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Highlights

e Real-time process monitoring scheme proposed for pharmaceutical Hot

Melt Extruder.
e A PLS calibration model (using inline Raman spectra) predicts AP

1
centration.

e A Hybrid soft sensor (using feeder process data) also predi -

centration.

e PCA and SPC monitors designed using the above two i ent sensor

predictions.

e This two-sensor scheme detects various Qwhich a ONe-SCHsor
scheme cannot.



ACCEPTED MANUSCRIPT

Process Monitoring and Fault Detection on a Hot Melt
Extrusion Process using In-line Raman Spectroscopy
and a Hybrid Soft Sensor

Furgan Tahir®*, Muhammad T. Islam®, John Mack?®, John Robertson”, Dayi
Lovett®

¢ Perceptive Engineering Ltd, Vanguard House, Sci Tech Daresbury, Cheshire WA/, N

UK
bEPSRC Centre for Innovative Manufacturing in Continuous Manufa
Crystallisation, University of Strathclyde, Glasgow G1 1RD,
Abstract :

tection scheme for a

We propose a real-time process monitoring and faul

pharmaceutical hot melt extrusion process producing Paracetamol-Affinisol ex-
trudate. The scheme involves predictio acetamol concentration from
two independent sources: a hybrid s and a Raman-based Partial Least
Squares (PLS) calibration mo
veloped PCA (Principal Component”Analysis) and SPC (Statistical Process

Control) monitors to d

extrusion results, itdis s

ji n Model, Hybrid Soft Sensor, Affinisol, HPMC

lEorresq:)onding author.

Ermail addresses: ftahir@perceptiveapc.com, ftahir490hotmail.com (Furqan Tahir),
iq.islam@strath.ac.uk (Muhammad T. Islam), jmack@perceptiveapc.com (John Mack),
j.robertson@strath.ac.uk (John Robertson), dlovett@perceptiveapc.com (David Lovett)

Preprint submitted to Computers & Chemical Engineering March 25, 2019



ACCEPTED MANUSCRIPT

SRS TR

AR NN Q&

E‘il“:'a.":._ﬂ Homogenizing Melting

Granulating and discharge

Figure 1: HME process overview [1]

1. Introduction

Hot Melt Extrusion (HME) is one of the most )@s processing tech-
niques within the plastic and rubber manufactu i v as well as the food
processing industry. More recently, HME ha: significant interest from

s the pharmaceutical sector [1]. This is b e E enables continuous man-

ufacture of a wide variety of dosagé forms including solid dose formulations,

soluble APIs (see e.g. [2] and the

which are useful in the contex

Process Analytical Tec PAT) [3],[4], HME facilitates the ‘Quality by
w  Design’ (QbD) appr rmaceutical manufacturing by enabling contin-
1OUS Process mo and control [2]. The HME drug delivery system is also

versatile in that an be used to produce granules, pellets, tablets, capsules,

, transdermal and ophthalmic inserts [5].
The p cutical HME process involves feeding of APT (Active Pharma-
15 edient) and excipient powders into the HME barrel. The barrel
ically houses two screws (rotated by a motor), and is divided into sections
called zones. Each zone has its own heating and cooling unit with a ther-
ocouple (for temperature control and measurement) and, depending on the
corresponding screw type, can either be classed as a kneading (mixing) zone or

»  conveying (transport) zone. As shown in Figure 1, the powder blend is melted

in the first few zones, followed by kneading to mix the melt, homogenisation
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and then discharge (through the die zone) for further processing downstream
6], (1.

For monitoring and fault detection of various processes, a common tool is
the so-called soft sensor - see [7] for a comprehensive review of soft sensors
within the process industry. These soft sensors, which can be model-driv

data-driven, are used to predict the critical quality attributes [8]. Furt

in conjunction with other techniques such as Principal Compon
(PCA), they can be used to monitor processes as well as id yving, various
faults (see e.g. [9] [10] and the references therein).

