mutual fund i.e. I-fund. A CPPI portfolio usually leverages its cushion Ct to chase
higher return, and its leverage ratio m stays constant as “constant proportion”. Thus,
the portfolio’s exposure in stock market Et is

Et = mCt = m(Vt − Pt), t ∈ [0, T ], (14)

where m > 1. Constant proportion m is determined at the time 0 and stays constant
during the investment horizon. The cushion value Ct fluctuates with the market, once it
approaches zero all the fund will be invested in the risk-free asset till the maturity.

Therefore, a standard CPPI strategy is, in fact, a two-fund separation investment. At
any time t, we have:

• if Vt > Pt, the portfolio allocates amount Pt in the risk-free fund, and amount Ct in
the I-fund with leverage m;

• if Vt 6 Pt, the entire portfolio is invested in the risk-free fund.

If using time-continuous rebalancing, the CPPI fund value Vt never falls below the guar-
anteed floor.

3.2. Three-fund CPPI

The famous mutual fund theorem holds only for “normal” investors with mean-variance
preference. Due to the invalidity of mutual fund separation in incomplete markets, we
propose a 3F-CPPI strategy to hedge these risks in a general portfolio insurance setting
as well.

3F-CPPI is a self-financing strategy which dynamically rebalances portfolio amount
on the risk-free asset and two risky funds (I-fund and P -fund). Similar to CPPI, we
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denote Pt and Ct as the floor and the cushion respectively. Unlike CPPI, the cushion of
3F-CPPI fund is invested in two risky funds: the I-fund and the P -fund. Denote α as the
proportion of cushion to be invested in I-fund, then the remaining 1− α part is assigned
to P -fund.

Define Vt as the SPGF value and its evolution is given by

dVt = Et[α
dSIt
SIt

+ (1− α)
dSPt
SPt

] + Vt
dSf
Sf
− Etrdt, (15)

where Et = mCt is the exposure to the risky asset. Now we summarise our main results
in the following proposition:

Proposition 1. Under the continuous time setting, for t ∈ [0, T ] a 3F-CPPI portfolio
value at time t follows the distribution:

Vt = Pt + C0 exp(Bt −
1

2
At) + (r − d)

∫ t

0

exp{Bt −Bξ −
1

2
A(t− ξ)}Pξdξ, (16)

and the expected portfolio value of the 3F-CPPI portfolio at time t is

E(Vt) = Pt + C0e
µBt + (r − d)p0e

µBt
1− e(d−µB)t

µB − d
, (17)

where A = m2α2σ2
i +m2(1− α)2σ2

P + 2m2α(1− α)σspσi and
Bt = {r +m[ασiθi + (1− α)σP θP ]}t+m[ασiWst + (1− α)σPWpt];P0 + C0 = V0.

Proof: The proof of proposition 1 is in Appendix.

For simplicity and without loss of generalization, hereafter we consider only the most
common floor strategy(d = r) for the proposed 3F-CPPI strategy. Then, based on Equa-
tion (16), a 3F-CPPI portfolio value at time t follows the following distribution

Vt = Pt +C0 exp{{r+m[ασiθi + (1−α)σP θP ]− 1

2
A}t+mασiWst + (1−α)σPWPt}. (18)

In fact, the CPPI can be viewed as a special case of 3F-CPPI with α = 1 and the
distribution of a CPPI portfolio value at time t is

Vt = Pt + C0 exp(Bt −
1

2
m2σ2

i t) + (r − d)

∫ t

0

exp{Bt −Bξ −
1

2
m2σ2

i (t− ξ)}Pξdξ, (19)

where Bt = {(r +mσiθi)t+mσiQWst}, t ∈ [0, T ].

3.3. Optimal 3F-CPPI allocation rules

Suppose a SPGFs manager aims to maximize the investor’s utility U(VT , YT ) in (10)
by choosing leverage m and I-fund proportion α at the commence of the fund. The
optimization problem is given by

Max
m,α

E[U(VT , YT )|F0] (20)

⇐⇒ Max
m,α

E[U(
VT −RT

YT
)|F0]. (21)
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To determine the optimal allocation (α∗,m∗), we first introduce the purpose-related
risk-aversion adjusted return (PRA return henceforth). The PRA return is a modified
indicator which reflects the effect of risk aversion and purpose-related inflation risk on
evaluating the I-fund and P -fund.

Definition 1. For the stock index I-fund and purpose-related market sector P -fund, the
purpose-related risk-aversion adjusted return (PRA return) is:

µ(γ)
n = µn − γ−→σ n · −→σ y, n = i, p. (22)

where −→σ n = (σsn, σ
p
n, σ

e
n), −→σ y = (σsy, σ

p
y , σ

e
y).

In the definition of risk-aversion adjusted return, −→σ n · −→σ y is always positive. The

possible range of γ for loss averse investors is 0 < γ 6 1, thus there always is µ
(γ)
n 6 µn.

The “punishment” of I-fund or P -fund increases with investors’ risk aversion and the
fund’s volatility’s vector correlation with inflation Yt. Thanks to the concept of PRA
return, we solve the global optimal allocation parameters m∗ and α∗ of the 3F-CPPI
portfolio as follows:

Proposition 2. The optimal allocation parameters m∗ and α∗ of the 3F-CPPI portfolio
satisfy

F (m∗) = 0, (23)

α∗ = α∗(m∗), (24)

where

F (m) = α∗(m)µ
(γ)
i + (1− α∗(m))µ(γ)

p − r + (µ
(γ)
i − µ(γ)

p )α∗(m) (25)

+ (γ − 1){[
(σsp)

2 + (σpp)
2 − σspσsi

(σsi − σsp)2 + (σpp)2
+ (σpp)

2 + (σsp)
2]m− σiyσsp − σpyσpp}.

α∗(m) =
(σsp)

2 + (σpp)
2 − σspσsi

(σsi − σsp)2 + (σpp)2
+

µ
(γ)
i − µ

(γ)
p

(σi − σsp)2 + (σpp)2
1

(1− γ)m
, (26)

Proof: The proof of proposition 2 and expressions of optimal m∗ and α∗ are provided in
Appendix.

Proposition 2 illustrates the optimal m∗ and α∗ without considering the limited pos-
sible range of parameters in practise. However, in real-world scenarios, there is an upper
bound of the leverage m because of the regulation and fund’s borrowing capability. Also
the portfolio cannot be rebalanced continuously in practice due to the gap risk. Besides,
the range of α may be limited to [0, 1] because of the short-sale constraints. Therefore, we
discuss further the optimal ratio α∗ for a given the leverage ratio m in the next subsection.

