
Can Non-intrusive Load Monitoring be used for
Identifying an Appliance’s Anomalous Behaviour?

Haroon Rashid∗, PushpendraSingh

IIIT Delhi, Okhla Phase III, India

Vladimir Stankovic, Lina Stankovic

Dept. of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK

Abstract

Identification of faulty appliance behaviour in real time can signal energy wastage

and the need for appliance servicing or replacement leading to energy savings.

The problem of appliance fault or anomaly detection has been tackled vastly

in relation to submetering, which is not scalable since it requires separate me-

ters for each appliance. At the same time, for applications such as energy

feedback, Non-intrusive load monitoring (NILM) has been recognised as a scal-

able and practical alternative to submetering. However, the usability of NILM

for anomaly detection has not yet been investigated. Since the goal of NILM

is to provide energy consumption estimate, it is unclear if the signal fidelity

of appliance signatures generated by state-of-the-art NILM is sufficient to en-

able accurate appliance fault detection. In this paper, we attempt to deter-

mine whether appliance signatures detected by NILM can be used directly for

anomaly detection. This is carried out by proposing an anomaly detection al-

gorithm which performs well for submetering data and evaluate its ability to

identify the same faulty behaviour of appliances but with NILM-generated ap-

pliance power traces. Our results on a dataset of six residential homes using

four state-of-the-art NILM algorithms show that, on average, NILM traces are

not as robust to identification of faulty behaviour as compared to using subme-

tered data. We discuss in detail observations pertaining to the reconstructed

appliance signatures following NILM and their fidelity with respect to noise-free
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submetered data.
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1. Introduction

In buildings, electrical appliance’s faulty behaviour can happen either due to

a fault in any appliance part or user negligence, e.g., refrigerant loss in a refrig-

erator or keeping the refrigerator door open. An instance of faulty behaviour

can result in higher energy consumption than its normal behaviour and/or can

lead to permanent damage of the appliance. Mostly, such faulty instances are

intermittent; identifying them promptly improves appliance maintenance and

lifespan, and results in energy savings. In this paper, hereafter, we call an ap-

pliance showing faulty behaviour as “anomalous appliance” and the anomalous

instance as an “anomaly”.

Identifying faulty behaviour of appliances in buildings has traditionally used

submetered data, i.e., measuring energy consumption at appliance level indi-

vidually, as in [1, 2, 3]. However, the number of submeters or individual appli-

ance monitors increases with the number of appliances or loads, and therefore

anomaly detection based on submetering is not a scalable solution, especially in

modern households with over 40 electric appliances1.

On the other hand, Non-intrusive load monitoring (NILM) estimates the

individual consumption of an appliance within a building from the aggregate

meter reading obtained from a smart meter, measuring total household elec-

tricity consumption at each sampling point; effectively eliminating the need for

submetering. The effectiveness of NILM has been demonstrated in providing ap-

pliance [4, 5] and activity-based feedback [6] to consumers, utilities, and policy

makers (see [7, 8, 9, 10, 11] for recent reviews).

NILM research has received an increased boost since 2010, primarily due to

1https://tinyurl.com/yc4frb7f
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the roll-out of smart meters worldwide [12] and evidence that the appliance-level

feedback to consumers can result in energy savings of up to 15% [13]. Many

algorithms have been proposed to improve the disaggregation performance of

NILM [14]. High disaggregation accuracy has been reported in the literature (in

some cases, around 90% [15, 16, 17]), and presently, more than 30 companies are

offering NILM-based solutions [18], e.g., EnerTalk (https://www.enertalk.

com/product) from Encorded and SPEED (https://bit.ly/2NLP1Yu) from

Enetics provide appliance-level consumption details to households from a be-

spoke smart meter fitted at the mains. There are other somewhat meter-agnostic

offerings too that work on smart meter data from national roll-outs. However,

in NILM literature and industrial offerings, the algorithms are not always tested

at scale on real, noisy datasets typical of smart meter actual measurements from

buildings and households. Furthermore, many NILM solutions are limited to

disaggregating few appliances accurately, use multiple features (e.g., active and

reactive power, voltage, current) and sampled measurements at >> 1Hz that

are generally not available from national smart meter deployments, and offer

either good classification accuracy (i.e., which appliance was running) or good

consumption estimation (i.e., how much the detected appliance consumed in

watts) accuracy. Current EU and national law and smart meter deployments

do not make data available remotely (e.g., utility) at rates higher than 15-60

minutes. Furthermore, the feature available is mostly restricted to active power.

However, as per the UK Smart Meter specifications [19] and other home energy

management providers on the market (as discussed above) with bespoke higher

resolution smart meters, the data available to the customer or data owner within

the Home Area Network (HAN) is at higher granularity, e.g, 1-60 seconds, and

therefore NILM can provide useful energy feedback directly to the customer.

While the ability of NILM in removing the need of submetered data for item-

ized billing is well recognized, so far NILM has not been tested for detection of

appliance’s faulty behaviour in buildings. To ensure accurate appliance anomaly

detection, it is not sufficient to produce an accurate energy consumption esti-

mate, but also to reconstruct with high fidelity the appliance load signature.
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In this paper, we assess the accuracy of reconstructed appliance load signatures

using state-of-the-art NILM methods and therefore the possible impact of NILM

on anomaly detection, that depends on these load signatures being replicated

accurately. That is, we evaluate whether NILM-generated power traces can be

used directly in identifying anomalous appliances.

