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Abstract

The authors of this paper have used the theory of Riordan matrices to introduce the notion
of a Riordan graph in [3]. Riordan graphs are proved to have a number of interesting (fractal)
properties, and they are a far-reaching generalization of the well known and well studied Pascal
graphs and Toeplitz graphs, and also some other families of graphs. The main focus in [3] is
the study of structural properties of families of Riordan graphs obtained from certain infinite
Riordan graphs.

In this paper, we use a number of results in [3] to study spectral properties of Riordan
graphs. Our studies include, but are not limited to the spectral graph invariants for Riordan
graphs such as the adjacency eigenvalues, (signless) Laplacian eigenvalues, nullity, positive
and negative inertias, and rank. We also study determinants of Riordan graphs, in particular,
giving results about determinants of Catalan graphs.

Keywords: Riordan graph, adjacency eigenvalue, Laplacian eigenvalue, signless Laplacian
eigenvalue, inertia, nullity, Rayleigh-Ritz quotient, Pascal graph, Catalan graph
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1 Introduction

The authors of this paper have used the theory of Riordan matrices to introduce the notion of a
Riordan graph in [3]. Riordan graphs are a far-reaching generalization of the well known and well
studied Pascal graphs [9] and Toeplitz graphs [12], and also some other families of graphs. The
Pascal graphs are constructed using Pascal’s triangle modulo 2, and Pascal’s triangle itself has
motivated the appearance of the area of Riordan matrices [17], an active area of research these
days. A Toeplitz graph G = (V,E) is a graph with V = {1, . . . , n} and E = {ij | |i − j| ∈
{t1, . . . , tk}, 1 ≤ t1 < · · · < tk ≤ n− 1}.

Riordan graphs are proved to have a number of interesting (fractal) properties [3], which can
be useful, e.g. in creating computer networks [9] with certain desirable features, such as

• the design is to be simple and recursive;

• there must be a universal vertex adjacent to all others;

• there must exist several paths between each pair of vertices.
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Also, Riordan graphs can be useful when designing algorithms to compute values of graph invari-
ants.

The main focus in [3] is the study of structural properties of families of Riordan graphs obtained
from infinite Riordan graphs, which includes the fundamental Riordan Graph Decomposition The-
orem (see Theorem 2.4 below) and the generalization of a number of known results for the Pascal
graphs.

In this paper, we study spectral properties of Riordan graphs. The spectral graph theory studies
relations between graph properties and the spectrum (i.e. the set of eigenvalues) of the adjacency
matrix, or (signless) Laplacian matrix, which can be useful in various contexts. For example,

• the second largest eigenvalue of a graph gives information about expansion and randomness
properties of a graph;

• the smallest eigenvalue gives information about the independence and chromatic numbers of
a graph;

• interlacing of eigenvalues (see the definition in Lemma 2.14) gives information about graph
substructures;

• the fact that eigenvalue multiplicities must be integral provides strong restrictions on graph
parameters, e.g. in the case of strongly-regular graphs.

In relation to our paper, in [4], several spectral properties of Pascal graphs were studied by
exploring their spectral graph invariants such as the algebraic connectivity, the first three largest
Laplacian eigenvalues and the nullity. In this paper, we obtain results on several other spectral
graph invariants for Pascal graphs. More importantly, we develop the spectral theory for many
other classes of Riordan graphs. Our studies include, but are not limited to spectral graph invari-
ants for Riordan graphs such as the adjacency eigenvalues, (signless) Laplacian eigenvalues (see
Section 3), positive and negative inertias (see Section 6), nullity (see Section 7), and rank (see
Theorem 7.5). Our key achievement is to give relations for Laplacian spectral radius and algebraic
connectivity of Riordan graphs in term of given generating functions. Also, we give a new version
of Rayleigh-Ritz quotient for Riordan graphs.

One of the essential difficulties we faced was the fact that the number of edges in Riordan
graphs is not known in the general case. This parameter is normally known when dealing with
spectral graph invariants. Still, we were able to obtain non-trivial interesting spectral results for
various classes of Riordan graphs. In some cases, we use certain structural results in [3] to achieve
our goals.

The paper is organized as follows. In Section 2, we give a list of necessary notions, notations
and known results. In Section 3, we study the eigenvalues and (signless) Laplacian eigenvalues of
Riordan graphs. In Section 4, vertex degrees in Riordan graphs are studied to obtain some bounds
for the largest and second smallest Laplacian eigenvalues of Riordan graphs. The Rayleigh-Ritz
quotient for Riordan graphs is also studied in Section 4. In Section 5, we give results on eigenvalues
and Laplacian eigenvalues of Pascal and Catalan graphs. In Section 6, results pertaining to the
positive and negative inertias of a Riordan graph, and their complements, are given. In Section 7,
we present several results on the nullity and rank of Riordan graphs. Finally, in Section 8, we study
determinants of graphs in certain subclasses of Riordan graphs. In particular, we give results on
determinants of Catalan graphs.

2 Preliminaries

Graphs in this paper are normally on the vertex set [n] := {1, 2, . . . , n}. Also, we let Vo := {j ∈
[n] | j is odd} and Ve := {j ∈ [n] | j is even}. Suppose G is a graph with a vertex set V . ForW ⊆ V ,
we denote the subgraph in G induced by W by 〈W 〉G, or simply by 〈W 〉 if G is understood from
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the context. The neighborhood of a vertex v, denoted by NG(v), is the set of vertices in a graph
G adjacent to v.

In this paper, the graphs Nn, Kn, Km,n−m (1 ≤ m ≤ ⌊n
2 ⌋), and Pn are, respectively, the null

graph, the complete graph, the complete bipartite graph with parts of sizes m and n−m, and the
path graph on n vertices. Also, A ≡ B means that matrices A and B equal modulo 2. Similarly,
A(i, j) ≡ B(i, j) means the (i, j)th element in A equals the (i, j)th element in B modulo 2.

2.1 Riordan graphs

Let κ[[z]] be the ring of formal power series over an integral domain κ. If there exists a pair of
generating functions (g, f) ∈ κ[[z]]× κ[[z]], f(0) = 0 such that for j ≥ 0,

gf j =
∑

i≥0

ℓi,jz
i,

then the matrix L = [ℓi,j]i,j≥0 is called a Riordan matrix (or, a Riordan array) over κ generated
by g and f . Usually, we write L = (g, f). Since f(0) = 0, every Riordan matrix (g, f) is an infinite
lower triangular matrix. If a Riordan matrix is invertible, it is called proper. Note that (g, f) is
invertible if and only if g(0) 6= 0, f(0) = 0 and f ′(0) 6= 0.

For a Riordan matrix (g, f) over Z, the matrix L = [ℓi,j]i,j≥0 defined by

ℓi,j ≡ [zi]gf j (mod 2),

is called a binary Riordan matrix, and it is denoted by B(g, f). The leading principal matrix of
order n in B(g, f) is denoted by B(g, f)n.

The following result is well known as the Fundamental Theorem of Riordan matrices (FTRM).

Lemma 2.1 (FTRM, [17]). Let R = (g, f) be a Riordan matrix and let RA = B where A and B
are two infinite vectors with the generating functions a(z) and b(z), respectively. Then b = g a(f).

The following definition gives the notion of a Riordan graph in both labelled and unlabelled
cases. We note that throughout this paper the graphs are assumed to be labelled unless otherwise
specified.

Definition 2.2. A simple labelled graph G on the vertex set [n] is a Riordan graph of order n if
the adjacency matrix of G, A(G), is an n× n symmetric (0,1)-matrix such that

• its main diagonal entries are all 0, and

• its lower triangular part below the main diagonal is B(g, f)n−1

for some Riordan matrix (g, f) over Z, i.e., by using Riordan language,

A(G) = B(zg, f)n + B(zg, f)Tn . (1)

We denote such G by Gn(g, f), or simply by Gn when the pair (g, f) is understood from the
context, or it is not important. A simple unlabelled graph is a Riordan graph if at least one of its
labelled copies is a Riordan graph.

We note that the choice of the functions g and f in Definition 2.2 may not be unique. If G is
a Riordan graph and A(G) = [rij ]i,j≥1, then for i > j ≥ 1,

ri,j ≡ [zi−1]zgf j−1 (mod 2) ≡ [zi−2]gf j−1 (mod 2). (2)

For example, the Riordan graph Gn

(
1

1−z ,
z

1−z

)

is called the Pascal graph of order n, and is

denoted by PGn. For another example, the Catalan graph CG6(C, zC) shown below, where

C =
1−

√
1− 4z

2z
=
∑

n≥0

1

n+ 1

(
2n

n

)

zn = 1 + z + 2z2 + 5z3 + 14z4 + · · · ,

is given by the adjacency matrix A(CG6):
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A(CG6) =











0 1 1 0 1 0
1 0 1 0 1 0
1 1 0 1 1 1
0 0 1 0 1 0
1 1 1 1 0 1
0 0 1 0 1 0











b b b

b

b

b

2 4 6

1

3

5

Definition 2.3. A Riordan graph Gn(g, f) is proper if the binary Riordan matrix B(g, f)n−1 is
proper. Thus, in a proper Riordan graph a vertex i is adjacent to the vertex i+ 1 for i ≥ 1.

If a Riordan graph Gn(g, f) is proper then the Riordan matrix (g, f) is also proper because
g(0) (mod 2) ≡ f ′(0) (mod 2) ≡ 1. The converse to this statement is not true. For instance,
(1, 2z + z2) is a proper Riordan matrix but Gn(1, 2z + z2) is not a proper Riordan graph.

The following theorem about the adjacency matrices of Riordan graphs is a key result in [3].

Theorem 2.4 (Riordan Graph Decomposition, [3]). Let Gn = Gn(g, f) be a Riordan graph with
[z1]f = 1. Then

(i) The adjacency matrix A(Gn) satisfies

A(Gn) = PT

[
X B
BT Y

]

P (3)

where P =
[
e1 | e3 | · · · | e2⌈n/2⌉−1 | e2 | e4 | · · · | e2⌊n/2⌋

]T
is the n× n permutation matrix

and ei is the elementary column vector with the ith entry being 1 and the others entries
being 0.

(ii) The matrix X is the adjacency matrix of the induced subgraph of Gn(g, f) by the odd indexed
vertex set Vo = {2i−1 | 1 ≤ i ≤ ⌈n/2⌉}. In particular, the induced subgraph 〈Vo〉 is a Riordan
graph of order ⌈n/2⌉ given by G⌈n/2⌉(g

′(
√
z), f(z)).

(iii) The matrix Y is the adjacency matrix of the induced subgraph of Gn(g, f) by the even indexed
vertex set Ve = {2i | 1 ≤ i ≤ ⌊n/2⌋}. In particular, the induced subgraph 〈Ve〉 is a Riordan

graph of order ⌊n/2⌋ given by G⌊n/2⌋

((
gf
z

)′
(
√
z), f(z)

)

.

(iv) The matrix B representing the edges between Vo and Ve can be expressed as the sum of binary
Riordan matrices as follows:

B = B(z · (gf)′(
√
z), f(z))⌈n/2⌉×⌊n/2⌋ + B((zg)′(

√
z), f(z))T⌊n/2⌋×⌈n/2⌉.