Now we look a special example of optimal 3F-CPPI allocation: the SPGFs participated
by risk neutral investors case with γ = 1. We further assume the parameter ranges are:
m ∈ [1,M ] and α ∈ [0, 1].
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According to the Proposition 2, the optimal 3F-CPPI in the risk-neutral case de-
generates into the two-fund separation, the optimal allocation α∗ and m∗ are given as
follows

α∗ =


1

α, α ∈ [0, 1]
0

if µ
(1)
i − µ

(1)
p > 0

if µ
(1)
i − µ

(1)
p = 0

if µ
(1)
i − µ

(1)
p < 0

, (27)

and

m∗ =


M

m, m ∈ [1,M ]
1

if α∗µ
(γ)
i + (1− α∗)µ(γ)

p − r > 0

if α∗µ
(γ)
i + (1− α∗)µ(γ)

p − r = 0

if α∗µ
(γ)
i + (1− α∗)µ(γ)

p − r < 0

, (28)

where the excess PRA return is αµ
(1)
i + (1− α)µ

(1)
p − r, and M is the maximum possible

value of m. Optimal allocation in (27) is intuitive in explaining the 3F-CPPI’s optimal

allocation principle: the optimal proportion α∗ depends on comparison of PRA return µ
(1)
i

and µ
(1)
p to a great extent, and the optimal leverage m∗ is greatly influenced by portfolio’s

average excess PRA return, αµ
(1)
i + (1− α)µ

(1)
p − r.

3.3.1. Continuous time: optimal α∗ for given leverage m

Now we turn to determine the optimal proportion α∗ invested in I-fund for given
leverage m. In practice, the leverage m is limited and even regulated because of gap
risk. According to the findings from ?, Balder et al. (2009) and Dichtl and Drobetz
(2011) among others, the leverage has been found to have significant impact on the CPPI
portfolio’s outcome and it is normally below 10. For example, Dichtl and Drobetz (2011)
consider m 6 10 cases while? compares CPPI’s performances for m = 3, 4, 5 cases. For
a given range of m (1 6 m 6 10), we investigate the optimal proportion α∗.

Equation (26) shows the relation between optimal m∗ and α∗ without consideration
of range, the following corollary reveals that the monotonicity of α∗(m) depends on the

relativity of PRA return of I-fund and P -fund, µ
(γ)
i − µ

(γ)
p .

Corollary 1. Given a leverage m, the optimal ratio α∗(m) satisfies:

(1) If µ
(γ)
i > µ

(γ)
p , then α∗(m) is a decreasing function of m;

(2) If µ
(γ)
i < µ

(γ)
p , then α∗(m) is an increasing function of m;

(3) If µ
(γ)
i = µ

(γ)
p , then α∗ is not correlated with m.

Proof: If µ
(γ)
i > µ

(γ)
p , then α∗(m) is a function of m in form of 1

m
by (26), which is

decreasing function of m. The remaining proof is similar and trivial.

Corollary 1 shows a “diversification” effect of optimal allocations: α∗(m) gradually
shifts to the fund with less PRA as the increase of leverage ration m. This is an interesting
feature of optimal allocation, whose diversification offsets the risk caused by the high
leverage.

On the basis of monotonicity of α∗(m), we show the relation between the optimal
proportion α∗ and given leverage m. Assume M is the upper bound of leverage and there
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are constraints on short-sale, then the parameters ranges are m ∈ [1,M ] and α ∈ [0, 1].
With consideration of the bounds, we have the following proposition 3, whose proof is
trivial.

Proposition 3. For a regulated leverage m ∈ [1,M ], the optimal ratio α∗c(m) ∈ [0, 1] is:

α∗c(m) =


1

α∗(m)
0

if α∗(m) > 1
if α∗(m) ∈ [0, 1]

if α∗(m) < 0
. (29)

So far, we have only considered the optimal allocation in a continuous time case, under
which the portfolio is continuously rebalanced. As the portfolio value never falls below
the floor in the continuous time case, the investor’s loss averse feature does not play a
role in optimal allocation.

3.3.2. Discrete time: optimal α∗ for given leverage m

Due to the constraints of the continuous time case, we here consider a more practical
case, the discrete time case, under which the portfolio cannot be rebalanced continuously.
In the discrete time case, there is a gap risk that the cushion value of 3F-CPPI fund might
turn to a negative value between two rebalance time, which means the portfolio is failing
to achieve the guaranteed return. Therefore, the investor’s loss aversion characteristic
plays a vital role in determining the optimal allocation.

Monte Carlo simulation method is adopted to solve the optimal proportion α∗ for a
given leverage m. Within the parameters ranges, for each m, we run simulations through
the range α ∈ [0, 1] to search for the optimal α∗, the interval is 0.005. For each (m,α)
pair, 100000 times simulations are run to calculate allocation outcome. In the simulation,
we assign γ = 0.88, which is consistent with Tversky and Kahneman (1992) and Dichtl
and Drobetz (2011). We consider the following three different scenarios of I-fund and
P -fund: 5

• Case 1: µ
(γ)
i > µ

(γ)
p ;

• Case 2: µ
(γ)
i = µ

(γ)
p ;

• Case 3: µ
(γ)
i < µ

(γ)
p .

Figure 1 illustrates the relationship between optimal α∗ and leverage m for these three
cases, the interval of leverage m is [0, 10]. The numerical results show the monotonic rela-
tionship between optimal α∗ and leverage m in the discrete time case, which is consistent
with the theoretical result. Having considering the gap risk in discrete time, the optimal
allocation on I-fund and P -fund relies on the PRA return of the funds as well as the
leverage m.

5For a better understanding of the financial market parameters assignment, please refer to the Section
5.
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Figure 1: The relationship between optimal allocation α and leverage m for three different
cases, i.e. Case 1 µ

(γ)
i > µ

(γ)
p , Case 2 µ

(γ)
i = µ

(γ)
p and Case 3 µ

(γ)
i < µ

(γ)
p .

3.4. An example: pension guarantee funds in China

Here we use an example of pension guarantee funds in China to show the advantage
of the proposed 3F-CPPI strategy. The medical and health-related expense is one of
the major parts of living cost for retirees in China, and its price inflation significantly
affects the retiree’s utility of pension savings. Using historical data from Shanghai Stock
Exchange, we simulate the performance for both the 3F-CPPI and CPPI strategy.