In the context of HME processing, Raman spectros consisting of a

fibre optic probe connected to a spectrometer - has, beemvused-to monitor drug
formulation to achieve QbD manufacturing requi ee e.g. [11] and the
references therein). In [12], Raman spectros sed for on-line analysis to
quantify the drug loading (API concent ot-melt extruded films and
to evaluate the physical state of che
PLS (Partial Least Squares) m
Raman spectra against the API
Raman was employed wi e die zone of a 16 mm co-rotating twin-screw

extruder to monitor t the drug content and to evaluate the solid

state of the extr, prier to discharge. A PLS model was also designed

and validate the API concentration. In-line Raman spectroscopy
was also in [14] to monitor and evaluate the materials behaviour at a
molecular, le uring the extrusion as a function of process parameters, i.e.

e refand screw speed. Through PCA, it was observed that increasing

arrel temperature reduced the crystallinity of the API within the extrudate.
Results on in-line barrel monitoring to improve the material understanding and
pact of processing conditions within the HME were also reported in [15].
As discussed above, most of the work in the literature involving Raman
spectroscopy has focused on monitoring/understanding the chemical composi-
tion and drug interactions of the extrudate within HME. In this paper, however,

we address the problem of HME monitoring and fault detection from a process
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viewpoint. In particular, a scheme to detect typical operational faults during
HME processing (e.g. zone heater failures, powder feeding issues and Raman
probe exposure faults) is proposed. Through real-time results, we show that a
PLS calibration model (predicting API concentration using in-line Raman spec&
tra) on its own is not sufficient to detect the aforementioned faults. To re
this, we also design a back-up (hybrid) soft sensor [16, 7]. API concentrati
predictions from these two independent sources, as well as the proc ta,
then fed into the developed PCA and SPC (Statistical Proces %on-
itors. As demonstrated by real-time results (section 4), sue arrangement
of two independent soft sensors, together with the PCA nitors, enables
the proposed scheme to pick up a wide range of HME pro faults (which a
single-sensor based monitoring scheme cannot).

This paper is organised as follows: Secti ides a description of the
experimental setup and method. The pr ed precess monitoring scheme (in-
cluding the design of calibration m el,%{sor, PCA and SPC monitors)

process monitoring results are pre-

is formulated in Section 3. Real-ti
sented in Section 4 and the conclusion is given in Section 5. A proof sketch of

the soft sensor model tra % nction is provided in the Appendix.

1.1. Abbreviations

e API: A Pharmaceutical Ingredient
e CS

ontintous Stirred-Tank Reactor
sign of Experiment

: First Order Plus Time Delay
: Hot Melt Extrusion

IR: Near-Infrared

e OPC: OLE for Process Control

e PAT: Process Analytical Technology

e PCA: Principal Component Analysis

e PLC: Programmable Logic Controller
e PLS: Partial Least Squares

e PV: Process Value
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QbD: Quality by Design

e RMSEE: Root Mean Squared Error of Estimation
e SP: Setpoint Value

e SNV: Standard Normal Variate

e SPC: Statistical Process Control

e SPE: Squared Prediction Error Q

e LCL: Lower Control Limit \«

e LWL: Lower Warning Limit

e LV: Latent Variable
e UCL: Upper Control Limit

e UWL: Upper Warning Limit
2. Experimental Setup and Method

This section provides a description of the experimental setup including the

HME unit, powder feeders and Raman cter as well as the software

package used for implementing the p sed’monitoring scheme.

Cramer ::::Eel
(feeding

into

Zone 1)

Figure 2: HME and feeder setup



105

110

115

120
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(a) Screws in the HME barrel (b) In-line Raman probe

Figure 3: HME screws and in-line Raman prebe Setup

The ratio of the screw length to barrel diameter, (L/D. ratio) is 40:1 and the
extruder barrel consists of 10 heating zones‘plus a die zone. The experimental
setup is shown in Figure 2.