2.2 Families of Riordan graphs

There are many families of Riordan graphs introduced in [3]. Below we list those of them most
relevant to this paper, along with examples of subfamilies.

Riordan graphs of the Appell type. This class of graphs is defined by an Appell matrix (g, z),
and thus it is precisely the class of Toeplitz graphs. Examples of graphs in this class are

• the null graphs Nn defined by Gn(0, z);

• the path graphs Pn defined by Gn(1, z);

• the complete graphs Kn defined by Gn

(
1

1−z , z
)

; and
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• the complete bipartite graphs K⌊n
2
⌋,⌈n

2
⌉ defined by Gn

(
1

1−z2 , z
)

.

Riordan graphs of the Bell type. This class of graphs is defined by a Bell matrix (g, zg).
Examples of graphs in this class are

• the null graphs Nn defined by Gn(0, 0);

• the path graphs Pn defined by Gn(1, z);

• the Pascal graphs PGn defined by Gn

(
1

1−z ,
z

1−z

)

; and

• the Catalan graphs CGn defined by Gn

(
1−

√
1−4z
2z , 1−

√
1−4z
2

)

.

Riordan graphs of the checkerboard type. This class of graphs is defined by a checkerboard
matrix (g, f) such that g is an even function and f is an odd function. Examples of graphs in this
class are

• the null graphs Nn defined by Gn(0, c) for any constant c;

• the path graphs Pn defined by Gn(1, z); and

• the complete bipartite graphs K⌊n
2
⌋,⌈n

2
⌉ defined by Gn

(
1

1−z2 , z
)

.

Riordan graphs of the derivative type. This class of graphs is defined by functions (f ′, f).
Examples of graphs in this class are

• the null graphs Nn defined by Gn(0, c) for any constant c; and

• the path graphs Pn defined by Gn(1, z).

o-decomposable Riordan graphs standing for odd decomposable Riordan graphs. This class of
graphs is defined by requiring in (3) Y = O, where O is the zero matrix of Y ’s size.

e-decomposable Riordan graphs standing for even decomposable Riordan graphs. This class
of graphs is defined by requiring in (3) X = O.

2.3 Several known results on Riordan graphs

The following lemma is a corollary of Theorem 2.4.

Lemma 2.5 ([3]). Every adjacency matrix A = An(g, zg) of a Riordan graph Gn(g, zg) of the Bell
type can be expressed as the block matrix

PAPT =

[
X B
BT O

]

, (4)

where
X = A⌈n/2⌉(g

′(
√
z), zg(z))

and
B ≡ B(zg(z), zg(z))⌈n/2⌉,⌊n/2⌋ + B((zg)′(

√
z), zg(z))T⌊n/2⌋,⌈n/2⌉.

Thus, any Riordan graph of the Bell type is o-decomposable.

The following lemma is given by Theorem 3.6 (iv) in [3].

Lemma 2.6 ([3]). A graph Gn is a Riordan graph of the checkerboard type if and only if Gn is
bipartite with bipartitions Vo and Ve.
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In this paper, we also need the following lemmas.

Lemma 2.7 ([18]). For the Pascal graph PGn, we have m(PG2k) = 3k−2k and m(PG2k+1) = 3k.

Lemma 2.8 ([3]). For the Catalan graph CGn, we have m (CG2k) = 3k−1
2 and m (CG2k+1) =

3k−1
2 + 2k.

Definition 2.9 ([3]). Let Gn = Gn(g, f) be a proper Riordan graph with the odd and even vertex
sets Vo and Ve, respectively.

• If 〈Vo〉 ∼= G⌈n/2⌉(g, f) and 〈Ve〉 is a null graph then Gn is io-decomposable.

• If 〈Vo〉 is a null graph and 〈Ve〉 ∼= G⌊n/2⌋(g, f) then Gn is ie-decomposable.

“io” and “ie” stand for “isomorphically odd” and “isomorphically even”, respectively.

Lemma 2.10 ([3]). Let Gn = Gn(g, zg) be an io-decomposable Riordan graph. Then, we have

χ(Gn) = ω(Gn) = ⌈log2 n⌉+ 1,

where χ(Gn) and ω(Gn) are the chromatic number and clique number of Gn, respectively.

Lemma 2.11 ([3]). A Riordan graph Gn(g, zg) is io-decomposable if and only if

g2 ≡ g′, i.e. [zj ]g ≡ [z2j+1]g.

2.4 The spectral graph theory

Let G be a graph and A(G) be its adjacency matrix. The eigenvalues λ1 ≥ · · · ≥ λn of A(G)
are said to be the eigenvalues of G, and the eigenvalues form the spectrum of this graph. The
largest eigenvalue λ1 is called the spectral radius of G. The determinant of G, denoted by det(G),
is the determinant of A(G). The number of positive and negative eigenvalues of a graph are called
positive and negative inertias of the graph, respectively. We denote the positive and negative
inertias of a Riordan graph Gn by n+(Gn) and n−(Gn), respectively. If Gn is understood from
the context, we simply write n+ and n− for the inertias.

Let M be an i× j matrix. The null space of M is the set of all j-dimensional column vectors
X such that MX = 0. The dimension of the null space of M is called the nullity of the matrix M ,
and is denoted by η(M), or just by η when M is understood from the context. The nullity of G is
η(G) = η(A(G)). A graph G is called singular if its adjacency matrix is singular.

Definition 2.12. The Laplacian matrix L(G) and signless Laplacian matrix Q(G) of a graph G
are defined, respectively, as D(G) −A(G) and D(G) +A(G), where D(G) is the diagonal matrix
of vertex degrees of G.

Definition 2.13. The Laplacian spectrum of a graphG is the sequence of its Laplacian eigenvalues,
i.e. µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0. We let Lspec(G) denote the set {µ1, µ2, . . . , µn}. The signless
Laplacian spectrum ofG is the sequence of its signless Laplacian eigenvalues, i.e. q1 ≥ q2 ≥ · · · ≥ qn.

It is well known that the average degree 2m
n of a graph G with n vertices and m edges is a lower

bound for the spectral radius λ1(G), i.e.

λ1(G) ≥ 2m

n
. (5)

Moreover, for the signless Laplacian spectral radius q1(G), we have

q1(G) ≥ 2λ(G) ≥ 4m

n
. (6)

The following lemma gives a relation between the eigenvalues of a real symmetric matrix and
the eigenvalues of its partitioned matrix.
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Lemma 2.14 ([5]). Let A be a real symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Given
a partition {1, 2, . . . , n} = V1 ∪̇V2 ∪̇ · · · ∪̇Vk with |Vi| = ni > 0, consider the corresponding blocking
A = (Ai,j), where Ai,j is an ni × nj block and 1 ≤ i, j ≤ k. Let ei,j be the sum of the entries in
Ai,j and set the matrix B := (ei,j/ni) for 1 ≤ i, j ≤ k. Then the eigenvalues of B interlace those
of A, i.e. λi ≥ ρi ≥ λn−k−i for 1 ≤ i ≤ k, where ρi is the ith largest eigenvalue of B.

The following lemma gives a relation between the adjacency matrix of a graph G and the clique
number ω(G) of G, which is the size of a maximal clique in G.

Lemma 2.15 ([5]). If G is a graph with the adjacency matrix A and the clique number ω(G), then

max {XTAX ; X ≥ 0, 1TX = 1} = 1− 1

ω(G)
,

where 1 is the vector of the proper size that contains only 1s .

In this paper, we also need the following lemmas.

Lemma 2.16 ([5]). Let M be a symmetric n × n matrix with real entries. If M =

[
P Q
QT R

]

,

then λ1(M)+λn(M) ≤ λ1(P )+λ1(R), where λ1(M) and λn(M) stand for the largest and smallest
eigenvalies of M , respectively.

Lemma 2.17 ([1]). Let A and B be real matrices of orders n× n and n×m, respectively, and let

r = rank(B) and A :=

[
A B
BT O

]

. Then n−(A) ≥ r, η(A) ≥ 0 and n+(A) ≥ r. If, in addition,

n = m and B is nonsingular, then n−(A) = n+(A) = n and η(A) = 0.

Lemma 2.18 ([1]). Let A ∈ Rn×n, B ∈ Rm×m, C ∈ Rn×m, and A and B be symmetric. Also,

let A0 :=

[
A O
O B

]

, A :=

[
A C
CT B

]

, σmax(C) be the largest singular value of C, and η :=

min
i=1,...,n
j=1,...,m

|λi(A)− λj(B)|. Then, for all i = 1, . . . , n+m,

|λi(A)− λi(A0)| ≤
2σ2

max(C)

η +
√

η2 + 4σmax(C)
.

Lemma 2.19 ([5, 19]). For any graph G with chromatic number χ(G) and clique number ω(G),
we have

(i) χ(G) − 1 ≤ λ1(G) ≤ n
(

1− 1
ω(G)

)

.

(ii) χ(G) ≥ 1 + λ1(G)
|λn(G)| .

(iii) χ(G) ≥ 1 + λ1(G)
µ1(G)−λ1(G) .

Lemma 2.20 ([14]). Let G be a graph of order n. Then µ1(G) ≤ n, where the equality holds if and
only if the complement G of G is disconnected. Moreover, Lspec(G) = {n−µn−1, n−µn−2, . . . , n−
µ1, 0}.
Lemma 2.21 ([11]). Let G (≇ Kn) be a graph of order n. Then µn−1(G) ≤ δ(G), where δ(G) is
the minimum vertex degree in G.

Lemma 2.22 ([14]). Let G be a graph on n vertices with at least one edge. Then µ1(G) ≥ ∆(G)+1,
where ∆(G) is the maximum vertex degree in G. Moreover, if G is connected, then the equality
holds if and only if ∆(G) = n− 1.

The following result states for which n the Catalan number Cn is odd.

Lemma 2.23 ([10]). The only Catalan numbers Cn that are odd are those for which n = 2k − 1
for k ≥ 0. In particular, C2i ≡ 0 for i ∈ N.
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3 Eigenvalues of Riordan graphs

In this section we present several lower and upper bounds on the eigenvalues and the (signless)
Laplacian eigenvalues of Riordan graphs, which will improve (5) and (6) for this class of graphs.
To achieve our goals, we begin with a general result valid for all graphs.

Theorem 3.1. Let G = (V,E) be a graph with |V | = n and |E| = m, and let W be a nonempty
subset of V with |W | = k. Then

(i) λ1(G) ≥ m1

k
+

m2

n− k
+

√
(
m1

k
− m2

n− k

)2

+
(m−m1 −m2)2

k(n− k)
.

(ii) µ1(G) ≥ n(m−m1 −m2)

k(n− k)
.

(iii) q1(G) ≥ 1

2

(

c1 + c2 +

√
(

c1 − c2

)2

+
4(m−m1 −m2)2

k(n− k)

)

.

(iv) q2(G) ≥ 1

2

(

c1 + c2 −
√
(

c1 − c2

)2

+
4(m−m1 −m2)2

k(n− k)

)

≥ qn(G)

where c1 = m+3m1−m2

k , c2 = m−m1+3m2

n−k , m1 = m(〈W 〉) and m2 = m(〈V \W 〉).

