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PRECONDITIONERS FOR SYMMETRIZED TOEPLITZ AND

MULTILEVEL TOEPLITZ MATRICES∗

J. PESTANA†

Abstract. When solving linear systems with nonsymmetric Toeplitz or multilevel Toeplitz
matrices using Krylov subspace methods, the coefficient matrix may be symmetrized. The precondi-
tioned MINRES method can then be applied to this symmetrized system, which allows rigorous upper
bounds on the number of MINRES iterations to be obtained. However, effective preconditioners for
symmetrized (multilevel) Toeplitz matrices are lacking. Here, we propose novel ideal preconditioners,
and investigate the spectra of the preconditioned matrices. We show how these preconditioners can
be approximated and demonstrate their effectiveness via numerical experiments.

Key words. Toeplitz matrix, multilevel Toeplitz matrix, symmetrization, preconditioning,
Krylov subspace method

AMS subject classifications. 65F08, 65F10, 15B05, 35R11

1. Introduction. Linear systems

(1.1) Anx = b,

where An ∈ R
n×n is a Toeplitz or multilevel Toeplitz matrix, and b ∈ R

n arise
in a range of applications. These include the discretization of partial differential
and integral equations, time series analysis, and signal and image processing [7, 27].
Additionally, demand for fast numerical methods for fractional diffusion problems—
which have recently received significant attention—has renewed interest in the solution
of Toeplitz and Toeplitz-like systems [10, 26, 31, 32, 46].

Preconditioned iterative methods are often used to solve systems of the form (1.1).
When An is Hermitian, CG [18] and MINRES [29] can be applied, and their descrip-
tive convergence rate bounds guide the construction of effective preconditioners [7, 27].
On the other hand, convergence rates of preconditioned iterative methods for non-
symmetric Toeplitz matrices are difficult to describe. Consequently, preconditioners
for nonsymmetric problems are typically motivated by heuristics.

As described in [35] for Toeplitz matrices, and discussed in subsection 2.2 for the
multilevel case, An is symmetrized by the exchange matrix

(1.2) Yn =




1

. .
.

1


 ,

so that (1.1) can be replaced by

(1.3) YnAnx = Ynb,

with the symmetric coefficient matrix YnAn. Although we can view Yn as a precon-
ditioner, its role is not to accelerate convergence, and there is no guarantee that (1.3)
is easier to solve than (1.1) [12, 23]. Instead, the presence of Yn allows us to use
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preconditioned MINRES, with its nice properties and convergence rate bounds, to
solve (1.3). We can then apply a secondary preconditioner Pn ∈ R

n×n to improve
the spectral properties of YnAn, and therefore accelerate convergence. An additional
benefit is that MINRES may be faster than GMRES [37] even when iteration numbers
are comparable, since it requires only short-term recurrences.

Preconditioned MINRES requires a symmetric positive definite preconditioner Pn,
but it is not immediately clear how to choose this matrix when An is nonsymmetric.
In [35] it was shown that absolute value circulant preconditioners, which we describe in
the next section, give fast convergence for many Toeplitz problems. However, for some
problems there may be more effective alternatives based on Toeplitz matrices (see,
e.g. [4, 17]). Moreover, multilevel circulant preconditioners are not generally effective
for multilevel Toeplitz problems [40, 41, 42]. Thus, alternative preconditioners for
(1.3) are needed.

In this paper, we describe ideal preconditioners for symmetrized (multilevel)
Toeplitz matrices and show how these can be effectively approximated. To set the
scene, we present background material in section 2. Sections 3 and 4 describe the ideal
preconditioners for Toeplitz and multilevel Toeplitz problems, respectively. Numeri-
cal experiments in section 5 verify our results and show how the ideal preconditioners
can be efficiently approximated by circulant matrices or multilevel methods. Our
conclusions can be found in section 6.

2. Background. In this section we collect pertinent results on Toeplitz and
multilevel Toeplitz matrices.

2.1. Toeplitz and Hankel matrices. Let An ∈ R
n×n be the nonsingular

Toeplitz matrix

(2.1) An =




a0 a−1 . . . a−n+2 a−n+1

a1 a0 a−1 a−n+2

... a1 a0
. . .

...

an−2
. . .

. . . a−1

an−1 an−2 . . . a1 a0



.

In many applications, the matrix An is associated with a generating function
f ∈ L1([−π, π]) via its Fourier coefficients

(2.2) ak =
1

2π

∫ π

−π

f(θ)e−ikθdθ, k ∈ Z.

We use the notation An(f) when we wish to stress that a Toeplitz matrix An is
associated with the generating function f . An important class of generating functions
is the Wiener class, which is the set of functions satisfying

f(θ) =

∞∑

k=−∞
ake

−ikθ,

∞∑

k=−∞
|ak| < ∞.

Many properties of An(f) can be determined from f . For example, if f is real
than An(f) is Hermitian and its eigenvalues are characterized by f [16, pp. 64–65].
On the other hand, if f is complex-valued then An(f) is non-Hermitian for at least
some n and its singular values are characterized by |f | [2, 33, 47].
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Circulant matrices are Toeplitz matrices of the form

Cn =




c0 cn−1 . . . c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . .

. . . cn−1

cn−1 cn−2 . . . c1 c0



.

They are diagonalized by the Fourier matrix, i.e., Cn = F ∗
nΛnFn, where

(Fn)j,k =
1√
n
e

2πijk

n , j, k = 0, . . . , n− 1,

and Λn = diag(λ0, . . . , λn−1), with

(2.3) λk =

n−1∑

j=0

cje
2πijk

n .

We denote by Cn(f) the circulant with eigenvalues λj = f(2πj/n), j = 0, . . . , n − 1.
The absolute value circulant [5, 28, 35] derived from a circulant Cn is the matrix

(2.4) |Cn| = F ∗
n |Λn|Fn.

Closely related to Toeplitz matrices are Hankel matrices Hn ∈ R
n×n,

Hn =




a1 a2 a3 . . . an

a2 a3 . .
.

an+1

a3 . .
.

. .
. ...

... . .
.

. .
.

a2n−2

an an+1 . . . a2n−2 a2n−1




,

which have constant anti-diagonals. It is well known that a Toeplitz matrix can be
converted to a Hankel matrix, or vice versa, by flipping the rows (or columns), i.e.,
via Yn in (1.2). Since Hankel matrices are necessarily symmetric, this means that any
nonsymmetric Toeplitz matrix An can be symmetrized by applying Yn, so that

(2.5) YnAn = AT
nYn.