To identify faulty appliances from a single smart meter, first we use four

publicly available, well-established and popular NILM techniques of [20, 21, 22,

16] to obtain disaggregated appliance power traces, and then attempt anomaly

detection on these appliance power traces. Given the exploratory nature of the

work, and to gain deep insights, we focus our study on the anomaly detection

of two major energy consuming appliances in residential buildings, i.e., Air

Conditioner (AC) and refrigerator. Typically, an AC runs for limited hours of

a day, but often consumes significantly high amount of energy. On the other

hand, a refrigerator remains operational 24x7, which causes it to consume energy

(usually around 7% of the total energy consumption [23]) continuously.

Anomaly detection is performed using a new rule-based proposed algorithm,

which we term UNUM2 that first learns the appliance’s ON-OFF cycle fre-

quency and duration during normal operation and then monitors the appliance’s

consumption and flags an anomaly whenever a deviation is found.

Our study consists of two steps: (i) Perform energy disaggregation using

existing techniques to get NILM data (i.e., appliance-level traces); (ii) Apply the

proposed UNUM on both NILM data and submetered appliance data, where

testing on submetered data provides the baseline performance of UNUM.

We use energy consumption data of six homes from three different publicly

available datasets (REDDs [24], iAWE [25], Dataport [26]) to perform exper-

iments. These datasets provide both aggregate smart meter measurements at

1 minute (Dataport) and 1 second (REDD, iAWE) sampling rates, and sub-

metered data at the same rates (which is used purely for baseline performance

evaluation).

2UNUM means “one” in Latin. It uses one appliance-level power trace.
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Contributions of this paper are summarised as:

1. A rule-based UNUM algorithm is proposed for detecting anomalies, which

uses appliance-level power traces of an AC or a refrigerator.

2. An in-depth methodological evaluation of the viability of NILM power

traces is provided through careful insertion of well-established AC and

refrigerator anomalies and through multiple metrics of assessment, to de-

termine the correlation between NILM accuracy and resulting anomaly

detection based on NILM power traces. The generated annotated appli-

ance anomaly dataset is made publicly available.

3. Anomaly detection is performed directly on NILM-generated power traces

obtained from the smart meter aggregate measurements instead of circuit-

level measurements or appliance submetering.

4. Robust, methodological evidence is provided via four NILM algorithms

and three datasets for experiments. Using publicly available NILM tech-

niques and datasets allows reproducibility of presented results.

5. We discuss further steps needed to facilitate effective anomaly detec-

tion using NILM-outputs, i.e., appliance-level power traces obtained from

NILM.

The remaining paper is organized as follows: Section 2 discuss the re-

lated work in the anomaly detection domain. Section 3 discusses the proposed

anomaly detection algorithms. Section 4 explains the dataset, baseline algo-

rithms and the evaluation metrics used. Section 5 mentions the results obtained.

Section 6 discusses results obtained and Section 7 concludes the paper.

2. Related work

Related work can be broadly divided into two groups: work on anomaly

detection and on NILM.
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Anomaly detection: Anomaly detection in energy domain has become a pop-

ular research topic with the introduction of smart meters (aggregate load mea-

surements), circuit-level and plug monitors (latter two providing submetering

data), which enable logging and analysis of power consumption data. Therefore

anomaly detection approaches target either aggregate smart-meter or at subme-

tered load level energy measurements. First, we will discuss anomaly detection

methods at the smart-meter level and then at the appliance level.

Seem [27] first proposed an anomaly detection approach, from smart meter

data, that grouped different days consumption data into clusters according to

various criteria (e.g., weekday/weekend) and then used statistical measures,

such as mean and standard deviation, for each cluster separately to identify

anomalies. An alternative, unsupervised learning approach is proposed [28] to

identify anomalous days by first creating a lower-dimensional representation of

high-dimensional energy data and then using a density-based algorithm to find

anomalies. An enhanced unsupervised algorithm, which in addition to smart

meter data uses context information (e.g., homes in the same locality should

get affected similarly by weather), is used to improved anomaly detection [29].

The above algorithms detect household’s total energy consumption anomalies,

but cannot pinpoint the appliance causing the anomaly. More recently, a rule-

based approach for identifying anomalous appliances using smart meter data

only is proposed [30], but the approach falls short whenever several appliances

with similar power rating are present in a home. Therefore, identifying an

anomalous appliance from smart meter data only, is still an open challenge.

There have been recent attempts to use appliance-level consumption to iden-

tify appliance anomalies. Submetered data is used to build models specific for

AC, washing machine, and refrigerator which track appliance’s consumption

over time and flag anomalous usage instances [1]. A self-adaptive stream clus-

tering algorithm [2] is proposed to detect anomalies in the previous appliances

as well as in electronic loads (TV, Laptop, Tablet, Mobile phone) using subme-

tered data from these appliances. However, multiple appliance-level monitors

are needed, which impacts the scalability of these approaches [1, 2, 3].
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NILM: The ability to obtain appliance-level load measurements from smart

meter aggregate data, using purely computational software methods with im-

proved accuracy (see [14, 31, 32, 11, 10] for recent surveys of methods) has also

ignited broader applications beyond energy feedback such as device schedul-

ing, recommendation engine, demand response capacity estimation, itemized

bills [33, 6], appliance mining [4], consumer studies [5], etc.(see [7, 8, 9] for

surveys of NILM applications), that either relied on submetered appliance-level

power traces or appliance models, which do not represent actual usage patterns.