Proof: Let W and U be, respectively, the adjacency matrices of the induced subgraphs 〈W 〉 and
〈V \W 〉. Let A be the adjacency matrix of G. Then there exists a permutation matrix P such that

PAPT =

[
W F
FT U

]

.

Using Lemma 2.14 on PAPT , we obtain

B1 :=





2m1

k1

m3

k1

m3

k2

2m2

k2





where k1 := |W | and k2 := n− k1 = |V \W |, and m3 stands for the number of 1s in the submatrix
F , which is the number of edges between W and V \W . It is not difficult to see that the eigenvalues
of B1 are given by

λ1(B1) =
m1

k1
+

m2

k2
+

√
(
m1

k1
− m2

k2

)2

+
m2

3

k1 k2

and

λ2(B1) =
m1

k1
+

m2

k2
−

√
(
m1

k1
− m2

k2

)2

+
m2

3

k1 k2
.

By Lemma 2.14, we have λ1(G) ≥ λ1(B1). This completes the proof of (i).
Suppose that L = D−A is the Laplacian matrix of G. Then by the same permutation matrix

P as above, we obtain

PLPT = PDPT − PAPT =

[
DW O
OT DU

]

−
[

W F
FT U

]

=

[
DW −W −F
−FT DU − U

]
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where DW and DU are, respectively, the degree matrices with the same row indices as W and U ,
and O is the zero matrix of the proper size. Again, using Lemma 2.14 on PLPT , we obtain

B2 :=





m3

k1
−m3

k1

−m3

k2

m3

k2



 .

It is easy to see that the eigenvalues of B2 are given by

λ1(B2) =
nm3

k1k2
and λ2(B2) = 0.

By Lemma 2.14, we have µ1(G) ≥ λ1(B2). Hence, (ii) is proved.
Suppose that Q = D+A is the signless Laplacian matrix of G. Then, by the same permutation

matrix P as above, we obtain

PQPT = PDPT + PAPT =

[
DW O
OT DU

]

+

[
W F
FT U

]

=

[
DW +W F

FT DU + U

]

.

Using Lemma 2.14 on PQPT , we obtain

B3 =





4m1+m3

k1

m3

k1

m3

k2

4m2+m3

k2



 .

The eigenvalues of B3 are given by

λ1(B3) =
1

2




4m1 +m3

k1
+

4m2 +m3

k2
+

√
(4m1 +m3

k1
− 4m2 +m3

k2

)2

+
4m2

3

k1k2





and

λ2(B3) =
1

2




4m1 +m3

k1
+

4m2 +m3

k2
−
√
(4m1 +m3

k1
− 4m2 +m3

k2

)2

+
4m2

3

k1k2



 .

One can see that λ2(B3) > 0. By Lemma 2.14, we have q1(G) ≥ λ1(B3) and q2(G) ≥ λ2(B3) ≥
qn(G). This completes the proofs for (iii) and (iv).

Corollary 3.2. Let G = (V,E) be a graph with |V | = n and |E| = m, and let W be a nonempty
subset of V with |W | = k. Also, let m1 = m(〈W 〉) and m2 = m(〈V \W 〉), and m > m1 +m2 +
2
√
m1 m2. Then λn(G) < 0.

Proof: For any graph G, λ2(B1) ≥ λn(G), where B1 and λ2(B1) can be found in the proof of
Theorem 3.1. Since m > m1 +m2 + 2

√
m1 m2, we have

λn(G) ≤ m1

k
+

m2

n− k
−

√
(
m1

k
− m2

n− k

)2

+
(m−m1 −m2)2

k(n− k)
< 0.

The following theorem, the main result in this section, follows from Theorems 2.4 and 3.1.
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Theorem 3.3. Let Gn = Gn(g, f) be a Riordan graph with n vertices and m edges. Then

(i) λ1(Gn) ≥
m1

n1
+

m2

n− n1
+

√
(
m1

n1
− m2

n− n1

)2

+
(m−m1 −m2)2

n1(n− n1)
. (7)

(ii) µ1(Gn) ≥
n(m−m1 −m2)

n1(n− n1)
.

(iii) q1(Gn) ≥
1

2

(

c1 + c2 +

√
(

c1 − c2

)2

+
4(m−m1 −m2)2

n1(n− n1)

)

. (8)

(iv) q2(Gn) ≥
1

2

(

c1 + c2 −
√
(

c1 − c2

)2

+
4(m−m1 −m2)2

n1(n− n1)

)

≥ qn(G),

where n1 = ⌈n
2 ⌉, m1 = m(Gn1

(g′(
√
z), f)), m2 = m(Gn−n1

(( gfz )′(
√
z), f)), c1 = m+3m1−m2

n1
and

c2 = m−m1+3m2

n−n1
.

Proposition 3.4. For a Riordan graph Gn, the lower bound in (7) is greater than or equal to the
lower bound in (5).

Proof: Suppose that n = 2k, and m3 is defined as in the proof of Theorem 3.1. We have

(m1 −m2)
2 ≥ 0 ⇒ (m1 +m2)

2 ≥ 4m1m2 ⇒

m2
3 ≥ m2

3 + (m1 +m2)
2 + 2m3(m1 +m2) + 4m1m2 − 2(m1 +m2)

2 − 2m3(m1 +m2)

⇒ m2
3 ≥ m2 + 4m1m2 − 2mm1 − 2mm2 ⇒

(m1 −m2)
2 +m2

3

k2
≥ m2 + (m1 +m2)

2 − 2m(m1 +m2)

k2
⇒

m1 +m2

k
+

√

(m1 −m2)2 +m2
3

k2
≥ m

k
⇒

m1

n1
+

m2

n2
+

√
(
m1

n1
− m2

n2

)2

+
m2

3

n1n2
≥ 2m

n

as n1 = n2 = k. Similarly, the result for n = 2k + 1 follows.

Proposition 3.5. For a Riordan graph Gn, the lower bound in (8) is greater than or equal to the
lower bound in (6).

Proof: Since q1 ≥ 2λ1 for any graph, the result follows from Proposition 3.4.

The following results are obtained by Theorems 2.4 and 3.3.

Corollary 3.6. Let Gn = Gn(g, z) be a Riordan graph of the Appell type with n vertices and m
edges. Let n be even and m1 = m(Gn/2(g

′(
√
z), z)). Then

(i) The lower bounds in (7) and (5) coincide for the spectral radius λ1(Gn).

(ii) The lower bounds in (8) and (6) coincide for the signless Laplacian spectral radius q1(Gn).

(iii) µ1(Gn) ≥ 4(m−2m1)
n .

10



(iv) q2(Gn) ≥ 8m1

n ≥ qn(G).

(v) If m > 4m1, then λn(Gn) ≤ 8m1−2m
n < 0.

Corollary 3.7. Let Gn = Gn(g, f) be a Riordan graph with n vertices and m edges. If [z2j+1]g ≡ 0
for all j ≥ 0, then

(i) λ1(Gn) ≥
m2

n− n1
+

√

m2
2

(n− n1)2
+

(m−m2)2

n1(n− n1)

(ii) µ1(Gn) ≥
n(m−m2)

n1(n− n1)

(iii) q1(Gn) ≥
1

2

(

c1 + c2 +

√
(

c1 − c2

)2

+
4(m−m2)2

n1(n− n1)

)

(iv) q2(Gn) ≥
1

2

(

c1 + c2 −
√
(

c1 − c2

)2

+
4(m−m2)2

n1(n− n1)

)

≥ qn(G)

where n1 = ⌈n
2 ⌉, m2 = m(Gn−n1

(( gfz )′(
√
z), f)), c1 = m−m2

n1
and c2 = m+3m2

n−n1
.

The following result is obtained by Lemma 2.6 and Corollary 3.7.

Corollary 3.8. Let Gn = Gn(g, f) be a Riordan graph of the checkerboard type with n vertices
and m edges, and let n1 = ⌈n

2 ⌉. Then,

(i) λ1(Gn) = −λn(Gn) ≥ m√
n1(n−n1)

.

(ii) µ1(Gn) = q1(Gn) ≥ nm
n1(n−n1)

.

(iii) qn(Gn) = 0.

Corollary 3.9. Let Gn = Gn(g, f) be a Riordan graph with n vertices and m edges such that
[z2j]g = [z2j ]f ≡ 0 for all j ≥ 0. Then Gn is disconnected with components H1

∼= Gn1
(g′(

√
z), f)

and H2
∼= Gn−n1

(( gfz )′(
√
z), f), where n1 = ⌈n

2 ⌉. Moreover, letting m1 = m(H1), we have

(i) λ1(Gn) = max{λ1(H1), λ1(H2)} ≥ max
{

2m1

n1
, 2(m−m1)

n−n1

}

.

(ii) q1(Gn) = max {q1(H1), q1(H2)} ≥ max
{

4m1

n1
, 4(m−m1)

n−n1

}

.

The following result is obtained by Lemma 2.5 and Theorem 3.3.

Corollary 3.10. Let Gn = Gn(g(z), zg(z)) be a Riordan graph of the Bell type with n vertices
and m edges. Then,

(i) λ1(Gn) ≥
m1

n1
+

√

m2
1

n2
1

+
(m−m1)2

n1(n− n1)

(ii) µ1(Gn) ≥
n(m−m1)

n1(n− n1)

(iii) q1(Gn) ≥
1

2

(

c1 + c2 +

√
(

c1 − c2

)2

+
4(m−m1)2

n1(n− n1)

)

(iv) q2(Gn) ≥
1

2

(

c1 + c2 −
√
(

c1 − c2

)2

+
4(m−m1)2

n1(n− n1)

)

≥ qn(G)

11



where n1 = ⌈n
2 ⌉, c1 = m+3m1

n1
, c2 = m−m1

n−n1
and

m1 =

{
m(Gn1

(g′(
√
z), zg(z))) in the general case;

m(Gn1
(g(z), zg(z))) if Gn is io-decomposable.

In the following proposition, we use Lemmas 2.7 and 2.8, and Corollary 3.10 to present lower
bounds on some eigenvalues and (signless) Laplacian eigenvalues of PG2k , PG2k+1, CG2k and
CG2k+1.

Proposition 3.11. For k ≥ 2, we have

(i) λ1(PG2k) ≥
3k−1 +

√

(3k−1 − 2k−1)2 + 4(3k−1 − 2k−2)2

2k−1
− 1.

(ii) q1(PG2k) ≥
1

2

(

3k−1

2k−4
+

√

(3k−1 − 2k−1)2 + (3k−1 − 2k−2)2

2k−3

)

− 3.

(iii) λ1(PG2k+1) ≥
3k−1

(

1 +
√
17 + 23−k

)

2k−1 + 1
.

(iv) q1(PG2k+1) ≥
3k−1

(

2k+1 + 1 +
√
22k+1 + 1

)

2k−1 (2k−1 + 1)
.

(v) λ1(CG2k) ≥
5 · 32k−2 − 3k−1

2k
.

(vi) µ1(CG2k) ≥
3k−1

2k−2
.

(vii) q1(CG2k) ≥
2 · 3k−1 − 1 +

√

2 · 3k−1(3k−1 − 1) + 1

2k−1
.