Alternatively, we may think of An being self-adjoint with respect to the bilinear form
induced by Yn [14, 34].

A matrix Gn ∈ R
n×n is centrosymmetric if

(2.6) GnYn = YnGn

and is skew-centrosymmetric if GnYn = −YnGn. Thus, (2.5) shows that symmetric
Toeplitz matrices are centrosymmetric. It is clear from (2.6) that the inverse of a non-
singular centrosymmetric matrix is again centrosymmetric. Furthermore, nonsingular
centrosymmetric matrices have a centrosymmetric square root [22, Corollary 1]1.

1In [22] the proof is given only for a centrosymmetric matrix of even dimension. However, the
extension to matrices of odd dimension is straightforward.
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2.2. Multilevel Toeplitz and Hankel matrices. Multilevel Toeplitz matri-
ces are generalizations of Toeplitz matrices. To define a generating function for a
multilevel Toeplitz matrix, let j = (j1, . . . , jp) ∈ Z

p be a multi-index and consider a
p-variate function f ∈ L1([−π, π]p), f : [−π, π]p → C. The Fourier coefficients of f
are defined as

aj = a(j1,...,jp) =
1

(2π)p

∫

[−π,π]p
f(θ)e−i〈θ,j〉 dθ, j ∈ Z

p,

where 〈θ, j〉 =∑p

k=1 θkjk and dθ = dθ1 . . . dθp is the volume element with respect to
the p-dimensional Lebesgue measure.

If n = (n1, . . . , np) ∈ N
p, with ni > 1, i = 1, . . . , p, and π(n) = n1 . . . np, then f is

the generating function of the multilevel Toeplitz matrix An(f) ∈ R
π(n)×π(n), where

An(f) =

n1−1∑

j1=−n1+1

· · ·
np−1∑

jp=−np+1

J (j1)
n1

⊗ · · · ⊗ J (jp)
np

a(j1,...,jp).

Here, J
(k)
r ∈ R

r×r is the matrix whose (i, j)th entry is one if i − j = k and is zero
otherwise.

Similarly, we can define a multilevel Hankel matrix as

Hn(f) =

2n1−1∑

j1=1

· · ·
2np−1∑

jp=1

K(j1)
n1

⊗ · · · ⊗K(jp)
np

a(j1,...,jp),

where K
(k)
r ∈ R

r×r is the matrix whose (i, j)th entry is one if i+ j = k+1 and is zero
otherwise. Although a multilevel Hankel matrix does not necessarily have constant
anti-diagonals, it is symmetric.

Multilevel Toeplitz matrices can also be symmetrized by the exchange matrix
Yn ∈ R

π(n)×π(n), Yn = Yn1
⊗ · · · ⊗ Ynp

. To see this we use an approach analogous to

that in the proof of [11, Lemma 5]. The key point is that YrJ
(k)
r = K

(r−k)
r , so that

YnAn(f) =

n1−1∑

j1=−n1+1

· · ·
np−1∑

jp=−np+1

(
(Yn1

J (j1)
n1

)⊗ · · · ⊗ (Ynp
J (jp)
np

)
)
a(j1,...,jp)

=

n1−1∑

j1=−n1+1

· · ·
np−1∑

jp=−np+1

(
K(n1−j1)

n1
⊗ · · · ⊗K(np−jp)

np

)
a(j1,...,jp))

=

2n1−1∑

j1=1

· · ·
2np−1∑

jp=1

K(j1)
n1

⊗ · · · ⊗K(jp)
np

b(j1,...,jp),

where b(j1,...,jp) = a(n1−j1,...,np−jp). Thus, YnAn(f) is a multilevel Hankel matrix, and
hence is symmetric.

2.3. Assumptions and notation. Throughout, we assume that all Toeplitz or
multilevel Toeplitz matrices An are real, and are associated with generating functions
in L1([−π, π]p). We denote the real and imaginary parts of f by fR and fI , respec-
tively, so that f = fR + ifI . We assume that the symmetric part of An, given by
AR = (An + AT

n )/2, is positive definite, which is equivalent to requiring that fR is
essentially positive. Similarly, we assume that |f | ≥ δ > 0 for some constant δ, so
that An(|f |) is positive definite with λmin(An(|f |) ≥ δ. Moreover, λmin(An(|f |) > δ
if esssup |f | > δ = essinf |f | (see Lemma 3.1).
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3. Preconditioning Toeplitz matrices. In this section we introduce our ideal
preconditioners for (1.3) when An is a Toeplitz matrix, and analyse the spectrum of
the preconditioned matrices. Although these preconditioners may be too expensive
to apply exactly, they can be approximated by, e.g., a circulant matrix or multigrid
solver.

3.1. The preconditioner AR. The first preconditioner we consider is the sym-
metric part of An, namely AR = (An +AT

n )/2, which was previously used to precon-
dition the nonsymmetric problem (1.1) (see [21]). When applied to the symmetrized
system (1.3), spectral information can be used to bound the convergence rate of pre-
conditioned MINRES. Accordingly, in this section we characterize the eigenvalues of

A
− 1

2

R YnAnA
− 1

2

R .
We begin by stating a powerful result that characterizes the spectra of precondi-

tioned Hermitian Toeplitz matrices in terms of generating functions.

Lemma 3.1 ([39, Theorem 3.1]). Let f, g ∈ L1([−π, π]) be real-valued functions

with g essentially positive. Let An(f) and An(g) be the Hermitian Toeplitz matrices

with generating functions f and g, respectively. Then, An(g) is positive definite and

the eigenvalues of A−1
n (g)An(f) lie in (r,R), where r < R and

r = essinf
x∈[−π,π]

f(θ)

g(θ)
, R = esssup

θ∈[−π,π]

f(θ)

g(θ)
.

If r = R then A−1
n (g)An(f) = In, the identity matrix of dimension n.