Primarily, effectiveness of NILM is evaluated along three dimensions: (i) reduc-

ing sensing hardware cost, i.e., submetering, by minimizing sensing installation

and maintenance costs and reducing infrastructural change. (ii) improving dis-

aggregation accuracy: every year numerous disaggregation approaches are being

proposed to improve the disaggregation accuracy. Broadly, this includes both

state-based and event-based approaches. Event-based NILM approaches, e.g.,

supervised and unsupervised Graph Signal Processing-based NILM [10, 32], DT-

based [34] estimate ON-OFF timings of appliances from the aggregate house-

hold signal whereas state-based approaches, such as those of [35, 36, 37, 38],

estimate combination of different appliance states from the aggregate signal.

Pre-processing methods, e.g. [11] to improve NILM algorithms also improve ac-

curacy. State-based approaches model consumption of each appliance with a

finite state machine (FSM) [21, 39, 24, 16, 40, 41, 42]. Ideally, aggregate con-

sumption is the combination of the appliance FSMs, and state-based algorithm

should identify contributing appliances with inferencing algorithms. Mostly,

state-based methods are Hidden Markov Model (HMM)-based and often out-

perform existing event-based methods. (iii) minimizing the need of training

data: proposed NILM approaches are classified as supervised, such as those

in [16, 24, 22, 43, 10, 34], or unsupervised [40, 35, 44, 45, 32]. Supervised

approaches require labeled training data to do the disaggregation, while, unsu-

pervised methods do not require labeled training data. In general, supervised

methods are more accurate than unsupervised ones, but labeled training data

requirement impedes their scalability.
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NILM for anomaly detection: NILM has been explored in [46, 47, 48] for

identifying faults in stand-alone closed systems such as waste-disposal systems,

air conditioner and refrigeration systems, using circuit-level measurements, but

not for identifying anomalous appliances in an overall building using aggregate

smart meter data.

A NILM-based approach is used to provide appliance-level feedback by iden-

tifying appliances that consume more energy than expected [49, 50]. Focusing

on refrigerator and HVAC, appliance models, in terms of energy consumed per

cycle are built for different operating states (e.g., defrost, baseline, etc). Then,

the NILM output is compared to the models to test if it can provide appliance-

specific advice (e.g., high defrost energy). Unfortunately, it is concluded that

tested NILM methods do not provide sufficient level of accuracy for such energy

feedback.

Compared to the previous approaches of [46, 47, 48, 49, 50], this paper’s

originality can be summarised as: (i) we perform anomaly detection on the

NILM-generated power traces obtained directly from the smart meter aggre-

gate measurements instead of circuit-level measurements for sub-systems as in

[46, 47, 48]. As expected, the more appliances contributing to the true aggre-

gate measurements, the “noisier” the measurements due to multiple unknown

appliances, and appliances with similar power ratings, which is a more realistic

scenario but also rendering NILM problem more challenging [32] with poten-

tially less accurate appliance-level power traces. (ii) the proposed anomaly de-

tection algorithm is based on clear rules to estimate both the type of anomaly,

as well as when the anomaly occurred, (iii) we use extra state-of-the-art NILM

methods ([22, 16]) which show improved disaggregation performance compared

to the ones used in [49, 50] and help in providing a more robust evaluation

of using NILM for anomaly detection within specific appliances, (iv) a much

more in-depth methodological evaluation of the viability of NILM power traces

is provided through careful insertion of known anomalies and through multiple

metrics of assessment, to determine the correlation between NILM accuracy and

resulting anomaly detection based on NILM power traces.
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Figure 1: Power consumption signature of AC in three different modes for 10 hours: a) Normal
mode, b) Abnormal mode when compressor takes long duty cycles, c) Abnormal mode when
compressor duty cycles frequently.

Anomaly Type Causes

Elongated duty cycle Clogged air filter in AC, set point misconfiguration
in AC, dry and cracked door gas kit in refrigerator [1]

Frequent cycling Refrigerant leak, electrical problem(short circuit or
damaged wire in compressor or thermostat), com-
pressor damage [51]

Table 1: Causes for different anomaly types.

3. Methodology

In this paper, we focus our analysis on AC and refrigerator, which are com-

mon household appliances. They are both compressor-based and high energy

consuming appliances, with the primary contributor to their energy consump-

tion being their compressor. Any fault in the compressor itself or in any other

part affecting the compressor gets reflected in the power consumption trace of

the appliance. Figure 1(a) shows the normal functioning of such appliances

where each cycle consists of ON and OFF states. In different types of faults,

the duty-cycling ON-OFF nature of an appliance deviates significantly from its

normal operation. Either it remains ON for longer durations, or it switches fre-

quently between ON, OFF states as shown in Figures 1(b) and (c), respectively.

The power trace shown in Figure 1 is for 10 hours. Table 1 reports various

reasons which result in these type of abnormal behaviour.
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Figure 2: Different power consumption signatures during day and night: (a) AC, (b) Refrig-
erator.

The total energy consumed by the AC operating effectively, as shown in

Figure 1(a), is 7.2 kWh, while the total energy consumed during anomalous op-

eration, as shown in Figures 1 (b) and (c), for the same duration, are 10.8 kWh,

and 9.6 kWh, respectively. This is a 3.6 kWh and 2.4 kWh increased energy

use during anomalous conditions. However, the AC is not used continuously

like a refrigerator, and the usage pattern varies significantly. We also show in

Figure 2 that the consumption pattern also varies depending on time of day,

both for AC and refrigerator. Therefore, using the relative total consumption

per day or a period of a day to estimate anomalies would not be accurate. This

is why we propose a rule-based approach, that takes into account the appliance

characteristics, and focuses on the average energy consumption of the ON-cycle.