API (Paracetamol powder) and €xcipient (Affinisol powder) were fed into
the HME through two Loss-in-weight feeders, which have load cells to calculate
the loss in weight of powder and henee support gravimetric feeding (closed loop)
[18]. The feeders used indthis study were FlexWall DDW-FW20 and MiniTwin
DDW-MT from Brabender Te¢hnology [19]. These feeders discharge into zone
1 of the barrel. /Fheteo-rotating screws mix the materials and transport the
melt, through'the'barrel, towards the die zone for extrusion. The HME screw
configuration used in this study is shown in Figure 3a. It consisted of two mixing
zones/(with 30%7 60° and 90° kneading clements) and 8 conveying (transport)
zonies. The FuroLab 16 unit can heat up to 300°C (in each zone) and the HME

motor supports a maximum screw speed of 1000 rpm.

242. In-line Raman Spectroscopy

In-line Raman spectra were collected using the Raman Rxn2 spectrometer
from Kaiser Optical Systems Ine [20]. For in-line measurements, a fibre-optic
Raman Dynisco probe was connected into the die head (Figure 3b), to monitor

the API concentration of the melt before it is extruded out through the die.
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The employed laser wavelength of 785 nm was generated from an Invictus NIR,
(near-infrared) diode laser [20]. All in-line spectra were logged with a resolution

T, an exposure time of 10 seconds and using a laser power of 350 mW.

of 4 cn—
Raman spectra was collected at a sampling interval of 15 seconds. Furthermore
at the start of each experiment, a 10 minute process/spectra stabilization fi

was considered before commencing the API feed.

2.3. PharmaMV software
The proposed monitoring and fault detection scheme w@ ed and

deployed, in real-time, using PharmaMV software package fr ceptive En-
gineering Limited [21]. Communication was implemented b en PharmaMV
and the HME PLC (programmable logic controller it using an OPC (OLE
for Process Control) interface [22]. This in abled PharmaMV to log
all the process variables (e.g. temperatures, mo orque and power, pressure)

as well as write the setpoints (SP) such a ew speed, zone temperatures and

awas also collected and time-aligned

run the SPC, PCA and PLS models in

feed rates. The in-line Raman spectr
with the process data in Pharma

real-time.

2.4. PCA and PLS{Alg

The model velo in this work involve the use of PCA and PLS algo-
rithms whi es arised below.

pC

tatistical, dimensional-reduction technique which has extensively

opprocess monitoring (see e.g. [23], [24], [25]. [26]) as well as control

[28]). PCA algorithm typically involves performing singular value
osition on the (normalised) data covariance matrix, breaking it down
info two orthogonal matrices, know as loading matrices, and a diagonal matrix
that contains the eigenvalues. The loading matrix is used to project the original
data onto the so-called latent variable (LV) space, resulting in a model of the
form:

X=TP"+E (1)
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where X, T', P and E are the data, score, loading and residual matrices respec-
o tively.
The first LV describes the direction of greatest variation within the dataset.
As each LV successively describes less information, a number of lower LVs ar
ignored by the user as they represent noise and hence the dimensionality o
problem is reduced. Note that the variation described by cach LV is pro ion
155 to the magnitude of its associated eigenvalue.
In the context of process monitoring, two important metric ed with
the PCA model are the SPE (squared prediction error) [29 a@resholds,
which are computed alongside the model. An SPE val ¢ its threshold

indicates a breakdown in the data correlation (which i

ive of potential
wo process faults). Similarly, a T? value [30], when{co to its threshold, is
indicative of process operation away from (potentially highlighting

faulty behaviour). Further details on theWRCA algerithm, including mathemat-

ical formulation, are given in [31], [

PLS regression is also a da chnique that has been extensively

used for process monitoring as we

references therein). Throu ]

the (normalised) data’pred =
the form [32]:

X=1PT+E (2a)

Q Y =UQ" + F (2b)

W, nd @ are the loading matrices, 7" and U are the score matrices, and E

16 d I dre the residual matrices, for X and Y, respectively. The score matrices

arc computed such that T'= XW and U = T3, where W matrix is the regressor

ntrol design (see e.g. [23], [28] and the

S, in a manner similar to the PCA algorithm,

(X) and responses (Y) can be represented in

X onto the associated (reduced-dimensional) LV space and /3 is the regressor
of the X score space onto the Y score space. It follows from equation (2) that
a closed-form regression relationship between the predictors and responses can
o then be given by
Y=XB+F (3)
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|
Figure 4: Proposed HME process monitoring scheme <‘

where B = WBQT is the matrix of coefficients identified algorithm.
For further details on the algorithm, see e.g. [31], [3 the references

therein).