(viii) q2(CG2k) ≥
2 · 3k−1 − 1−

√

2 · 3k−1(3k−1 − 1) + 1

2k−1
≥ qn(CG2k ).

(ix) λ1(CG2k+1) ≥
b+

√

b2 + (1 + 21−k)(3k−1 + 2k−1)2

2k−1 + 1
, where b = 3k−1+2k−1

2 .

(x) µ1(CG2k+1) ≥
(2k + 1)(3k−1 + 2k−1)

22k−2 + 2k−1
.

The following is a result on the spectral radius and the (signless) Laplacian spectral radius of
an io-decomposable Riordan graph Gn = Gn(g, zg).

Theorem 3.12. Let Gn = Gn(g, zg) be io-decomposable with n vertices and m edges. Then

(i) m ≤ n2

2

(

1− 1
⌈log2 n⌉+1

)

.

(ii) ⌈log2 n⌉ ≤ λ1(Gn) ≤ n
(

1− 1
⌈log2 n⌉+1

)

.

(iii) λ1(Gn)
|λn(Gn)| ≤ ⌈log2 n⌉.

(iv) ⌈log2 n⌉+ 1 ≤ ⌈log2 n⌉+1
⌈log2 n⌉ λ1(Gn) ≤ µ1(Gn).

(v) λ1(Gn)− λ1(G⌈n
2
⌉) ≤ −λn(Gn).
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(vi) q1(Gn) ≥ 2⌈log2 n⌉.

Proof: Considering XT =
[
1/n, 1/n, . . . , 1/n
︸ ︷︷ ︸

n

]
in Lemma 2.15, and applying Lemma 2.10, we

obtain
2

n2

∑

ij∈E(Gn)

1 =
2m

n2
≤ 1− 1

⌈log2 n⌉+ 1
⇒ m ≤ n2

2

(

1− 1

⌈log2 n⌉+ 1

)

.

Hence, the proof of (i) is complete. We obtain (ii), (iii) and (iv) directly from Lemmas 2.10
and 2.19.

Let An be the adjacency matrix of Gn. By Lemma 2.5 and the definition of an io-decomposable

Riordan graph, we have PTAnP =

[
A⌈n

2
⌉ B

BT O

]

. From this, after applying Lemma 2.16, we

obtain λ1(An) + λn(An) ≤ λ1(A⌈n
2
⌉), which gives the desired result in (v). Finally, (vi) follows

from (ii) and (6).

In what follows, we give an upper bound for the absolute value of the smallest eigenvalue of an
io-decomposable Riordan graph Gn.

Theorem 3.13. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph with the adjacency

matrix An := P

[
A⌈n

2 ⌉
B

B
T O

]

PT , and let λi(Gn) and σmax(B) be, respectively, the ith largest

eigenvalue of Gn and the largest singular value of B. Also, let η := min
i=1,...,⌈n

2
⌉
|λi(G⌈n

2
⌉)|. Then

|λn(Gn)| ≤
2σ2

max(B)

η +
√

η2 + 4σmax(B)
.

Proof: By Theorem 3.12 (v) and Lemma 2.18, we obtain

|λn(Gn)| ≤ max
i=1,...,⌈n

2
⌉

j=1+⌈ n
2
⌉,...,n

{

|λi(Gn)− λi(G⌈n
2
⌉)| , |λj(Gn)|

}

≤ 2σ2
max(B)

η +
√

η2 + 4σmax(B)
.

The following result is related to the structure of the adjacency matrix of an io-decomposable
Riordan graph Gn(g, zg), and it follows from the definition of an io-decomposable Riordan graph
of the Bell type and Lemma 2.5.

Lemma 3.14. Let An := P

[
A⌈n

2 ⌉
B

B
T O

]

PT be the adjacency matrix of an io-decomposable Ri-

ordan graph Gn(g, zg), and let bi,j be the (i, j)th entry of BT . If n is odd, then PTAnP is given
by































0 r1,2 · · · r1,k b1,1 · · · bk−1,1

r2,1 0
.
.
.

.

.

. r2,1

.
.
.

.

.

.

.

.

.
.
.
.

.
.
. rk−1,k

.

.

.
.
.
. bk−1,k−1

rk,1 · · · rk,k−1 0 rk,1 · · · rk,k−1

b1,1 r1,2 · · · r1,k 0 · · · 0
.
.
.

.
.
.

.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

bk−1,1 · · · bk−1,k−1 rk−1,k 0 · · · 0






























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where k = n+1
2 . Otherwise, if n is even and j = n

2 , then PTAnP is





































0 r1,2 · · · r1,j b1,1 · · · · · · bj,1

r2,1 0
.
.
.

.

.

. r2,1

.
.
.

.

.

.

.

.

.

.

.

.
. .
.

. .
. rj−1,j

.

.

.
. .
.

. .
.

.

.

.

rj,1 · · · rj,j−1 0 rj,1 · · · rj,j−1 bj,j

b1,1 r1,2 · · · r1,j 0 · · · · · · 0
.
.
.

.
.
.

.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
. rj−1,j

.

.

.
.
.
.

.
.
.

.

.

.

bj,1 · · · · · · bj,j 0 · · · · · · 0





































.

In the following, we give a lower bound on the spectral radius of any io-decomposable Riordan
graph Gn(g, zg). We shall mean

{
gfk

}

n
(1) :=

n∑

j=k

[zj]
{
gfk

}

by the substitution of z = 1 in the Taylor expansion in z of
{
gfk

}
up to degree n modulo 2.

Theorem 3.15. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph. Then,

λ1(Gn) ≥
1 +

√
2

n1

n1−2∑

j=0

{g′(
√
z) · f j}n1−2(1).

Proof: By Corollary 3.10, we have

λ1(Gn) ≥
m1

n1
+

√

m2
1

n2
1

+
(m−m1)2

n1(n− n2)
. (9)

Let An = P

[
A⌈n

2
⌉ B

BT O

]

PT be the adjacency matrix of Gn. Then, by Lemma 3.14, we have

σ(B) > m
(

A⌈ n
2 ⌉
)

= m1 ≥
√

n− n1

n1
m1 ⇒ σ(B)2 >

n− n1

n1
m2

1 ⇒ (m−m1)
2

n1(n− n1)
>

m2
1

n2
1

.

From (9), the above and Lemma 2.5, the required result is obtained.

The following two results give lower bounds on the largest Laplacian eigenvalue µ1(Gn) of a
Riordan graph Gn.

Theorem 3.16. Let Gn = Gn(g, f) be a Riordan graph with n vertices and m edges, and let
n1 = ⌈n

2 ⌉ and n2 = n− n1. Then

µ1(Gn) ≥
n

n1n2





n2−1∑

j=0

{
z(gf)′(

√
z) · f j

}

n1−1
(1) +

n1−1∑

j=0

{
(zg)′(

√
z) · f j

}

n2−1
(1)



 .

Proof: Let L = D −A be the Laplacian matrix of Gn. Using the same technique as in the proof
of Theorem 3.1, and by Lemma 2.14 applied to PLPT , we obtain

B2 :=






σ(B)
n1

−σ(B)
n1

−σ(B)
n2

σ(B)
n2




 ,
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where σ(B) denotes the number of 1s in the matrix B. It is easy to see that the eigenvalues of B2

are given by

λ1(B2) =
nσ(B)

n1n2
and λ2(B2) = 0.

By Lemma 2.14, we have

µ1(G) ≥ λ1(B2) =
nσ(B)

n1n2
. (10)

Now, by (iv) in the Riordan Graph Decomposition Theorem (Theorem 2.4), we have

σ(B) = σ
(
B(z · (gf)′(

√
z), f(z))n1×n2

)
+ σ

(
B((zg)′(

√
z), f(z))Tn2×n1

)

= σ
(
B(z · (gf)′(

√
z), f(z))n1×n2

)
+ σ

(
B((zg)′(

√
z), f(z))n2×n1

)

=

n2−1∑

j=0

{
z(gf)′(

√
z) · f j

}

n1−1
(1) +

n1−1∑

j=0

{
(zg)′(

√
z) · f j

}

n2−1
(1).

Using this in (10), the required result is obtained.

The following result is an immediate corollary of Theorem 3.16.

Corollary 3.17. Let Gn = Gn(g, f) be a proper Riordan graph with n vertices and m edges. Then

µ1(Gn) ≥
n

n1n2

({
z(gf)′(

√
z)
}

n1−1
(1) +

{
(zg)′(

√
z)
}

n2−1
(1) + 2

⌊n

2

⌋

− 3
)

.

For a graph G, let a(G) be the algebraic connectivity of G. The following result gives a relation
between the algebraic connectivity of 〈Vo〉 and the median Laplacian eigenvalues µ⌈n

2
⌉(Gn) and

µ⌈n
2
⌉+1(Gn) of an o-decomposable Riordan graph Gn.

Theorem 3.18. Let Gn = Gn(g, f) be an o-decomposable Riordan graph and let H ∼= 〈Vo〉. Then

µ⌈n
2 ⌉+1(Gn) ≤

⌈n

2

⌉

(11)

µ⌈n
2 ⌉(Gn) ≤

{ ⌊n
2 ⌋+ a(H) if n is even or n is odd with a(H) > 1;

⌈n
2 ⌉ if n is odd with a(H) ≤ 1.

(12)

Proof: One can see that K⌊n
2 ⌋ is a subgraph of Gn. Further, it is well known [5] that the Laplacian

spectrum of K⌊n
2 ⌋ is as follows:

Lspec
(

K⌊n
2 ⌋
)

=
{⌊n

2

⌋

, . . . ,
⌊n

2

⌋

︸ ︷︷ ︸

⌊n
2 ⌋−1

, 0
}

.

From the above, we obtain

µ⌊n
2 ⌋−1(Gn) ≥ µ⌊n

2 ⌋−1

(

K⌊n
2 ⌋
)

=
⌊n

2

⌋

.

From this and Lemma 2.20, we obtain

n− µ⌈n
2 ⌉+1(Gn) ≥

⌊n

2

⌋

,
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which completes the proof of (11).
Now, we consider the subgraph H ∪K⌊n

2 ⌋ of Gn, where H ∼= 〈Vo〉. By Lemma 2.20, we have

µi(H) =
⌈
n
2

⌉
− µ⌈n

2 ⌉−i(H) for 1 ≤ i ≤
⌈
n
2

⌉
− 1. From this and Lemma 2.20, we have

µ⌊n
2 ⌋(Gn) ≥ min

{⌊n

2

⌋

, µ1(H)
}

= min
{⌊n

2

⌋

,
⌈n

2

⌉

− a(H)
}

. (13)

If n is even, from (13) and the fact that µ1(H) ≤ |V (H)| = n
2 , we obtain

µn
2
(Gn) ≥ µ1(H) ⇒ n− µn

2
(Gn) ≥

n

2
− µn

2
−1(H) =

n

2
− a(H) ⇒ µn

2
(Gn) ≤

n

2
+ a(H),

which gives the result in (12) for even n. Otherwise, n is odd. First, we assume that µ1(H) ≥ ⌊n
2 ⌋,

that is, a(H) ≤ 1. From this and (13), we have

µn−1

2

(Gn) ≥
n− 1

2
⇒ µn+1

2

(Gn) ≤
n+ 1

2
.