The IAMAC-SinoLife China Senior Living Cost Index (ISLCI) is a price index issued
by Insurance Asset Management Association of China (IAMAC). It measures the living
cost of retirees in mainland China. Figure 2 compares the ISLCI and CPI in the period
from Jan 2001 to May 2017. As indicated in Figure 2, the annual increasing rate for
ISLCI is 3.86% which is much higher than CPI with an annual increasing rate of 2.46%.

Meanwhile, within the period between January 2006 to May 2017, the performance
of the stock market index (I-fund) and the retirement industry sector index (P-fund) in
China have been illustrated in the Figure 3. Both the stock market index (I-fund) and the
retirement industry sector index (P-fund) are calculated by daily traded stocks, issued by
Shanghai Stock Exchange. Figure 3 shows the P-fund achieves a higher return than the
I-fund during the time window selected.

To compare the proposed 3F-CPPI with the standard CPPI strategy, we conduct his-
torical simulation by using historical data within the period between Jan 2012 to Dec
2014. We select this time window to avoid extreme market condition during which both
CPPI and 3F-CPPI portfolio fall to the floor value, thus to give a better comparison
between 3F-CPPI and CPPI. Figure 4 presents the performance of CPPI and 3F-CPPI
portfolios and it is obvious that 3F-CPPI dominates CPPI and achieves better perfor-
mance. This is quite straightforward as 3F-CPPI invests in a better performed P-fund
which hedge the price inflation risk well.
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Figure 2: Historical ISLCI and CPI in China from Jan 2001 to May 2017 (Source: Insur-
ance Asset Management Association of China (IAMAC))

Figure 3: Historical performance for the Stock market index (I-fund) and Retirement
industry sector index (P -fund) listed in Shanghai Stock Exchange from Jan 2006 to May
2017 (WIND Data)
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Figure 4: Historical simulation: the performance of CPPI and 3F-CPPI portfolios

4. Simulation analysis

It is obvious that the 3F-CPPI dominates CPPI under the continuous time case as the
latter can be viewed as a special case of 3F-CPPI. However, whether 3F-CPPI outperforms
CPPI or other bench strategies under the discrete case with gap risk is not that obvious
and needs further investigation.

In this section, we first start Monte Carlo simulation in Subsection 4.1, followed by the
detailed definitions of benchmark strategies and performance measures in Subsection 4.2,
the main results with regard to the performance of 3F-CPPI with other bench strategies
such as CPPI are presented in Subsection 4.3.

4.1. Simulation Design

The Monte Carlo simulations are carried on a step-by-step basis as follows:

1. A wide range of the market possibilities with eight economic scenarios in total has
been considered, including four different relativity of performance from I-fund and
P -fund under two different inflation levels.

2. Then we run 100,000 simulation times for each scenario, the performance for 3F-
CPPI and other benchmark strategies from Monte Carlo simulation has been re-
ported.

3. Finally, different performance measures have been employed to evaluate the 100,000
outcomes of all strategies in each scenario. The measures include protection ratio,
return distribution, and investors’ loss averse utility. Further, a paired t-test has
been applied to compare the investor’s utility under different PI strategies.
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According to the model in Section 2, the stock market and the purpose-related inflation
index follow multivariate correlated Brownian motion processes. Before running Monte
Carlo simulation, some key parameters have to be assigned: the return and volatility of
the I-fund : µi and −→σ i; the return and volatility of the P -fund : µp,

−→σ p; and the growth
rate and volatility of the purpose-related expense risk: µy,

−→σ y.

We refer to the existing literature for assigning parameters value. Similar to Arnott and
Bernstein (2002), we first assume the risk free rate rf is fixed at 4.5% within the investment
period. According to Dimson et al. (2008), the mean annual equity excess return for
developed stock markets was approximately 7% between 1900 and 2005, resulting in an
expected excess return around 4.5% per year. In our simulation, we then estimate that a
high state of stock market excess return is 6.5%, and a low state is 4.5%. Last, Dimson
et al. (2008) find the long-run stock return volatility was roughly 20% per year that has
been used in simulation by other scholars like Benninga (1990) and Figlewski et al. (1993).
Therefore, we estimate the stock market volatility with a range from a high state of 30%
to a low state of 20%.

As claimed in Section 3, the 3F-CPPI optimal allocation depends mainly on the relativ-
ity of I-fund and P -fund. To present a comprehensive analysis of 3F-CPPI performance,
we consider four possible market scenarios with a fixed P -fund and four different I-fund
market scenarios, the varied I-fund has either a higher (lower) return or a higher (lower)
volatility than the given P -fund respectively. The four states of the stock market are
summarized in Table 2.

Table 2: Four different market scenarios and a fixed performance of P -fund with mean excess return and
volatility of being 5.5% and 25% respectively

I-fund Excess return
Low High

Volatility

Low Scenario 1:
Excess return: 4.5%
Volatility: 20%

Scenario 2:
Excess return: 6.5%
Volatility: 20%

High Scenario 3:
Excess return: 4.5%
Volatility: 30%

Scenario 4:
Excess return: 6.5%
Volatility: 30%

Other than the stock market, the inflation index plays an important role in the eco-
nomic scenarios. Unlike the highly volatile stock markets, the inflation is a more steady
process. We distinguish it by low and high inflation states, which has been summarised
as follows:
Low Inflation Trial: In four scenarios of the low inflation trial, we assume the mean
growth rate and volatility of the inflation index Yt are 3% and 1% respectively.
High Inflation Trial: In four scenarios of the high inflation trial, we assume the mean
growth rate and volatility of the inflation index Yt are 12% and 1% respectively.

We further assume the inflation index Yt has a different correlation with the I-fund
and P -fund in both trials: with the correlation between Yt and I-fund return being 16.7%,
and that of P -fund being 50%.
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Similar to Benartzi and Thaler (1995) and Dichtl and Drobetz (2011), we consider a
one-year investment horizon and simulate 250 daily observations for each scenario. The
guarantee level of the SPGF is set to be 100% (full capital guarantee). We normalize
the initial SPGFs value V0 as 100. We run 100,000 simulation times for each scenario to
provide a stable and convincing test. T-test has been applied to compare performances
among 3F-CPPI and other benchmark strategies. All portfolio insurance strategies in
the simulation adopt a base case leverage of m = 5, which has been commonly used in
practise (Herold et al., 2005).