9-,

3. HME Process Monitor Development

In this section, we present the d pment of the HME process monitoring

scheme. As shown in Figure roposed scheme involves real-time API
concentration predictions from two“independent source: a Raman calibration
model as well as a CSTR

predictions (along with i

SPC and PCA

mous Stirred-Tank Reactor) soft sensor. These

rocess data) are then used by the (developed)

odelsito monitor the process. Finally, the output from these
models, na value and control limit violations, can then be used to
divert a: f-specification product and /or rectify process faults on the HME
unit,
esi Experiment (DoE) type tests were performed on the HME process
collect statistically rich data for developing the aforementioned models. As
shown in Table 1, three sets of experiments were conducted at medium (200rpm),
ow (100rpm) and high (300rpm) screw speeds, respectively. In each set, the APT
and Excipient feedrates were varied to achieve a steady-state API concentration

(based on the feedrate ratios) of 10 to 50% with increments of 10%. Notice

that for set 3, due to the high screw speed, the total product throughput was

10



ACCEPTED MANUSCRIPT

Set | Excipient API TFee- | Steady-State | Total Screw Speed | Temperature
Feedrate drate Concentra- Through- (RPPM) (Deg C)
Ke/b) | (g | tion (%) | put (Ke/he)

1 0.9 0.1 10 1 200 180

1 0.8 0.2 20 1 200 180

1 0.7 0.3 30 1 200 180

1 0.6 0.4 40 1 200 180

1 0.5 0.5 50 1 200 180

2 0.9 0.1 10 1 100 160

2 0.8 0.2 20 1 100 1

2 0.7 0.3 30 1

2 0.6 0.4 40 1

2 0.5 0.5 50 1

3 1.35 0.15 10 1.5

3 1.2 0.3 20 1.5

3 1.05 0.45 30 1.5

3 0.9 0.6 40 15

3 0.75 0.75 50 1. 300

Table 1: DoE runs on &rocess

increased to 1.5 kg/hr, primaril ent the HME from running partially
empty.

To ensure good represen

PLS Calibration

n of the HME process, the training data for the
soft sensor models was selected to include all five
concentration Is. ilarly, for PCA and SPC monitors, data from all three

DoE sets clu for robust model development.

3.1. ibration Model Design

During’the DoE runs, Raman PAT spectra was collected in real-time, to-

¢ HME exit in the die zone (see Figure 3b above). The spectra was
pre-processed using Standard Normal Variate (SNV), to normalise the spectra
around its mean, followed by Savitzky Golay filter (with window size 10, polyno-
mial order of 2 and derivative order of 1) to remove additive effects and smooth

out the spectra. A review of these pre-processing techniques can be found in

[34].

11
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Figure 5: Raman spectra for Paracetamol at.diff t concentrations
Figure 5 shows the pre-processed Raman spectra, between the wavenumbers

1661 em ! and 619 cm™!, for API concentration of 10% (blue), 30% (green)

and 50% (red), respectively. The s a peaks are due to the presence of

various chemical groups, such a mide groups and C-C ring stretching

(further details on the charaéteristic’ Paracetamol Raman spectra are given in
[35], [36] and [37]). Fi r ws the strong correlation between Paracetamol
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Figure 6: Raman peaks at 867 cm—1 (left) and 1622 cm—1! for different concentrations
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Predictors (X) Response (Y) | Latent Variable ”? Cumulative R?
Pre-processed Raman Spectra 1 73 % 73%
API %
bins 1890 em ! to 150 em ! 2 14 % 87%
Concentration