Lemma 3.1 shows that in the Hermitian case we can bound the extreme eigenvalues of
preconditioned Toeplitz matrices using scalar quantities. If bounds on the eigenvalues
nearest the origin are also available it is possible to estimate the convergence rate of
preconditioned MINRES applied to the Toeplitz system. Unfortunately, this result
does not carry over to nonsymmetric matrices, nor is an eigenvalue inclusion region
alone sufficient to bound the convergence rate of a Krylov subspace method for non-
symmetric problems [1, 15]. However, in the following we show that by symmetrizing
the Toeplitz matrix An we can obtain analogous results to Lemma 3.1, even for non-
symmetric An. As a first step, we quantify the perturbation of the (nonsymmetric)

preconditioned matrix A
− 1

2

R AnA
− 1

2

R from the identity.

Lemma 3.2. Let f ∈ L1([−π, π]), and let f = fR + ifI , where fR and fI are real-

valued functions with fR essentially positive. Additionally, let An := An(f) ∈ R
n×n

be the Toeplitz matrix associated with f . Then AR = An(fR) = (An + AT
n )/2 is

symmetric positive definite and

A
− 1

2

R AnA
− 1

2

R = In + En,

where

‖En‖2 = ǫ < esssup
θ∈[−π,π]

∣∣∣∣
fI(θ)

fR(θ)

∣∣∣∣ .

Proof. It is easily seen from (2.2) that An(f) = An(fR) + iAn(fI). Moreover,
from Lemma 3.1 we also know that AR = An(fR) is symmetric positive definite and
An(fI) is Hermitian. It follows that

A
− 1

2

R AnA
− 1

2

R = A
− 1

2

R (AR + iAn(fI))A
− 1

2

R = In + En,

5



where En = iÊn = iA
− 1

2

R An(fI)A
− 1

2

R .

To bound ǫ := ‖En‖2 = ‖Ên‖2, note that since Ên is Hermitian, ‖Ên‖2 is equal

to the spectral radius of Ên. Applying Lemma 3.1 thus gives that

ǫ < esssup
θ∈[−π,π]

∣∣∣∣
fI(θ)

fR(θ)

∣∣∣∣ ,

which completes the proof.

The above result tells us that the nonsymmetric preconditioned matrix will be
close to the identity when the skew-Hermitian part of An is small, as expected. Al-

though this enables us to bound the singular values of A
− 1

2

R AnA
− 1

2

R , these cannot be
directly related to the convergence of e.g., GMRES. In contrast, the following result
will enable us to characterize the convergence rate of MINRES applied to (1.3).

Lemma 3.3. Let f ∈ L1([−π, π]), and let f = fR + ifI , where fR and fI are real-

valued functions with fR essentially positive. Additionally, let An := An(f) ∈ R
n×n

be the Toeplitz matrix associated with f . Then the symmetric positive definite matrix

AR = An(fR) = (An +AT
n )/2 is such that

(3.1) A
− 1

2

R (YnAn)A
− 1

2

R = Yn + YnEn,

where Yn is the exchange matrix in (1.2) and

‖YnEn‖2 = ǫ < esssup
θ∈[−π,π]

∣∣∣∣
fI(θ)

fR(θ)

∣∣∣∣ .

Proof. Since AR is a symmetric Toeplitz matrix, it is centrosymmetric. Hence,

A
− 1

2

R is centrosymmetric (see (2.6) and [22]), so that YnA
− 1

2

R = A
− 1

2

R Yn. Combining
this with Lemma 3.2 shows that

A
− 1

2

R (YnAn)A
− 1

2

R = Yn(A
− 1

2

R AnA
− 1

2

R ) = Yn(In + En) = Yn + YnEn.

Since Yn is orthogonal, ‖YnEn‖2 = ‖En‖2, and the result follows from Lemma 3.2.

Applying Weyl’s theorem [20, Theorem 4.3.1] to (3.1) shows that the eigenvalues

of A
− 1

2

R (YnAn)A
− 1

2

R lie in [−1−ǫ,−1+ǫ]∪[1−ǫ, 1+ǫ]. However, as ǫ grows, eigenvalues
could move close to the origin, and hamper MINRES convergence. We will show that
this cannot happen in the following result.

Theorem 3.4. Let f ∈ L1([−π, π]), and let f = fR + ifI , where fR and fI are

real-valued functions with fR essentially positive. Additionally, let An := An(f) ∈
R

n×n be the Toeplitz matrix associated with f and let AR = An(fR) = (An +AT
n )/2.

Then, the eigenvalues of A
− 1

2

R (YnAn)A
− 1

2

R lie in [−1− ǫ,−1] ∪ [1, 1 + ǫ], where

(3.2) ǫ < esssup
θ∈[−π,π]

∣∣∣∣
fI(θ)

fR(θ)

∣∣∣∣ .

Proof. We know from Lemma 3.3 that

A
− 1

2

R (YnAn)A
− 1

2

R = Yn + YnEn,

where ‖YnEn‖2 < ǫ and Yn has eigenvalues ±1. Thus, as discussed above, the eigen-

values of A
− 1

2

R (YnAn)A
− 1

2

R lie in [−1− ǫ,−1+ ǫ]∪ [1− ǫ, 1+ ǫ]. Hence, all that remains
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is to improve the bounds on the eigenvalues nearest the origin. Our strategy for doing
so will be to apply successive similarity transformations to Yn+YnEn; as a byproduct,

we will characterize the eigenvalues of A
− 1

2

R (YnAn)A
− 1

2

R in terms of the eigenvalues of
YnEn.

Before applying our first similarity transform, we recall from the proofs of Lem-

mas 3.2 and 3.3 that iAn(fI) is skew-symmetric and Toeplitz, while A
− 1

2

R is symmetric
and centrosymmetric. It follows that YnEn is symmetric but skew-centrosymmetric.
Skew-centrosymmetry implies that whenever (λ, x), λ 6= 0 is an eigenpair of YnEn,
then so is (−λ, Ynx) [19, 36, 44]. Additionally, any eigenvectors of YnEn correspond-
ing to a zero eigenvalue can be expressed as a linear combination of vectors of the
form x ± Ynx, x ∈ R

n [44, Theorem 17]. Therefore, YnEn has eigendecomposition
YnEn = UnΛnU

T
n , where

(3.3) Λn =

m1 m1 m2[ ]m1 Λpos

m1 −Λpos

m2 0

and

(3.4) Un =
m1 m1 m3 m4

[ ]Upos YnUpos Usym + YnUsym Uskew − YnUskew ,

where n = 2m1 +m2 and m2 = m3 +m4. Since YnEn is symmetric, we may assume
that Un is orthogonal. We can now apply the first similarity transform, namely

(3.5) UT
n (Yn + YnE)Un = UT

n YnUn + Λn.