For instance, in Figure 1(b), each ON cycle is of longer duration with energy

consumption of 5.4 kWh, while as in Figure 1(c) each ON cycle is of shorter

duration with energy consumption of 0.32 kWh. This is to be compared with

the average energy consumption corresponding to the ON cycle for a normal

operation, as in Figure 1(a), of 1.8 kWh. That is 3.6 kWh increase as above for

anomaly (b) and 1.48 kWh decrease for anomaly (c). While the total energy

consumption normalized by duration of use could provide an indicator of anoma-

lies, it would not explain the type of anomaly, i.e., whether elongated or frequent

cycling issue occurred. This is why a rule-based approached is proposed.

Our study consists of two steps: (i) First, apply existing NILM techniques

on the smart meter data to get appliance power traces (ii) Next, use proposed
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Figure 3: Clustering of ON and OFF states into two clusters C1 and C2.

anomaly detection algorithm, UNUM, on both AC and refrigerator disaggre-

gated power consumption traces to identify anomalies. We build UNUM upon

our preliminary work presented in a poster paper [52] by including more detailed

rules. This has resulted in improvement in accuracy and the scope; the algo-

rithm has also been evaluated thoroughly since its inception. Next, we explain

UNUM, in detail.

UNUM consists of training and testing phases. In training phase, the statis-

tical model of an appliance is built from T days of the appliance’s historical

power consumption trace, and in the testing phase, with the appliance’s power

consumption trace during a day as input, the algorithm outputs whether the

appliance’s consumption is anomalous or not. The following steps are used in

the training phase:

1. Input appliance’s power consumption trace of T days. The selected days are

from the period when the appliance worked normally and also showed varied

duty cycles according to different load conditions. For example, compared to

higher settings, at lower set-point settings, the AC operates with considerably

longer cycles.

2. Identify ON and OFF compressor states by using k-means clustering algo-

rithm [53]. This results into two clusters corresponding to ON and OFF

states as shown in Figure 3. Label all power consumption readings according

to the cluster label. Cluster labels C1 and C2 are assigned to readings of ON

and OFF states, respectively. Note that power consumption of OFF state is

not 0 because an appliance still consumes energy when its compressor is off.
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3. For each ON and OFF state, identify timestamps of first and last power

consumption reading as first and last. Calculate the duration Ds of each

state as Ds = last− first.

4. Compute energy Es of each state using all power readings of a state between

first and last.

5. For all ON states, compute mean over Ds and Es, as D and E, respectively.

Also, compute standard deviation over Es denoted by σe. Similarly, repeat

all these statistics for OFF state.

Therefore, training model is a tuple (D, E, σe) containing various parameter

values corresponding to ON and OFF states separately. During analysis, we

found that AC and refrigerator consume energy differently at different times of

a day. Figure 2 shows that during the day time, appliance’s duty cycle signature

is distinct from that of the night. So, we build separate models: one for the day

(0600 - 1800 hours) consumption and the other for night consumption.

During the testing phase on a test day, UNUM first takes power consump-

tion data of an appliance and computes all mentioned parameters as defined

above. Next, it uses the following set of rules to decide whether the test day

consumption is anomalous, and if yes, then which type, i.e., elongated duty-

cycle or frequent cycling:

Rule # 1: If an appliance switched between ON and OFF states frequently,

then it is frequent anomaly type as shown in Figure 1(c). In this case, on aver-

age, energy consumed in any of the cycles is lower than a normal cycle, because

ON cycles are interrupted frequently by OFF cycles and hence are of shorter

durations leading to lower energy consumption than in normal operation case.

Ei
testday < E

i − n ∗ σi
e,∀i∈{ON,OFF} (1)

where {n ∈ R|n > 0}.

Rule # 2: If an appliance remains in ON state for an extended period, then

it is an elongated duty-cycle anomaly as shown in Figure 1(b). In this case, on

12



average, energy consumed in any of the cycles is higher than in a normal cycle.

EON
testday > E

ON
+ n ∗ σON

e (2)

Rule # 3: If an appliance remains in ON state for an extended period, and

the OFF duration is also longer as compared to normal, then it means that the

appliance has been switched ON after a long time, as usual, hence it is not an

anomaly.

EON
testday > E

ON
+ n ∗ σON

e , ∧

DOFF
testday > D

OFF
+ n ∗ σ(D)

(3)

With these set of rules UNUM outputs anomaly status informatively to

enable prompt decision-making: (i) which type of anomaly is present in the

appliance, and (ii) which part of the day resulted in anomaly, as separate models

are being used for day and night.

4. Evaluation

4.1. Dataset

We use energy consumption data of six homes from three different publicly

available datasets (four from Dataport, one from iAWE and one from REDD [24,

25, 26]) for the evaluation. Other publicly available datasets (ECO [54], DRED [55],

Smart [56]*, GREEND [57], REFIT [58], UK-DALE [59], AMPds [60], Data-

port [26], REDD [24], PLAID [61], tracebase [62]) either do not have both AC

and refrigerator or do not have data of considerable duration required for the

experiments. Only one home in REDD has both AC and refrigerator data. All

these six homes selected for our experiments have both aggregate and subme-

tered data available. Sampling rate of Dataport is one sample per minute while

REDD and iAWE have 60 readings per minute. Homes 1 - 4 are from Dataport,

Homes 5 and 6 correspond to iAWE and REDD, respectively.