(1741 predictors in total) 3 4% 91%
Table 2: PLS model variables and LV contributions

Using PharmaMV software package [21], a PLS calibration mod develr
oped to predict, in real-time, the API % concentration, using th c-processed)
25 Raman spectra corresponding to the wavenumber range: 1890em ™! to 150cm ="

(1741 predictors in total). For the PLS model design, 3
cumulatively accounted for 91% of the variability within
Figure 7 shows a good match between the cali

trace on the first plot) and the theoretical A

selected which

edata (see Table 2).

ti el predictions (blue

ation based on the API-

=0 to-Total Feedrate ratios (given in red). PI and Excipient Feedrates plots

are also shown on the figure for refe

Remark 1. Note that choosin

an 3 LVs overfitted the PLS model, thus

capturing the noise and Hg the predictive performance on unseen data.

Thecorctical 48

Conc.

36

Calibration
24

Predictions

[%]

oK

cdrate
g/hr]

Excipient
Feedrate
[Kg/hr]

12

0.48
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0.80
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040
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Figure 7: Raman calibration model design
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3.2. Hybrid Soft Sensor Design

In this section, we present the development of a hybrid soft sensor to predict
the dynamic API concentration at the outlet of the extruder using feeder process

data.

By considering the component mass balance [38] as well as well as the p @
agation delay through the HME, the API outlet concentration can be

using a first-order plus time delay (FOPTD) transfer function:

g (S) B Ke—ds

out
= = 1
G = S T Ts i1 )
where Cj,, denotes the HME inlet API concentrationfatio (unitless) and C7,,

is the percentage outlet API concentration (a pro etchyfor G(s) is provided

in the Appendix). The model is hybrid in the sen parameters K, d and

T are identified, using the experimental calibration data for training (shown

estimates that minimize the pr ion crror. In this work, least squares identi-

fication was used on DoE datajto compute a model with the parameters:

7

T =31.642, d=91.508 (5)

yielding an R%value of 97%. The model was then discretised, at the sampling

interval o using Zero-Order Hold. The concentration predictions of this
hybri sor, using real-time (;, data, are shown in Figure 8 (red trace
o lot). Note that DoE sets 2 and 3 were used for validating the

ft se The figure shows a good match between the predictions of the
c tion model and hybrid soft sensor across all three sets of data.

emark 2. Introducing K as a variable in model (4) provides the identification
algorithm with an extra degree of freedom to reduce the prediction error. In the
estimation algorithm, the initial guess of K was specified as 100 (as it is used

to convert the API concentration ratio to a % - see the Appendiz) but the final

14
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Set 1

Set2

Range: 2h 8m 34.75

3081
020

Feedrate
[Kg/hr]

120

Excipient !
Feedrate 080

[Ke/hr]  gq

o f—

"\_\_‘-_\_

i

(R

12|
[Nm] 8 S dibbal
e

Figure & Training and validation data for hybrid soft se

value of 102.71 was identified since

training

TS
i

Time

~
r model ’evelopment

(which in the

3.3. SPC and

t

the process noise, particularly in the torque signal (Table 3). The model used
predictions from both PAT calibration model and the soft sensor, as well as ex-

cipient/API feedrates and motor torque data. Table 4 gives the model variables,

lop

0% of the variability within the data without overfitting or modelling

Latent Variable R? Clm&xti 2
1 ™ % 5
2 15 % 90%
Table 3: PCA LV ributions

itor Development

and validated the calibration model and soft sensor us-

ntain some prediction error).

PCA monitor was developed in PharmaMV software package, cap-

. _dd

libration model predictions were used for

the LV loadings and the predictions errors, whereas the PCA reconstructions of

the training dataset are shown in Figure 9.