Using the orthogonality of the columns of Un, it is straightforward to show that

UT
n YnUn =




Im1

Im1

Im3

−Im4


 .

Thus, UT
n YnUn = QnΓnQ

T
n , where

Γn =



Γ̂2m1

Im3

−Im4


 , and Qn =


 Q̂ Im3

−Im4


 .

Here, Γ̂2m1
= diag(1,−1, . . . , 1,−1) and the kth column of Q̂ ∈ R

n×2m1 is given by

q̂k =

{
1√
2
(ek + em1+k), k odd,

1√
2
(ek − em1+k), k even,

with ej ∈ R
n the jth unit vector. Consequently, our second similarity transform gives

(3.6) QT
nU

T
n (Yn + YnEn)UnQn = Γn +QT

nΛnQn,

7



with

QT
nΛnQn =




Σ1

Σ2

. . .

Σm1

0
0




,

where if Λpos = diag(λ1, λ2, . . . , λm1
) then

Σk =

[
0 λk

λk 0

]
.

Hence, letting

Z =

[
1

−1

]

we find that

Γ +QT
nΛnQn =




Z +Σ1

Z +Σ2

. . .

Z +Σm1

Im3

−Im3




.

Since the eigenvalues of Z +Σk are ±
√
1 + λ2

k we see from (3.6) that the eigenvalues

of A
− 1

2

R (YnAn)A
− 1

2

R are ±
√
1 + λ2

k, k = 1, . . . ,m1, and possibly one or both of 1 and
−1. Hence, the eigenvalues are at least 1 in magnitude. This completes the proof.

Theorem 3.4 characterizes the eigenvalues of A
− 1

2

R (YnAn)A
− 1

2

R , and hence the
convergence rate of preconditioned MINRES, in terms of the scalar quantity in (3.2).
Thus, we expect that the preconditioner AR will perform best when An is nearly
symmetric, and we investigate this in section 5. However, irrespective of the degree
of nonsymmetry of An, Theorem 3.4 shows that the eigenvalues of the preconditioned
matrix are at least bounded away from the origin.

3.2. The preconditioner AM . We saw in the previous section that AR is an
effective preconditioner when the degree of nonsymmetry of An is not too large. For
problems that are highly nonsymmetric, however, a different preconditioner may be
more effective. Here, motivated by the success of absolute value preconditioning, we
consider the preconditioner AM = An(|f |) instead. The following result describes the
asymptotic eigenvalue distribution of A−1

M YnAn.

Theorem 3.5. Assume that f ∈ L∞([−π, π]) with 0 < δ ≤ |f(θ)| for all θ ∈
[−π, π]. Then, if AM = An(|f |),

(AM )−1YnAn(f) = YnAn(f̃) + En,

where f̃ = f/|f | and ‖En‖2 = o(n) as n → ∞. Moreover, the eigenvalues of YnAn(f̃)
lie in [−1, 1].

8



Proof. The conditions on |f | guarantee that An(|f |) is invertible and that its
eigenvalues (singular values) are bounded away from 0. Thus, by Proposition 5 in [9],

An(|f |)−1An(f)−An(f̃) = Ẽn,

where ‖Ẽn‖2 = o(n) as n → ∞. Since AM is Hermitian and Toeplitz, both AM and
its inverse are centrosymmetric. It follows that

(AM )−1(YnAn(f)) = Yn

(
(AM )−1An(f)

)
= YnAn(f̃) + En,

where En = YnẼn and ‖En‖2 = ‖Y Ẽn‖2 = ‖Ẽn‖2. Hence ‖En‖2 = o(n) as n → ∞.

Since Yn is unitary and YnAn(f̃) is symmetric, the absolute values of the eigenvalues

of YnAn(f̃) coincide with the singular values of An(f̃), which in turn are bounded
above by one [47]. This proves the result.

A consequence of Theorem 3.5 is that the eigenvalues of An(|f |)−1YnAn lie in
[−1−ǫ, 1+ǫ], where for large enough n the parameter ǫ is small. Although eigenvalues
may be close to the origin, most cluster at −1 and 1, in line with Theorem 3.4 in [23].

To conclude this section, we show how AM can be approximated by circulant
preconditioners. First, recall from subsection 2.1 that Cn(f) is the preconditioner
with eigenvalues λj = f(2πj/n), j = 0, . . . , n− 1. For large enough dimension n, we
have that AM = Cn(|f |) + En + Rn, where En has small norm and Rn has small
rank [13, pp. 108–110], so that Cn(|f |) is a good approximation to AM for large n.

The matrix C(|f |) can in turn be approximated by the Strang absolute value

circulant preconditioner |C(S)
n | [5, 28, 35], where if C

(S)
n is the Strang circulant pre-

conditioner [43] for An, with eigenvalues λj , j = 1, . . . , n, then the corresponding

absolute value circulant preconditioner |C(S)
n | has eigenvalues |λj |, j = 1, . . . , n. For

this preconditioner, we obtain the following result.

Theorem 3.6. Let f : [−π, π] → C be in the Wiener class and let An = An(f) ∈
R

n×n. Then the Strang preconditioner C
(S)
n , is such that |C(S)

n | → Cn(|f |) as n → ∞.

Proof. Assume that n, the dimension of An, is n = 2m + 1. (The idea can be

extended to the case of even n, as in [6, p. 37].) Then, C
(S)
n = Cn(Dm ⋆ f), where

(Dm ⋆ f)(θ) =
1

2π

∫ π

−π

Dm(φ)f(θ − y) dφ =

m∑

−m

ake
2πijk

n

is the convolution of f with the Dirichlet kernel D [6], and ak is as in (2.2).

Since |C(S)
n | = |Cn(Dm ⋆ f)| and Cn(|f |) are both diagonalized by the Fourier

matrix, they will be identical if all their eigenvalues, defined by (2.3), match. The
eigenvalues of Cn(Dm ⋆ f) are (Dm ∗ f)(2πj/n), j = 0, . . . , n − 1. Hence the jth
eigenvalue of |Cn(Dm ⋆ f)| is

λj(|Cn(Dm ⋆ f)|) =
(
(Dm ⋆ f)

(
2πj

n

)
(Dm ⋆ f)

(
2πj

n

)) 1

2

.

