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0. Abstract 9 

As the gaseous fuels interchangeability, which requires that the two gaseous fuels must be nearly identical 10 

in terms of their combustion characteristics and result in a similar engine performance, is important for 11 

internal combustion engines operation in cases of the fuel composition variation or the main fuel supply 12 

failure. In such cases, simulation tools of sufficient accuracy can be effectively employed in fuel 13 

interchangeability studies as well as for predicting the engine performance and emissions. In this study, 14 

a zero-dimensional diesel engine model is extended for simulating multi-fuel engines by considering the 15 

thermodynamic properties of the employed fuels. The model is verified against experimental data and 16 

subsequently employed to investigate the performance and knocking resistance of an SI engine operating 17 

with interchanged gaseous fuels mixtures. The derived results demonstrate that the Wobbe Index 18 

estimation is not sufficient for the characterisation of the engine performance and therefore simulation 19 

must be used for the accurate engine performance prediction with fuels interchangeability. The addition 20 

of either carbon dioxide or nitrogen results in reducing the knocking probability and retarding the 21 

knocking onset crank angle. It is inferred that the carbon dioxide addition is more effective than the 22 

nitrogen addition and concluded that the proposed model for multi-fuel engines provides results of 23 

sufficient accuracy to investigate the fuel interchangeability influence on the engine performance and 24 

knocking resistance. 25 
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1. Introduction 31 

Gas engines have been increasingly employed as prime movers in transport vehicles [1] and 32 

electricity generators [2]. Natural gas (NG) is typically used as the primary fuel for gas engines [3], whilst 33 

biogas and pyrolysis gas are also used in countries with abundant biomass or energetic waste resources 34 

[4]. Gaseous fuels are usually non-homogeneous mixtures with their composition being highly dependent 35 

on the production field (natural gas) or the production process (biomass produced fuels) [5]. In some 36 

regions, the pipeline natural gas is mixed with other gaseous fuels or inert gases in order to maintain 37 

specific fuel properties [4], which makes the fuel composition greatly varying. The interchangeability 38 

between gaseous fuels becomes necessary for gas engines when the fuel composition varies or the main 39 

gaseous fuel supply fails. As the fuel composition plays a key role in determining the fuel thermodynamic 40 

properties (heating value, specific energy, specific heat, etc.), the fuel composition variation significantly 41 

affects the engine performance [6] and emissions [5]. In this respect, the investigation of the fuel 42 

interchangeability between gaseous fuels in combustion engines is a topic of great importance. 43 

The fuel interchangeability requires that the two gaseous fuels must be nearly identical in terms of 44 

their combustion characteristics, efficiency and flame properties. Three main methods have been 45 

proposed for estimating the interchangeability of gaseous fuels; in specific, the Weaver method, the 46 

American Gas Association (AGA) method and the Wobbe Index (WI). The WI is widely-used in engine 47 

applications to assess the interchangeability of gaseous fuels, as the flame indices defined in the Weaver 48 

method [7] and the AGA method [8] are more suitable for domestic burners rather than internal 49 

combustion engines [9]. Klimstra [10] introduced the WI as a criterion for gaseous fuels 50 

interchangeability and concluded that the fuel composition variations appear not to induce noticeable 51 

changes to the air-fuel ratio and the combustion velocity when the WI remains constant, whilst the 52 

explosion limits and the knock resistance varied to a moderate extent with the fuel composition variations. 53 

Karavalakis et al. [11] measured the exhaust emissions of a Cummins 8.3 L natural gas engine operating 54 

on seven different fuel gas blends with varying WI and Methane Number (MN). The higher hydrocarbons 55 

gaseous fuels were proved to yield higher carbon dioxide (CO2) and nitrogen oxide (NOx) emissions, 56 

whilst the total hydrocarbons (THC), methane (CH4), carbon monoxide (CO) and particulate matter (PM) 57 

emissions reduced for the fuels with higher hydrocarbons and higher WI. Cardona [12] presented an 58 

analysis of the interchangeability between a biogas/propane/hydrogen mixture (50% biogas / 40% 59 