We select only four distinct homes from the 500 homes of Dataport. The

selection methodology was: (i) We ran disaggregation techniques - FHMM [24]

and CO [20] of NILMTK on all 500 homes and selected homes having minimal
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disaggregation error for AC and refrigerator. We assume that small disaggrega-

tion error will result in higher fidelity appliance power traces and thus essential

to evaluate the effectiveness of NILM in identifying an anomalous appliance.

(ii) All homes are distinct in their energy consumption patterns thus enabling

us to robustly evaluate our algorithms with a variety of consumption patterns.

For Dataport, the period June 2014 - August 2014 was chosen for evaluation

due to the following: (i) these three months are high energy consuming months

due to extreme heat, and (ii) there is almost no seasonal variation during these

months. This enables us to train our models on some data and then evaluate

the built model on remaining data since there is no seasonal drift.

For iAWE, the period July 13, 2013 - August 04, 2013 was selected as sug-

gested3 by the authors of the dataset and for REDD, data from May 22, 2011

- June 13, 2011 was selected as this duration has minimal missing data.

We did a meticulous manual inspection of the energy consumption data and

for these six homes, we found that the patterns were consistent and “no anoma-

lous instances were already present”. We inserted anomalies, explained in detail

in the next section, in these homes to check how effective NILM is in detecting

the inserted anomalies. Anomalies were inserted following the methodology of

[29]. The annotated dataset, with inserted anomalies, is publicly available at

this4 link.

3http://iawe.github.io
4http://bit.ly/2wibl4L
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4.2. Anomaly Insertion

To evaluate the performance of NILM in identifying anomalous appliances,

two types of anomalies were inserted in the AC and refrigerator power traces

of all six homes: (i) Elongated duty cycle and (ii) Frequent cycling. These

anomalies appear in AC and refrigerator operation due to various reasons as

reported in Table 1. Signatures of these anomalies are shown in Figure 1(b)

and (c), respectively. Table 2 shows the statistics of all inserted anomalies. The

following steps were used to insert anomalies:

1. Extract appliance’s duty-cycle statistics manually for each home. As the

separate models are built for daytime (06:00 - 18:00) and nighttime (00:00 -

06:00 & 18:00 - 24:00) hours, we note the minimum and maximum duty-cycle

of an appliance for both day and night hours separately.

2. Keeping in view the normal operation of an appliance as recorded, multiple

instances of the anomalies, as reported in Table 2, were inserted in AC and

refrigerator power traces by replacing the measured signature (Figure 1(a))

with the anomalous signature, e.g., either Figure 1(b) or Figure 1(c). Four

parameters define an anomaly signature: (i) Power rating, (ii) duration, (iii)

duty cycle, and (iv) frequency. An appliance’s power rating defines its power

consumption in the ON state of duty cycle. For example, for Home#1, for

the AC, six anomalies of varying durations (6 - 12 hours) were inserted on

different days. Figure 1(b) shows an anomalous signature with a frequency

of 1/2.5 meaning one ON and OFF cycle completes in 2.5 time units (= one

hour) and with a duty cycle of 0.9 means 90% of cycle is in the ON state and

remaining 10% is in the OFF state.

3. Later, the corresponding anomalies were also inserted in aggregate consump-

tion to maintain synchronization between appliance’s consumption and the

aggregate consumption.
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4.3. Disaggregation Techniques

For ease of reproducibility, we use publicly available NILM techniques: clas-

sical Combinatorial Optimization (CO) [20], Factorial-Hidden Markov Model

(FHMM) [21], Latent Bayesian Melding (LBM) [22] and Super-state Hidden

Markov Model (SSHMM) [16].

CO: The aggregate power consumption of a home accounts for the sum of

individual appliances consumption at time instant t. Mathematically: Yt =∑n
i=1 y

i
t + et, where Yt represents aggregate power consumption at time t, y

represents appliance consumption, n the total number of appliances contributing

to Yt and e represents the residual. Hence, NILM can be formulated as a

combinatorial optimization problem:

et = arg min
et
|Yt −

n∑
i=1

yit|. (4)

At every time instant t, CO ensures that the optimal combination of the set of

ON appliances and their power consumption is found.

FHMM: FHMM is an extension of Hidden Markov Models. Each state consists

of multiple independent chains corresponding to the number of appliances, and

the output is represented as an addition function of all hidden states.

LBM: LBM is an extension of additive FHMM. It adds extra constraints in the

form of the appliance’s summary statistics including total energy consumption,

duration of use, and usage frequency.

SSHMM: Unlike FHMM, each state is computed as the Cartesian product of

all possible states of particular household appliances. It uses sparse Viterbi

algorithm to reduce the computational overhead.