Next, we assume that µ1(H) < ⌊n
2 ⌋, that is, a(H) > 1. From this and (13), we have

µn−1

2

(Gn) ≥ µ1(H) ⇒ µn+1

2

(Gn) ≤
n− 1

2
+ a(H).

This completes the proof.

By similar arguments as those in Theorem 3.18, one can easily prove the following theorem on
e-decomposable Riordan graphs.

Theorem 3.19. Let Gn = Gn(g, f) be an e-decomposable Riordan graph and let H ∼= 〈Ve〉. Then

µ⌊n
2 ⌋+1(Gn) ≤

⌊n

2

⌋

and µ⌊n
2 ⌋(Gn) ≤

⌊n

2

⌋

+ a(H).

4 Vertex degrees in Riordan graphs

From now on, we assume that p = ⌊log2(n− 1)⌋ and {g}−1(1) = 0. In the following, we obtain the
degree of the vertex 2p + 1 in an io-decomposable Riordan graph Gn(g, zg).

Lemma 4.1. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph. Then

dGn
(2p + 1) = 2p + {g}n−2p−2(1). (14)

In particular, the vertex 2p + 1 is universal in Gn if and only if n = 2p + 1 or n 6= 2p + 1 and
[z2s]g ≡ 1 for 0 ≤ s ≤ ⌊n−2p

2 ⌋ − 1.

Proof: Suppose that H = 〈{2p + 1, . . . , n}〉. Then

dGn
(2p + 1) = dG2p+1

(2p + 1) + dH(2p + 1)

= dG2p+1
(2p + 1) + dGn−2p

(1) (by Theorem 3.6(i) in [3])

= 2p + {g}n−2p−2(1) (by Theorems 4.13 and 3.1 in [3]).

This completes the proof for (14). The second part of the proof follows from (14) and Lemma 4.4
in [3].

For any io-decomposable Riordan graph Gn = Gn(g, zg), we have [z0]g = [z1]g ≡ 1. This
observation, along with Lemma 14, gives the following result.
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Corollary 4.2. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph. Then the vertex 2p +1
is universal in Gn for 2p + 1 ≤ n ≤ 2p + 3.

In the following two lemmas, some comparisons between the degree of the vertex 2p + 1 and
degrees of other vertices in an io-decomposable Riordan graph are given.

Lemma 4.3. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph. Then

dGn
(2p + 1) ≥ dGn

(1). (15)

Moreover, for n ≤ 1 + 2p−1 + 2p, we have

dGn
(2p + 1) ≥ dGn

(2p−1 + 1). (16)

Proof: From Lemma 4.1, we have

dGn
(2p + 1) = 2p + {g}n−2p−2(1) ≥

n−2∑

i=n−2p−1

[zi]g + {g}n−2p−2(1) = {g}n−2(1) = dGn
(1).

This completes the proof of (15).
Now, suppose that n ≤ 1 + 2p−1 + 2p. Then

{g}2p−1−1(1)− {g}n−2p−2(1) =

2p−1−1∑

i=n−2p−1

[zi]g ≤ 2p + 2p−1 + 1− n. (17)

We define the subgraphs H1 and H2 of Gn as follows:

H1
∼=
{ 〈{2p−1 + 1, 2p + 2, . . . , n}〉 if n > 2p + 1

〈{2p−1 + 1}〉 if n = 2p + 1

and H2
∼= 〈{2p−1 + 1, . . . , 2p + 1}〉. By Lemma 4.1, we have

dGn
(2p + 1) = 2p + {g}n−2p−2(1)

≥ n− 2p−1 − 1 + {g}2p−1−1(1) (by (17))

= 2p−1 + n− 2p − 1 + {g}2p−1−1(1)

≥ 2p−1 + {g}2p−1−1(1) + dH1
(2p−1 + 1)

= dG
2p−1+1

(2p−1 + 1) + dG
2p−1+1

(1) + dH1
(2p−1 + 1)

= dG
2p−1+1

(2p−1 + 1) + dH2
(2p−1 + 1) + dH1

(2p−1 + 1)

= dGn
(2p−1 + 1),

where the next to last equality is given by Theorem 3.6 in [3], and the last inequality is obtained
using the fact that dH1

(2p−1 + 1) ≤ n− 2p − 1. This completes the proof of (16).

Lemma 4.4. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph. Then, for i ∈ Ve,

dGn
(2p + 1) ≥ dGn

(i).

Proof: We have n ≤ 2p+1, that is,
⌈
n
2

⌉
≤ 2p. From this and (14), for i ∈ Ve, we obtain

dGn
(2p + 1) ≥ 2p ≥

⌈n

2

⌉

≥ dGn
(i).
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Corollary 4.5. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph. Then

2p + ⌈log2(n− 2p)⌉ ≤ dGn
(2p + 1) ≤ n− 1.

Proof: By Lemma 4.1, we have

dGn
(2p + 1) = 2p + {g}n−2p−2(1). (18)

Since Gn is an io-decomposable Riordan graph, by Lemma 2.11, we have g2p−1 ≡ 1 for p ≥ 0.
From this, (18) and Lemma 2.10, we obtain

dGn
(2p + 1) = 2p + {g}n−2p−2(1) ≥ 2p + ⌈log2(n− 2p)⌉.

This completes our proof.

Lemma 4.6 ([3]). Let Gn(g, zg) be an io-decomposable Riordan graph. Then it is (⌈log2 n⌉+ 1)-
partite with partitions V1, V2, . . . , V⌈log2 n⌉+1 such that

Vj =

{

2j−1 + 1 + i2j | 0 ≤ i ≤
⌊
n− 1− 2j−1

2j

⌋}

if 1 ≤ j ≤ ⌈log2 n⌉,

V⌈log2 n⌉+1 = {1}.

It follows from Lemma 4.3 that if the vertex 1 is universal in an io-decomposable Riordan graph
Gn(g, zg), then the vertex 2p + 1 is also universal in that graph. In what follows, we show that if
the vertex 2p−1 + 1 is universal, then the vertex 2p + 1 is also universal.

Theorem 4.7. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph. If 2p−1 +1 is universal
then the vertex 2p + 1 is also universal.

Proof: By Lemma 4.3, it suffices to prove that if 2p−1 + 1 is a universal vertex in Gn, then
n ≤ 1 + 2p−1 + 2p. By Lemma 4.6, we obtain that the vertex 2⌈log2 n⌉−2 + 1 ∈ V⌈log2 n⌉−1.

We claim that p = ⌈log2 n⌉− 1. Indeed, by definition of p, we have 2p+1 ≤ n ≤ 2p+1. We may
assume that n = 2p + γ, where 1 ≤ γ ≤ 2p. So,

p = ⌈log2(2p + 1)⌉ − 1 ≤ ⌈log2 n⌉ − 1 = ⌈log2(2p + γ)⌉ − 1 ≤
⌈
log2 2

p+1
⌉
− 1 = p,

which completes the proof of our claim.

Thus, 2p−1 + 1 ∈ Vp. Again, by Lemma 4.6, we have |Vp| =
⌊
n−1−2p−1

2p

⌋

+ 1. Since the vertex

2p−1 + 1 is universal, we must have |Vp| = 1 and, consequently,
⌊
n−1−2p−1

2p

⌋

= 0, so n−1−2p−1

2p < 1

and n < 1 + 2p−1 + 2p. This completes the proof.

Based on the facts above, we state the following conjecture.

Conjecture 4.8. The vertex 2p+1 has the maximum degree in any io-decomposable Riordan graph
Gn = Gn(g, zg).

The following result is obtained from the facts above.

Corollary 4.9. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph. Then Gn has at
most three universal vertices which must come from the set {1, 2p−1 + 1, 2p + 1}. In particular,
if n ≥ 1 + 2p−1 + 2p, then Gn has at most two universal vertices that must come from the set
{1, 2p + 1}.
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The following result on Pascal graphs is obtained in [4].

Lemma 4.10 ([4]). For a Pascal graph PGn of order n, we have

(i) If n = 2p + 1, then the universal vertices are 1, n+1
2 , n.

(ii) If n 6= 2p + 1, then the universal vertices are 1, 2p + 1.

By Corollary 4.9, for any io-decomposable Riordan graph of the Bell type with three universal
vertices, the vertex 1 must be a universal vertex. The latter implies that g(z) = 1

1−z and Gn
∼=

PGn, and thus, by Lemma 4.10, we have the following result.

Theorem 4.11. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph with three universal
vertices. Then Gn

∼= PGn and n = 2p + 1.

Corollary 4.12. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph with exactly one uni-
versal vertex. Then the universal vertex must be 2p + 1.

Corollary 4.13. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph. Then at most three
Laplacian eigenvalues of Gn are equal to n. In particular, if n ≥ 1 + 2p−1 + 2p, then at most two
Laplacian eigenvalues of Gn are equal to n.

Theorems 4.14 and 4.15 below give bounds for µ1(Gn) and µn−1(Gn), respectively, in terms of
the generating function g(z) for any io-decomposable Riordan graph of the Bell type.

Theorem 4.14. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph. Then

µ1(Gn) ≥ 2p + {g}n−2p−2(1) + 1. (19)

The equality holds if and only if n = 2p + 1, or n 6= 2p + 1 and [z2s]g ≡ 1 for 0 ≤ s ≤ ⌊n−2p

2 ⌋ − 1.

Proof: By Lemmas 4.1 and 2.22, we obtain

µ1(Gn) ≥ ∆(Gn) + 1 ≥ d(2p + 1) + 1 = 2p + {g}n−2p−2(1) + 1. (20)

This completes the proof of (19). To prove the rest, we first assume that n = 2p + 1. In this case,
∆(Gn) = n − 1 and we obtain µ1(Gn) ≥ n. From this and Lemma 2.20, we obtain µ1(Gn) = n.
Otherwise, n 6= 2p+1 and [z2s]g ≡ 1 for 0 ≤ s ≤ ⌊n−2p

2 ⌋−1. From this, we obtain {g}n−2p−2(1) =
n−2p−1, and thus 2p+{g}n−2p−2(1)+1 = n. This gives µ1(Gn) ≥ n and, again, by Lemma 2.20,
we obtain µ1(Gn) = n = 2p + {g}n−2p−2(1) + 1.

Conversely, we assume that µ1(Gn) = 2p + {g}n−2p−2(1) + 1. By (20),

µ1(Gn) = ∆(Gn) + 1 = d(2p + 1) + 1.

But then, by Lemma 2.22, d(2p + 1) = ∆(Gn) = n − 1, and thus, by Lemma 4.1, we obtain
n = 2p + 1, or n 6= 2p + 1 and [z2s]g ≡ 1 for 0 ≤ s ≤ ⌊n−2p

2 ⌋ − 1. We are done.

Theorem 4.15. Let Gn = Gn(g, zg) be an io-decomposable Riordan graph. Then

µn−1(Gn) ≤ 1 +

⌊n+1

2
⌋

∑

i=1

g2i−1.

Moreover, for n ∈ {2p + 1, 2p + 2}, we have µn−1(Gn) ≥ 1.

19



Proof: By Lemma 3.14, we obtain

dGn
(2) = 1 + dG⌈n

2 ⌉
(1) = 1 +

⌊n+1

2 ⌋
∑

i=1

g2i−1.

