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Abstract. The characterisation of natural fracture networks

using outcrop analogues is important in understanding sub-

surface fluid flow and rock mass characteristics in fractured

lithologies. It is well known from decision sciences that sub-

jective bias can significantly impact the way data are gath-

ered and interpreted, introducing scientific uncertainty. This

study investigates the scale and nature of subjective bias

on fracture data collected using four commonly applied ap-

proaches (linear scanlines, circular scanlines, topology sam-

pling, and window sampling) both in the field and in work-

shops using field photographs. We demonstrate that geolo-

gists’ own subjective biases influence the data they collect,

and, as a result, different participants collect different frac-

ture data from the same scanline or sample area. As a re-

sult, the fracture statistics that are derived from field data

can vary considerably for the same scanline, depending on

which geologist collected the data. Additionally, the personal

bias of geologists collecting the data affects the scanline size

(minimum length of linear scanlines, radius of circular scan-

lines, or area of a window sample) needed to collect a statis-

tically representative amount of data. Fracture statistics de-

rived from field data are often input into geological models

that are used for a range of applications, from understanding

fluid flow to characterising rock strength. We suggest proto-

cols to recognise, understand, and limit the effect of subjec-

tive bias on fracture data biases during data collection. Our

work shows the capacity for cognitive biases to introduce

uncertainty into observation-based data and has implications

well beyond the geosciences.

1 Introduction

Natural fracture networks exert a strong control on the hydro-

geological and mechanical properties of a rock mass and are

useful indicators of paleo-stress directions. Geological mod-

els that depict the spatial distribution and nature of a fracture

network rely on input data (either distributions or mean val-

ues) of fracture statistics to provide a geologically reasonable

model of the subsurface. Models such as discrete fracture

networks (DFNs) may be used for estimating upscaled per-

meability (e.g. Bigi et al., 2013; Min et al., 2004) or for rock

mechanics analysis (Harthong et al., 2012; Jing and Hudson,

2002), with applications including understanding fluid flow

in tight oil and gas reservoirs (Aydin, 2000) and hydroge-

ology (Comerford et al., 2018), and assessing rock strength

for mine engineering (Mas Ivars et al., 2011). There are four

methods for characterising natural fractures in outcrops: lin-

ear scanlines (Priest, 1993; Priest and Hudson, 1981); circu-

lar scanlines (Mauldon et al., 2001; Rohrbaugh et al., 2002);

topology sampling (characterising node types; Manzocchi,

2002; Sanderson and Nixon, 2015, 2018); and tracing out the

fracture network (window sampling; Wu and Pollard, 1995).

These methods handle orientation, censoring or truncation

biases (Mauldon et al., 2001; Zeeb et al., 2013), and hetero-

geneity in the fracture network (Watkins et al., 2015) with

different degrees of success. Here, we explore how each of

these methods is susceptible to subjective uncertainties re-

lated to observer biases. Furthermore, we characterise how

much the degree of variability introduced by subjective un-

certainties is dependent on the method of data collection.

Uncertainties in geological data can be broadly split into

objective and subjective uncertainty (Tannert et al., 2007).
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Objective uncertainty (also called external, aleatory inher-

ent, structural, random, or stochastic uncertainty) refers to

more traditional concepts of uncertainty, such as precision or

processing error in a technique or a dataset, and can be rep-

resented through error bounds. Subjective uncertainty (also

called epistemic, knowledge, functional, or internal uncer-

tainty) arises from the mind; that is, it stems from biases that

affect how individuals perceive, gather, and interpret geolog-

ical data (Bond et al., 2015). Subjective uncertainty is com-

mon in geosciences for which developing geological models

typically relies on extrapolation of sparse data (Wood and

Curtis, 2004), but its magnitude and impact are difficult to

quantify (Bond et al., 2015).

The collection of fracture attributes will be affected by

subjective biases. Depending on the aims of a study (e.g. de-

termining the connectivity and permeability of the fracture

network, determining the strength of a fractured rock mass,

understanding paleo-stress conditions), these attributes could

include the following: the number of fracture sets; the orien-

tations, trace lengths, degree of clustering, and aperture of the

fracture population in a set; and the topology and intensity

of the network (Jolly and Cosgrove, 2003; Lei et al., 2017;

Watkins et al., 2015). The presence and amplitude of these

biases may also be affected by the study medium. For exam-

ple, previous work has investigated the operator, used here to

describe the person undertaking the interpretation, variability

in extracting lineament or landform data from remote sens-

ing (e.g. Landsat imagery or aerial photographs) (Burns et

al., 1976; Burns and Brown, 1978; Huntington and Raiche,

1978), digital elevation models (Hillier et al., 2015), and lidar

datasets (Scheiber et al., 2015). Differences in operator inter-

pretations can occur due to (a) technical factors in data acqui-

sition, for example bandwidth for Landsat data, image qual-

ity for aerial photographs, or illumination direction for lidar,

(b) the scale of observation, for example 1 : 20000 compared

to 1 : 5000, and (c) inter-operator differences (i.e. human fac-

tors). Scheiber et al. (2015) found inter-operator replicability

to be poor for bedrock lineaments interpreted from airborne

lidar by six operators. Significant variability was observed in

the number, trace length, and orientation of the reported lin-

eaments. Burns et al. (1976) attributes a difference of 8 % in

interpretations to “human factors” for lineaments identified

using aerial photography. While differences in inter-operator

interpretation have been previously identified, the underlying

human factors causing these differences remain unclear. It is

also unclear how such factors affect the collection of fracture

data either in the field or from field photographs.

In this study, we investigate the magnitude and source

of subjective uncertainty in fracture data collected by linear

scanlines, circular scanlines, fracture topology, and window

sampling. Fracture data were collected from Carboniferous

rocks cropping out near Whitley Bay, Northumberland (UK),

in two phases: (1) in the field where 7 participants collected

fracture data directly from the outcrop and (2) two classroom

workshops during which 29 participants with different levels

of geological training and expertise collected fracture data

from field photographs. In both the field and classroom, the

participants collected fracture data individually and in small

groups. We compare the values collected by individual par-

ticipants for the same sample (scanline, circle, window sam-

ple, etc.). It is the values as reported by the participants rather

than the underlying statistics of the measured fracture net-

works that are the focus of this work. We quantify and com-

pare the scale of subjective uncertainty for each method and

identify “problem areas” or factors that amplify the subjec-

tive uncertainty. We consider the effect of variations due to

subjective uncertainty on fracture statistics derived from the

data and propose a number of protocols to limit operator bias

in collaborative work.

2 Fracture data collection and analysis

Linear scanlines are a quick and relatively simple way of sys-

tematically collecting fracture data (Agosta et al., 2010; Bigi

et al., 2015; Chesnaux et al., 2009; Guerriero et al., 2011;

Ortega et al., 2006; Tóth, 2010). This method was developed

in rock engineering for a quantitative description of discon-

tinuities in rock masses (Priest, 1993) and then adopted to

describe natural fracture networks (Becker and Gross, 1996;

Van Dijk et al., 2000; Newman, 2005; Peacock and Sander-

son, 2018). The method involves laying out a tape measure

on the outcrop and measuring both the number (N ) and the

attributes of fractures which intersect the scanline (e.g. ori-

entation, spacing, length above and below the scanline, aper-

ture, type of terminations, filling, or mineralisation) (Priest,

1993; Priest and Hudson, 1981). To fully sample a fracture

network, multiple linear scanlines should be completed with

different orientations, and the Terzaghi correction should be

applied to reduce orientation bias (Mauldon and Mauldon,

1997; Terzaghi, 1965). The goal is to collect enough data

to obtain a statistical distribution for each of the main frac-

ture parameters rather than a mean value. It has been rec-

ommended that over 225 fractures should be sampled by the

population of linear scanlines for the method to accurately

estimate the characteristics of a fracture network (Zeeb et al.,

2013).

Circular scanlines provide estimates of fracture attributes

based on the number of fractures intersecting a circular scan-

line, n, and the number of fracture trace end points, m, within

a circular window (Mauldon et al., 2001; Rohrbaugh et al.,

2002). The fracture density, intensity, and an estimate of

mean trace length for the scanline can be calculated from

the n and m values (Mauldon et al., 2001). To be statistically

valid, the number of fracture end points (m) should exceed 30

(Rohrbaugh et al., 2002); however, values between 20 and

30 can also be considered reliable (Procter and Sanderson,

2017). This rule defines the radius of the scanline as a func-

tion of fracture density and limits the use of the technique in

areas of poor exposure and low-density fracture networks. A

Solid Earth, 10, 487–516, 2019 www.solid-earth.net/10/487/2019/
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circular scanline is a maximum likelihood estimator (Lyman,

2003) and does not suffer from the same orientation biases

observed in linear scanlines (Mauldon et al., 2001). Circular

scanlines are ideal for rock masses with evenly distributed

fracture attributes, but may need to be combined with other

methods to give a true representation of the heterogeneity of

the fracture network (Watkins et al., 2015).

Fracture topology describes a fault or fracture network as

a series of branches and nodes (Manzocchi, 2002; Sander-

son et al., 2018; Procter and Sanderson, 2017; Sanderson and

Nixon, 2015; Laubach et al., 2018). A branch is a fracture

trace with a node at each end that can be classified as termi-

nating into rock at i nodes (unconnected terminations), abut-

ting against another fracture at a y node, or crossing another

branch at an x node. Topology may be combined with circu-

lar scanlines by assessing the nodes present within the circu-

lar window and using the sum of i and y nodes as the num-

ber of trace end points (m value) in the circle (Procter and

Sanderson, 2017). The relative frequencies of different node

types (i, y, and x) can be plotted on a triangular diagram for

the purposes of characterising and quantifying the connectiv-

ity of a fracture network (Manzocchi, 2002; Sanderson and

Nixon, 2015).

Finally, window sampling is a technique in which all frac-

tures within a given sample area (window) are traced out ei-

ther by hand or on a computer, and the resulting traces are

used to calculate the fracture statistics (Pahl, 1981; Priest,

1993; Wu and Pollard, 1995). This technique is often utilised

to analyse remote sampling data such as aerial photographs

(Healy et al., 2017), unmanned aerial vehicle (UAV) images

(Salvini et al., 2017), bathymetry (Nixon et al., 2012), or

satellite imagery (Koike et al., 1998), as well as in outcrop

studies (Belayneh et al., 2009). It has been suggested that a

minimum of 110 fractures need to be sampled to statistically

describe the fracture network using window sampling (Zeeb

et al., 2013).

Using these four methods, fracture parameters can be col-

lected to calculate key fracture statistics, for example trace

length (mean and distributions), fracture abundance (inten-

sity and density), and connectivity (summarised in Table 1).

Trace length and trace length distribution are key fracture

parameters for DFN simulations (e.g. in simulating fracture-

hosted fluid flow. Trace lengths may be measured directly

with the linear scanlines and widow sampling or estimated

using the circular scanline method). Challenges to determin-

ing the trace lengths of individual fractures include the scale

of observation used to collect the data (Zeeb et al., 2013),

classification of fracture intersections (Ortega and Marrett,

2000), and the fracture fill properties (Olson et al., 2009).

Mean trace length is a commonly used fracture statistic and is

useful when the fractures in a network are evenly distributed

(Mauldon et al., 2001). However, fracture modelling typi-

cally uses a statistical distribution representative of the frac-

ture length population rather than the mean (Neuman, 1993).

Trace length distribution, obtained from measuring individ-

ual fractures, should be used when investigating subsurface

fluid flow or characterising spatial variations in fracture trace

length (Watkins et al., 2015). We investigate the impact of

subjective bias on mean trace length for all four methods,

including the range of reported trace lengths for linear scan-

lines and window sampling and trace length distribution for

window sampling.