4.2. Benchmark strategies and performance measures

4.2.1. Benchmark strategies

We select a variety of benchmark strategies, including CPPI, TIPP, stop-loss, buy-
and-hold strategy and the risk-free investment, to test the superiority of the proposed
3F-CPPI.

CPPI strategies
CPPI strategy has been introduced in 3.1. The benchmark strategies consider two CPPI
strategies with a difference in the risky fund: i.e. the risky asset of CPPI-I strategy is the
I-fund while that of the CPPI-P is the P -fund.

TIPP strategy
Time invariant portfolio protection (TIPP) strategy proposed by Estep and Kritzman
(1988), not only ensures a protection of the investor’s initial wealth but also any interim
capital gains during the investment. Instead of having a fixed-rate floor like CPPI, TIPP’s
floor is ratchet up with the value of the portfolio during the investment period. Therefore,
TIPP portfolio’s exposure in stock market Et is

Et = mCt = m(Vt − Pt), t ∈ [0, T ], (30)

the floor is
Pt = max(e−d(T−t)PT , f · Vt), t ∈ [0, T ], (31)

where f is a predetermined protection ratio of whole portfolio value Vt. f · Vt shows the
“ratcheting up”effect of TIPP, which transfers gains in the risky asset to the risk-free
asset irreversibly once there are interim capital gains.

Stop loss (S-L) strategy
Stop loss is one of the simplest portfolio insurance strategies to protect a risky portfolio
against losses. Under the stop loss strategy, the fund initially invests all the wealth V0
in the risky assets, the position of which will be maintained as long as the market value
of the portfolio exceeds the net present value floor Vt > Pt. Once the market value of
the portfolio reaches or falls below the discounted floor Vt < Pt, all of the risky portfolio
positions are cleared off and to be reinvested in the risk-free asset till maturity.

Buy-and-hold (B&H) strategies
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B&H strategy is not a portfolio insurance strategies as it doesn’t have a protection ratio.
B&H-P strategy invests total value of the fund V0 in the stock market I-fund during the
whole investment horizon while B&H-P strategy invests in the P -fund. B&H strategies
achieve a high return in a bull market while a low return in a bear market.

Cash investment strategy
A cash investment strategy simply invests the total fund wealth V0 in the risk-free fund
(Cash Asset) during the whole investment horizon.

4.2.2. Performance measures

To provide a sound assessment, measures are applied to evaluate the 100,000 outcomes
of all strategies in each scenario, in terms of its success rate to protect the insured value
and the return distribution. The performance measures include average annual return,
annual volatility, Sharpe ratio, protected ratio, 1% value at risk, 1% expected shortfall
and investor’s prospect utility, with loss aversion parameters λ = 1 and λ = 2.25. Paired
t-tests of investors’ utility are conducted to compare 3F-CPPI with benchmark strate-
gies. Some measures like annual return, volatility, Sharpe ratio and value at risk are
well-known, the other measures, which are widely adopted in portfolio insurance related
literature, are briefly explained in the following.

Protection ratio
The protection ratio is defined as the probability that the strategy successfully protects
the insured value (Huu Do, 2002). It measures the ability in sustaining a pre-specified
guarantee return.

1% Expected shortfall
For a given strategy, 1% Expected shortfall measures the average return of the poorest-
performed 1% scenarios. Its calculation follows two steps: firstly sort the realized portfolio
values in ascending order, then calculate the average value in the poorest-performed 1%
group. Expected shortfall focuses on the left tail of the distribution and measures the
ability of controlling the downside risk.

Loss averse utility
We first compare the mean loss averse utility value of the 100,000 times simulated port-
folio outcomes. Being consistent with Tversky and Kahneman (1992) and Dichtl and
Drobetz (2011), we assign λ = 2.25 and γ = 0.88 in the simulation.Then two loss aver-
sion parameters, λ = 1 and λ = 2.25 in Equation (8), has been used in our simulation.
λ = 1 indicates that no loss averse for investors as they treat the loss and gain equally.
While λ = 2.25 reflects loss averse investors with the most common type of loss averse
parameters.

4.3. Simulation Results

The Monte Carlo simulation results of performance measures for different strategies
have been presented in Table 3, while simulation results of utility value under two different
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inflation levels are presented in Table 4. Generally speaking, 3F-CPPI has the highest
protect ratio and lowest extreme loss (e.g. value at risk, expected shortfall) among all
the strategies under all market scenarios. Also, 3F-CPPI is the most preferred strategy
among all the strategies for the loss averse investors. Moreover, the more risk averse the
SPGFs investor is, the higher benefit can be gained from 3F-CPPI strategy.

In the following text, we compare the performance among the 3F-CPPI and other
strategies using the loss averse utility measure and downside risk protection measures
under different market conditions.

Table 3: This table presents Monte Carlo simulation results of performance measures (e.g. Mean return,
volatility, Sharpe ratio etc.) for the proposed 3F-CPPI strategy and other benchmark strategies like CPPI,
TPPI among others. The P-fund is fixed with a mean return and volatility of 10% and 25% respectively.

3F-CPPI CPPI-I CPPI-P TPPI S-L B&H-I B&H-P Cash

Scenario 1: I-fund expected return = 9%, volatility = 20%
Mean Return p.a. (%) 6.05 5.63 5.92 5.62 5.86 9.83 11.29 4.50
Volatility p.a.(%) 8.98 2.60 3.47 0.80 6.67 20.06 25.34 NA
Sharpe Ratio 0.05 0.07 0.07 0.13 0.05 0.12 0.11 NA
Protect Ratio (%) 98.22 95.53 91.54 72.76 10.94 51.61 51.35 100
1% Value at Risk -0.01 -0.02 -0.03 -13.36 -5.13 -58.81 -63.45 4.50
1% Expected Short Fall -0.02 -0.03 -0.04 -15.75 -5.89 -63.66 -68.25 4.50

Scenario 2: I-fund expected return = 11%, volatility = 20%
Mean Return p.a. (%) 6.08 5.86 5.70 5.83 6.13 10.83 10.29 4.50
Volatility p.a. (%) 7.53 2.68 3.37 0.78 6.88 20.06 25.34 NA
Sharpe Ratio 0.06 0.08 0.07 0.15 0.06 0.14 0.11 NA
Protect Ratio (%) 98.03 96.04 90.76 73.75 11.33 52.65 50.37 100
1% Value at Risk -0.01 -0.02 -0.03 -13.04 -5.08 -58.07 -63.45 4.50
1% Expected Short Fall -0.03 -0.03 -0.04 -15.42 -5.84 -62.97 -68.25 4.50