Since f is in the Wiener class, (Dm ⋆ f)(θ) converges absolutely, hence uniformly to

9



f(θ). Thus,

lim
n→∞

λj(|Cn(Dm ⋆ f)|) = lim
n→∞

(
(Dm ⋆ f)

(
2πj

n

)
(Dm ⋆ f)

(
2πj

n

)) 1

2

=

(
f

(
2πj

n

)
f

(
2πj

n

)) 1

2

=

∣∣∣∣f
(
2πj

n

)∣∣∣∣ = λj(Cn(|f |).

Since the eigenvalues of |Cn(Dm ⋆ f)| approach those of Cn(|f |) as n → ∞ we obtain
the result.

4. Multilevel Toeplitz problems. We now extend the results of section 3 to
multilevel Toeplitz matrices.

4.1. The preconditioner AR. The results of subsection 3.1 carry over straight-
forwardly to the multilevel case. They depend on the following generalization of
Lemma 3.1. The result essentially appeared in Theorem 2.42 in [38].

Lemma 4.1 ([38]). Let f, g ∈ L1([−π, π]p) with g essentially positive. Let

r := essinf
θ∈[−π,π]p

f(θ)

g(θ)
R := esssup

θ∈[−π,π]p

f(θ)

g(θ)
.

Then the eigenvalues of A−1
n (g)An(f) lie in (r,R) if r < R. If r = R then A−1

n (g)An(f) =
In, where In is the identity matrix of dimension π(n) = n1 · · ·np.

With this result, Lemmas 3.2 and 3.3 and Theorem 3.4 carry over directly to the
multilevel case. In particular, we have the following characterization of the eigenvalues

of A
− 1

2

R (YnAn)A
− 1

2

R .

Theorem 4.2. Let f ∈ L1([−π, π]p), and let f = fR + ifI , where fR and fI are

real-valued functions with fR essentially positive. Additionally, let An := An(f) ∈
R

π(n)×π(n) be the multilevel Toeplitz matrix associated with f and let AR = An(fR) =

(An+AT
n )/2. Then, the eigenvalues of A

− 1

2

R (YnAn)A
− 1

2

R lie in [−1− ǫ,−1]∪ [1, 1+ ǫ],
where

(4.1) ǫ < esssup
θ∈[−π,π]p

(∣∣∣∣
fI(θ)

fR(θ)

∣∣∣∣
)
.

Theorem 4.2 characterizes the eigenvalues of A
− 1

2

R (YnAn)A
− 1

2

R , which are bounded
away from the origin. In turn, this allows us to bound the convergence rate of pre-
conditioned MINRES in terms of easily-computed quantity in (4.1).

4.2. The preconditioner AM . We can also extend the results in subsection 3.2
to the multilevel case. However, for multilevel problems this preconditioner is more
challenging to approximate. Matrix algebra, e.g., block circulant, preconditioners
will generally result in iteration counts that increase as the dimension increases, as
previously discussed. On the other hand, constructing effective banded Toeplitz, or
efficient multilevel, algorithms is challenging since it is generally necessary to compute
elements of AM . Nonetheless, we present the following result for completeness. It
directly generalizes the result for Toeplitz matrices, so is presented without proof.

2Although the result is stated for f, g nonnegative, the proof also holds for indefinite f .
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Theorem 4.3. Let f : L∞([−π, π]p), with 0 < δ < |f(θ)| for all θ ∈ [−π, π]p.
Then, if AM = An(|f |) is the multilevel Toeplitz matrix generated by |f |,

(AM )−1YnAn(f) = YnAn(f̃) + En,

where f̃ = f/|f | and ‖En‖2 = o(n) as n → ∞. Moreover, the eigenvalues of YnAn(f̃)
lie in [−1, 1].

5. Numerical experiments. In this section we investigate the effectiveness
of the preconditioners described above, and approximations to them, for the sym-
metrized system (1.3). We also compare the proposed approach to using nonsymmet-
ric preconditioners for (1.1) within preconditioned GMRES and LSQR [30]. All code
is written in Matlab (version 9.4.0) and is run on a quad-core, 62 GB RAM, Intel
i7-6700 CPU with 3.20GHz3. We apply Matlab versions of LSQR and MINRES, and
a version of GMRES that performs right preconditioning. (Note that LSQR requires
two matrix-vector products with the coefficient matrix and two preconditioner solves
per iteration.) We take as our initial guess x0 = (1, 1, . . . , 1)T /

√
n, and we stop all

methods when ‖rk‖2/‖r0‖2 < 10−8. When more than 200 iterations are required, we
denote this by ‘—’ in the tables.

When AR or AM are too expensive to apply directly we use either a circulant or
multigrid approximation. The multigrid preconditioner consists of a single V-cycle
with damped Jacobi smoothing and Galerkin projections, namely linear or bilinear
interpolation and restriction by full-weighting. The coarse matrices are also built by
projection. The number of smoothing steps and the damping factor ω are stated
below for each problem. The damping parameter is chosen by trial-and-error to min-
imize the number of iterations needed for small problems. When applying circulant
preconditioners to (1.3) we use the absolute value preconditioner in (2.4) based on
the Strang [43], optimal [8] or superoptimal [45] circulant preconditioner.

Example 5.1. Our first example is from [21, Example 2], where numerical exper-
iments indicated that AR is an effective preconditioner for the nonsymmetric system
(1.1) when GMRES is applied. The Toeplitz coefficient matrix An = An(f) is formed
from the generating function f(θ) = (2−2 cos(θ))(1+iθ). Since computing the Fourier
coefficients for larger problems is time-consuming, smaller problems examined here.
The right-hand side is a random vector (computed using theMatlab function randn).

The preconditioner AR := An(fR) is positive definite, since fR(θ) = 2− 2 cos(θ)
is essentially positive. Indeed, AR is the second-order finite difference matrix, namely
the tridiagonal matrix with 2 on the diagonal and −1 on the sub- and super-diagonals.
Accordingly, AR can be applied directly with O(n) cost. For comparison we also apply
the optimal circulant preconditioner Cn and its absolute value counterpart |Cn|. (The
optimal circulant outperformed the Strang and superoptimal circulant preconditioners
for this problem.) The absolute value circulant approximates AM .