The characterisation of fracture networks and compari-

son of techniques are greatly confounded by inconsisten-

cies in terminology. Because fractures may be sampled us-

ing techniques which are either 1-D (scanlines, boreholes),

2-D (maps, surface exposure), or 3-D (rock volumes), nu-

merous different methodologies and terminology have arisen

to characterise the abundance of fractures in a network. One

of the most widely used methods to characterise a network

is to define the number of fractures (N ) normalised to line

length (L), sample area (A), or sample volume (V ) depend-

ing on the dimension of sampling. In the literature, this statis-

tic is either termed fracture intensity (I ) or fracture frequency

(f) (Sanderson and Nixon, 2015). For linear scanlines, frac-

ture spacing can be regarded as the inverse of fracture in-

tensity for a single set of subparallel fractures (Sanderson

and Nixon, 2015). Fracture abundance within a network may

also be expressed as the total trace length per unit area (Der-

showitz and Einstein, 1988; Rohrbaugh et al., 2002). This

statistic is either termed fracture intensity (Sanderson and

Nixon, 2015) or fracture density (Nixon et al., 2012; Zeeb

et al., 2013). One attempt to simplify the use of terms is to

use the Pxy terminology as defined by (Dershowitz and Ein-

stein, 1988), where x denotes the dimension of the sampling

region (1 = line, 2 = area, 3 = volume) and y donates the

dimension of the feature (0 = number, 1 = length, 2 = area,

3 = volume). For the purposes of our study, we use the term

fracture intensity (I ) to refer to the number of fractures per

line length (P10, for linear scanlines) or fracture length per

unit area (P21, for circular scanlines), and we use fracture

density for the number of fractures per unit area (P20) (Ta-

ble 1).

It is also important to understand how individual fractures

relate to each other, particularly how the individual fractures

connect and hence contribute to the strength or fluid flow

through the rock mass. The number of connections on a frac-

ture trace (CL) is a commonly used measure of connectivity

(e.g. Manzocchi, 2002). However, a fracture network con-

sisting of only y and x nodes could have different CL values

depending on the fracture intensity (Sanderson and Nixon,

2015). It has been suggested that it is better to either consider

the average number of connections per branch (CB) (Ortega

and Marrett, 2000) or the proportion of connected nodes (Pc)

(Sanderson and Nixon, 2015). In our study, we use the pro-

portion of connected nodes for circular scanline and window

sampling. To measure connectivity in linear scanlines, the

percentage of connected fracture trace ends is reported (Ta-

ble 1).

www.solid-earth.net/10/487/2019/ Solid Earth, 10, 487–516, 2019
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Table 1. Summary and definition of fracture statistics that can be derived from methods used in this work. Table adapted from Zeeb et

al. (2013). Ni: number of i nodes, Ny: number of y nodes, Nx: number of x nodes, r: radius of circular scanline, N : number of fractures,

A: area, n: number of fracture intersections with the scanline (either linear or circular), L: length of scanline, s: spacing between adjacent

fracture traces on the scanline, tl: individual fracture trace length, F : fracture abuts against another fracture, R: fracture terminates into rock

(some authors also distinguish strata-bound fracture terminations). “Yes” for trace length distribution and network topology indicates that

the method can be used to carry out the technique.

Fracture statistic Notation Definition (unit) Input parameters and calculation

Linear Circular scanline Window

sampling

Density (D) Areal (P20) Number of fractures – D =
(Ni+Ny)

2πr2 D =
N
A

per unit area (m−2)

Intensity (I ) Linear (P10) Number of fractures I =
n
L

=
1
S

I =
n
4r

–

per unit length (m−1)

Areal (P21) Fracture length per – – I =

∑
t l

A
unit area (m × m−2)

Spacing (S) Linear Spacing between S =

∑
s

(N−1)
=

1
I

– –

fractures (m)

Mean trace length Tl Mean fracture Tl =

∑
l

N
Tl = n

(Ni+Ny)
×

πr
2

Tl =

∑
l

N

(Tl) length (m)

Network topology Topological Defining fracture nodes – Yes Yes

sampling as I , y, and x.

Connectivity Using node Percentage of – Pc =
3Ny+4Nx

Ni+Ny+Nx
Pc =

3Ny+4Nx
Ni+Ny+Nx

topology (Pc) connected branches

Using trace end Percentage of Pf =
F

R+F
× 100 – –

classification (Pf) connected fractures

Trace length Tl distribution (tl) Distribution of individual Yes – Yes

distribution fracture trace lengths

3 Study methods

3.1 Study area

The field site is located in the Northumberland Basin, just

north of Whitley Bay, NE England (Fig. 1). The Northum-

berland Basin is a 50 km wide, ENE–WSW-trending half-

graben formed during middle to late Carboniferous exten-

sional reactivation of the underlying Iapetus Suture (Chad-

wick et al., 1995; Johnson, 1984). The stratigraphy consists

of thinly (centimetres to decimetres) bedded sandstones, silt-

stones, shales, seat earth, and coals of the Middle Coal Mea-

sures (Westphalian B). At the field site the easily accessible

and well-exposed wave-cut platform clearly exhibits two sets

of faults and sub-vertical joints (> 75◦) which trend E–W to

NE–SW and N–S, respectively.

3.2 Fracture data collection procedure

Six linear scanlines were set up by laying out a tape measure

on sandstone beds, both in the map and cliff section (Fig. 1c).

Participants were asked to identify for each fracture (a) the

intersection distance along the tape and (b) the length and ter-

mination (into rock, abutting against another fracture, or not

seen or obscured) of the fracture either side of the tape. Eight

circular scanlines were drawn with chalk directly onto the

sub-horizontal bedding planes of three separate decimetre-

thick medium-grained sandstone beds (Fig. 1d). The location

and radius for all circular scanlines, apart from C6, were se-

lected by the lead author (Participant G/11) in order to repre-

sent what they believed to include a statistically significant

number of fracture terminations (i.e. m < 30; Table 2). C6

was selected by Participant F.

An N arrow as well as N–S and E–W lines were drawn

onto the circle to aid observation. Participants counted the

number of intersections with the circumference (n). Follow-

ing the methodology of Procter and Sanderson (2017), partic-

ipants were asked to identify the number of i, y, and x nodes

within the circles. Finally, window sampling was conducted

by tracing out the fracture networks on photographs of the

circular scanlines in the workshops. Our study did not aim to

collect sufficient fractures to represent the fracture network

at the field site, and the tested scanlines were not designed to

be statistically representative.

Fieldwork was undertaken by seven participants (labelled

A–G) in July 2018 with fracture data collected using field

notebooks from seven circular and four linear scanlines (Ta-

Solid Earth, 10, 487–516, 2019 www.solid-earth.net/10/487/2019/
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Figure 1. Location map highlighting (a) the local geology and (b) the location of the study area near Whitley Bay, Northumberland (UK).

Grid lines are annotated with UK national grid numbers. Field photographs of both linear (c) and circular (d) scanline methods are also shown

(L3 (NZ34717545) and C8 (NZ34377609), respectively). The geological map is modified from Geological Map Data BGS©UKRI (2018),

for which the stratigraphy is as follows: PLCM-SDST: Pennine Lower Coal Measures – sandstone; PLCM-MDSS: Pennine Lower Coal

Measures – mudstone, siltstone, and sandstone; Pennine Middle Coal Measures – sandstone; PLCM-MDSS: Pennine Middle Coal Measures

– mudstone, siltstone, and sandstone.

ble 2). There was no particular guidance as to how the partic-

ipants collected the scanline data, but no more than one per-

son or one group collected fracture data from a scanline at

any one time to avoid influencing the data collected by other

participants. For the same reason, participants did not anno-

tate or disturb the rock or scanline. Orientation and aperture

data were also measured in the field, but they are not included

in this study because they are generally not included in cir-

cular scanline methods and cannot be measured from field

photographs in the workshops. Three of the fieldwork partic-

ipants also completed the workshop tasks (Participant C =

Participant 8; Participant D = Participant 10; Participant G

= Participant 11).

Workshop 1 (WS1) was held in September 2018 in Glas-

gow, with 11 participants (labelled P1–11). Workshop 2

(WS2) was held in October 2018 in Rome with 18 partic-

ipants (P12–29). Participants were recruited from the au-

thors’ research groups (the Faults and Fluid Flow research

group within the Centre for Ground Engineering & Energy

Geosciences at the University of Strathclyde and the Tecton-

ics and Fluid Chemistry Lab of the Earth Science Dept. at

Sapienza) and colleagues from their departments: participa-

tion was voluntary and all data were anonymised for analysis.

Each two-part workshop lasted 3 h. In the first part, partici-

pants worked individually to complete three circular and one

linear scanline, and in the second part, they worked in small

groups to complete two circular and one linear scanline (Ta-

ble 2). Participants were provided with A3 (29.7 × 42.0 cm)

colour photographs of the scanlines. WS1 participants were

encouraged to annotate these with the observed fracture in-

tersections and interpreted termination type, whereas WS2

participants were specifically asked to trace out the inter-

preted fracture network (i.e. to undertake window sampling).

Both workshops enabled us to investigate the impact of sub-

jective bias; however, the fracture maps from WS2 enabled

us to examine the impact on window sampling along with in-

vestigating the root cause of differences for participant clas-

sification of nodes.

To examine the effect of geological experience on sub-

jective uncertainty, participants were asked to indicate their

level of geological training, familiarity with geological field-

work, and their level of experience collecting fracture data

(summarised in Table 3, questionnaire provided in Supple-

ment S1). In the workshops, a small number of participants

(Participants 2, 5, 24, and 28) consistently reported anoma-

lously high n values compared to the node counts. Three of

www.solid-earth.net/10/487/2019/ Solid Earth, 10, 487–516, 2019
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Table 2. Summary of circular (C) and linear (L) scanlines completed in the field and workshops (WS1 and WS2). Whether these were

completed individually (i) or in groups (g) is noted. “Order” refers to the order the scanlines were completed in the workshops. Four of the

circular scanlines (C2, 3, 4, 5) were completed both in the field and in the workshop, but none of the linear scanlines were completed in

both, due to workshop time constraints. Window sampling, whereby participants drew out the interpreted fractures as well as completing

topological sampling, was only completed by Participants 1, 3, and 11 and all of Workshop 2 (WS2). The workbooks used in this study are

supplied in the Supplement (S3 and S4).

Method Field Workshop Length or radius

Completed? i g Completed? i g Order (m)

Circular C1 X X X (WS1 & 2) X 3 1.0

C2 X X × 1.0

C3 X X X (WS1 & 2) X 5 1.0

C4 X X X (WS1 & 2) X 4 1.0

C5 X X X (WS1 & 2) X 2 1.0

C6 X X × 0.73

C7 X X × 1.21

C8 × X (WS1 & 2) X 1 0.5

Linear L1 X X × 1.0

L2 X X × 1.0

L3 X X × 15.0

L4 X X × 7.5

L5 × X (WS1 & 2) X 6.55

L6 × X (WS1&2) X 1.45

Window sampling C1 X P 1, 3, 11 & WS2 X 3 0.5

C3 WS2 X 5 1.0

C4 WS2 X 4 1.0

C5 X P 1, 3, 11 & WS2 X 2 0.5

C8 X P 1, 3, 11 & WS2 X 1 0.5

Table 3. Summary of the level of geological training, and experience in geological fieldwork and fracture data collection, reported by field

and workshop (WS) participants. Individual participant responses are provided in the Supplement (S2).

Geological training Familiarity with geological fieldwork Familiarity with collecting fracture data

Group No. of participants None Low Medium High (Other) None Low Medium High (Other) None Low Medium High (Other)

Field 7 1 0 3 3 0 1 0 3 3 0 1 0 3 3 0

WS1 11 2 2 3 2 2 2 1 5 1 2 3 2 5 1 0

WS2 18 3 0 6 9 0 3 6 3 6 0 6 5 5 2 0

these participants (Participants 2, 5, and 28) had no formal

geological training or experience in geological fieldwork and

fracture data collection. It is possible that these participants

only considered fractures that intersected the edge of the cir-

cle in their interpretation, neglecting fractures within the cir-

cle that do not intersect the circumference and introducing a

different source of subjective error.