Scenario 3: I-fund expected return = 9%, volatility = 30%
Mean Return p.a. (%) 5.89 5.34 5.70 5.41 5.47 8.80 10.29 4.50
Volatility p.a.(%) 18.47 3.86 3.37 1.17 8.82 30.10 25.34 NA
Sharpe Ratio 0.03 0.04 0.07 0.08 0.03 0.08 0.11 NA
Protect Ratio (%) 95.40 83.60 90.76 67.69 8.63 47.40 50.37 100
1% Value at Risk -0.02 -0.04 -0.03 -17.17 -6.29 -67.55 -63.45 4.50
1% Expected Short Fall -0.04 -0.04 -0.04 -19.93 -7.15 -72.08 -68.25 4.50

Scenario 4: I-fund expected return = 11%, volatility = 30%
Mean Return p.a. (%) 6.09 5.75 5.70 5.82 5.93 10.80 10.29 4.50
Volatility p.a.(%) 18.23 4.08 3.37 1.14 9.22 30.10 25.34 NA
Sharpe Ratio 0.04 0.06 0.07 0.12 0.05 0.11 0.11 NA
Protect Ratio (%) 95.57 85.85 90.76 69.49 9.16 49.27 50.37 100
1% Value at Risk -0.02 -0.04 -0.03 -16.51 -6.15 -66.24 -63.45 4.50
1% Expected Short Fall -0.04 -0.04 -0.04 -19.26 -7.00 -70.88 -68.25 4.50
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Table 4: This table reports Monte Carlo simulation results of the utility value for loss averse investors under two inflation
levels. The P-fund is fixed with a mean return and volatility of 10% and 25% respectively. The null hypothesis in the
paired t-test is that the loss averse utility of a portfolio insurance strategy is equal to that of the best corresponding
benchmark strategy (3F-CPPI).

3F-CPPI CPPI-I CPPI-P TPPI S-L B&H-I B&H-P Cash

Scenario 1: I-fund expected return = 9%, volatility = 20%
Low Inflation Trial
Utility(lambda=1) 4.45 4.22*** a 4.24*** 4.48*** 3.31 5.76 6.25 4.16***
Utility(lambda=2.25) 4.45 4.22*** 4.24*** 2.98*** 1.67*** -5.23*** -5.75*** 4.16***
High Inflation Trial
Utility(lambda=1) 4.02 3.9*** 3.75*** 4.14*** 3.05 5.26 4.98 3.87***
Utility(lambda=2.25) 4.02 3.9*** 3.75*** 2.74*** 1.53*** -4.99*** -6.64*** 3.87***

Scenario 2: I-fund expected return = 11%, volatility = 20%
Low Inflation Trial
Utility(lambda=1) 4.45 4.37* 4.04*** 4.62*** 3.46 6.35 5.36 4.16***
Utility(lambda=2.25) 4.45 4.36* 4.04*** 3.19*** 1.85*** -4.27*** -7.15*** 4.16***
High Inflation Trial
Utility(lambda=1) 4.13 4.06* 3.75*** 4.30*** 3.22 5.9 4.98 3.87***
Utility(lambda=2.25) 4.13 4.05* 3.75*** 2.97*** 1.72*** -3.97*** -6.64*** 3.87***

Scenario 3: I-fund expected return = 9%, volatility = 30%
Low Inflation Trial
Utility(lambda=1) 4.16 3.78*** 4.08 4.18*** 2.84 4.6 5.57 4.16
Utility(lambda=2.25) 4.16 3.78*** 4.08 1.99*** 0.85*** -9.51 -6.84*** 4.16
High Inflation Trial
Utility(lambda=1) 3.82 3.49*** 3.75 3.86*** 2.61 4.17 4.98 3.87
Utility(lambda=2.25) 3.82 3.49*** 3.75 1.81*** 0.76*** -8.99*** -6.64*** 3.87

Scenario 4: I-fund expected return = 11%, volatility = 30%
Low Inflation Trial
Utility(lambda=1) 4.26 4.06*** 4.04*** 4.49*** 3.12 5.84 5.36 4.16**
Utility(lambda=2.25) 4.26 4.05*** 4.04*** 2.47*** 1.17*** -7.48*** -7.15*** 4.16**
High Inflation Trial
Utility(lambda=1) 3.96 3.77*** 3.75*** 4.18*** 2.9 5.43 4.98 3.87**
Utility(lambda=2.25) 3.96 3.77*** 3.75*** 2.29*** 1.09*** -6.95*** -6.64*** 3.87**

a The test statistic is significant at the 10% level; **The test statistic is significant at the 5% level; ***The
test statistic is significant at the 1% level
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4.3.1. Investor utility

Overall, the simulation results show that 3F-CPPI significantly outperforms other
benchmark strategies regardless of investors’ utility functions.

In the non-loss-averse case with λ = 1, 3F-CPPI dominates all the benchmark strate-
gies except TIPP and B&H. Almost in all four scenarios, TIPP and B&H exhibits higher
utility value for non-loss-averse SPGFs investors. However, it is not significantly higher
than 3F-CPPI according to the t-test.

While in the loss averse with λ = 2.25, 3F-CPPI dominates almost all strategies in the
total eight scenarios of two trails. More specifically, in Scenario 1 of Table 4, the 3F-CPPI
exhibits the highest prospect utility in the case of loss averse across all the strategies, with
a value of 4.45. Moreover, 3F-CPPI is more favoured by SPGFs investors with higher loss
averse utility. This is because for higher risk averse investors, there is almost no reduction
of utility for 3F-CPPI strategy while other strategies experience drastically fall of utility
value. For instance, TIPP, stop-loss and especially B&H-P strategies experience a big fall
(from 6.25 to -5.75) as the increase of loss averse parameter λ from 1 to 2.25.

4.3.2. Downside risk protection

Sustaining a guaranteed return and preventing loss are the main purposes of a port-
folio insurance strategy. In both trials, 3F-CPPI reveals the superiority of managing the
downside risk. Our numerical results indicate that 3F-CPPI dominates almost all the
other strategies except the cash investment in term of the protect ratio, 1% value at risk
and 1% expected shortfall.