Table 5.1 shows thatAR requires fewer iterations than Cn for MINRES and LSQR,
and that MINRES with AR is the fastest method overall. The good performance of AR

with MINRES can be explained by the clustered eigenvalues of A−1
R An. Theorem 3.4

tells us that these eigenvalues lie in [−1− π,−1]∪ [1, 1+ π], and Figure 5.1 (b) shows
that these bounds are tight. As discussed in [21], the eigenvalues of A−1

R An are also
nicely clustered (see Figure 5.1 (a)), with real part 1 and imaginary part in [−π, π].
Although we cannot rigorously link this eigenvalue characterization to the rate of

3Code is available from https://github.com/jpestana/fracdiff
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Table 5.1: Iteration numbers and CPU times (in parentheses) for the optimal circulant
preconditioner Cn and tridiagonal preconditioner AR for Example 5.1.

n GMRES LSQR MINRES
Cn AR Cn AR |Cn| AR

1023 37 (0.058) 67 (0.067) 105 (0.15) 62 (0.05) 82 (0.057) 68 (0.029)
2047 48 (0.13) 68 (0.12) 186 (0.4) 67 (0.081) 111 (0.12) 70 (0.046)
4095 62 (0.25) 69 (0.22) — — 73 (0.13) 170 (0.21) 71 (0.065)
8191 — — 72 (0.51) — — 78 (0.2) — — 72 (0.13)

(a) An (b) YnAn

Fig. 5.1: Eigenvalues of A−1
R An and A−1

R YnAn for Example 5.1 with n = 2047.

GMRES convergence, Table 5.1 indicates that in this case AR is also a reasonable
preconditioner for GMRES.

We now consider AM , which is dense since |f(θ)| = (2 − 2 cos(θ))
√
1 + θ2. Ac-

cordingly, as well as applying AM exactly—to confirm our theoretical results—we
approximate AM via our V-cycle multigrid method with 2 pre- and 2 post-smoothing
steps, the coarsest grid of dimension 15, and ω = 0.1 for GMRES, ω = 0.4 for LSQR
and ω = 0.5 for MINRES. For LSQR, multigrid with AM gave lower timings and
iteration counts than multigrid with An, and so was used instead.

Iteration counts and CPU times (excluding the time to construct AM but includ-
ing the time to set up the multigrid preconditioner) are given in Table 5.2. Both
AM and its multigrid approximation give lower iteration counts than AR, with the
multigrid method especially effective for MINRES applied to the symmetrized system.
However, timings are higher than for AR since the O(n log(n)) multigrid method is
more expensive than the O(n) solve with AR. The eigenvalues of A−1

M YnAn, when
n = 2047, are as expected from Theorem 3.5 (see Figure 5.2), since all eigenvalues
lie in [−1, 1]. Indeed, most cluster at the endpoints of this interval. The eigenvalues
of A−1

M An are also localized, but not as clustered, indicating that the spectrum of
A−1

M An may differ significantly from that of A−1
M YnAn.

Example 5.2. We now examine the linear system obtained by discretising a frac-
tional diffusion problem from [3], which we alter so as to make it nonsymmetric. The
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Table 5.2: Iteration numbers and CPU times (in parentheses) for the exact precondi-
tioner AM and its multigrid approximation MG(AM ) for Example 5.1. The second
column shows the time needed to compute the elements of AM .

n AM time GMRES LSQR MINRES
An MG(An) An MG(AM ) AM MG(AM )

1023 6.4 1 (0.06) 39 (0.15) 1 (0.068) 33 (0.11) 11 (0.11) 24 (0.044)
2047 21 1 (0.28) 41 (0.28) 1 (0.33) 37 (0.24) 11 (0.6) 24 (0.082)
4095 73 1 (1.9) 39 (0.36) 1 (1.9) 39 (0.27) 12 (3.6) 25 (0.096)
8191 2.5× 102 1 (8.7) 42 (0.88) 1 (11) 43 (0.67) 12 ( 22) 25 (0.21)

(a) An (b) YnAn

Fig. 5.2: Eigenvalues of A−1
M An and A−1

M YnAn for Example 5.1 with n = 2047.

problem is to find u(x, t) that satisfies

(5.1)
∂u(x, t)

∂t
= d+

∂α
+u(x, t)

∂xα
+ d−

∂α
−u(x, t)

∂xα
+ f(x, t), (x, t) ∈ (0, 1)× (0, 1],

where α ∈ (1, 2), and d+ and d− are nonnegative constants. We impose the absorb-
ing boundary conditions u(x ≤ 0, t) = u(x ≥ 1, t) = 0, t ∈ [0, 1], while u(x, 0) =
80 sin(20x) cos(10x), x ∈ [0, 1]. The Riemann-Liouville derivatives in (5.1) are

∂α
+u(x, t)

∂xα
=

1

Γ(n− α)

∂n

∂xn

∫ x

L

u(ξ, t)

(x− ξ)α+1−n
dξ,

∂α
−u(x, t)

∂xα
=

(−1)n

Γ(n− α)

∂n

∂xn

∫ R

x

u(ξ, t)

(ξ − x)α+1−n
dξ,

where n is the integer for which n− 1 < α ≤ n.
Discretising by the shifted Grünwald-Letnikov method in space, and the backward

Euler method in time [24, 25], gives the linear system

(5.2) (νI + d+Lα + d−L
T
α)︸ ︷︷ ︸

A

um = νum−1 + hαfm,
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(5.3) Lα = −




gα,1 gα,0
gα,2 gα,1 gα,0
...

. . .
. . .

. . .

gα,n−1
. . .

. . . gα,0
gα,n gα,n−1 . . . gα,2 gα,1



,

where gα,k = (−1)k
(
α
k

)
, ν = τ

hα and h = 1
n+1 . We set τ = 1/⌈nα⌉, which makes ν

constant, so that all the theory of section 3 can be directly applied, but comparable
results are obtained τ = 1/n. Stated CPU times and iteration counts in this example
are for the first time step. (Iteration counts and timings decrease at later time steps.)
CPU times include the preconditioner setup time and solve time.

Entries of A in (5.2) are generated by [10]

ϕ(θ) = ν + d+fα(θ) + d−fα(−θ), fα(θ) = −e−iθ
(
1− eiθ

)α
.