3.3 Post-workshop analysis

For the workshop data, we digitised the interpreted fracture

traces and node classification for all participants who traced

the networks (see Table 2) using ArcGIS. Individual frac-

ture trace lengths for all scanlines, and the distance along

the scanline that each fracture intersected linear scanlines,

were exported as “Arcmap unit” lengths. These lengths were

then scaled to the field to enable comparison of the fracture

statistics. In some cases, the counts of n or node types re-

ported by participants differed from the count indicated on

the worksheet (see S7). In these cases, to be consistent with

field data collection, we take the value reported by the partic-

ipant. Digitised networks from Circle 8 were used as a case

example to (a) construct heat maps of point density for n,

i, y, and x nodes, as well as line density for fracture traces,

and (b) identify areas within the circular scanline with the

greatest variability in the identification and quantification of

fracture characteristics such as trace, node type, and termina-

tion.

Fracture statistics were calculated for the data populations

from the different fracture characteristics that were measured

or counted and were then investigated as a function of the

field and workshop participants. We report the impact of sub-
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jective bias for the following fracture statistics: fracture in-

tensity (I ), fracture density (d), the connectivity of the net-

work (Pc and Pf), mean trace length (Tl), and trace length

distributions (tl). Statistics are calculated using the equations

outlined in Table 1.

In theory, each of the scanlines have a “true” value for each

of the fracture parameters (number and type of fracture in-

tersections and terminations, i.e. n, Ni, Ny, and Nx). In this

paper, we are not interested in defining that true value; rather,

we wish to explore the ranges in reported values from differ-

ent participants, showing the scale of subjective bias for the

collected data and the factors that affect this range. There-

fore, we define the uncertainty, or level of variability, present

in fracture data collection and the related statistics as a func-

tion of the observers or operators.

3.4 Analytical framework

We describe the quantitative fracture data that the partici-

pants collected using the following approaches.

Spatial distribution and node triangle space. Several frac-

ture attributes are determined by the spatial distribution of

features, e.g. fracture traces, within a sample area. For lin-

ear scanlines, we visually determine the relative location of

interpreted fracture traces from the digitised data. For circu-

lar scanlines, the spatial distribution of nodes is represented

via point density heat maps generated from digitised data in

ArcGIS and used to identify areas of uncertainty. We also vi-

sually compare the participants’ interpretation using node tri-

angle plots. For example, for all circular scanlines, we com-

pare the relative position of node data interpreted for each

participant.

Range and variability. The spread of data is described us-

ing the range between the minimum and maximum value for

a given parameter or statistic (e.g. fracture count) and the

quartile-based coefficient of variance (QCV; Eq. 1).

QCV =
Q3 − Q1

Q2
(1)

QCV is interpreted in a similar manner to the standard coef-

ficient of variation (CV) and provides a dimensionless mea-

sure of variability which can be used to compare between

scanlines and attributes. QCV is more appropriate than the

standard CV for this study because many of the data do

not display a normal distribution. Further, the median and

IQR are less susceptible to being skewed by outliers. We de-

scribe variability using the following descriptors: very low

(QCV = 0.00 to 0.10), low (QCV 0.11 to 0.25), moderate

(0.26 to 0.50), large–high (QCV = 0.51 to 0.70), very large–

high (QVC = 0.71 to 1.00), and extreme (QCV > 1.01).

Covariance. We describe the strength of the relationship

between quantitative data (e.g. fracture count and time taken)

using the linear coefficient of correlation (R2). Trends are de-

scribed using the following descriptors: no (R2 < 0.35), very

weak (R2 0.35 to 0.50), weak (R2 0.51 to 0.70), moderate

(R2 0.70 to 0.9), and strong (R2 > 0.90).

Consistency. Consistency can be used to describe two dif-

ferent aspects of the data. First, it can describe the rank posi-

tion of participants for a specific reported (e.g. n point count)

or calculated (e.g. fracture intensity) value across all scan-

lines. In this case, high consistency would describe a partici-

pant that remains within three rank positions for a reported or

calculated value for all circles. In contrast, low consistency

would describe a participant who ranks highly in one scan-

line and low in another. Consistency uses descriptors depend-

ing on the range in rank position across scanlines as follows:

no (> 16 rank positions for individual and > 6 for group ex-

ercises), low (15 to 11 rank positions for individual and 4 to

6 for group exercises), moderate (7 to 10 rank positions for

individual and 2 to 4 for group exercises), and high (< 7 rank

positions for individual and < 2 for group exercises). Consis-

tency is also used to describe the range and variability, quan-

titative data, or visual assessments across all scanlines within

a method.

For qualitative data, such as the degree of experience with

collecting fracture data, statistical interrogation is not appro-

priate given the potential for ambiguity in the response cat-

egories; the categories are not necessarily linear, and partic-

ipants may judge “high”, “moderate”, and “low” differently.

Instead, we visually interpret trends in qualitative data and

use numerical indicators, such as the range or median, to in-

terpret trends across participant responses and their interpre-

tation.

4 Results

4.1 Linear scanlines

The results of a statistical analysis of fracture data collected

from linear scanlines are shown in Table 4. The range in

the number of fractures interpreted to intersect the scanline

varied between participants and between scanlines both in

the workshop and the field. For example, in the field, QCV

ranges from 0.03 for Line 4 to 0.71 for Line 1 (Table 4). The

variability in the trace length data depended on the scanline

being sampled, more so than which participant was sampling,

and could be as low as 0.15 (L1) or as high as 0.82 (L5,

WS1). We find that there is greater variability in the mini-

mum recorded trace length (high to extreme) than the max-

imum recorded trace length (moderate to high). For exam-

ple, for Line 6, participants reported minimum trace lengths

ranging from 0.02 to 0.23 and maximum trace lengths rang-

ing from 0.25 to 0.72 m (See S5). It is clear that the inter-

pretations by participants differed on individual fracture ter-

minations. For example, for one fracture intersecting Line 3,

Participants G and F interpreted that after 8.0 m the fracture

terminated against another fracture, whereas Participants C

and D felt that it terminated in an area of no exposure af-
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Table 4. Summary table of raw linear scanline results, where i: individual, G: groups, No.: number of participants or groups.

Scanline Individual or No. Fracture count Trace length (m) Time (min)

group Min Max Median QCV Min Max Mean QCV Median QCV Min Max Median QCV

L1 Field i 6 3 10 7.0 0.71 0.03 2.22 0.58 0.36 0.40 0.15 5:32a 9:00a 7:16a 0.24

L2 Field G 3 7 14 12.0 0.29 0.01 1.78 0.43 0.17 0.26 0.21 – – – –

L3 Field G 3 21 38 26.0 0.33 0.04 23.08 1.21 0.69 0.54 0.18 10:00 13:00 10:00 0.15

L4 Field G 2 18 19 18.5 0.03 0.05 14.4 2.29 0.61 1.17 0.69 – – – –

L6 WS1 i 11 10 23 14 0.39 0.02 0.61 0.21 0.39 0.19 0.43 2:17 8:40 4:58b 0.33

WS2 i 18 9 25 21 0.38 0.03 0.72 0.24 0.28 0.23 0.27 1:51 24:00 6:12c 0.66

L5 WS1 G 5 22 31 22 0.23 0.12 2.72 0.86 0.73 0.70 0.82 5:57 9:35 7:33 0.24

WS2 G 7 15 28 20 0.40 0.14 2.43 0.96 0.21 0.86 0.47 5:00 13:00 8:17 0.57

a Only two participants recorded time for this scanline. b P10 did not record the time taken to count nodes. c P23 did not trace fractures, so we only have spacing and time information.

ter 22.0 m (S5). The correlation between the number of frac-

tures intersecting a linear scanline and the range of reported

fracture trace lengths by participants for that scanline shows

weak to no trend in the field (e.g. R2
= 0.59 for Line 1) and

no trend in the workshop (e.g. R2
= 0.24 for Line 1). That

is, our results indicate that trace length is not correlated with

the number of interpreted fractures.

The fracture traces drawn onto photographs in the work-

shops helped us to understand the underlying controls on dif-

ferences in interpretation. We examined the fracture traces

of Line 6 in detail and the interpreted fracture networks can

be considerably different (Fig. 2). All participants identified

two large fractures located roughly 1/3 and 2/3 of the way

along Line 6; however, participants differed greatly in their

interpretations of the first third of the scanline. Participant 28

does not identify any fractures, whereas Participants 10 and

14 identified 3 and 10, fractures, respectively. Such differ-

ences between participants’ observations could be a function

of the site; the fractures are partly obscured by water and

have thin fracture traces. These “hairline” fractures are also

present in other parts of the scanline and in all cases increase

the observation variation between participants. Also in Line

6, a feature trending at a low angle to the scanline halfway

along was only identified by 14 of 29 (48 %) participants.

Where this feature is identified, it is also the longest visible

fracture trace that transects the scanline, so identifying this

fracture affects the trace length statistics. Our analysis sug-

gests that the main source of uncertainty for characterising

fractures along photographs of linear scanline is the decision

on how a fracture terminates and hence how long the fracture

is interpreted to be.

4.2 Circular scanlines: topological sampling and

fracture mapping

We present the results of circular scanlines and topological

scanlines together because participants defined nodes within

sample circles for both sets of measurements. For the circular

scanlines, the number of fracture terminations (m), although

not explicitly discussed in this section, is equivalent to the

total number of i and y nodes.

The reported values for n points and topological charac-

terisation for circles undertaken in the field are presented in

Fig. 3. The number of fracture intersections with the edge of

a circle (n) displayed very low to low variability as recorded

by the field participants (QCV ranged from 0.05 to 0.19; S7).

However, there is greater spread in the number of reported

nodes identified within a circle. The scale of variance de-

pends on the properties of the circle that is being sampled;

variance ranged from very low for Circle 1 (QCV = 0.03) to

high for Circle 6 (QCV = 0.62). All node types (i, y, and x

nodes) displayed a wide spread in variability, ranging from

low to extreme across different circles.

Similar reporting behaviour is observed for data collected

in workshops; however, the workshop data are even more

variable than field data (Fig. 4; Table 5). When particularly

large variability was observed for a topological parameter

(e.g. y nodes), it was not necessarily replicated for the counts

of other parameters (e.g. n points) for the same circle. For

example, the number of y nodes interpreted in the field var-

ied greatly for Circle 6 (7 to 27; QCV = 0.66), even though

this circle had the smallest range in values for n points (6

to 9; QCV = 0.19). In this case, clearly the participants saw

almost the same fracture intersections with Circle 6 (i.e. sub-

jective bias for n points is small). At the same time, the par-

ticipants differed in their observations and classifications of

fracture characteristics within the circle, leading to a greater

range in the number of fracture intersections there. The con-

sistent observation is that subjective bias affects node counts

more than n point counts, but the degree of variability is de-

pendent on the sample site – i.e. the characteristics of the

circle being sampled.

No single circular scanline was particularly prone to sub-

jective bias for all of the studied fracture parameters. For ex-

ample, compared to other circular scanlines, the variability in

data collected from Circle 3 is small for n points and y nodes,

but it is one of the most variable for i nodes and shows mod-

erate variability for x nodes. In contrast, the variability in

data collected from Circle 7 is small for n points but displays

high variability in y nodes, very high in i nodes, and extreme

in x nodes (Table 5). The trends are seen in both field and

workshop data.
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Figure 2. The interpreted fracture traces for Line 6 (length 1.45 m). (a) The digitised fracture networks for all workshop participants. (b) Field

photograph of Line 6. (c) Fracture trace length histograms (bin = 0.1 m) for participants who recorded a low to high number of fractures. The

corresponding digitised fracture trace is also highlighted in the appropriate colour. Key differences in the interpreted fracture networks are

highlighted using participants who selected a low (Participant 28, nine fractures), medium (Participant 10, 17 fractures), and high (Participant

14, 25 fractures) number of fractures.