As can be seen in the Scenario 1 of Table 3, the 1% value at risk of 3F-CPPI is -0.01
%, much higher than TIPP (-13.36 %), S-L (-5.13 %), and B&H-P (-63.45 %). 3F-CPPI
also has the highest 1% expected shortfall and the protection ratio as well compared with
other benchmark strategies. Overall 3F-CPPI proves to be a competent strategy with
regard to preventing downward return and sustaining guaranteed return.

Also, as indicated in Figure 5, 3F-CPPI’s return distribution achieves a higher protec-
tion ratio and with upside potential as well. Unlike B&H and TPPI, 3F-CPPI controls
the downside risk as well.

4.3.3. 3F-CPPI versus CPPI

The proposed 3F-CPPI is a modification to the standard CPPI, it is worthwhile to
compare the performance of 3F-CPPI with CPPI. In most cases, 3F-CPPI strategy outper-
forms CPPI strategy in terms of preventing downside risk, reshaping return distribution
and improving the investor’s utility. In all scenarios, even in Scenario 3 when I-fund
has relative lower excess return and higher volatility than P -fund, 3F-CPPI has a higher
average annual return. It is noteworthy that the higher volatility exhibited by 3F-CPPI
compared with CPPI is due to its ability in achieving higher returns, as shown in Figure
5.
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Figure 5: The return distributions of all strategies in the Scenario 1

Moreover, 3F-CPPI outperforms CPPI in preventing downside risk. For example, in
Scenario 1 of Table 4, CPPI-P has only a protection ratio value of 91.54% while 3F-
CPPI has a much higher value of 98.22%. The superiority of 3F-CPPI also holds in
other measures such as 1% value at risk. Overall 3F-CPPI has proven to be a competent
strategy with higher return and volatility as well as a better downside risk protection.

4.3.4. Market condition effect

Although 3F-CPPI dominates other strategies in almost all scenarios, the superior-
ity has been mainly affected by market conditions, i.e. the relativity between I-fund
and P -fund. In particular, 3F-CPPI loses its advantages when the stock market I-fund
outperforms the purpose-related market sector P -fund. The reason is straightforward as
3F-CPPI invests in an extra third fund P -fund to hedge the purpose-related inflation risk.

For example, in Scenario 1 of Table 4, the I-fund has the same volatility but a lower
return than that of Scenario 2, however, 3F-CPPI exhibits less competitive edge in Sce-
nario 2. The loss averse SPGF investor’s mean utility (λ = 2.25) gap between 3F-CPPI
and CPPI-I is 0.23 in the Low Inflation Trial of Scenario 1, while the gap is 0.08 in
scenario 2. In addition, the Scenario 3 shows that 3F-CPPI do not outperform CPPI-P
strategy when the I-fund is behind P -fund in both aspects of mean return and volatility.
Still, 3F-CPPI exhibits a higher performance than the traditional CPPI-I in all market
conditions. Thus, as one cannot predict the market conditions, the 3F-CPPI is proved to
be the best strategy among all strategies.
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5. Conclusion

Loss averse investors, especially pensioners, has an increasingly high demand for hedg-
ing special purpose risks like medical and education costs. Although there are various
types of funds promising a minimum guaranteed return plus a common specific use of the
investment like pension, the investment strategies adopted is way out of optimal. There-
fore, an innovative 3F-CPPI strategy has been constructed in this paper with the aim of
improving the performance of SPGF for loss averse investors.

Overall, the proposed 3F-CPPI outperforms other strategies in terms of hedging
against the downside risk and satisfying the investors’ utility. We first derive explicit
optimal allocations for 3F-CPPI and discuss further the relationship between the optimal
proportion of purpose-related fund and leverage ratio. Generally the optimal proportion
of purpose-related fund mainly depends on the performance relativity of stock index and
purpose-related fund.

We theoretically prove that the proposed 3F-CPPI dominates CPPI in both the dis-
crete and continuous time cases, followed by extensive Monte Carlo simulation checking
the practicability of 3F-CPPI. Theoretical analysis shows that the investment in a third
fund to hedge purpose-related risk contributes to 3F-CPPI’s superior performance and
higher investor utility. Under the discrete time case with gap risk, the Monte Carlo sim-
ulation has been adopted for performance comparison among the proposed 3F-CPPI and
other benchmark strategies, including CPPI, TIPP, stop-loss and B&H. The numerical
analysis illustrates that 3F-CPPI demonstrates in achieving relatively higher mean re-
turn, better portfolio protection and higher investor’s prospect utility as well. Moreover,
our findings claim that the advantage of 3F-CPPI increases with loss aversion, indicating
that 3F-CPPI is much more preferred to the standard CPPI and other strategies for loss
averse investors.

In summary, this paper proposed an applicable modified CPPI strategy, 3F-CPPI,
within a general portfolio insurance setting. both theoretical and practical insights. 3F-
CPPI dominates other strategies in many aspects such as the protection ratio, downside
risk and loss averse utility. In this paper we apply only the three fund allocation rule to
standard CPPI strategy, while, it is worthwhile to extend it to other portfolio insurance
strategies, which we leave for future research.
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Appendices

Appendix A Proof of Propositions

A.1 Proof of Proposition 1

Proof: The stochastic process of a 3F-CPPI portfolio value at time t follows

dVt = Et[α
dSIt
SIt

+ (1− α)
dSPt
SPt

] + (Vt − Et)rdt (A.1)

= mCt{[α(µi − r) + (1− α)(µp − r)dt+ ασidZs + (1− α)σpdZP}+ rVtdt. (A.2)

Denote risk premium of I-fund and P -fund by

θi =
µi − r
σi

, θP =
µp − r
σP

, (A.3)

respectively. (A.1) can be simplified to

dVt = rPtdt+ Ct{r +m[ασiθi + (1− α)σP θP ]}dt+mCt[ασidZs + (1− α)σPdZP ].

Define stochastic process Bt as follows, with B0 = 0 :

dBt = {r +m[ασiθi + (1− α)σP θP ]}dt+m[ασidZs + (1− α)σPdZP ], (A.4)

Bt = {r +m[ασiθi + (1− α)σP θP ]}t+m[ασiWst + (1− α)σPWpt], t ∈ [0, T ].