Since Gn ≇ Kn, by Lemma 2.21, we obtain

µn−1(Gn) ≤ δ(Gn) ≤ dGn
(2) = 1 +

⌊n+1

2
⌋

∑

i=1

g2i−1,

as desired. Now, for n ∈ {2p+1, 2p+2}, by Corollary 4.2, we have that Gn has at least one universal
vertex. This means that the complement graph Gn of the io-decomposable Riordan graph Gn has
at least one isolated vertex. Thus, µ1(Gn) ≤ n− 1 and µn−1(G) ≥ 1.

We end this section by using generating functions to study the Rayleigh-Ritz quotient for Rior-
dan graphs. It is well known that for a graph G, the Rayleigh-Ritz quotient under the adjacency
matrix A(G) provides a lower bound on the spectral radius λ1(G) of G as follows.

Lemma 4.16 ([2]). Let G be a graph with n vertices and with the adjacency matrix A(G). For

any nonzero vector X = [x1, x2, . . . , xn]
T ∈ Rn,

λ1(G) ≥ XtA(G)X

XtX
.

The equality holds if and only if X is the eigenvector of A(G) with the spectral radius λ1(G).

Let k = k(z) := k0 + k1z + · · ·+ knz
n and ℓ = ℓ(z) := ℓ0 + ℓ1z + · · ·+ ℓnz

n be two polynomials
of degree n in R[[z]]. Similarly to the inner product between two vectors, we define

k ⊙ ℓ = k(z)⊙ ℓ(z) := k0ℓ0 + k1ℓ1 + · · ·+ knℓn.

The following result gives a lower bound for the spectral radius of a Riordan graph of the Appell
type.

Theorem 4.17. Let Gn = Gn(g, z) be a Riordan graph of the Appell type with n vertices. Then
for any polynomial h of degree n− 1, we have

λ1(Gn) ≥
2 (h⊙ k)

h⊙ h
, (21)

where k =
∑n−2

i=0 ([z
i]gh)zi. The equality in (21) holds if and only if h is the generating function

of the eigenvector of Gn with eigenvalue λ1(Gn).

Proof: Let An be the adjacency matrix of a Riordan graph Gn(g, f). By Lemma 4.16 and (1), for
any nonzero vector X ∈ Rn, we have

λ1(Gn(g, f)) ≥
XT An X

XTX
=

XT
(
(zg, f)n + (zg, f)Tn

)
X

XTX

=
XT (zg, f)nX +XT (zg, f)TnX

XTX
.

Since
(
XT (zg, f)nX

)T
= XT (zg, f)TnX and XT (zg, f)nX ∈ R, we obtain

XT (zg, f)nX = XT (zg, f)TnX and λ1(Gn(g, f)) ≥ 2
XT (zg, f)nX

XTX
.
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Now, we let Y := (zg, f)nX and ℓ(z) and h(z) be, respectively, the generating functions of Y and
X . Then, for f = z, we have

λ1(Gn) ≥ 2
XTY

XTX
= 2

h⊙ ℓ

h⊙ h
= 2

h⊙ (zgh(f))

h⊙ h
= 2

h⊙ (zgh)

h⊙ h
,

where we have applied the FTRM (Lemma 2.1) and the fact that zgf j = zj+1g ∈ Z2[[z]] for any
0 ≤ j ≤ n − 2. This completes the proof of (21). The second part of the proof follows directly
from the equality condition in Lemma 4.16.

Next, for the sake of example, we demonstrate that Theorem 4.17 works for complete graphs.

Example 4.18. It is well known that for a complete graph Kn, λ1(Kn) = n− 1 with eigenvector

XT = [1, . . . , 1
︸ ︷︷ ︸

n

]. The generating function of X is h(z) =
∑n−1

i=0 zi. Moreover, by Theorem 4.17,

for Kn
∼= Gn

(
1

1−z , z
)

, we have

h⊙ h =

n−1∑

i=0

1 = n, k(z) =

n−1∑

i=1

izi−1, h⊙ k =

n−1∑

i=1

i =
n (n− 1)

2
,

and hence, by Theorem 4.17, indeed λ1(Kn) = n− 1.

5 Eigenvalues of Pascal graphs and Catalan graphs

The following conjecture shows the significance of Pascal graphs PGn and Catalan graphs CGn,
and we devote this section to studying eigenvalues of these graphs.

Conjecture 5.1 ([3]). Let Gn be an io-decomposable Riordan graph of the Bell type. Then,

2 = diam(PGn) ≤ diam(Gn) ≤ diam(CGn)

for n ≥ 4. Moreover, PGn is the only graph in the class of io-decomposable graphs of the Bell
type whose diameter is 2 for all n ≥ 4.

In this section, we first present some results related to eigenvalues −1 and 0 of Pascal and
Catalan graphs, and next, we give some results about integral Laplacian eigenvalues of these
graphs.

The following result can be directly proved by definition of an eigenvalue and a corresponding
eigenvector of a graph.

Lemma 5.2. Let G be a graph of order n. If uv ∈ E(G) with NG(u)\{v} = NG(v)\{u}, then −1
is an eigenvalue of G with eigenvector

X = [0, . . . , 0, 1 , 0, . . . , 0,−1 , 0, . . . , 0]T ,

where the entries 1 and −1 correspond to the vertices u and v, respectively.

Recall that the Catalan graph CGn is defined by Gn

(
1−

√
1−4z
2z , 1−

√
1−4z
2

)

.

Theorem 5.3. Let n ≥ 2. Then −1 is an eigenvalue of a Catalan graph CGn with eigenvector
X = [1,−1, 0, . . . , 0]T .
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Proof: We know that CGn = Gn(g, zg), where g = 1−
√
1−4z
2z . Suppose that C1(z) and C2(z) are the

generating functions for the first and the second columns of the binary Riordan matrix B(zg, zg)n.
We have that C1(z) = zg = 1−

√
1−4z
2 and C2(z) = zgf = z2g2 = 2−2

√
1−4z−4z
4 = 1−

√
1−4z
2 − z.

From this, using the fact that 12 ∈ E(CGn), we obtain NCGn
(1)\{2} = NCGn

(2)\{1}. Now, by
Lemma 5.2, the desired result is obtained.

The following result is an immediate corollary of Lemmas 5.2 and 4.10.

Theorem 5.4. For a Pascal graph PGn, we have

(i) If n = 2p + 1, then −1 is an eigenvalue of PGn with multiplicity at least 2 and with eigen-
vectors X = [1, 0, . . . , 0

︸ ︷︷ ︸
n−1

2

,−1, 0 . . . , 0]T and Y = [1, 0, . . . , 0,−1]T .

(ii) If n 6= 2p+1, then −1 is an eigenvalue of PGn with eigenvector X = [1, 0, . . . , 0
︸ ︷︷ ︸

2p

,−1, 0, . . . , 0]T .

Lemma 5.5 ([8]). Let G be a graph of order n. If uv /∈ E(G) and NG(u) = NG(v) then 0 is an
eigenvalue of G with eigenvector

X = [0, . . . , 0, 1 , 0, . . . , 0,−1 , 0, . . . , 0]T ,

where the entries 1 and −1 correspond to the vertices u and v, respectively.

Theorem 5.6. Let 2p ≤ n ≤ 2p + 2. Then 0 is an eigenvalue of a Pascal graph PGn with
eigenvector X, where the entries of X in positions 2 and 2p are 1 and −1, respectively, and the
other entries are 0s.

Proof: From [4], we have NPGn
(2) = Vo and NPGn

(2p) = {j ∈ Vo | 1 ≤ j ≤ 2p + 1}. Since
2p ≤ n ≤ 2p + 2, we have NPGn

(2) = NPGn
(2p). Finally, by the fact that 2(2p) /∈ E(PGn) and

Lemma 5.5, we obtain the desired.

Now, we are ready to present some results on integral Laplacian eigenvalues of Pascal and
Catalan graphs. The following result is obtained by Lemma 3.1 in [6].

Lemma 5.7. Let G be a graph of order n. If uv /∈ E(G) and NG(u) = NG(v), then dG(u) =
|NG(u)| is a Laplacian eigenvalue of G with eigenvector

X = [0, . . . , 0, 1 , 0, . . . , 0,−1 , 0, . . . , 0]T ,

where the entries 1 and −1 correspond to the vertices u and v, respectively.

Theorem 5.8. Let 2p ≤ n ≤ 2p + 2. Then
⌈
n
2

⌉
is a Laplacian eigenvalue of a Pascal graph PGn

with eigenvector X, where the entries in positions 2 and 2p are 1 and −1, respectively, and the
other entries are 0s.

Proof: By the proof of Theorem 5.6, we have NPGn
(2) = NPGn

(2p). Since 2(2p) /∈ E(PGn), the
required result is obtained by Lemma 5.7.

The following result is obtained by Theorem 3.3 in [7].

Lemma 5.9. Let G be a graph of order n. If uv ∈ E(G) with NG(u)\{v} = NG(v)\{u}, then
dG(u) + 1 is a Laplacian eigenvalue of G with eigenvector

X = [0, . . . , 0, 1 , 0, . . . , 0,−1 , 0, . . . , 0]T ,

where the entries 1 and −1 correspond to the vertices u and v, respectively.
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The following result is related to Laplacian eigenvalues of Catalan graphs.

Theorem 5.10. Let n ≥ 2. Then ⌈log2 n⌉+ 1 is a Laplacian eigenvalue of a Catalan graph CGn

with eigenvector X = [1,−1, 0, . . . , 0]T .

Proof: By the arguments used in the proof of Theorem 5.3, we have

NCGn
(1)\{2} = NCGn

(2)\{1}.

Now, by Lemmas 2.23 and 5.9, the desired result is obtained.

The following result follows directly from Lemma 4.10 and Theorem 3.3 in [7].

Theorem 5.11. For a Pascal graph PGn, we have

(i) If n = 2p + 1, then n is a Laplacian eigenvalue of PGn with multiplicity at least 2 and with
eigenvectors X = [1, 0, . . . , 0

︸ ︷︷ ︸
n−1

2

,−1, 0 . . . , 0]T and Y = [1, 0, . . . , 0,−1]T .

(ii) If n 6= 2p + 1, then n is a Laplacian eigenvalue of PGn with eigenvector

X = [1, 0, . . . , 0
︸ ︷︷ ︸

2p

,−1, 0, . . . , 0]T .

We note that Theorem 4.3 in [4] gives a better result than Theorem 5.11 about the number of
Laplacian eigenvalues equal to n, but without any information about the eigenvectors.

6 The inertias of Riordan graphs

In this section, we present some results on the positive inertia and the negative inertia of Riordan
graphs. We begin with two lemmas.

Lemma 6.1. Let Gn = Gn(g, f) be a Riordan graph with n vertices. Then, the following are
equivalent:

(i) [z2k](gf) ≡ 0 for 1 ≤ k ≤
⌊
n−2
2

⌋
.

(ii) 2j /∈ E(Gn) for j ∈ {4, 6, . . . , 2
⌊
n
2

⌋
}.

(iii) Gn is o-decomposable.