Although individual circles displayed considerable vari-

ability between participants, many participants remained

consistent in their observations between different circles

(Fig. 3 and 4). For example, Participants A, C, and 2 tended

to report lesser counts for all circles than Participants G and

13. That said, when Participants C and D repeated the data

collection exercise for the same scanline in the field, there

were differences within the repeat data (Fig. 3), although they

were far fewer than the discrepancies between participants.

The level of consistency depends on both the participant and

the attribute being measured. For example, for circles un-

dertaken in the workshops by individual participants, node

count displays a high degree of consistency (6.6), whereas

n point count displays moderate consistency (9.7). When in-

dividual participants are inspected, the level of consistency

between scanlines ranged from 1 (Participants 2, 3, and 13)

to 19 (Participant 9). It is clear that some participants dis-

played a greater level of consistency (e.g. Participant 28),
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Figure 3. Results of the fracture data from circular scanlines (C1–7) collected in the field by seven participants (labelled A–G, though A,

E, and F did not complete all of the scanlines). (a) The number of fractures that intersected the circular scanlines (n). (b) Fractures that

terminated in rock (i nodes). (c) Fractures that terminated against another fracture (y nodes). (d) Fractures that intersect another fracture (x

nodes). Participants C and D repeated some of their measurements for selected circles and this is indicated by two bars in their column for

that circle.

while other participants’ interpretations varied from one cir-

cle to another (e.g. Participant 9). The relative proportion

of specific node classification (e.g. y nodes) remained con-

sistent between circles (Fig. 5). For example, Participant 11

consistently recorded more y nodes when compared to other

participants, while Participants 5 and 21 tended to record

more i and x nodes. The same trends are seen both in field

data and workshop data collected as groups.

In general, the scale of uncertainty (the range in reported

values) in the workshop data is greater than field data as

indicated by a wider range in reported values and higher

QCV. Overall, the number of fractures reported was larger

in the field data than the workshop data. For example, the re-

ported number of fracture intersections in Circle 3 in the field

(Fig. 3) ranged from 19 (Participant C) to 30 (Participant B),

whereas from the workshops it ranged from 14 (Group 8) to

23 (Group 6) (Fig. 4). Similarly, the number of y nodes is

generally greater in the field and the range in values for each

circle is less extreme – e.g. the number of y nodes for Circle

5 ranged from 28 (Participant C) to 47 (Participant D) in the

field (QCV = 0.38; Fig. 3c) and from 4 (Participant 2) to 41

(P13) in the workshops (QCV = 0.81; Fig. 4). It is possible

that in the field participants could observe fractures in more

detail (e.g. the hairline fractures in Fig. 2), resulting in more

consistency in their reported values.

In our data there was a clear discrepancy between the num-

ber of nodes or n points reported by participants during the

workshops and the number recorded in the paper copies of

interpreted circular or linear scanlines. Participants tended to

report a smaller number of nodes or n points than they had

drawn on their worksheets. While the magnitude of this er-

ror varied both between participants and between scanlines,

the differences were consistently higher for data collected

within an area (i.e. node counting) compared to those col-

lected along a sample line (i.e. n points). This counting error

was much more pronounced within the circle than around the

edge, suggesting that as data gatherers we are relatively good

at counting when we follow a sample line (e.g. the edge of a

circle or linear scanline). However, when counting within a

sample area the accuracy of results is reduced.

4.3 Window sampling

For window sampling, the number of recorded fractures dis-

played moderate to high variability (Table 6), with the largest

variation occurring for Circle 4 (11 to 29; QCV = 0.76).

The maximum trace length reported by all participants re-

mained fairly consistent (QCV ranging from 0.01 for Circle

8 to 0.29 for Circle 1). However, considerable variability in

trace length distributions was observed between participants

(Fig. 6), with the number of small fractures recorded across

all scanlines displaying the most variability. For example, the

number of fractures below 0.2 m recorded for Circle 8 ranged

from 7 (Participant 24) to 41 (Participant 11), which repre-

sents 36.8 % and 75.9 % of the reported fractures for both

participants. This is also seen in the minimum reported trace

length data, which displayed very high to extreme variabil-
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Figure 4. Recorded fracture data (n and node counts) and the time taken to complete n and node counts for workshop (WS) participants (P)

and groups (G). The data for each attribute have been colour-coded according to where the reported value for the parameter ranked for that

circle. Data are presented in the order that they were completed in the workshop.
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Figure 5. Node triangles for workshop participants and groups. For individual circles (a), Participants 5, 21, and 11 were highlighted to show

the consistency in the way participants classified nodes. Participants were selected according the whether they reported a low (P5), medium

(P21), or high (P11) node count. Similarly, for group circles (b) Groups 7 and 12 were highlighted as groups who recorded a high and low

node count.

ity (e.g. 0.02 to 0.11 m for Circle 4; QCV = 0.94). While the

number of small fractures recorded by participants varies be-

tween circles, whether a participant records a high or low

relative percentage of small fractures remains consistent. For

Circles 8, 5, and 1, Participant 3 consistently recorded a

high percentage of small fractures, whereas Participant 24

consistently recorded a low percentage of small fractures

(Fig. 6a). In short, participants either consistently record the

presence of small fractures in a network or consistently do

not record the existence of small fractures in a network. For

trace lengths longer than about 15 %–20 % of the diameter

of the circle, the shape of the distributions remains consis-

tent across all participants, indicating that the larger traces in

the fracture network are consistently identified independent

of the participant (Fig. 6).

4.4 Areas of increased uncertainty: a case study using

Circle 8

To highlight potential causes of differences in interpretation,

Fig. 7d compares the interpretations of fracture traces and

nodes in three particular problem areas (so-called owing to

how differently these parts were interpreted) from endmem-

ber Participants 11, 18, and 21, who reported high, medium,

and low node counts, respectively. Area 1 is well exposed and

contains several intersecting fractures. The nature of the con-

nections was interpreted differently by each participant. Par-

ticipant 21 interpreted only the major fractures coming into

the junction and depicted the fractures in a star-like forma-

tion. Participant 18 interpreted a standard x node, with a sec-

ond larger fracture terminating against the NE–SW-trending

fracture (y node), and also notes an E–W-trending fracture

linking the two major fractures and cutting the third (three x

nodes). Participant 11 differed from Participant 18 by inter-

preting the NE–SW fracture trace as being offset by the NW–

SE fracture such that the x node interpreted by Participants

21 and 18 was instead interpreted as two y nodes. Area 2 is a

complex intersection of a number of NW–SE fractures with

part of the photographed exposure obscured by shadow (a

clear limitation of interpreting the scanline from photographs

rather than in the field). Participant 21 did not interpret the

fractures obscured by shadow, whereas Participant 18 did.

Participant 11 depicted a number of smaller fractures which

Participants 18 and 21 did not identify. Area 3 is an intersec-

tion of two large fractures which is obscured by a coarse sand

infill. Both Participants 18 and 11 interpreted the obscured

connection as a simple x node, whereas Participant 21 felt

that the fracture bifurcated to frame the area of no exposure.

Participants 18 and 21 interpreted the other fully exposed

connections similarly (although Participant 21 does not de-

pict a fracture to the south of the sand fill), whereas once

again Participant 11 identifies several additional smaller and

complicated fractures and fracture connections, particularly

y nodes. In each case, it appears that participants effectively

“self-censored” their data according to their “preferred” min-

imum trace length and had different approaches to areas of

shadow or obscured outcrop. The different geometry of the

interpreted fracture intersections would result in significant

differences in interpreted fracture development history.
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Figure 6. Fracture trace length distributions for (a) individual and (b) group window sampling data. The results are presented as both

histograms and normalised cumulative frequency curves of fracture trace length with bin widths of 0.05 m for individual and 0.1 m for group

window sampling data. The range in the relative percentage of small fractures observed in the data is highlighted using participants and

groups who consistently observed a high and low percentage of small fractures (Participants 3 and 24 and Groups 12 and 11, respectively).

When analysing the node classifications and interpreted

trace lengths for all circles it was found that in many cases

the fracture networks depicted or interpreted were not viable:

in other words, there were undefined nodes or intersections

that had an incompatible number of branches entering the

node (e.g. four nodes for a y node or five for an x node). Oc-

currences of these undefined or “floating” nodes were more

common in WS1 than WS2, perhaps because WS2 partici-

pants were specifically asked to draw out the fracture net-

work on their photographs.

4.5 The effect of working in groups

Large variability in the number of reported fractures in the

field was also seen when linear scanlines were undertaken

as pairs; for example, for linear scanline 3 counts ranged

from 21 (Participants C and D) up to 30 (Participants A and

B). The groups are obviously made up of participants who

have a different “eye for detail”. When working individually,

Participants C and D both recorded small fracture counts,

while Participant B recorded the highest. There is a sugges-

tion in the data that when working as pairs, groups tended

towards the more detailed member; for example, Participant

F recorded the lowest fracture count when working individu-

ally. However, a group with Participant G recorded a higher

than average fracture count. This was also addressed in the

discussion following Workshop 1.

No clear differences can be seen between data collected

individually and as groups for either circular scanlines (Ta-

ble 5; Fig. 4) or window sampling (Table 6; Fig. 6b). Al-

though the group circles have smaller y counts and greater

mean trace length values, the differences are not enough to
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Figure 7. A detailed study of the areas which cause increased uncertainty in Circle 8. The figure comprises clean field photographs of Circle

8 with the (a) heat map of y node point density, (b) heat map of fracture trace density, and (c) areas identified as problem areas. In panel

(d) the close-up of areas 1, 2, and 3 along with the features recorded by Participants 11, 18, and 21 are shown. See text for full description.

be confident that the effects are due to working in groups

rather than differences in the fracture network. This is due

to the limited number of circles completed, the fact no cir-

cles which were completed individually were completed as a

group, and that there is a large spread in variability between

participants and between different circles. That said, groups

generally reported more complex fracture networks with a

higher reported number of small fractures. When working as

groups that included a naturally detailed and naturally less

detailed participant, the results tended to be more detailed:

compare recorded values from Participants 2 and 11 when

working individually or together as Group 3 (S7).

There is also no difference in the level of variability for any

particular parameter reported for either topological sampling

within a circular scanline or window sampling (e.g. y node

count, number of fractures, etc.). For example, node counts

display QCV values of 0.48 to 1.00 for individual circles and

0.40 to 1.00 for group circles. This suggests that working

as a group does not affect the level of subjective bias in the

dataset. Similarly to when working individually, the major-

ity of groups show high levels of internal consistency in the

number of reported fractures (7 out of 12 groups). Groups

also displayed internal consistency in the relative percentage

of small fractures (Fig. 5b) and node types (Fig. 4b) reported

across different sample circles.

4.6 Time taken to collect data

In the field, the time taken to complete counts of n points and

nodes varied not only as a function of participant, but also

the circle being sampled. It was not clear if it took longer

for participants to count more n points or nodes, with the

trend being non-existent to very weak for n points (R2 rang-

ing from 0.003 to 0.37) and non-existent to weak for nodes

(R2 ranging from 0.04 to 0.70). For workshop data no trend

was observed between the time taken to record and the vari-

ability in the number of reported fractures observed (Fig. 8a).

Both the time taken and magnitude of the variability were

considerably greater in the workshops compared to the field.

For example, Circle 5 took participants between 1 and 17 min
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Figure 8. The impact of participant experience on the collection of fracture data. (a) The time taken in seconds to record fracture data (n and

node counts) from circular scanlines both in the field and workshops. (b) The impact of experience on the recorded y count and number of

fractures in individual scanlines and the time taken to complete the workshop tasks.

in the workshop (QCV = 0.94) and 2 min 21 s to 4 min 26 s

(QCV = 0.64) in the field.