Then, Vt is driven by Bt,
dVt = rPtdt+ CtdBt. (A.5)

By (A.4) the dBtdBt is

dBtdBt = [m2α2σ2
i +m2(1− α)2σ2

P + 2m2α(1− α)ρsPσiσp]dt. (A.6)

For simplification, denote

A = m2α2σ2
i +m2(1− α)2σ2

P + 2m2α(1− α)ρsPσiσp. (A.7)

Then, consider an exponential process f(Z):

f(Bt) = exp(−Bt +
1

2
At). (A.8)

By Ito’s lemma:

df(Bt) = −f(Bt)dBt +
1

2
Af(Bt)dt+

1

2
f(Bt)dBtdBt

= −f(Bt)dBt + Af(Bt)dt. (A.9)
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By (A.5),

dVt = dCt + dPt

= dCt + dPtdt

= rPtdt+ CtdBt, (A.10)

we have:
dCt = CtdBt + (r − d)Ptdt. (A.11)

Thus, consider the SDE process of the Ctf(Bt):

d[Ctf(Bt)] = f(Bt)dCt + Ctdf(Bt) + dCtdf(Bt)

= f(Bt)[CtdBt + (r − d)Ptdt] + Ct[−f(Bt)dBt + Af(Bt)dt]− Ctf(Bt)Adt

= f(Bt)(r − d)Ptdt, t ∈ [0, T ]. (A.12)

Due to f(B0) = 1, we have:

Ctf(Bt) = C0 + (r − d)

∫ t

0

f(Bξ)Pξdξ,

Vt = Pt + C0 exp(Bt −
1

2
At) + (r − d)

∫ t

0

exp{Bt −Bξ −
1

2
A(t− ξ)}Pξdξ. (A.13)

As for the expected value of a 3F-CPPI portfolio at time t is:

E(Vt) = Pt + C0e
µBt + (r − d)p0e

µBt
1− e(d−µB)t

µB − d
, (A.14)

as Vt is in the (A.13):

Vt = Pt + C0 exp(Bt −
1

2
At) + (r − d)

∫ t

0

exp{Bt −Bξ −
1

2
A(t− ξ)}Pξdξ. (A.15)

By property of log-normal distribution, expectation of exp(Bt − 1
2
At) is:

E{exp(Bt −
1

2
At)} = exp(−1

2
At)E{exp(Bt)} (A.16)

= exp(−1

2
At) exp(µBt+

1

2
At)

= exp(µBt).

Then,

E(Vt) = Pt + eµBt{C0 + (r − d)E[

∫ t

0

exp(−Bξ +
1

2
Aξ)Pξdξ]}. (A.17)
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Fubini-Tonelli theorem ensures that taking the expectation it becomes:

E(Vt) = Pt + eµBt{C0 + (r − d)E[

∫ t

0

exp(−Bξ +
1

2
Aξ)Pξdξ]}

= Pt + eµBt{C0 + (r − d)P0

∫ t

0

E[exp(−Bξ +
1

2
Aξ)Pξ]dξ}

= Pt + eµBt{C0 + (r − d)P0
1− e(d−µB)t

µB − d
}. (A.18)

Therefore, for any t ∈ [0, T ], we can have:

E(Vt) = Pt + eµBt{C0 + (r − d)P0e
µBt

1− e(d−µB)t

µB − d
}. (A.19)

A.2 Proof of Proposition 2

Proof: Consider a representative investor with risk averse attitude γ < 1, the maximiza-
tion problem with utility in (10) is equivalent to:

Max
m,α
{−1

2
A− µY + r +m(ασsi θi + (1− α)σpθp) (A.20)

+
γ

2
[(mασsi +m(1− α)σsp − σiy)2 + (m(1− α)σpp − σpy)2 + (σey)

2]}. (A.21)

If we consider the most common the fixed-rate floor strategy r = d case, the opti-
mization problem is equivalent to

Max
m,α

µx +
1

2
(γ − 1)σ2

x, (A.22)

where σ2
x = [mασi + m(1 − α)σsp − σiy]

2 + [m(1 − α)σpp − σpy ]
2 + (σey)

2. Therefore, the
maximization function (A.22) punishes for investment volatility as the investors’ γ is less
than 1, with RRA = 1− γ > 0.

Max
m,α

E[U(VT , YT |F0) (A.23)

= Max
m,α

E[u(
RT

YT
) + v(

VT −RT

YT
)|F0] (A.24)

⇐⇒ Max
m,α

E[v(
VT −RT

YT
)|F0] (A.25)

= Max
m,α

E[(
VT −RT

YT
)γ] (A.26)

As stated earlier, a typical reference point RT is the SPGF guaranteed amount PT , thus
u(RT

YT
) part does not play a role in the utility maximization. In the following, we consider

this typical case that RT = PT .
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Consider the representative investors’ risk averse attitude is γ < 1, denote

xt = (Vt − Pt)/Yt = Ct/Yt.

xt indicates 3F-CPPI portfolio’s deviation compared to reference at time t. By the explicit
form of Ct and Yt, we have

xt =
C0 exp(Bt − 1

2
At) + (r − d)

∫ t
0

exp{Bt −Bξ − 1
2
A(t− ξ)}Pξdξ

exp(µY t+ σYWY t)
. (A.27)

If we further assume the fixed-rate floor case with r = d, (A.27) is simplified into:

xt = C0 exp(Bt −
1

2
At− µY t− σYWY t)

= C0 exp(−1

2
At− µY t) exp(Bt − σYWY t),

then,

E[
1

γ
(xt)

γ] =
Cγ

0

γ
exp(−1

2
γAt− γµY t)E[exp(Bt − σYWY t)]

=
Cγ

0

γ
exp{−1

2
γAt− γµY t+ γ[r +m(ασsi θi + (1− α)σpθp)]t}

exp{γ
2

2
[(mασsi +m(1− α)σsp − σiy)2 + (m(1− α)σpp − σpy)2 + (σey)

2]t}. (A.28)

Hence, the maximization problem in (10) is equivalent to:

Max
m,α
{−1

2
A− µY + r +m(ασsi θi + (1− α)σpθp) (A.29)

+
γ

2
[(mασsi +m(1− α)σsp − σiy)2 + (m(1− α)σpp − σpy)2 + (σey)

2]}. (A.30)

(A.29) can also be deduced by Ito’s lemma. In the fixed-rate floor r = d case,

dCt = CtdBt, (A.31)

and
dYt = µY dt+ σY dZY , (A.32)

by ito’s lemma,
dx

x
= µxdt+ σxdZx, (A.33)

where

µx = r−µY +σ2
Y +m[ασsi θi+(1−α)σP θP ]−m[ασsiσ

i
y+(1−α)σspσ

i
y+(1−α)σppσ

p
y ], (A.34)

and

σxdZx = [mασsi +m(1− α)σsp − σiy]dZs + [m(1− α)σpp − σpy ]dZp + σeydZe.
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Thus,

E(xγ) = exp{[γµx +
1

2
γ(γ − 1)σ2

x]t}. (A.35)

the optimization problem is equivalent to

Max
m,α

µx +
1

2
(γ − 1)σ2

x, (A.36)

where σ2
x = [mασi +m(1−α)σsp− σsy]2 + [m(1−α)σpp − σpy ]2 + (σey)

2. It’s noteworthy that
when γ = 0, the utility v(xt) = log(xt), the equivalent maximization form (A.36) still
holds, as E[U(xt)] equals to E[log(xt)] = µx − 1

2
σ2
x for the case γ = 0.