4.4. Baseline performance of UNUM

To evaluate the efficacy of UNUM, we run UNUM on raw submetered

data available in all six homes. We refer the process of running UNUM on

submetered and NILM disaggregated data as UNUM S and UNUM D re-

spectively. Comparing their performance will indicate how effective NILM power

traces are in identifying anomalous behaviour.
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Home (#) Training duration Testing duration

1 - 4 June 01, 2014 - June 30, 2014 July 01, 2014 - August 31, 2014
5 July 13, 2013 - July 20, 2013 July 21, 2013 - August 04, 2013
6 May 24, 2011 - May 27, 2011 May 28, 2011 - June 13, 2011

Table 5: Division of data for UNUM and NILM approaches

4.5. Performance Metrics

Following metrics were used to report the NILM and anomaly detection

accuracies:

(1) Appliance Normalized Error [63]: This metric captures the deviation of

NILM readings from the submetered power readings for an appliance

Appliance Normalized Error (ANE) =

∑
t |yat − ŷat |∑

t y
a
t

(5)

where yat represents submetered power readings of appliance a at time t, ŷt

represents estimated power readings from NILM. The lower the ANE, the higher

is the disaggregation accuracy for a.

(2) F-score: F-score is interpreted as weighted average of precision and recall.

F-score = 2 ∗ precision ∗ recall
precision+ recall

(6)

Specific to anomaly detection methods, precision measures the percentage of

correct anomalies to the total number of reported anomalies and recall measures

the percentage of correct anomalies reported to the total number of anomalies

present in a dataset. F-score varies in the range [0 - 1]. The higher the score,

the better is the anomaly detection performance of algorithm.

4.6. Experimental Settings

Experiments were conducted under the following settings:

• UNUM: It is implemented in Python and the value for n was empirically set

to 1.5. We present a sensitivity analysis of n in Section 5. Table 5 shows the

data used for training and testing of UNUM.
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• Disaggregation techniques: We use publicly available implementations,

NILMTK5(for CO and FHMM), LBM6, and SSHMM7 to get disaggregation

results. Table 5 shows the division of training and testing data used in the

techniques. Further, we ensured that training data duration was adequate

for the disaggregation techniques as there was no instance in the testing data

which was not in the training data.

5. Results

In this section, first, we report disaggregation performance of various existing

NILM techniques. Then, with UNUM, we show how effective NILM data is

for anomaly detection as compared to submetered appliance data.

Table 3 reports ANE for different appliances of six homes using CO, FHMM,

LBM, and SSHMM separately. Appliance mapping of these homes is given

in Table 4. In Table 3, few entries are > 1 meaning that the disaggregation

technique predicted an appliance consumed more energy in total (sum) than

it did. Considering ANE of AC (Appliance 1) and refrigerator (Appliance 2)

across all homes, overall, FHMM performs better than remaining techniques.

So, we chose FHMM for further steps.

Analyzing disaggregated data for anomaly detection: During testing

phase, for each test day, first, we use FHMM technique to get disaggregated

appliance level data. Next, we use UNUM on each appliance’s data separately

to identify anomalous instances.

Bottom row of Figure 4 shows F-score, precision and recall for refrigerator

with UNUM D and UNUM S. Overall, precision of UNUM D is found

lower than UNUM S because of high false positives as ANE is higher for

refrigerators as compared to ACs shown in Table 3. Higher ANE in refrigerator

results because NILM techniques find it difficult to track small changes due

to a refrigerator (± 90 − 150 W approx.) as compared to AC (> ±1 kW)

5https://github.com/nilmtk/nilmtk
6https://github.com/MingjunZhong/LatentBayesianMelding
7https://github.com/smakonin/SparseNILM
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Figure 4: Anomaly detection accuracy metrics – F-score, Precision, and Recall – of
UNUM S and UNUM D on AC and refrigerator data.

in the aggregate smart meter data. On the other hand, UNUM D recall is

found to be better than UNUM S because high number of false positives in

UNUM D results a drop in the false negatives.

Top row of Figure 4 shows F-score, precision and recall for AC. The figure

shows UNUM S was not able to achieve a precision of one because of our

inability to find a unique value of n (in Equations 1, 2, 3) for all homes, as

energy consumption pattern of each home is distinct. Similarly, UNUM S re-

call was not able to reach a score of one because some of the defined anomalies

(Table 2) were not considered as anomalous due to smaller anomaly duration

parameter. Table 6 shows the number of missed anomalies in different homes

using UNUM S both appliance-wise (AC, refrigerator) and anomaly type-wise

(elongated and frequent). It shows that UNUM S often misses “frequent type”

of anomalies in AC in all the homes. The primary reason for all these missed

anomalies was their shorter duration. Duration is an important parameter in

defining anomaly as shown in the Table 2. All the missed anomalies have du-

ration < 8 hours; as a result, in a full test day’s duration (day or night con-

text) the nature of anomaly gets diluted with the normal behaviour of appli-

ance. So, UNUM S fails to detect such anomalies. Similarly, for refrigerator,

the duration of missed anomalies was found ≤ 7 hours. However, inability of
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# of Inserted Anomalies # of Missed Anomalies

Home AC Refrig. AC Refrig.

# (= Ea+ F) (= E+ F) (= E+ F) (= E+ F)

1 3 + 3 2 + 2 1 + 1 1 + 0

2 4 + 3 2 + 2 0 + 1 0 + 1

3 4 + 2 2 + 2 0 + 1 0 + 1

4 5 + 1 3 + 2 0 + 1 1 + 0

5 3 + 2 2 + 2 0 + 0 0 + 0

6 2 + 3 2 + 2 0 + 0 0 + 0

aE = Elongated duty-cyle, F= Frequent cycling
Table 6: Number of missed anomalies at appliance level with UNUM S in different homes.
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Figure 5: Effects of the number of standard deviations on Precision, Recall and F-score in
AC, Refrigerator, Both Refrigerator and AC

UNUM S to reach precision and recall of one should not affect our findings as

both UNUM S and UNUM D are run under similar conditions and our aim

is to compare their performance under such conditions.