Window sampling, which was undertaken in WS2, took

longer than circular scanlines for the same circle in WS1;

however, this difference is small. While it took 1.3 to 3.2

times as long to record n values, the relative time taken to

complete topological sampling within the circle is compara-

ble for circles completed both as individuals (0.85 to 1.6) and

in groups (0.95 to 1.05). Thus, although circular scanlines are

often suggested as a quick way of gathering fracture data, it

does not take significantly longer to trace out the fracture net-

work. This observation suggests that a similar amount of data

could be collected using both methods.

While some participants took much longer than others, the

participants were often (18 out of 29 participants) internally

consistent in the time taken to complete their tasks (Figs. 3

and 8). For example, C and G tended to take longer than A or

D in the field, and in Workshop 2, Participant 29 consistently
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took longer than Participant 25. Although this was often ob-

served, some participants displayed low to no consistency in

time taken between scanlines. For example, Participant 25

ranked third quickest for Circle 8 and 28th quickest for Cir-

cle 1 in the time taken to count n points. No correlation was

found between average rank position and range in rank posi-

tion for the time taken to record n point data (R2
= 0.025) or

node data (R2
= 0.001).

4.7 Experience

The relationship between experience and the number of node

counts has a large amount of scatter (Fig. 8b). Generally, par-

ticipants with less experience undertaking geological field-

work or collecting fracture data counted fewer nodes than

more experienced participants; however, the trend is very

weak. Perhaps counter-intuitively, experience does not re-

duce the time taken to collect fracture data (Fig. 8b). How-

ever, for node counts, the fastest experts are still notably

slower than the fastest inexperienced participant. Also, more

experienced participants do not appear to characterise with

more detail than those with less geological training or ex-

perience. It is possible that participants with experience in

fracture analysis will consider the connections they observe,

whereas beginners will draw the traces that they see without

considering the implications of those connections (i.e. im-

plied cross-cutting relationships).

5 Effect of subjective bias on the derived fracture

statistics

The variability in the collected fracture parameters will affect

the derived fracture statistics in different ways. No particular

equation for the calculated statistics (Table 1) has a statisti-

cally sensitive relationship with subjective bias for a particu-

lar fracture attribute. To identify which fracture statistics are

most susceptible to subjective bias, we discuss and compare

the results from all methods in terms of the relative ranges of

values.

The effect of subjective bias on mean trace length depends

on the method that the statistic is being derived from. For

linear scanlines the variability depends on the scanline be-

ing sampled. For example, small variability is seen for Line

2, with values ranging from 0.33 to 0.49 m (QCV = 0.17)

compared to 0.89 to 3.70 m (QCV = 0.61) in Line 4. For

topological sampling within a circular scanline low to very

high variability is observed between participants in the field,

with QCV ranging from 0.13 for Circle 3 to 0.82 in Circle

7. Variability is higher in workshop data, for which mod-

erate to high QCV values are observed (0.34 to 0.72), with

both group circles displaying moderate variability (0.34 and

0.38). Mean trace length derived from window sampling dis-

plays moderate variably across all circles sampled (QCV

0.26 to 0.47) and displayed lower variability compared to
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Table 6. Summary of fracture parameters reported for window sampling. Data are presented in the order the scanlines were undertaken

within the workshops. The labels (i) and (g) denote whether the scanline was undertaken individually or as a group.

Circle Number of Number of fractures Trace length (m)

participants Range Median QCV Min Max Mean QCV Median QCV

8 (i) 20 18–54 30.5 0.49 0.01–0.10 0.70–0.98 0.27 0.31 0.17 0.43

5 (i) 20 13–56 22.5 0.48 0.02–0.12 0.68–1.05 0.33 0.40 0.24 0.39

1 (i) 20 9–40 23.5 0.44 0.01–0.40 0.67–1.03 0.37 0.37 0.30 0.95

4 (g) 7 11–29 17 0.76 0.02–0.11 1.89–1.95 0.69 0.47 0.52 0.60

3 (g) 7 18–50 25 0.46 0.04–0.22 1.82–2.01 0.61 0.26 0.38 0.26

trace length derived for the same circle using topological

sampling. Mean trace length derived from window sampling

was consistently less than that derived from circular scan-

lines of the same circle. For example, the mean trace length

for Circle 5 derived from window sampling ranged from 0.19

to 0.46 m (S8).

For linear scanlines, no correlation was observed between

the number of observed fractures and fracture trace length.

For example, Participants B and G both recorded 10 fractures

intersecting Line 1; however, the derived mean trace lengths

were 0.62 and 0.25 m, respectively (see S5). This outcome

contrasts with window sampling, whereby mean trace length

decreases as fracture count increases (R2
= 0.79 for Circle 8;

see S8), and circular scanlines, for which mean trace length

is a function of the number of fractures intersecting and ter-

minating within a circle.

Fracture density, which is calculated for circular scanlines

and window sampling, has moderate to high variability be-

tween participants. For both methods the level of variability

depended on the circle being sampled, along with whether

the analysis was undertaken in the field or in the workshops.

For example, fracture density derived from circular scanlines

ranged from 3.82 to 7.48 f/m2 for Circle 3 (QCV = 0.13)

up to 2.12 and 10.6 f/m2 for Circle 6 (QCV = 0.68) in the

field and from 2.07 to 12.1 f/m2 for Circle 3 (QCV = 0.34)

up to 0.48 and 6.53 f/m2 for Circle 1 (QCV = 0.79). For

window sampling participant statistics displayed moderate

to very high variability within circles (QCV 0.44–0.76). A

larger value for fracture density is obtained when window

sampling is used for the same circle, as shown in Circle 8, for

which window sampling fracture density ranged from 22.9 to

68.8 f/m2 compared to 1.9 to 41.4 f/m2 for circular scan-

lines. Variability between participants is lower for window

sampling compared to circular scanlines when samples are

undertaken individually, but there is more variability when

undertaken as a group.

Across all methods, fracture intensity has the smallest

amount of variability between participants; however, differ-

ences are still observed between methods. When linear scan-

lines are used the amount of variability depends on the scan-

line being sampled. For example, Line 4 ranges from 0.93 to

0.98f/m (QCV = 0.03), whereas Line 1 ranges from 2.31 to

7.69f/m (QCV = 0.71), with the majority of scanlines dis-

playing low to moderate variability. When fracture spacing,

instead of the number of fractures reported, is used to calcu-

late fracture intensity more variability in values is observed,

primarily due to the large difference in the minimum reported

fracture spacing by participants across all circles. Unlike for

linear scanlines, fracture intensity represents a robust statistic

for both circular scanlines and window sampling. This is em-

phasised by the QCV values for circular scanlines both in the

field (QCV 0.03 to 0.21) and workshop (0.19 to 0.43), along

with those for window sampling (0.11 to 0.21). Fracture in-

tensity estimates using circular scanlines derived from field

data generally provide a higher value than when the same

circle is analysed in the workshop. For example, Circle 3

ranges from 4.75 to 7.5f/m from field data and 3.5 to 5.75

from workshop data. Fracture intensity derived from window

sampling is consistently lower than that derived from circular

scanlines for the same circle.

The connectivity of the network (percentage of connected

fractures, Pf) is highly variable for values gathered by partic-

ipants using linear scanlines, with the magnitude of the vari-

ability dependent on the scanline being sampled. For circular

scanlines and window sampling, for which the percentage of

connected branches (Pc) is used, connectivity represents a

robust statistic with very low QCV values (e.g. 0.00 to 0.06

for field data). The maximum reported values for Pc remain

the same when field and workshop data are compared; how-

ever, the lowest reported values are consistently lower in the

workshops for any given circle.

Subjective bias impacts all data collection methods (Ta-

ble 7). Window sampling appears to be the method which is

least effected by subjective bias. Out of the methods tested

in the workshops, window sampling displays the lowest vari-

ability between participants for all of the parameters: inten-

sity (low), density (moderate to high), mean trace length

(moderate), and connectivity (very low). Additionally, be-

cause this method requires the network to be drawn out, it

is possible to check for the existence of floating nodes and

other irregularities in the recorded fracture network. Linear

scanlines had the greatest variability between parameters.

The different fracture statistics also display different de-

grees of subjective bias. Fracture intensity represents the

www.solid-earth.net/10/487/2019/ Solid Earth, 10, 487–516, 2019
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Table 7. Summary of the broad trends in fracture statistics derived from the three methods we explored; presented in Fig. 9.

Statistic Circular scanline – topology Circular scanline – window Linear scanline

Intensity Very low to low variability when

derived from field data and low

to moderate when workshop data

are used. For Circles 1, 4, and 5

the calculated intensity from work-

shop and field data were very sim-

ilar; however, the calculated inten-

sity for Circle 3 was much lower

in the workshop. In all cases ranges

are greater when workshop data

are used, particularly for Circles 1

and 5.

Low spread between participants

within circles. In all cases, apart

from Circle 4, intensity calculated

using window sampling is lower

than that derived for node counting

for a given circle.

Variability, which ranged from very

low to high, depends on the scanline

being sampled. For example, Lines

3–5 are all low intensity and have a

small range.

Density and spac-

ing

Low to high spread when derived

from field data and moderate to

very high when workshop data

are used. Density calculated from

workshop in all cases apart from

Circle 1 is lower than when calcu-

lated from field data.

Moderate to high spread. Values

consistently higher in workshop

data when window sampling data

are used compared to node count-

ing, particularly Circle 8. Can be

comparable to field density (Cir-

cle 4) or considerably higher (Cir-

cle 1).

Variability in mean spacing values

depends on the scanline being sam-

pled, ranging from very low to very

high. Maximum reported spacing

had low spread, whereas minimum

spacing ranged from low to extreme

variability depending on the scan-

line being sampled. Equally large

range in workshops and field.

Mean trace length Low to moderate spread when de-

rived from field data and moder-

ate to high when workshop data are

used. How similar the range in re-

ported values is between workshop

and field data varies for different

circles.

Moderate spread across all circles.

The extremes in the ranges ob-

served in mean trace length esti-

mates are considerably lower than

for node counting. Of all meth-

ods window sampling provides the

smallest estimate for mean trace

length.

Moderate to highly variable for

most scanlines. Equally large range

in workshops and field. Maximum

reported trace lengths generally

much larger than for other methods

due to the different scale of obser-

vation.

Connectivity Very low spread between circles,

methods, and settings (field vs.

workshop).

Not assessed separately from node

classifications.

Spread depends on the scanline be-

ing sampled and ranges from very

low to extremely variable. Equally

large range in workshops and field.

most robust statistic as it shows the least variability in data

collected by different participants for a given scanline. In

contrast, mean trace length and fracture density both dis-

play considerable variability in the reported data, particularly

when derived from workshop data. The connectivity of the

network was found to be robust for topological sampling;

however, considerable variability existed in the values re-

ported from linear scanlines. When participants traced out

fractures while completing linear scanlines or window sam-

ples, it was possible for us to identify the causes of differ-

ences in participant observations; these are differences that

affect the derived fracture statistics.

6 Discussion

Subjective bias in fracture data collection has implications

for the validity or reliability of the models that the data in-

form, such as the derived fluid flow parameters, rock strength

characteristics, or paleo-stress conditions. Here, we explore

these implications. Further, we draw on participant discus-

sions during the workshop and field activities to propose po-

tential reasons for the differences in observations between

participants.

6.1 Scanline validity and appropriate data collection

method

As for all forms of sampling for data collection, scanlines

must contain enough data points to be statistically valid,

and the required number of data points depends on the in-

vestigated characteristic of the fracture network. However,

our data demonstrate that in addition to the fracture network

characteristics, the required scanline size (length of a linear

scanline, circumference of a circular scanline, or area of a

Solid Earth, 10, 487–516, 2019 www.solid-earth.net/10/487/2019/
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window sample) is also dependent on who is collecting the

data.