Another poof to get (A.36) is by the Ito’s lemma. The optimization problem is:

Max
m,α

E[U(VT , YT |F0) (A.37)

= Max
m,α

E[U(
VT − PT
YT

)|F0], (A.38)

where PT is the SPGF guaranteed amount. Consider a representative investor with a risk
averse attitude γ < 1, then denote

xt = (Vt − Pt)/Yt = Ct/Yt.

xt indicates 3F-CPPI portfolio’s deviation at time t. By the explicit form of Ct and Yt,
we have

xt =
C0 exp(Bt − 1

2
At) + (r − d)

∫ t
0

exp{Bt −Bξ − 1
2
A(t− ξ)}Pξdξ

exp(µY t+ σYWY t)
. (A.39)

If we further assume the fixed-rate floor case with r = d, (A.39) is simplified into:

xt = C0 exp(Bt −
1

2
At− µY t− σYWY t)

= C0 exp(−1

2
At− µY t) exp(Bt − σYWY t),

then,

E[
1

γ
(xt)

γ] =
Cγ

0

γ
exp(−1

2
γAt− γµY t)E[exp(Bt − σYWY t)]

=
Cγ

0

γ
exp{−1

2
γAt− γµY t+ γ[r +m(ασsi θi + (1− α)σpθp)]t}

exp{γ
2

2
[(mασsi +m(1− α)σsp − σsy)2 + (m(1− α)σpp − σpy)2 + (σey)

2]t}. (A.40)

Hence, the maximization problem is equivalent to:

Max
m,α
{−1

2
A− µY + r +m(ασsi θi + (1− α)σpθp) (A.41)

+
γ

2
[(mασsi +m(1− α)σsp − σiy)2 + (m(1− α)σpp − σpy)2 + (σey)

2]}. (A.42)
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(A.41) can also be deduced by Ito’s lemma. In the fixed-rate floor r = d case,

dCt = CtdBt, (A.43)

and
dYt = µY dt+ σY dZY , (A.44)

by ito’s lemma,
dx

x
= µxdt+ σxdZx, (A.45)

where

µx = r−µY +σ2
Y +m[ασsi θi+(1−α)σP θP ]−m[ασsiσ

s
y+(1−α)σspσ

s
y+(1−α)σppσ

p
y ], (A.46)

and

σxdZx = [mασsi +m(1− α)σsp − σsy]dZs + [m(1− α)σpp − σpy ]dZp + σeydZe.

Thus,

E(xγ) = exp{[γµx +
1

2
γ(γ − 1)σ2

x]t}. (A.47)

the optimization problem is equivalent to

Max
m,α

µx +
1

2
(γ − 1)σ2

x, (A.48)

where σ2
x = [mασi +m(1−α)σsp− σsy]2 + [m(1−α)σpp − σpy ]2 + (σey)

2. It’s noteworthy that
when γ = 0, the utility v(xt) = log(xt), the equivalent maximization form (A.48) still
holds, as E[U(xt)] equals to E[log(xt)] = µx − 1

2
σ2
x for the case γ = 0.

Then, we consider the first order conditions (FOCs) for the problem (A.36) are as
follows:

αµ
(γ)
i +(1−α)µ(γ)p −r+(γ−1){[mασi+m(1−α)σsp−σsy][ασsi+(1−α)σsp]+[m(1−α)σpp−σpy ](1−α)σpp}=0,

(A.49)

(µ
(γ)
i −µ(γ)

p )+(γ−1){[mασsi +m(1−α)σsp−σsy](σsi−σsp)−[m(1−α)σpp−σpy ]σpp} = 0. (A.50)

The optimal m∗ and α∗ is straightforward by solving the FOC equations, we get

α∗(m∗)µ
(γ)
i + (1− α∗(m∗))µ(γ)

p − r + (µ
(γ)
i − µ(γ)

p )α∗(m∗) (A.51)

+ (γ − 1){[
(σsp)

2 + (σpp)
2 − σspσsi

(σsi − σsp)2 + (σpp)2
+ (σpp)

2 + (σsp)
2]m∗ − σiyσsp − σpyσpp} = 0,

α∗(m) =
(σsp)

2 + (σpp)
2 − σspσsi

(σsi − σsp)2 + (σpp)2
+

µ
(γ)
i − µ

(γ)
p

(σi − σsp)2 + (σpp)2
1

(1− γ)m
. (A.52)
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To solve the expressions of m∗ and α∗, in the following we denote some terms by D,E, F
for simplicity,

D = (γ − 1) · [
(σsp)

2 + (σpp)
2 − σspσsi

(σsi − σsp)2 + (σpp)2
+ (σpp)

2 + (σsp)
2],

E = 2(µ
(γ)
i − µ(γ)

p ) · [
(σsp)

2 + (σpp)
2 − σspσsi

(σsi − σsp)2 + (σpp)2
+ µ(γ)

p − r − (γ − 1)(σsyσ
s
p + σpyσ

p
p)],

F =
(µ

(γ)
i − µ

(γ)
p )2

(σsi − σsp)2 + (σpp)2
· 2

1− γ
.

The m∗ is the solution of the following quadratic equation:

Dm2 + Em+ F = 0.

It is easy to find out that in most cases, the solution ism∗ = max(−E+
√
E2−4DF
2D

, −E−
√
E2−4DF
2D

),

then α∗ =
(σsp)

2+(σpp)
2−σspσsi

(σsi−σsp)2+(σpp)2
+

µ
(γ)
i −µ

(γ)
p

(σi−σsp)2+(σpp)2
1

(1−γ)m∗ .
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