Lower UNUM D’s F-score in all homes indicates that it is difficult for

existing NILM techniques to find anomalous refrigerator instances.

5.1. Sensitive Analysis of the number of Standard Deviations in UNUM

In Equations (1), (2), and (3), we find only one controlling parameter, n,

which determines how many standard deviations from the historical consump-

tion should be labeled as an anomaly. Intuitively, n controls the granularity

of anomaly − small n means that an anomaly gets flagged if a minor devia-

tion is observed and vice-versa. Figure 5 shows the effect of a change in the
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Figure 6: AC submetered & NILM data of home 5. Mirror images show NILM method has
performed better.

number n of standard deviations on F-score, Precision, Recall while considering

anomalies of AC, refrigerator, and both (refrigerator+AC). This figure shows

that as n increases, recall decreases. This decrease happens because as n in-

creases, anomalies with a minor deviation get treated as normal observations

and hence false negatives increase. Also, with the increase in n the chances

for minor deviations getting reflected as anomalies decrease which reduces false

positives and as a result precision increases. As mentioned before, the trade-off

between Precision and Recall can be used to set a particular value for n. Higher

precision ensures fewer false alarms.

6. Discussion

In this section, we discuss our findings through key research questions.

1. How do we know which NILM technique will perform better for anomaly

detection without using UNUM?

Our experiments show that a good number of anomalous instances can be iden-

tified correctly if the ANE for an appliance is < 0.1 as reported in Table 3.

Overall, ANE for AC is lowest as compared to remaining appliances, and the

top row of Figure 4 shows that AC anomalies can be detected with a precision

of 0.7 and recall of 0.5, approximately. On the other hand, the bottom row of

the Figure 4 shows that precision is pretty low (0.12 approx.) for refrigerator

due to its higher ANE as reported in Table 3.

This study demonstrates that we cannot directly use NILM techniques in
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Figure 7: AC submetered & NILM data of home 3. This shows NILM method did not recover
anomaly signature fully.

identifying anomalies correctly for AC or refrigerator if ANE is high. Therefore,

the choice of NILM technique is determined by ANE of appliances of interest.

2. Why is F-score for AC in Home 5 the same for submetered and NILM data

as shown in Figure 4?

Figure 6 shows AC submetered and NILM data for Home 5. We can see that

FHMM was able to recover AC’s consumption signature from the aggregate sig-

nal to an acceptable accuracy. The same F-score shows that NILM has worked

successfully for AC in Home 5 and hence UNUM was able to recover all anoma-

lous instances as compared to remaining homes. The primary reason for this

good NILM performance is the remaining appliances (refrigerator, laptop, TV

and water filter) of the home. All these appliances are distinct and low energy

consuming appliances. As a result, FHMM resulted in better performance.

3. Since AC of Homes 3 and 5 have the same FHMM ANE (0.07) as reported

in Table 3, then why do they have different F-scores as shown in Figure 4?

Having the same ANE does not mean that the recovered appliance signatures

vary in the same pattern in both AC instances for the entire duration. For

example, Figure 7 shows that in Home 3, on July 25, the inserted anomaly

signature was not recovered to a required detection level in the NILM output.

UNUM flags anomalies using tuple (D, E, σe), but computing the values for

this tuple does not flag the day’s consumption as anomalous, since the signature

was not accurate. On the other hand, no such case was found in Home 5 AC’s

NILM output. Thus, we conclude that if the appliance has an anomaly and the

23



NILM technique did recover the anomalous signature then UNUM will flag

usage as anomalous, otherwise it will not.

7. Conclusion & Future Work

Submetering, i.e., using separate energy monitors for each appliance, to de-

tect appliance-specific faulty behaviour is neither a scalable nor practical solu-

tion. Instead, NILM or non-intrusive load disaggregation using only as input,

smart meter data, which has shown substantial progress in accurately estimating

appliance level energy consumption, seems a good alternative to submetering for

identifying faulty appliance behaviour at scale. In order to determine whether

the reconstructed appliance-level signature generated by NILM is of sufficient

fidelity to accurately detect anomalous appliance load behaviour, we used state-

of-the-art NILM algorithms to generate appliance-level signatures first, and then

use proposed anomaly detection algorithm on both obtained NILM as well as

on submetered appliances’ traces. Detailed evaluation shows that NILM out-

put is often not accurate enough for identifying anomalies, and hence calls for

proposing anomaly aware NILM methods, with some post-processing of NILM

output signals to minimise the effect of noise.

We plan to extend the current work in following ways:

1. We evaluated UNUM on inserted anomalies due to the unavailability of

anomaly annotated dataset. In future, we plan to build a system which

will collect energy data and facilitate the collection of ground truth by

allowing consumers to log their abnormal observations. Eventually, this

will result in a more practical and large anomaly annotated dataset which

can be used by the energy research community.

2. We did not consider homes with multiple instances of the same appliance.

In future, we would like to evaluate NILM techniques on multiple appliance

instances.
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sparsity to perform online real-time nonintrusive load monitoring, IEEE

Transactions on Smart Grid 7 (6) (2016) 2575–2585.

[17] J. Kelly, W. Knottenbelt, Neural nilm: Deep neural networks applied to

energy disaggregation, in: Proceedings of the 2nd ACM International Con-

ference on Embedded Systems for Energy-Efficient Built Environments,

ACM, 2015, pp. 55–64.