The real part of ϕ is essentially positive, so AR = (An + AT
n )/2 is positive definite.

However, since AR is dense we approximate it by our V-cycle multigrid method (anal-
ysed in [32]) with the coarsest grid of dimension 127, 2 pre- and 2 post-smoothing
steps, and ω = 0.7 for all Krylov solvers. The matrix AM is also dense and positive
definite, and we approximate it using two different approaches. The first is the abso-
lute value Strang preconditioner discussed at the end of subsection 3.2. The second is
multigrid (with the same parameters as for AR, except that we use 1 pre- and post-
smoothing step) applied to a banded Toeplitz approximation of AM . Specifically, if
r and c are the first row and column of AM , when α = 1.25 we compute the first 50
elements in r and c, and when α > 1.25 we take the first ⌈β(1.1)log2

(n+1)⌉ elements
in r and c, where β = 40 when α = 1.5 and β = 100 when α = 1.75. This balances
the time to compute these coefficients, and the resulting MINRES iteration count.

We see from Table 5.3 that our approximations to AR and AM are robust with
respect to n, but both require slightly more iterations for larger α. The multigrid
preconditioner for AR requires fewer iterations than the circulant, but the latter results
in a lower CPU time because the preconditioner application is cheap, and indeed the
absolute value preconditioner with MINRES is the fastest method overall. Of the
multigrid methods, the approximation to AR with MINRES is fastest for α ≤ 1.5,
while the multigrid approximation of An with GMRES is slightly faster for large α.

In Table 5.4 we investigate the effect of d+ and d−, i.e., of nonsymmetry, on
the preconditioners. The results are unchanged when d+ and d− are swapped, so we
tabulate results for d+ ≤ d− only. As expected, our approximation to AR is best
suited to problems for which d+ and d− do not differ too much. The hardest problem
for AR is when d+ = 0, since in this case An is a Hessenberg matrix, and hence highly
nonsymmetric. However, even here the iteration numbers are fairly low, since the
eigenvalues are bounded away from the origin independently of n. The circulant and
multigrid preconditioners based on AM are not greatly affected by altering d+ and
d−.

The low iteration numbers and mesh-size independent results for AR in Table 5.4
are explained by Theorem 3.4 and the relatively small upper bound (3.2), which de-
scribes how far eigenvalues of A−1

R YnAn can deviate from 1 in magnitude. This bound
is 0 when d+ = d−, or when α = 2, since then An is symmetric. However, Table 5.5
shows that even when An is nonsymmetric the bound is quite small. Additionally, it
does not change when the values of d+ and d− are swapped.
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Table 5.3: Iteration numbers and CPU times (in parentheses) for the Strang circulant
Cn, absolute value Strang circulant |Cn| and multigrid preconditioners when d+ = 0.5
and d− = 1 for Example 5.2.

α n GMRES LSQR MINRES
Cn MG(An) Cn MG(An) |Cn| MG(AM ) MG(AR)

1.25

1023 5 (0.01) 4 (0.016) 6 (0.011) 6 (0.02) 10 (0.0084) 12 (0.18) 8 (0.014)
4095 6 (0.017) 4 (0.045) 6 (0.016) 6 (0.053) 10 (0.013) 12 (0.18) 8 (0.043)

16383 6 (0.065) 4 (0.17) 6 (0.066) 7 (0.22) 10 (0.054) 13 (0.32) 8 (0.17)
65535 6 (0.25) 4 (0.66) 6 (0.25) 7 (0.76) 9 (0.19) 13 (0.82) 8 (0.6)

262143 6 (0.99) 4 (4.4) 6 ( 1) 7 ( 5) 9 (0.72) 13 (4.5) 8 (4.3)

1.5

1023 6 (0.0062) 4 (0.021) 6 (0.0062) 7 (0.025) 10 (0.0048) 13 (0.37) 8 (0.013)
4095 6 (0.018) 4 (0.046) 6 (0.018) 7 (0.061) 10 (0.015) 13 (0.5) 8 (0.044)

16383 6 (0.062) 4 (0.17) 6 (0.067) 7 (0.21) 9 (0.05) 13 (0.76) 9 (0.19)
65535 6 (0.24) 5 (0.7) 7 (0.28) 8 (0.8) 9 (0.19) 13 (1.4) 9 (0.66)

262143 6 (0.93) 5 (5.2) 7 (1.1) 8 (5.7) 9 (0.72) 15 (6.1) 9 (4.7)

1.75

1023 6 (0.0085) 5 (0.043) 7 (0.0088) 7 (0.021) 9 (0.0062) 13 (1.6) 9 (0.014)
4095 6 (0.015) 5 (0.046) 7 (0.015) 8 (0.058) 9 (0.01) 15 (2.2) 9 (0.036)

16383 6 (0.062) 5 (0.2) 7 (0.075) 8 (0.24) 9 (0.049) 15 (3.2) 10 (0.21)
65535 6 (0.24) 5 (0.71) 7 (0.28) 8 (0.81) 9 (0.19) 15 (4.8) 11 (0.75)

262143 6 (0.9) 5 (5.2) 7 (1.1) 9 (6.3) 9 (0.72) 16 ( 11) 11 (5.7)

Table 5.4: Iteration numbers and CPU times (in parentheses) for the Strang circulant
Cn, absolute value Strang circulant |Cn| and multigrid preconditioners when α = 1.5
for Example 5.2.

(d+, d−) n GMRES LSQR MINRES
Cn MG(An) Cn MG(An) |Cn| MG(AM ) MG(AR)

(0,3)

4095 5 (0.031) 5 (0.053) 7 (0.02) 5 (0.059) 10 (0.016) 10 (0.47) 13 (0.049)
16383 4 (0.044) 5 (0.21) 7 (0.078) 5 (0.23) 10 (0.058) 10 (0.83) 13 (0.27)
65535 4 (0.18) 6 (0.84) 7 (0.29) 6 (0.93) 10 (0.22) 10 (1.6) 14 (0.97)

262143 4 (0.75) 6 (6.2) 7 (1.2) 6 (6.7) 11 (0.92) 11 (6.8) 14 (7.1)

(1,3)