15
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Variable LV1 Loading | LV2 Loading | RMSEE (Normalised)
PAT Predictions -0.512 0.094 0.211
CSTR Predictions -0.457 0.251 0.448
Excipient Feedrate 0.384 0.745 0.261

APT Feedrate -0.438 0.549 0.299

Motor Torque 0.435 0.269 0.512 &
Table 4: PCA model variables, LV loadings and prediction errors \(

It can be scen in Table 4 that the second LV primarily describes the variation

in the two feedrates (and therefore the total feedrate). THis"is reflected

s 1n the score plot in Figure 10a, where the Set 3 data ferms a separate cluster as

Limits) as well as values for the training datas

In addition to PCA and PLS, another ant process monitoring tool is
a0 so-called statistical process control . SPC charts are typically used
to monitor key process variable e, to ensure that they remain within a
Ve
Set 1 . Set 2 _
imge: 2h8m 34.7s i
55.11
Calibration
Prediction
PCA
Reconstruction
1%] 257
56.41
Soft sensor
Prediction
PCA

Reconstruction

Reconstruction
N

3.05

Time

Figure 9: PCA monitor development - signal reconstructions
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360 w2 360

;

(1.5kg/hr)

N
g
>

(a) PCA model score plot A gs }

Set1 Set 2
Range: 2h 8m 34.75
2107 >3
1285
2006
SPE Value
Warning Limi{]
Alarm Limit
0
12.49 B
6.20
189
T? Value
Warning Limit]
Alarm Limit
ow '\_‘&M

Time
: PCA model SPE and T?

: PCA monitor development - score plot and statistics

S multivariate process monitoring applications (see e.g. [41], [42],
and the references therein).
215 In this work, we develop a Shewhart control chart on the ‘Model Mismatch’
gnal (= Calibration model prediction — Soft sensor prediction) for monitoring
the HME process in real-time. This chart computes the upper/lower control

limits (UCL/LCL) based on the training data as follows [40]:

UCL = iy, + Loy, (6a)

17
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9.4419

JUCL=4 8743 l -

Model Mismatch

UWL=2.8769 ——-------- - ---f------------------p--q-————————f- -} -~

Upper/Lower
Warning Limit Mearnt 1178
Upper/Lower
Control Limits |y o6 o --b--loooo oo LW W
jLCL=-7 |099u. T = \
97712} [ 4

Time y

Figure 11: Shewhart Control Chart for SPC Monitori

w0  where p,, and o, represent the mean and sta deviation of process sig-

nal m, and L = 3 represents the distance m the mean line. Under
the assumption of normally distributed data, with these so-called ‘three-sigma’

control limits, the Shewhart control char ially tests for any changes in

the mean (in comparison to the good training data). Shewhart chart, developed

25 18ing the above DoE training dat shown in Figure 11. It shows the UCL,

LCL as well as the warni its (computed by setting L = 2 in equation 6).

4. Real-time Pr itoring Results

In this se@
developed @ ess monitoring scheme. In particular, results corresponding to

resent real-time results on the HME system using the

200 commonlyo ring HME faults are discussed including feed accumulation is-

s, R probe exposure/calibration faults, barrel zone-heater breakdowns
: d API impurities/degradation.

. Normal Operating Conditions

When the HME is running under normal operating conditions, there is a
25 good match between the calibration model and soft sensor predictions in both
transient and steady-state phases (as shown in Figure 12). This enables the

model mismatch signal to remain within its SPC control limits (last plot in

18
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Figure 12: Normal Operation: Pr

Figure 12). Furthermore, the SPE T

-

SS PC Data

alues being below their respective

thresholds for the PCA monito: st in Figure 13) also reflects this state
of ‘no-fault’ operation.
Range: 6m 20.7s
2488 4102 fme e
Calibration Pred. ﬁﬁ 2
PCA Reconstr.
30.86.
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Soft sensor Pred. 4141
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Figure 13: Normal Operation: PCA reconstructions, SPE and T? data
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4.2. API Feeding Issues