[18] N. Community, Companies offering nilm products and services, http://

wiki.nilm.eu/companies.html (2017).

[19] UK: Department of Energy & Climate Change, Smart metering equipment

technical specifications: Second version (SMETS2). version 1.58., Tech. rep.

(2014).

[20] G. W. Hart, Nonintrusive appliance load monitoring, Proceedings of the

IEEE 80 (12) (1992) 1870–1891.

[21] J. Z. Kolter, T. S. Jaakkola, Approximate inference in additive factorial

hmms with application to energy disaggregation., in: AISTATS, Vol. 22,

2012, pp. 1472–1482.

[22] M. Zhong, N. Goddard, C. Sutton, Latent bayesian melding for integrating

individual and population models, in: Advances in Neural Information

Processing Systems, 2015, pp. 3618–3626.

[23] EIA, International Energy Outlook, Energy Information Administration

(EIA) (DOE/EIA-0484(2016)).

[24] J. Z. Kolter, M. J. Johnson, Redd: A public data set for energy disaggrega-

tion research, in: Workshop on Data Mining Applications in Sustainability

(SIGKDD), San Diego, CA, Vol. 25, 2011, pp. 59–62.

27

https://www.enertalk.com/product
https://www.enertalk.com/product
http://wiki.nilm.eu/companies.html
http://wiki.nilm.eu/companies.html


[25] N. Batra, M. Gulati, A. Singh, M. B. Srivastava, It’s different: Insights

into home energy consumption in india, in: Proceedings of the 5th ACM

Workshop on Embedded Systems For Energy-Efficient Buildings, ACM,

2013, pp. 1–8.

[26] Dataport, https://www.pecanstreet.org/ (2017).

[27] J. E. Seem, Using Intelligent Data Analysis to Detect Abnormal Energy

Consumption in Buildings, Energy and Buildings 39 (1) (2007) 52–58.

[28] G. Bellala, M. Marwah, M. Arlitt, G. Lyon, C. E. Bash, Towards an Un-

derstanding of Campus-scale Power Consumption, in: Proceedings of the

Third ACM Workshop on Embedded Sensing Systems for Energy-Efficiency

in Buildings, ACM, 2011, pp. 73–78.

[29] P. Arjunan, H. D. Khadilkar, T. Ganu, Z. M. Charbiwala, A. Singh,

P. Singh, Multi-User Energy Consumption Monitoring and Anomaly De-

tection with Partial Context Information, in: Proceedings of the 2nd ACM

International Conference on Embedded Systems for Energy-Efficient Built

Environments, ACM, 2015, pp. 35–44.

[30] H. Rashid, N. Batra, P. Singh, Rimor: Towards identifying anomalous

appliances in buildings, in: Proceedings of the 5th Conference on Systems

for Built Environments, BuildSys ’18, ACM, New York, NY, USA, 2018,

pp. 33–42.

[31] A. Zoha, A. Gluhak, M. A. Imran, S. Rajasegarar, Non-intrusive load

monitoring approaches for disaggregated energy sensing: A survey, Sen-

sors 12 (12) (2012) 16838–16866.

[32] B. Zhao, L. Stankovic, V. Stankovic, On a training-less solution for non-

intrusive appliance load monitoring using graph signal processing, IEEE

ACCESS 4 (2016) 1784–1799. doi:10.1109/ACCESS.2016.2557460.

[33] L. Stankovic, V. Stankovic, D. Murray, J. Liao, Energy feedback enabled by

load disaggregation, in: 1st Energy Feedback Symposium, 2016, pp. 78–84.

28

https://doi.org/10.1109/ACCESS.2016.2557460


[34] J. Liao, G. Elafoudi, L. Stankovic, V. Stankovic, Non-intrusive appliance

load monitoring using low-resolution smart meter data, in: Smart grid

communications (SmartGridComm), 2014 IEEE international conference

on, IEEE, 2014, pp. 535–540.

[35] K. S. Barsim, R. Streubel, B. Yang, An approach for unsupervised non-

intrusive load monitoring of residential appliances, in: Proceedings of the

2nd International Workshop on Non-Intrusive Load Monitoring, 2014.
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[60] S. Makonin, B. Ellert, I. V. Bajić, F. Popowich, Electricity, water, and

natural gas consumption of a residential house in canada from 2012 to

2014, Scientific data 3.

[61] J. Gao, S. Giri, E. C. Kara, M. Berges, Plaid: a public dataset of

high-resoultion electrical appliance measurements for load identification re-

search: demo abstract, in: BuildSys@SenSys, 2014.

[62] F. Englert, T. Schmitt, S. Kossler, A. Reinhardt, R. Steinmetz, How to

auto-configure your smart home?: High-resolution power measurements

to the rescue, in: Proceedings of the Fourth International Conference on

Future Energy Systems, e-Energy ’13, ACM, New York, NY, USA, 2013,

pp. 215–224.

[63] N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers,

A. Singh, M. Srivastava, Nilmtk: an open source toolkit for non-intrusive

load monitoring, in: Proceedings of the 5th international conference on

Future energy systems, ACM, 2014, pp. 265–276.

32


	Introduction
	Related work
	Methodology
	Evaluation
	Dataset
	Anomaly Insertion
	Disaggregation Techniques
	Baseline performance of UNUM 
	Performance Metrics
	Experimental Settings

	Results
	Sensitive Analysis of the number of Standard Deviations in UNUM

	Discussion
	Conclusion & Future Work
	Acknowledgement