Different participants clearly observed different numbers

of fractures in the same scanline (Table 6, Fig. 2). Zeeb et

al. (2013) suggest that a minimum of 225 fractures should

be sampled for linear scanlines and 110 fractures for window

sampling. For Line 3 participants reported between 1.4 and

2.5 fractures per metre. If we apply Zeeb’s recommendations,

the cumulative length of scanline for the person who reported

a lower number of fractures per metre would need to be

nearly twice the length (160 m) of the representative scanline

for the person reporting higher fracture numbers (90 m). The

number of fractures in Circle 5 reported for window sam-

pling ranged from 13 to 56, which means between two and

nine circles of this size would need to be analysed to statisti-

cally represent the network. The variation between how par-

ticipants view the fractures therefore results in significantly

different lengths of scanline or numbers of circles to capture

a representative sample of that network. Our data show that

there is not a great degree of difference in the time taken

by participants to characterise the same fracture network, al-

though there is different detail. However, the simple fact that

one geoscientist needs to find over 4 times more locations to

draw out circles of the same radius on a particular outcrop

will likely mean that collecting equivalent datasets may take

longer for a less detail-oriented participant. Where a detailed-

orientated operator may fall down, however, is when a frac-

ture network displays a degree of heterogeneity or clustering.

In this case, although a detailed-orientated operator would

report the required number of fractures according to Zeeb

et al. (2013), they may fail to cover enough ground to un-

derstand the spatial distribution of fractures the way a less

detail-orientated operator would.

The appropriate radius of the sample window is also de-

pendent on the sampling behaviour of the operator. For cir-

cular scanlines it is widely agreed that a minimum of 20–

30 fracture terminations within a circle is appropriate to de-

rive fracture statistics or undertake topological sampling, and

the circle radius must be adjusted to capture enough frac-

tures or fracture terminations (Procter and Sanderson, 2017;

Rohrbaugh et al., 2002). Figure 10 shows the proportions

of valid (capturing > 30 terminations) and invalid (capturing

< 20 terminations) results for the circular scanlines in this

study. Out of the 29 participants that collected data from Cir-

cle 8 in the workshops, 12 identified over 30 fractures and so

report valid results, another 8 collected over 20 fractures and

their results are potentially valid, whereas 9 reported fewer

than 20 fractures, so the statistics derived from their sam-

ple may be unrepresentative. Since the number of fractures

identified in the field is generally higher than in workshops,

a greater proportion of field participants reported sufficient

terminations within the circle to be statistically valid. For

example, all field participants report valid data for Circle 4,

whereas only three of the nine groups in the workshops do.

In this work, the location and radius of all scanlines ex-

cept C6 were selected by Participant G/11, who tended to

be more detailed than other participants. This participant

recorded enough terminations to class their data as valid for

all sampled circles. Therefore, this participant chose a circle

radius appropriate to the level of detail to which they iden-

tify and characterise fractures, but which is not appropriate

for other less detailed observers. This effect is demonstrated

in Fig. 11, which shows a synthetic fracture set interpreted

by an operator who gathered less detail-focused observations

(Fig. 11a) and an operator who gathered more detailed in-

formation (Fig. 11b). A statistically valid circular scanline

(> 30 fracture terminations) is drawn onto the interpreted net-

work, and the resulting differences in the fracture topology

and the fracture statistics are shown (table in c). For this ex-

ample, for the scanline to be statistically valid, its radius must

be 3 times larger for operator (a) than operator (b).

How detailed a fracture network is interpreted to be by

an operator therefore affects the derived fracture statistics

(Fig. 11c). The more detail-focused interpretation (Fig. 11b)

has more y nodes but similar counts of n, i, and x nodes. As a

result, the connectivity of the interpreted network in part (b)

is greater than that in part (a). The other fracture statistics (in-

tensity, density, and trace length) are very different between

different levels of interpretation detail. For example, the den-

sity of fractures in part (b) is over 18 times larger than that

of part (a), and mean trace length is reduced from 1.71 m for

part (a) to 0.47 m for part (b). This variability is primarily

due to the required circle radius, which is used to calculate

fracture statistics using circular scanlines (Table 1), changed

in order to capture the minimum number of fracture termi-

nations. For our data, if participants who recorded insuffi-

cient fracture terminations in their samples (i.e. fewer than

20) to be considered statistically valid are disqualified (i.e.

removed from the dataset), the maximum trace length and

density are more affected by subjective bias than the fracture

intensity and connectivity. For example, the calculated maxi-

mum trace length for Circle 8 decreases from 2.88 to 0.92 m,

and the maximum density for Circle 5 decreases from 46.5

to 12 f/m2.

Different fracture data collection methods are chosen de-

pending on the aims of the study, the way the fracture net-

work is presented within the outcrop (or core), and the ho-

mogeneity of the fracture network. Our data suggest that

window sampling is the least affected by subjective bias. In

the process of drawing out the fracture network, the opera-

tor is required to consider the fracture geometries, evidence

for fracture timing (e.g. cross-cutting mineral fill types), and

the implications of this for the fracture statistics. There may

be similarities with the findings of Macrae et al. (2016), who

showed in a randomised controlled trial of industry experts

that the quality of a seismic interpretation could be increased

by explicitly requesting interpreters of seismic data to de-

scribe the temporal geologic evolution of their interpretation.

www.solid-earth.net/10/487/2019/ Solid Earth, 10, 487–516, 2019
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Figure 9. Topological sampling results for individuals and groups for circular scanlines 1, 3, 4, 5, and 8. Each histogram reports the results

for all workshop participants. The statistics have been derived from the data for each participant. Data are presented as both bar charts and

shaded histograms with the bin width, b, indicated on the chart (please note the bin width varies between circles as a function of the range in

reported or calculated values). In all cases the y axis represents frequency and is scaled so the shape of the distributions can be assessed.

6.2 Causes of subjective bias: operator bias and

fracture network characteristics

Human factors. We observe considerable variability between

participant interpretations, something which has also been

observed by Peacock et al. (2019) in the reported values of

joint intersections on a bedding plane. Additionally, our data

show that individuals display a degree of internal consistency

(Figs. 3 and 4). That is, individuals exhibited personal char-

acteristics or traits through the data that they gathered: they

were either more detail-orientated or they were less detail-

orientated, allowing them to focus on gathering a larger vol-

ume of data. We suggest that this reflects an operator’s per-

sonal approach to data collection: variability in data that are

collected by a single person is likely to be internally consis-

tent from one data-gathering exercise to the next. Care there-

fore needs to be taken when comparing results from differ-

ent operators. Our data show that it is important to consider

whether you are working with a “detailed” person who will

likely wish to include data on smaller or more detailed struc-
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Figure 10. The effect of subject bias on the validity of circular scan-

lines. The number of terminations recorded by individuals or groups

is displayed for each circle and colour-coded depending on where a

valid (> 30, green), possibly valid (20–30, yellow), or invalid (< 20,

red) number of terminations was recorded.

tures or if you are working with a person who is more likely

to focus on “the big picture” and to gather a higher volume of

data from a greater number of sample locations in the same

amount of time.

It is interesting to consider why people tend to be inter-

nally consistent in their data-gathering approach, yet differ-

ent from each other. It is likely that they consciously or sub-

consciously construct their own protocols around how the

data should be collected and what features should or should

not be included. These protocols will be shaped by (a) prac-

tical and physical factors such as the quality of an opera-

tor’s eyesight, whether or not it is easy for them to repeat-

edly crouch down to get a closer view and stand up to move

around, spatial coordination that affects the ease with which

they cover the scanline, and the time available to gather the

data, as well as (b) inherent cognitive or personality-related

factors.

As an example, some participants focused only on more

pronounced fractures, ignoring, for example, smaller sub-

sidiary fractures, closed or filled fractures, or thin hairline

fractures intersecting the scanline. This behaviour was par-

ticularly common where a large or clear fracture is present;

the participant reports only the dominant feature. As one par-

ticipant exclaimed during group discussion “What do these

tiny things matter – if you have a massive fracture?” How-

ever, this viewpoint was not shared by all participants: others

mentioned the importance of the spatial distribution of small

fractures either as indicators of strain incompatibility or as

the locus of flow at fracture intersections. It is clear that de-

cisions about “what feature counts” and whether a feature

has geological origins are subjective judgements. Shipton et

al. (2019) and Gibson et al. (2016) discuss the concept of

mental models in the geosciences: a mental model is a sim-

plified internal representation of some external event or pro-

cess. We suggest that our participants’ mental model of the

processes that they are measuring may guide their attention

to particular features and obscure or censor the network that

they record. The mental model and therefore the features –

or scale of features – observed may also be influenced by the

intended application for collected data (Shipton et al., 2019)

or the conceptual model that the participant is working from

(Shipley and Tikoff, 2016).

While one may expect mental models to be shaped by the

experience levels of operators, this is not observed in our

dataset. Scheiber et al. (2015) studied different participants’

observations from a single lidar dataset and found no correla-

tion between experience and the reported number of bedrock

lineaments. Similar to our work, Scheiber et al. (2015) found

that participants who reported the largest number of linea-

ments observed the greatest number of small features, and

these small features often did not follow the main orientation

trends seen in the data. Biological studies also find no evi-

dence for a relationship between level of experience and the

detail of observations (e.g. Dickinson et al., 2010; Dunham

et al., 2004).
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Figure 11. The impact of interpreter style on fracture statistics of a synthetic fracture network. (a) Statistically valid topological sampling

within a circular scanline for a fracture network which only considers the large-scale fracture network. (b) Statistically valid topological

sampling within a circular scanline for the same large-scale fracture network as (a) but also capturing small-scale fractures at fracture

intersections. (c) The topology attributes (n, i, y, and x nodes), derived fracture statistics, and node triangle of the different interpretations of

the fracture network.

We suggest that the cognitive style of the participant is

more important than experience in how a participant in-

terprets the studied media: the fracture network. Cognitive

style refers to how an individual perceives, thinks, solves

problems, learns, makes decisions, and interacts with others

(Witkin and Goodenough, 1977). The work of Jung (2016),

particularly the use of the Myers–Briggs Type Indicator (My-

ers, 1962) to assess cognitive style, underpins much of this

field. Jung’s theory outlines three facets of cognitive style,

each with endmember preferences (Myers et al., 1998): per-

ception dictates whether a person is either meaning-oriented

(intuitive) or detail-oriented (sensory), judgement dictates

whether a person makes decisions based on analytical and

logical means (thinking) or through a set of personal values

(feeling), and environment dictates whether a person reacts to

immediate and objective conditions (extrovert) or by looking

inward to their internal and subjective reactions (introvert)

when reacting to their environment. On top of these three

facets, people often have an innate preference for either per-

ception or judgement trains of thought such that a perception

person has a tendency to use sensing and intuition-orientated

thought, while a judgemental person uses a combination of

thinking and feeling. It is well known that cognitive style can

have an impact on how people respond to stimuli and make

decisions (Jung, 2016). If a cognitive style is at odds with

the task at hand, for example when an intuitive participant is

required to undertake a detailed task which would be better

suited to a sensory participant, a lower performance is to be

expected (Chan, 1996). This has been reported in the case of

auditors (Fuller and Kaplan, 2004) and air traffic controllers

(Pounds and Bailey, 2001). A “cogitative culture” is often

observed in different professions and roles, whereby people

aim to fit their cogitative style to the task or workplace en-

vironment (Armstrong et al., 2012). A misfit between cog-

itative style and the task tends to be associated with lower

performance levels (Chilton et al., 2005).