We consider the common case of dispensed API powder aeetunulating in the
feed throat of the HME barrel (shown in Figuré\14).3This is caused by cohe-
siveness/poor flow-properties of the powder dnd"m@ans that a proportion of the
API powder, whilst being dispensed propetly, is ot moving through the HME
barrel towards the die-zone (see alsé, Remérk 3). For this case, as shown in
Figure 15, the Raman-based calibration model correctly reduces its API con-
centration predictions, whereas thessoft sensor still maintains its prediction of
around 41% concentration (as ity is based on the feedrate process values coming
from the two feeders! which -/as shown in plots 2 and 3 of Figure 15 - ex-
pectedly remain fairlyconstant since powder is being correctly delivered out of
the feeders). Duetto this discrepancy, the mismatch signal falls below the SPC
lower conttol limit (red shaded region in plot 5, Figure 15) with the fault being
detecged in under 2 minutes (which is comparable to the powder propagation
timethrough the HME barrel, see 5). Due to this breakdown in correlation, the
PCA model reconstructions also no longer match the process data resulting in
the SPE value exceeding its alarm limit (red shaded region in plot 6, Figure 16).

Once the API accumulation is cleared, the two predictions match-up again

resulting in the SPE values going back to normal levels.
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Figure 16: API feeding issues: PCA reconstructions, SPE and T2 data

Remark 3. There are a few other common feeding faults which can also be
picked up in the same way by the proposed scheme. For instance, during online
powder refills and other (vibrational) disturbances to the load cells, the feeders

automatically switch from gravimetric (closed-loop) to volumetrie (open-loop)
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mode [18]. This frequently causes the feeders to under-deliver powder whilst still
(incorrectly) reporting the desired feedrate - thus causing the mismatch. In tradi-
tional manufacturing, such faults are picked up much later by the operator whilst

the proposed scheme enables automatic, rapid detection within a few minutes,

For further details on such faults, see e.q. [44] and the references theremQ
4.9. Raman Probe Fault

The Raman probe typically sits flush with the extrudate mat the
HME die-zone. This sometimes causes material to deposit on the pro indow
which in turn affects the spectral signature. Furthermare spectra is

also sensitive to changes in the ambient light conditionssan osure.

Results corresponding to above Raman prob are,;shown in Figure 17.
It can be seen that the soft sensor predictions the feedrates, are correct
but the calibration model does not properly reac feedrate step-change (plots

2 and 3 in Figure 17). This prediction divergénce causes the mismatch signal to

drop below the SPC lower control li ed shaded region) - hence generating

the alarm.
Looking at the PCA in Figure 18, we note that, PCA model (cor-
rectly) reconstructs u er value for the calibration model predictions

based on the real-ti rocess data. This discrepancy between the (faulty)

prediction and its PCA reconstruction contributes to

alarm limit (plot 6, Figure 18).

-upl soft sensor helps to add redundancy to the system and allows for efficient
anld reliable fault detection, using for instance a simple SPC monitor, based upon
he divergence of two independent predictions (see e.g. [7] and the references

therein,).
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Figure 18: Raman Probe Fault: PCA reconstructions, SPE and T? data
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Figure 20: API Impurity: PCA reconstructions, SPE and T? data

4.4. API Powder Impurities

Another source of disturbance/uncertainty within HME production is pow-

der impurity /degradation. This is typically caused by grade inconsistencies in
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Range: 18m 47.4s
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All 10 barrel-zones contain separate heating elements to control the
o5 ial temperature along the HME. As mentioned in section 1, temperature

changes affect the APT crystallinity /amorphicity structure within the extrudate.
These structural changes impacts the corresponding Raman spectral signature
and, in turn, the calibration model predictions.