Proof: The statements (i) and (ii) are clearly equivalent. We have (i) holds if and only if

(
gf

z

)′
(
√
z) =

⌊n−2

2
⌋

∑

k=1

(
2k∑

i=1

g2k−ifi

)

z2k =

⌊n−2

2
⌋

∑

k=1

(
[z2k](gf)

)
z2k ≡ 0.

By Theorem 2.4, this is true if and only if Y = O⌈n
2 ⌉, i.e. 〈Ve〉 ∼= N⌊n

2 ⌋, and Gn is e-decomposable

by definition.

Lemma 6.2. Let Gn = Gn(g, f) be a Riordan graph with n vertices. Then, the following are
equivalent:
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(i) [z2i−1]g ≡ 0 for 1 ≤ i ≤ ⌊n−1
2 ⌋.

(ii) 1j /∈ E(Gn) for j ∈ {3, 5, . . . , 2⌈n
2 ⌉ − 1}.

(iii) Gn is e-decomposable.

Proof: The statements (i) and (ii) are clearly equivalent. Further, we have that (i) holds if and
only if

g′(
√
z) =

⌊n−1

2
⌋

∑

i=1

g2i−1z
2i−1 ≡ 0.

By Theorem 2.4, this is true if and only if X = O⌈n
2 ⌉, i.e. 〈Vo〉 ∼= N⌈n

2 ⌉, and Gn is e-decomposable

by definition.

The following result is obtained by Lemmas 6.2 and 6.1.

Corollary 6.3. Let Gn be a Riordan graph with n vertices.

(i) If Gn = Gn(g, zg) is of the Bell type, then Gn is o-decomposable.

(ii) If Gn = Gn(f
′, f) is of the derivative type, then Gn is e-decomposable.

Now, using the lemmas above, we obtain the following results on the positive and negative
inertias of Riordan graphs.

Theorem 6.4. Let Gn be an o-decomposable Riordan graph. Then,

max{n+, n−} ≤
⌈n

2

⌉

.

Proof: By Lemma 6.1, the null graph N⌊n
2 ⌋ is an induced subgraph of Gn. This fact, and the

interlacing property in Lemma 2.14, gives

λi(Gn) ≥ λi

(

N⌊n
2 ⌋
)

≥ λ⌈n
2 ⌉+i(Gn) for 1 ≤ i ≤

⌊n

2

⌋

. (22)

Putting i =
⌊
n
2

⌋
in the first inequality of (22), we obtain

λ⌊n
2 ⌋(Gn) ≥ λ⌊n

2 ⌋
(

N⌊n
2 ⌋
)

= 0,

that is, n+ + η ≥
⌊
n
2

⌋
, which implies that n− ≤

⌈
n
2

⌉
. Now, putting i = 1 in the second inequality

of (22), we obtain

λ⌈n
2 ⌉+1(Gn) ≤ λ1

(

N⌊n
2 ⌋
)

= 0,

that is, n− + η ≥
⌊
n
2

⌋
, which implies n+ ≤

⌈
n
2

⌉
. We are done.

Corollary 6.5. Let Gn be an o-decomposable Riordan graph. If n is even and det(Gn) 6= 0, then
n+ = n− = n

2 .

Corollary 6.6. Let Gn = Gn(g, zg) be a Riordan graph of the Bell type with n vertices. Then,

max{n+, n−} ≤
⌈n

2

⌉

. (23)

Moreover, if n is even and det(Gn) 6= 0, then n+ = n− = n
2 .
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The following result is obtained using similar arguments as those in the proofs of Theorem 6.4
and Lemma 6.2.

Theorem 6.7. Let Gn be an e-decomposable Riordan graph. Then,

max{n+, n−} ≤
⌊n

2

⌋

.

Next, we state two corollaries of Theorem 6.7.

Corollary 6.8. Let Gn be an e-decomposable Riordan graph. We have the following:

(i) If n is odd, then det(Gn) = 0.

(ii) If det(Gn) 6= 0, then n is even and n+ = n− = n
2 .

Corollary 6.9. Let Gn = Gn(f
′, f) be a Riordan graph of the derivative type. We have the

following:

(i) max{n+, n−} ≤ ⌊n
2 ⌋.

(ii) If n is odd, then det(Gn) = 0.

(iii) If det(Gn) 6= 0, then n is even and n+ = n− = n
2 .

Example 6.10. In what follows, we used Sage [16] to calculate n+ and n−.

(i) The Pascal graph PG10 is a Riordan graph of the Bell type. We have n+(PG10) + 1 =
n−(PG10) = 5. This is consistent with Corollary 6.6 and gives the equality in (23).

(ii) The graph G10

(
1

1+z2 ,
z

1+z

)

is a Riordan graph of the derivative type. We have

n+
(

G10

(
1

1+z2 ,
z

1+z

))

= n−
(

G10

(
1

1+z2 ,
z

1+z

))

= 5. This is consistent with Corollary 6.9

and gives the equality in (i).

(iii) n+
(

G16

(

1 + z3, z
1+z

))

= 6, n−
(

G16(1 + z3, z
1+z )

)

= 10.

(iv) n+(Kn) = 1, n−(Kn) = n− 1.

Clearly, G16

(

1 + z3, z
1+z

)

and Kn do not satisfy the conditions in Lemmas 6.2 and 6.1.

Using Sage [16], we observe that n−(PGi) = ⌈ i
2⌉ for 2 ≤ i ≤ 200. Moreover, by Lemma 2.6, any

Riordan graph Gn = Gn(g, zg) with an even function g is bipartite and thus n+(Gn) = n−(Gn).
Based on these observation, we state the following problem.

Problem 6.11. Is it true that n+ ≤ n− for any Riordan graph Gn(g, zg)?

Let Hn be the bipartite graph obtained from a Riordan graph Gn(g, f) by deleting all edges in
〈Vo〉 and 〈Ve〉. The following result is obtained directly from Lemma 2.17.

Theorem 6.12. Let Gn = Gn(g, f) be an o-decomposable, or an e-decomposable, Riordan graph.
Then,

min
(
n+(Gn), n

−(Gn)
)
≥ 1

2
rank(Hn) = n+(Hn) = n−(Hn).

In particular, if n is even and the corresponding bipartite graph is nonsingular, then n−(Gn) =
n+(Gn) = n/2 and η(Gn) = 0.

For a graph G, we denote the number of eigenvalues of G located in the interval I by mG(I).
The following results give bounds on mGn

(−∞,−1].
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Theorem 6.13. Let Gn = Gn(g, f) be an o-decomposable Riordan graph and Gn be its complement.
Then,

n−(Gn) ≥ mGn
(−∞,−1] ≥

⌊n

2

⌋

− 1.

Proof: From the definition of an o-decomposable Riordan graph, we have K⌊n/2⌋ is an induced

subgraph of Gn and, consequently, the complete graph K⌊n/2⌋ is an induced subgraph of Gn. Now,
by the well known interlacing theorem, we obtain

−1 = λ2(K⌊n/2⌋) ≥ λn−⌊n/2⌋+2(Gn) = λ⌈n/2⌉+2(Gn),

which gives the desired result.

By a similar argument, one can easily obtain the following result.

Theorem 6.14. Let Gn = Gn(g, f) be an e-decomposable Riordan graph and Gn be its complement.
Then,

n−(Gn) ≥ mGn
(−∞,−1] ≥

⌈n

2

⌉

− 1.

7 The nullity of Riordan graphs

In this section, we present some results on the nullity of Riordan graphs.

Theorem 7.1. Let An be the adjacency matrix of an o-decomposable Riordan graph Gn(g, f) of

the form P

[
X⌈n

2 ⌉
B

B
T O

]

PT . Then

η(B) ≤ η(An) ≤
{

2η(B) if n is even

2η(B) + 1 if n is odd.

Proof: We have

rank(B) + rank(BT ) = rank

([

O⌈n
2 ⌉ B

BT O

])

≤ rank(An) ≤ rank

([

X⌈n
2 ⌉

BT

])

+ rank(B).

Since rank(B) = rank(BT ), from the above, we obtain

2 rank(B) ≤ rank(An) ≤
⌈n

2

⌉

+ rank(B).

We can now apply the rank-nullity theorem to obtain

2
(⌊n

2

⌋

− η(B)
)

≤ n− η(An) ≤
⌈n

2

⌉

+
(⌊n

2

⌋

− η(B)
)

⇒ η(B) ≤ η(An) ≤ 2η(B) + n− 2
⌊n

2

⌋

.

This completes our proof.

Corollary 7.2. Let Gn(g, f) be an o-decomposable Riordan graph of even order n with the adja-
cency matrix An of the form in Theorem 7.1. Then detB 6= 0 if and only if detAn 6= 0.

Corollary 7.3. Let Gn(g, f) be an o-decomposable Riordan graph of odd order n with the adjacency
matrix An of the form in Theorem 7.1. If η(B) = 0 then η(An) = 0 or 1.
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When the graph Gn(g, zg) is proper (recall Definition 2.3), we have the following result on the
matrix PTAnP , where An = An(g, zg). This result is obtained by Lemma 2.5.

Corollary 7.4. Let [z0]g ≡ 1 and An = An(g, zg). Then in the matrix PTAnP in Lemma 3.14,
we have the following.

(i) If n is odd, then

bi,i = 1 for 1 ≤ i ≤ n− 1

2
, and rj,(j−1) = 1 for 2 ≤ j ≤ n+ 1

2
.

(ii) If n is even, then

bi,i = 1 for 1 ≤ i ≤ n

2
, and rj,(j−1) = 1 for 2 ≤ j ≤ n

2
.

Theorem 7.5. Let [z0]g ≡ 1 and let

An := P

[
A⌈n

2 ⌉
B

BT O

]

PT

be the adjacency matrix of an io-decomposable Riordan graph Gn(g, zg) of the Bell type. For any
n ≥ 2, we have

rank

([ A⌈ n
2 ⌉

BT

])

=
⌈n

2

⌉

.

Proof: We consider the cases of even and odd n separately.
(i) Let n = 2k and

[
Ak

BT

]

=
[
r1 · · · rk b1 · · · bk

]T

where ri is the ith row of Ak and bi is the ith row of BT . We consider the k × k matrix

Xk =
[
b1 − r1 · · · bk−1 − rk−1 bk

]T
.

It follows from Lemma 3.14 and Remark 7.4 that Xk is a unit lower triangular matrix. Thus,

rank

([ A⌈n
2 ⌉

BT

])

= rank(Xk) = k =
⌈n

2

⌉

.

(ii) Let n = 2k + 1. Note that A⌈n
2 ⌉ = Ak+1 and BT is the k × (k + 1) matrix. Using the same

notation as above, we have
[

Ak+1

BT

]

=
[
r1 · · · rk+1 b1 · · · bk

]T
.

We consider the (k + 1)× (k + 1) matrix

Yk+1 =
[
b1 − r1 · · · bk − rk rk

]T
.

It follows from Lemma 3.14 and Remark 7.4 that Yk+1 is also a unit lower triangular matrix. Thus,

rank

([ A⌈n
2 ⌉

BT

])

= rank(Yk+1) = k + 1 =
⌈n

2

⌉

,
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which completes our proof.