While cogitative styles may not be clear-cut (e.g. Peterson

et al., 2009), it is useful to adopt endmember styles to con-

sider how the cognitive style of the data collector could, in

theory, affect the fracture data they collect. For example, a

sensory participant should show high attention to detail, of-

ten observing small fractures and subtle features of the frac-

ture network that may tend to be missed by intuitive par-

ticipants. Conversely, while an intuitive participant may not

record small features, they should update their conceptual

model more frequently in response to new observations (e.g.
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a specific orientation of fracture is consistently mineralised),

leading them to develop a more robust conceptual model of

the subsurface (Shipley and Tikoff, 2016). A thinking par-

ticipant may collect more consistent or transparent data than

participants with other cogitative styles, for example by de-

veloping and applying a set of logical and analytical rules.

The node data collected in our study are most consistently

affected by cognitive biases (Figs. 3, 4, and 6). Detailed-

orientated participants reported a greater number and per-

centage of y nodes compared to i and x nodes. One of the

underlying reasons for this was identified in the workshop

discussions, in which sensory-type participants described re-

porting the small fractures at fracture intersections, whereas

intuitive-type participants reflected that they did not report

these features, since they believed (i.e. interpreted) that they

would not contribute to flow. Similarly, jogs in the fracture

were classified systematically differently by different partic-

ipants; some considered jogs to be the termination a fracture

and initiation of another fracture, whereas others considered

jogs to be a slight sidestep of an otherwise continuous frac-

ture. This would have consistently affected the number of

nodes reported.

Working in groups. We observed that behaviour var-

ied considerably between groups and that the behaviour

of groups depended on the cogitative styles of individuals

within that group (pairs, in most cases). For example, in one

group a participant explained “[when we started working to-

gether] I very quickly . . . realised that [their partner] cares

about tiny features, so, together we cared about tiny fea-

tures . . . but I was aware that if I was working on my own,

I would have done it differently”. This group evidently con-

sisted of participants with different levels of detail-orientated

behaviour, and the participant who individually displayed a

less sensory cogitative style tended towards the level of their

partner. This is perhaps an example of herding behaviour,

often towards a more detailed approach. Another partici-

pant reflected “I didn’t find we [their group] were talking

about ‘does this fracture count?’ Instead, we were discussing

whether something was a Y–Y or an X, or where exactly a

fracture goes or where it terminates and so on”. This group

appears to be made up of two intuitive-type participants, who

worked well together discussing the meaning behind the frac-

ture network.

The very knowledge that you are working together might

be effective in itself. As one participant articulated “the very

knowledge that you are working with someone changes your

approach. You want to engage together and so you need to

defend or explain your choice, which makes you more alert

to what you are doing and why”. This suggests that for frac-

ture analysis a group comprised of different cognitive styles

could be advantageous in terms of capturing the range of

perspectives and potential interpretation styles. Fracture net-

work analysis is not simple; it requires not only the identi-

fication of fracture traces, but also a consideration of how

these fracture traces from a network (Peacock and Sander-

son, 2018). Parallels may be drawn to the findings of Cheng

et al. (2003), who found that when participants were asked

to complete a complex accounting task, groups comprised of

different cogitative styles outperformed homogenous groups.

That said, working in mixed groups can be a cause of conflict

and introduce errors due to a negative effect on the ability to

reach a consensus in the decision-making process (Aggarwal

and Woolley, 2013). In our study, some participants felt that

working as a group slowed down the data collection process

to a problematic degree. However, this was only observed in

WS1; the sampling time was comparable for individuals and

groups in WS2 (Fig. 3, Table 5). Interestingly, there are many

different interpretations of what “working together” means

and what shapes working together takes. While for many, this

meant working through the scanline together, others elected

to divvy up the window or scanline, working separately and

combining their results at the end, or for one person to be the

data gatherer and the other the data recorder (i.e. the scribe).

For the latter two models of working, the potential benefits of

discursive or deliberative group work (i.e. rationalising and

laying bare thought processes) will not be leveraged.

Projecting into areas of limited exposure. The effect of

subjective bias on the required length of linear scanlines,

the radius of circular scanlines, and the area of sample win-

dows will have particular consequences in areas of limited

exposure, and a detail-orientated operator may not be able

to collect enough data to statistically represent the fracture

network. In the discussions following WS1, several partici-

pants reflected that where exposure was limited or obscured,

they did not attempt to interpret where the fracture went or

the type of fracture intersection, since this was straying too

far from quantitative observation into more qualitative inter-

pretation. Other participants, however, did interpret the net-

work despite these difficulties, which increased the number

of nodes that they reported and decreased the number of il-

logical floating nodes. Clearly, some felt it was most appro-

priate to interpret in the face of uncertainty so as not to dis-

count nodes that could be logically inferred, while others felt

that this would be over-interpretation. Both viewpoints have

internally consistent reasoning, but will produce very differ-

ent outcomes in terms of fracture network characteristics to

be applied to analyses of fluid flow or rock strength.

In some cases, these uncertainties could easily be over-

come in the field: for example, when a fracture was ob-

scured by shadow or seaweed. Some field participants de-

scribed “feeling” for the trace of a fracture with fingers or

pencils when obscured (e.g. by seaweed) or difficult to see.

Some also describe inferring fracture trace by extrapolating

from the exposed traces, triangulated by observing the gen-

eral fracture trends. Such “exposure bias” is recognised when

studying fault zones; by their nature, the fault rocks are often

preferentially obscured and therefore good continuous expo-

sures of fault zones are very rare (Shipton et al., 2019).

The scale of observation. In the workshops, participants

were provided with a 2-D “bird’s eye” view of the full circle
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being sampled. In the field, only the tallest operator will be

able to observe the full circle, while all others would have

a more limited field of view. In the field, the participant can

potentially crouch down and “get their eye in” to the detail

within a complex fracture network. The ability to adjust the

scale of observation during data collection in the field is most

likely the reason for more nodes reported in the field than in

the workshop for the same circular window (Fig. 10). Sim-

ilarly, it is important that the same scale of observation is

maintained when using remote sensing methods. For exam-

ple, it is important that an operator does not zoom into areas

of interest unless they do so systematically.

Using preset data cut-offs. It is clear that a meaningful

quantitative analysis of fractures requires a certain degree

of consistency. This is particularly relevant for combining

or comparing data collected by a number of individuals,

including for meta-analyses. Participants in WS1 discussed

whether their collected data could be more readily compared

or combined if a minimum trace length cut-off was applied

to the data. However, no consensus could be reached about

the scale or style of the cut-off to be applied because (i) it

would not be an accurate representation for flow and/or rock

strength, and (ii) more attention should not be paid to sim-

pler, larger, and more isolated structures that could have al-

most no flow or mechanical significance. The use of size

cut-offs has been used in scanline studies which investigate

aperture size distribution (e.g. Hooker et al., 2014; Ortega et

al., 2006). Fracture trace length, however, differs from aper-

ture studies in that what you are measuring (the number of

fractures) is not a clearly defined parameter (i.e. aperture

size) but instead highly subjective. This stems from the fact

that most opening mode fractures show evidence of growth

through the linkage of several smaller fractures, and, due to

the fractal nature of fractures, a single fracture tends to be

comprised of several smaller fractures (e.g. Bonnet et al.,

2001), so the fracture count is dependent on the scale of ob-

servation. We observe a similar effect in our dataset, whereby

participants differ in their interpretations of where a fracture

starts and ends and whether fractures with jogs should be

classified as one continuous feature or multiple fractures.

Another knock-on effect of having no data cut-off is that

the derived statistics for fracture intensity or fracture density

from reported data can return wildly differing results (Ortega

et al., 2006). From our findings, it is clear people self-censor

according to a minimum trace length, and this minimum cut-

off is variable in scale. That said, we find that the range in

reported values decreases towards 10 % to 15 % of the di-

ameter of a circular scanline or window sample. For exam-

ple, for Circle 8 data (S8), the range in the number of re-

ported fractures is 36; however, when fractures < 5 cm trace

length are removed the range falls to 19. The range stabilises

if only fractures > 10 cm in length are considered. This effect

is amplified for fracture density, which is calculated using the

number of reported fractures. The raw density statistics range

by a factor of 3 (23 to 69f/m2); however, as you apply cut-

offs to the data the values decrease and converge so that when

all fractures less than 10 cm in length are removed, the dif-

ference between minimum and maximum values is reduced

to 1.3 (18 to 25f/m2). This suggests that it should be possi-

ble, depending on the aim of the study, to apply a cut-off to

the minimum trace length included in the dataset. However,

it is vital that this approach is reported; otherwise, the data

reported will not be replicable.

6.3 Recommendations for reducing subjective bias

We encourage reflective critique of the fracture data collec-

tion process, including identification of potential uncertain-

ties when collecting new data and when collating or compar-

ing fracture statistics from different field studies. Drawing

on our results, we propose the following approaches to as-

sess, reduce, and report the potential subjective bias in the

data that geoscientists collect.

(1) Understand your style of data collection. It is vital

that when collecting fracture data, either in the field or from

photographs (or e.g. remote sensing), that the “go to” style

of data collection is understood; i.e. detail-orientated vs.

data-volume-orientated approaches. In relatively homoge-

nous fracture networks a detailed operator will characterise

a network quicker as less circle is required (i.e. detail-

orientated will be preferable). In areas of regional hetero-

geneity, however, it is better to include more circles cover-

ing larger fractures (i.e. be more data-orientated). Finally, but

most importantly, it is vital that we report our own biases

and methods used to reduce bias in the field reports to enable

replicability and comparison of studies.

(2) Select your fracture data collection methods to limit

subjective bias. While all methods of collecting fracture data

are susceptible to subjective bias, we find that window sam-

pling is the least affected. The approach does not take much

longer than topology sampling (the time taken is on par with

topology sampling when working in groups and < 1.6 times

as long as topology sampling when working individually).

Thus, we recommend that, where possible, a window sam-

pling approach is adopted to collect fracture data. In addi-

tion, regardless of which approach is adopted (circular, win-

dow, linear), the fracture network should be traced out ei-

ther on a printed photograph or tablet or with chalk on the

outcrop. Doing so for at least some of the sample windows

would allow participants to examine their own biases in how

they classify fractures and critique their collection approach.

Since we find that the window radius, to some extent, gov-

erns the size of the fractures observed and reported by differ-

ent individuals, we recommend that, if using circular scan-

lines, the radius of the circle is kept the same across a sample

area. However, we recognise that this could be problematic

in areas of drastically different fracture intensities where a

“valid” circle size for one sample location would not collect

valid data at other locations.
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(3) Define what fracture features to include early on. Prior

to the collection of field data, or as the first step of field data

collection, the sampling strategy should be reflected upon

and agreed, in line with the goals of the study and the char-

acteristics of the locality. For example, in fluid flow studies

it is vital that information for all connected fractures is in-

cluded in the dataset, in which case the location of small frac-

tures that contribute to the network becomes key: simply stat-

ing this may induce people to focus more on the small fea-

tures (see Macrae et al., 2016). The spatial distribution, not

just the relative percentage, of fracture terminations within

a network should be assessed and recorded when reporting

fracture statistics. In the case in which small fractures may

be important, then it is important that all the observed frac-

tures are collected; however, subsets based on fracture trace

length should be used when comparing data. One could take

the approach that everything should be collected and only af-

ter collection should the data potentially be censored for the

purpose of further analysis (e.g. to investigate the intensity

of fractures above a certain trace length). However, not ev-

ery sampling campaign necessarily needs the same level of

detail, so adopting this approach could lead to the collection

of a large amount of unnecessary data as a function of cam-

paign goals. If the level of detail collected is superfluous to

the needs of the study, the overall data quality could suffer

in terms of the extent of outcrop studied (i.e. the number of

detailed sample windows completed over a given area is less

than the number that would have been completed if the level

of detail relevant to the study was considered).