Figure 21 shows the results when zone-10 heater (towards the HME outlet)

s malfunctions and is unable to maintain its temperature setpoint (SP) value of
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180 Deg C (plot 6, Figure 21). The calibration model predictions (erroneously)
increase due to the changed spectra ocia§d alth a more crystalline extrudate
1

(caused by the zone temperatur

4]). However, the soft sensor pre-

dictions remain unchanged (and true) corresponding to constant feedrates. This

s prediction discrepancy sh
as well as the PCA
22, when the he

’ in both the mismatch signal (plot 5, Figure 21)
lot 6, Figure 22). As shown in Figures 21 and
fixed, the process goes back in statistical control
with key monito indicators reverting to normal. Finally, Figure 23 shows the
crystalli date that was produced as a result of the heater fault (alongside

s the netmal r roduct).

Crystalline Extrudate

Figure 23: Impact of Heater Fault on the Extrudate

26



385

390

395

400

ACCEPTED MANUSCRIPT

Remark 5. Whilst the focus of the proposed monitoring scheme is on detec-
tion of various common faulty operations, fault isolation capability can be in-
corporated through the development of nonlinear methods such as Radial Basis

Functions (RBF) and Self-Organising Maps (SOM) - see e.g. [10] and the mf&

erences therein. These Neural Network techniques can be used, together

the PCA monitor, to model the relationship between certain process conditio
and the corresponding fault case. Apart from the normal operatin, %‘A
models require training on the data for the specific faults to be i e her-
more, additional variables such as die pressure, motor power, \and enérgy/mass

balance calculations would also need to be included and (thi ms part of the
future work. Q
5. Conclusions

A real-time process monitoring schem n proposed for a pharmaceu-

P

tical HME process. The scheme invo and SPC monitors using process

data as well as the concentrati tions from two independent soft sensors
to detect different types of common faults during manufacturing, in real-time.

The novelty of this 4 w in the design and application of a two-sensor
framework to proc itoring. The calibration model (based on the Raman
spectra) and & ensor (based on feeder process data) both indepen-

th

dently predi e I concentration at the HME outlet. As demonstrated
throughsthexéal-time extrusion results, the prediction mismatch from these two
a

sen. the PCA /SPC monitors to automatically detect various tvpes of
TOCESS ts (e.g. zone-heater breakdowns, feeding issues and powder impuri-
t radation) which would otherwise remain undetected with a single-sensor

mgenitoring scheme. Furthermore, the mismatch signal and correlation break-

down also provide other fault information, including the occurrence time.
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Appendix: Hybrid Soft Sensor Model

In this Appendix, we present a proof sketch for the FOPTD model given in
s equation (4), based on the principles of (component) mass balance [38].
During normal steady state operation, the mass flow at the inlet and out
of the HME barrel is the same which implies negligible powder build-up
the unit [45]. Then, denoting the APT feedrate by Fapy, and total inlethan

outlet feedrates by Fj,, and F,,,, respectively, all in kg/hr, we ca

d My (t
Fi () = Fou(t) = ﬁ =0 (7)
dt
sis - where My(t), in kg, denotes the powder mass in the arrel at time .
Let O}, and C,,,,; respectively denote the inlet utleticoncentration ratios

(unitless) defined by:
Fapi(t) Fapr(t)
Cin(t) = s t): 8
(t) Frlh) (t) E Four (1) (8)
poment mass balance for the API, it

Coalt) = 24,202 0) )

Then, applying the principles o
follows that

550 In (9), replacing
both sides by F;

in(t) (as specified in equation (7)) and dividing
e (CSTR) differential equation:

dC e (t
Cln(t) - Cout(t) = Td—tt() (10)
where T, the time constant reflective of the mean residence time, is given by:
— Mb

T

F (1)

Note that the model in (10) assumes perfect mixing (a standard assumption for

TR). Therefore, to take account of the material propagation delay through
the HME barrel, we add a plug flow component to the C, term in the model.
Furthermore, a gain term (/) is incorporated to not only obtain the output

concentration C\,,,; as percentage value (denoted by C?

+(5)), but also to provide

an extra degree of freedom for fitting the model to calibration prediction data
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as part of model development process. Finally, taking the Laplace transform of

@&

this modified system yields the transfer function:

_ Cgut(s) _ Ke_ds
Gls) = Cin(s)  Ts+1

S
\as
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