4095 7 (0.015) 5 (0.042) 7 (0.014) 5 (0.045) 10 (0.013) 10 (0.4) 9 (0.037)
16383 7 (0.072) 5 (0.21) 7 (0.078) 5 (0.23) 11 (0.06) 10 (0.81) 10 (0.21)
65535 7 (0.29) 5 (0.71) 8 (0.33) 5 (0.77) 11 (0.24) 11 (1.6) 10 (0.7)

262143 7 (1.1) 6 (6.2) 8 (1.3) 6 (6.6) 11 (0.93) 11 (6.6) 10 (5.3)

(1,1)

4095 6 (0.013) 4 (0.031) 6 (0.013) 5 (0.041) 10 (0.01) 9 (0.39) 9 (0.034)
16383 6 (0.064) 4 (0.17) 6 (0.068) 5 (0.23) 10 (0.058) 9 (0.79) 9 (0.19)
65535 6 (0.25) 4 (0.57) 6 (0.26) 5 (0.77) 9 (0.19) 9 (1.4) 9 (0.64)

262143 6 (0.93) 5 (5.2) 7 (1.2) 5 (5.8) 9 (0.79) 9 (5.9) 9 (4.9)

Example 5.3. We now solve a two-level Toeplitz problem that also arises from
fractional diffusion and is based on the symmetric problem in [3]. We seek u(x, y, t)
in the domain Ω = (0, 1)2 × (0, 1] that satisfies

∂u(x, y, t)

∂t
=d+

∂α
+u(x, y, t)

∂xα
+ d−

∂α
−u(x, y, t)

∂xα

+ e+
∂β
+u(x, y, t)

∂yβ
+ e−

∂β
−u(x, y, t)

∂yβ
+ f(x, y, t),

where α, β ∈ (1, 2), and d+, d−, e+ and e− are nonnegative constants. We impose ab-
sorbing boundary conditions, and the initial condition is u(x, 0) = 100 sin(10x) cos(y)+
sin(10t)xy.

We again discretize by the shifted Grünwald-Letnikov method in space, and the
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Table 5.5: Upper bound in (3.2) for Example 5.2.

α (d+, d−)
(0,3) (1,3) (0.5,1) (1,1)

1 1.13 0.67 0.25 0.00
1.25 0.70 0.39 0.17 0.00
1.5 0.42 0.23 0.11 0.00

1.75 0.20 0.11 0.05 0.00

backward Euler method in time [24, 25], which leads to the following linear system:

(5.4) (Inxny
− Iny

⊗ Lx − Ly ⊗ Inx
)

︸ ︷︷ ︸
An

um = um−1 + τfm.

Here nx and ny are the number of spatial degrees of freedom in the x and y directions,
respectively; we choose nx = ny = n. Also,

Lx =
τ

hα
x

(d+Lα + d−L
T
α), Ly =

τ

hβ
y

(e+Lβ + e−L
T
β ),

where Lα is given by (5.3), and hx = 1/(nx + 1) and hy = 1/(ny + 1) are the mesh
widths in the x and y directions. Unless α = β, τ/hα

x and τ/hβ
y cannot both be

independent of n; we choose τ = 1/⌈nα
x⌉. Note that the theory for AR still applies in

this case. Stated CPU times and iteration counts are again for the first time step.
It is too costly to approximate AM by a banded Toeplitz matrix or a multigrid

method, simply because it is expensive to obtain the Fourier coefficients of |f |, and
so we present results for a multigrid approximation to AR only below. We also apply
the nonsymmetric block circulant Cn = Inxny

− Iny
⊗ Cx − Cy ⊗ Inx

preconditioner,
and symmetric positive definite block circulant |Cn| = Inxny

+ Iny
⊗|Cx|+ |Cy|⊗ Inx

,
where Cx and Cy are Strang circulant approximations to Lx and Ly, respectively.
Our multigrid method comprises 4 pre- and 4 post-smoothing steps, and a damping
parameter of 0.9. The coarsest grid has nx = ny = 7.

The results in Table 5.6 show that the multigrid approximation of AR gives mesh-
size independent iteration counts, and that MINRES with this preconditioner is the
fastest method for larger problems. For the block circulant preconditioners we see
different behaviour depending on whether α > β. Specifically, when α > β, τ/hβ

y → 0
as n → ∞, which makes this problem easier to solve in some sense. On the other
hand, when α < β the problems become harder to solve as n increases, and the block
circulant with LSQR and MINRES suffer from growing iteration counts.

6. Conclusions. In this paper we presented two novel ideal preconditioners for
(multilevel) Toeplitz matrices by considering the generating function f . The first,
AR is formed using the real part of f . While it works best when the (multilevel)
Toeplitz matrix is close to symmetric, it is reasonably robust with respect to the
degree of nonsymmetry. This performance is likely attributable to the eigenvalue dis-
tribution, which remains bounded away from the origin. Our second preconditioner,
AM , is based on |f |. Its performance is less affected by nonsymmetry, but it is more
challenging to construct efficient approximations to AM in the multilevel case.

Our numerical results not only illustrate the effectiveness of the preconditioners,
they highlight the value of symmetrization, which enables us to compute bounds on
convergence rates that depend only on the scalar function f . Additionally, the combi-
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Table 5.6: Iteration numbers and CPU times (in parentheses) for the circulant pre-
conditioners Cn and |Cn|, and multigrid preconditioners when d+ = 2, d− = 0.5,
e+ = 0.3 and e− = 1 for Example 5.3.

(α, β) n2 GMRES LSQR MINRES
Cn MG(An) Cn MG(An) |Cn| MG(AR)

(1.5,1.25)
961 16 (0.032) 5 (0.011) 23 (0.033) 5 (0.014) 42 (0.028) 12 (0.013)

16129 15 (0.12) 5 (0.058) 21 (0.11) 6 (0.07) 39 (0.12) 12 (0.07)
261121 14 (1.5) 5 (1.1) 18 (1.4) 6 (1.3) 34 (1.5) 12 (1.0)

(1.5,1.75)
961 21 (0.029) 4 (0.0086) 28 (0.038) 4 (0.0099) 43 (0.027) 10 (0.01)

16129 21 (0.16) 4 (0.051) 35 (0.2) 5 (0.065) 57 (0.19) 10 (0.049)
261121 20 (2.1) 5 (1.2) 40 (3.1) 5 (1.0) 67 (2.8) 12 (0.97)

nation of symmetrization and preconditioned MINRES can be more computationally
efficient than applying GMRES or LSQR to these problems.
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