Let X = [x1, x2, . . . , xn]
T be an eigenvector of the matrix An with eigenvalue 0. We define Xo

and Xe to be the vectors of all eigencomponents xi, respectively, with odd and even indices i, that
is,

Xo =
[

x1, x3, . . . , x2⌈n
2 ⌉−1

]T

and Xe =
[

x2, x4, . . . , x2⌊ n
2 ⌋
]T

.

Lemma 7.6. Let An be the adjacency matrix of a singular io-decomposable Riordan graph Gn(g, zg)
of the form in Theorem 7.5. Then

Xo = O⌈n
2
⌉ if and only if BXe = O⌈ n

2 ⌉.

Proof: By Theorem 2.5 and our assumptions, we have

An X =

[ A⌈n
2 ⌉ B

BT O

] [
Xo

Xe

]

= On, (24)

A⌈n
2 ⌉Xo +BXe = O⌈n

2 ⌉,

BT Xo = O⌊n
2
⌋.

If Xo = O⌈ n
2 ⌉, obviously, we obtain BXe = O⌈n

2 ⌉. Now, we assume that BXe = O⌈n
2 ⌉. Then,

DXo = On, where

D =

[ A⌈ n
2 ⌉

BT

]

.

Since, by Theorem 7.5, the matrix D is full column rank, we obtain Xo = O⌈n
2 ⌉, as desired.

Using Sage [16], we come up with the following conjecture.

Conjecture 7.7. Let Gn(g, zg) be a singular io-decomposable Riordan graph. Then Xo = O⌈n
2 ⌉.

In what follows, we show that Conjecture 7.7 is equivalent to a condition on η(Gn).

Theorem 7.8. Let An be the adjacency matrix of a singular io-decomposable Riordan graph
Gn(g, zg) of the form in Theorem 7.5. Then Xo = O⌈n

2 ⌉ if and only if η(Gn) = η(B).

Proof: First, assume that Xo = O⌈n
2
⌉. Then, by Lemma 7.6, this is equivalent to BXe = O⌈n

2 ⌉.
This leads to η(Gn) = η(B).

Now, we assume that η(Gn) = η(B), that is, that rank(An) = ⌈n
2 ⌉ + rank(B). Since X is an

eigenvector of Gn with eigenvalue 0, we have

[ A⌈n
2 ⌉ B

BT O

][
Xo

Xe

]

= On.

Suppose that rank(B) = rb. Using row operations on B, one can easily obtain

(
Brb

O

)

, where Brb

is an rb×⌊n
2 ⌋ matrix containing rb linearly independent rows of B. Using the same row operations

on PTAP , we have




A1 Brb

A2 O
BT O





[
Xo

Xe

]

= On,
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where A2 is an
(⌈

n
2

⌉
− rb

)
×
⌈
n
2

⌉
matrix. From this, we obtain

[
A2

BT

]

Xo = Ok, where k =

⌊n
2 ⌋+ ⌈n

2 ⌉ − rb. To prove Xo = O⌈n
2 ⌉, it suffices to show that

rank

([
A2

BT

])

=
⌈n

2

⌉

. (25)

We have

⌈n

2

⌉

+ rank(B) = rank





A1 Brb

A2 O
BT O



 ≤ rank(Br) + rank

([
A2

BT

])

,

which gives the desired result in (25). Hence, the proof is done.

Applying Theorem 7.8, we can state a different version of Conjecture 7.7.

Conjecture 7.9. Let An be the adjacency matrix of a singular io-decomposable Riordan graph
Gn(g, zg) of the form in Theorem 7.5. Then, η(Gn) = η(B).

Lemma 7.10 ([1]). Let A,B,C and D be, respectively, real n×n, n×m, l×n and l×m matrices,
and let A be nonsingular. Then

rank

[
A B
C D

]

= n+ rank(D − CA−1B).

Theorem 7.11. Let An be the adjacency matrix of an io-decomposable Riordan graph Gn(g, zg)
of the form in Theorem 7.5. Then η(Gn) = η(BTM−1B), where M = An

2
−BT for even n, and

M =
[
r1 − b1 · · · rk−1 − bk−1 rk − bk−1

]T

for odd n, k = n+1
2 , where ri is the ith row of Ak and bi is the ith row of BT .

Proof: We know that the rank of any matrix is fixed under row and column operations. Thus, we
have

rank(An) = rank

[ A⌈n
2 ⌉ B

BT O

]

= rank

[
M⌈n

2 ⌉ B

BT O

]

.

By Lemma 3.14, the square matrix M is a lower triangular matrix with all entries on the main
diagonal equal to −1. Therefore, M is invertible, and the required result is given by Lemma 7.10.

By Theorem 7.11, it is worth noticing that Conjecture 7.9 is true for any io-decomposable
Riordan graph Gn(g, zg) if and only if η(B) = η(BTM−1B).

8 Determinants of Riordan graphs

In this section, we study determinants of o-decomposable and e-decomposable Riordan graphs, as
well as determinants of Catalan graphs.

We begin with Schur’s formula for determinant of a block matrix.

Lemma 8.1 ([1]). Let A,B,C and D be real n× n matrices. Then

det

[
A B
C D

]

=

{
det(DA− CB), if AB=BA;

det(AD −BC), if DC=CD.
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Recall that Hn is the bipartite graph obtained from a Riordan graph Gn(g, f) by deleting all
edges in 〈Vo〉 and 〈Ve〉.

Theorem 8.2. Let Gn = Gn(g, f) be an o-decomposable, or e-decomposable, Riordan graph of
even order n. Then,

det(Gn) = (det(B))2,

where B is given in (3).

Proof: First, suppose that An is the adjacency matrix of an o-decomposable Riordan graph Gn.
We have

An := P

[
X⌈n

2
⌉ B

BT O

]

PT .

Since n is even and B is a square matrix, by Lemma 8.1, we obtain

det(Gn) = det(An) = det

[
X⌈n

2 ⌉ B

BT O

]

= det(BBT ) = (det(B))2.

This completes the proof for o-decomposable Riordan graphs.
Next, suppose that An is the adjacency matrix of an e-decomposable Riordan graph Gn. We

have

An := P

[
O B

B
T

Y⌊n
2 ⌋

]

PT .

Since n is even, B is a square matrix, and thus, by Lemma 8.1, we obtain

det(Gn) = det(An) = det





O B

BT Y⌊n
2 ⌋



 = det(BTB) = (det(B))2.

This completes the proof for e-decomposable Riordan graphs.

The following results are obtained by Theorem 8.2.

Corollary 8.3. Let Gn = Gn(g, f) be an o-decomposable Riordan graph of even order n. Then
det(B) = 0 if and only if det(Gn) = 0, that is, Gn is a singular graph if and only if Hn is such a
graph. In particular, if NHn

(i) = NHn
(j) for i, j ∈ Vo, i 6= j, then det(Gn) = 0.

Proof: Our first claim is a direct corollary of Theorem 8.2. Now, suppose that bi and bj are the ith
and jth rows of the submatrix B. From our assumption, we obtain bi = bj , where i, j ∈ Vo (i 6= j).
This gives det(B) = 0, and hence, by Theorem 8.2, the proof is complete.

Corollary 8.4. Let Gn = Gn(g, f) be an o-decomposable Riordan graph of even order n. If Gn

has at least two universal vertices, then det(Gn) = 0.

Corollary 8.5. Let Gn = Gn(g, f) be an e-decomposable Riordan graph of even order n. Then,
det(B) = 0 if and only if det(Gn) = 0, that is, Gn is a singular graph if and only if Hn is such a
graph. In particular, if NHn

(i) = NHn
(j) for i, j ∈ Ve, i 6= j, then det(Gn) = 0.

Corollary 8.6. Let Gn = Gn(g, f) be an e-decomposable Riordan graph of even order n. If Gn

has at least two universal vertices, then det(Gn) = 0.

The following gives an example for Corollary 8.5.
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Example 8.7. Let G8 = G8

(
1

1−z2 ,
z

1−z

)

. Since g is an even function, G8 is an e-decomposable

Riordan graph. The matrix B for this graph is

B =







1 1 1 1
1 1 0 1
0 1 1 1
1 1 1 1






.

Since b1 = b4, det(B) = 0, and then, by Corollary 8.5, det(G8) = 0.

We end this section by considering determinants of Catalan graphs CGn. Let CMn be the adja-
cency matrix of CGn. Since CGn is a Bell type io-decomposable Riordan graph, from Theorem 12
in [3], there exists a permutation matrix P such that

An = P (CMn)P
T =

[
CM⌈n

2 ⌉ B

BT O

]

. (26)

By the binomial formula for the Catalan matrix
(

1−
√
1−4z
2z , 1−

√
1−4z
2

)

, we have that

CMn(i, j) ≡ C(i − 2, j − 1) =
j

i− 1

(
2i− j − 3

i− j − 1

)

, i > j ≥ 1. (27)

Let bj be the jth row of the submatrix B.

Lemma 8.8. For the block B in the matrix An, we have

b2 ≡ b3. (28)

Proof:To prove (28), it suffices to prove that

CMn(3, j) = CMn(5, j) (29)

for each even j, 2 ≤ j ≤ n. For j ∈ {2, 4}, we have CMn(3, j) = CMn(5, j) = 1. Suppose that
j = 2k where 3 ≤ k ≤ 2

⌊
n
2

⌋
. By (27), we have

C(2k − 2, 2) =
3 (2k − 3) (4k − 7)

5 (k − 2) (2k − 5)
C(2k − 2, 4) ≡ C(2k − 2, 4)

k − 2
. (30)

If k is odd, then by (27) and (30),

CMn(2k, 3) ≡ C(2k − 2, 2) ≡ C(2k − 2, 4)

k − 2
≡ CMn(2k, 5),

which gives us (29). Otherwise k is even. With Cn = 1
n+1

(
2n
n

)
denoting the nth Catalan number,

we have

C(2k − 2, 4) =
5

2k − 1

(
4k − 8

2k − 6

)

=
5

s+ 3

(
2s

s− 2

)

(letting s := 2k − 4)

=
5 (s− 1) s

(s+ 1) (s+ 2) (s+ 3)

(
2s

s

)

=
5 (s− 1) s

(s+ 2) (s+ 3)
Cs,

≡ s

s+ 2
Cs =

2k − 4

2k − 2
C2k−4 ≡ (k − 2)C2k−4 ≡ 0. (31)
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Now, by (30), (31) and Lemma 2.23, we obtain

C(2k − 2, 2) ≡ C(2k − 2, 4)

k − 2
≡ C2k−4 ≡ 0

completing our proof.

Theorem 8.9. det(CG2n) = 0 for any n ≥ 3.

Proof: Since the order of the matrix CM2n is 2n, the block B in (26) is a square matrix of order
n. On the other hand, by Lemma 8.8 we have b2 ≡ b3. Thus, rank(B) ≤ n− 1 and det(B) = 0.
Now, we obtain the desired result from the fact that det(CM2n) = (−1)2n.

Remark 8.10. Let Γ = {11, 13, 15, 23, 33, 51, 61, 63}. By Sage [16], we observe that for n ∈ Γ,
det(CGn) = 0.

We conclude our paper with the following conjecture.

Conjecture 8.11. We have that detCGn = 0 if and only if n ≥ 6 is even, or n ∈ Γ.
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