(4) Agree how to address data collection in areas of lim-

ited exposure. We recommend that operators take steps to en-

sure that the fracture network they collect is complete (i.e.

all node types have the correct number of branches and the

counts of parameters are checked) and consistent with the

network observed in areas of full exposure. This could be

achieved though the extrapolation of trends from outside the

sample area or through ensuring the consistency of the net-

work within the sample area (e.g. are E–W-trending joints

consistently connected to N–S joints by y nodes?). It is im-

portant that areas of no exposure (see Fig. 7d) are interpreted

as well as possible; otherwise, estimates of trace length and

connectivity will be unrepresentative of the network. This ap-

proach is also important as it enables the operator to gain fur-

ther insight into the development of the fracture network: for

example, a better understanding of the age relationships be-

tween fracture traces (Procter and Sanderson, 2017). If this is

completed as the first step of fieldwork, sources of counting

errors can be identified and minimised. Regardless, the sam-

pling or counting error identified should be communicated as

part of the data reporting.

(5) Where possible, collecting fracture data from field ex-

posures is preferable to interpreting field photographs. We

find that there is less variability in fracture data collected

by different participants when data are collected in the field

rather than collected from field photographs. Field-based ob-

servations have a number of advantages over photo-based ap-

proaches: the operator can change position and distance for

more complex fractures, remove obstructing material, adjust

so that something is not in shadow, physically feel for the

fracture, and check if a feature rubs off or if it is continuous

into another plane of the outcrop. A further advantage of col-

lecting data in the field is the ability to look outside the sam-

ple area, to ensure that the fracture network within the sample

area is consistent with the wider network, and to enable kine-

matic data to be collected. A caveat to this recommendation

is that in the field the quality of observations can be nega-

tively affected by environmental factors (e.g. rain, cold, heat,

etc.) which are not encountered during analysis undertaken

in the office. Recording such factors and the likely effect on

one’s field approach is good practice.

(6) Working as a group. Working as a group is preferable

to working individually to collect fracture data, since we find

less variability and fewer inconsistent nodes in data collected

as groups. However, group work should be considered a col-

laborative and dialogic process, whereby participants discuss

their rationale or reasoning before, during, and after data

gathering, as opposed to divvying up tasks to be completed

individually in a team. In the former, working together al-

lows for the identification and reconciliation of differences in

interpretational approach while improving the mechanics of

the data gathering, thereby reducing the potential for subjec-

tive bias by increasing the detail of observations. The quality

of the data collected will be more consistent as a result. In

line with this, a group comprised of different cognitive types

is preferable. In particular, sensory-type operators should be

paired with intuitive-type operators and encouraged to work

collaboratively to tease out whether and how the detail ob-

served by a sensory participant is identified and interpreted.

The level of geological experience is not relevant to consider

when selecting groups, but the relationship dynamics within

the group should be managed such that the less experienced

individuals feel comfortable to actively discuss with those

more experienced than them, rather than simply consenting

to their views or defer to their judgement.

If data are to be collected separately and then combined,

then the sampling behaviour of members of the team should

be assessed prior to data collection to establish if data from

the individuals can indeed be meaningfully combined. The

sampling strategy should be conceived such that the min-

imum number of moderate-scale obvious fractures should

be captured (i.e. when using a circular approach, the ra-

dius should capture 20–30 terminations of the major fracture

sets), with the small fractures still recorded. If conducting

collaborative fieldwork, for which operators are working in-

dividually to collect data from different sampling sites, the

team must first characterise their own biases, then agree on

a unified approach and classification system, the process of

determining sample location and dimensions, and what to do

when e.g. a particular fracture intersection is obscured. It is

www.solid-earth.net/10/487/2019/ Solid Earth, 10, 487–516, 2019



512 B. J. Andrews et al.: Quantifying subjective bias in fracture data collection

important to characterise the way participants differentiate

fracture terminations and distribute reported trace lengths.

(7) Define a data cut-off. Because all fractures larger than

10 % to 15 % of the circle diameter are typically well de-

fined by all data gatherers, all data above this size can be

confidently compared between operators with different frac-

ture judgements. The circle radius should be set and reported

prior to the start of the collection of field data. It is vital that

the scanline is large enough to cover enough fractures for the

least detailed-orientated member of a group to still collect a

sufficient number of fractures. We recommend that the scale

of observation is kept consistent throughout the survey and

if a minimum fracture trace length cut-off is chosen that it is

clearly reported in field reports and publications.

The procedure could be further improved and tested by

either (a) using a set of calibration scanlines prior to data

collection to test personal biases and familiarise the operator

with the technique or (b) having a scanline or sample area

which is used as a marker and completed regularly through-

out the data collection procedure to test replicability, as also

advised by Peacock et al. (2019). While the above proce-

dure is undoubtedly helpful and goes some way to providing

consistency in fracture data collection, it also does not take

into account the fact that behaviours may change through

time (e.g. Scheiber et al., 2015). Such changes may be due

to things such as experience with the data-gathering proce-

dure, experience with trends in the fracture network being

classified, subsequent training (e.g. the introduction of mini-

mum trace length cut-offs), or undertaking fracture data col-

lection with differing survey goals (e.g. paleo-stress analysis

vs. fluid flow studied). Due to this, the procedure should be

repeated regularly and assigned to “single events” such as a

day in the field or a single data collection session.

(8) Communicate the steps taken to manage bias in data

collection. Steps one to seven should be communicated as

part of data reporting and publication.

6.4 Wider geoscientific implications

While this work concentrates on a field-based approach,

which uses several data points (sampling areas) to collect

data from an outcrop, many of our findings are also relevant

to the collection of data from broadscale approaches such

as UAV- or remote-sensing-derived maps. With the advent

of digital-image analysis techniques and UAV technology,

it can seem preferable to perform digital fracture mapping;

however, uncertainties regarding hairline fractures, potential

weathering features, or vegetation obscuring the fracture net-

work, for example, can be more easily explored by direct

field observations. One may expect marginal error, which is a

function of the sample size, to be reduced by digital fracture

mapping, since digital mapping allows a much larger number

of (and area of) fractures to be sampled in a given time. We

instead suggest this not to be the case because each partici-

pant is in effect using their own method to identify and clas-

sify features on the digital image being studied, and many of

the subjective biases that we observed in our work will be ap-

plicable to remote mapping methods. This corroborates work

by Scheiber et al. (2015), who investigated the number of lin-

eaments identified by six participants interpreting the same

lidar dataset (at the same resolution). Extreme variability was

observed between participants, who counted between 74 and

607 lineament traces (COV = 1.61). Indeed, concern about

consistencies in image interpretation was raised in early work

on remote imagery; Huntington and Raiche (1978) suggested

that inter-operator variability in the interpretation of linea-

ments from Landsat imagery could be so significant that it

may seem as if different scenes with different geologies had

been interpreted.

In this work, we have demonstrated, for the first time, the

clear need for geoscientists to develop consistent and trans-

parent protocols for collecting field data that are scientifi-

cally rigorous. We find that the type and scale of subjective

biases that affect how we identify, classify, and report frac-

ture characteristics are independent of experience and appear

to be related to personal character traits. It is vital that the

geoscientific community becomes more aware of the poten-

tial for subjective bias, the subsequent effect on scientific un-

certainty, and options to manage biases. Indeed, we feel that

these issues should be discussed openly from the very first

time that students collect field data. Training schemes and

procedures should be developed that not only consider the

relative differences between methods (as in Watkins et al.,

2015), but also the inherent human factors which affect data

collection. These schemes will differ based on the specific

aims of the study; however, approaches to manage subjective

uncertainty in data must be communicated openly to enable

the study’s findings to be replicable and to facilitate compar-

ison with other field data.

In fact, we propose that a series of reasoned recommen-

dations or protocols derived from and adopted by the scien-

tific community could prove valuable to streamline the data

collection process and reduce the uncertainty in observation-

based sciences. The recommendations for field-based frac-

ture data collection may be different to those for remote sens-

ing images. Any such workflow should not be so prescriptive

as to be inhibitive or to limit the scope of study; however, it

should be supportive enough such that the results obtained by

the adopted method are replicable. Since the type and scale

of subjective bias are independent of the level of experience

or expertise, a suitable workflow should enable crowd sourc-

ing or citizen science to be a useful medium for fracture data

collection and analysis in such a way that is commonplace in

ecological studies (Dickinson et al., 2010). Indeed, our work

has implications beyond the geoscience discipline; for exam-

ple, to garner maximum potential from big data, these sub-

jective uncertainties and any protocols to manage them must

be reported. However, our work also demonstrates the clear

need for further work in this field to test the effects of subjec-

tive or operator bias on the collection of fracture data, both

Solid Earth, 10, 487–516, 2019 www.solid-earth.net/10/487/2019/
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in the field and using maps generated from remote sensing,

in addition to investigating the role of subjective bias in other

forms of geological data and beyond.

7 Conclusions

In Sir Arthur Conan Doyle’s Silver Blaze (1892), Sherlock

Homes states “I only saw it because I was looking for it”. We

observe that this behaviour may be common in geoscience

data collection and has the potential to impart subjective bi-

ases to the data collected, introducing uncertainty in the ge-

ological information derived from these data and potentially

affecting the ability to replicate studies. We demonstrate that

geologists’ own subjective biases influence the data they col-

lect, and, as a result, different participants collect different

fracture data from the same scanline or sample area. This has

a consequent effect on the fracture statistics that are derived

from these data and that are used to inform geological mod-

els. Although we find that participants can collect a range of

data, we observe internal consistency in the classification and

number of fractures gathered by each participant. This con-

sistency is not related to geological expertise, experience, or

the time taken to complete the scanline, so we propose that

the underlying control on the subjective bias relates to the

individual’s personal characteristics (detailed vs. pragmatic)

and also the process that the data will inform (bulk fluid flow?

Scale of relevant observation?). Major fracture sets tend to

be captured by all participants, so the subjective bias mostly

affects the smaller-scale fracture features. We find that the ef-

fect of subjective bias on the fracture statistics derived from

the observed fracture attributes can be large and that trace

length and fracture density are the parameters most suscepti-

ble to subjective bias.

The subjective biases in how features are identified, clas-

sified, and reported have implications for how data should

be collected and collated. Firstly, for the characteristics of

a fracture network to be statistically valid, a circular scan-

line should aim to capture a minimum number of fractures

in its area, and the radius should be adjusted to ensure that

these conditions are met. However, to meet the necessary

validity criteria, individuals who pay particular attention to

small features could potentially use a circular scanline with

much smaller radius (and can consequently collect data from

smaller outcrops) than individuals who tend to dismiss small

fractures. Secondly, by comparing fracture data collected in

the field and from field photographs, we find that if possible

fracture data should be collected in the field, where the type

of connections present can be examined in more detail.

Drawing on the quantitative and qualitative data in this

study, we propose a series of methods for managing subjec-

tive bias. As well as supporting individuals in understanding

– and therefore mitigating – their own biases, there are other

practical steps that can be taken. For example, we suggest

that the perceived fracture network should be drawn out, ei-

ther onto printed field photos or using a tablet computer, to

minimise bias by prompting the operator to consider and re-

port the trace length distribution and network topology. Do-

ing so also records not just the number of terminations and

individual trace lengths, but also where in the scanline the

values are recorded, and it also makes clearer the rationale

behind the interpreted fractures. For similar reasons, we also

propose that people should work collaboratively in (small)

groups when gathering fracture data, preferably with people

who have different personal characteristics to them. A series

of protocols could be developed to streamline fracture data

collection and reduce uncertainties introduced by subjective

biases, but, ultimately, the steps taken to manage bias in data

collection should be communicated as standard during data

reporting and publication.

This study is the first to quantitatively illuminate and dis-

cuss the scale and potential causes of subjective bias in the

collection of geological field data. As the implications of our

findings have relevance for a range of observation-based sci-

ences beyond geoscience from digital mapping to big data,

our study is, ultimately, a call for further work in this area.
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