propane / 10% hydrogen in volume) and methane in a contoured slot burner, which is based on the WI 60 



and the laminar burning velocity, concluding that the variations of these properties between the tested 61 

fuels did not exceed 10% of the methane properties; thus enabling the tested mixture to substitute the 62 

natural gas. By employing graphical interchangeability methods based on the WI and the combustion 63 

potential [13] as well as several multi-index methods [14], it was demonstrated that the plastic pyrolysis 64 

gas is a suitable alternative to the natural gas. The previously discussed experimental studies [10-14] 65 

combined the WI with other specific indices for accurately evaluating the gaseous fuel interchangeability. 66 

However, experimental studies require considerable resources and are costly, therefore they are not handy 67 

for a quick and reliable evaluation of the fuels interchangeability.  68 

In this respect, a more cost effective method for investigating the fuel interchangeability is by using 69 

simulation tools. Engine modelling and simulation enable to obtain a better understanding of the engine 70 

components processes characteristics comprehensively during the engine design phase; therefore they 71 

can be employed for evaluating the gaseous fuel interchangeability. In general, simulation models for 72 

internal combustion engines can be classified as follows (from simpler to more complicated): mean value 73 

models, zero-dimensional or one-dimensional models, and multi-dimensional models [15]. The mean 74 

value models are usually set up and calibrated by using a large amount of engine test data and are not 75 

capable of predicting the in-cylinder parameters variations [16]. The multi-dimensional simulation 76 

models (or Computational Fluid Dynamics model) provide the most detailed representation of the in-77 

modelled engine components, and therefore they are appropriate for engine components design studies 78 

as well as for obtaining better insight of the involved thermo-physical processes [17]. The zero-79 

dimensional models employ the assumption of uniform variations of the working medium state and 80 

concentration within the engine components and is a quite an effective predictive model approach, which 81 

is extensively used for engine performance/emissions prediction [18]. For modelling the engine cylinders 82 

combustion process, a number of approaches can be used from single zone [19] to multi−zone 83 

phenomenological models [20]. 84 

For the natural gas engines modelling, one of the key objectives is to predict the knocking 85 

phenomenon which constrains the further engine thermal efficiency improvement [21]. In this respect, a 86 

two-zone zero-dimensional model could be an effective tool for both the engine performance and 87 

knocking prediction, as it is capable of characterizing the end-gas temperature with the simplest 88 

combustion zone division [22] and it is a compromise between the required model complexity, input data 89 

and computational time.  90 



Notwithstanding the above, independently of the engine model type is used for the fuel 91 

interchangeability investigation, the thermodynamic parameters of the fuel and the in-cylinder gas 92 

(heating value, internal energy, enthalpy, specific heat, etc.) must be determined by employing a suitable 93 

method. The most frequently employed method is to assume the thermodynamic parameters as constant 94 

according to empirical [23] or experimental data [24], or calculate them by the properties and mass 95 

fraction assuming that the working medium consists of several basic species [16] . It is reported in [26] 96 

that the latter method can achieve higher accuracy as it considers the variation of in-cylinder working 97 

medium composition and thermodynamic properties [26]. Ding [27] investigated the thermodynamic 98 

properties of the fuel and the in-cylinder working medium in diesel engines by using a first principles 99 

calculation method considering the thermodynamic properties functions of the working medium 100 

temperature and composition. Neto [28] used the Density Functional Theory (DFT) and the canonical 101 

ensemble to investigate the thermodynamic properties of the major molecules compounds at the gaseous 102 

phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture, including the internal energy, enthalpy, 103 

entropy and Gibbs free energy. Li [29] analysed the average thermodynamic properties of the NG–air 104 

mixture, such as the specific heat ratio and the specific heat capacity as functions of the total equivalence 105 

ratio by using thermodynamic relations and the ideal gas equation. These studies focused on the in-106 

cylinder thermodynamic parameters of specific liquid or gaseous fuels and cannot be used directly for 107 

the interchangeability investigation of gaseous fuels, which requires approaches with great flexibility in 108 

the fuel types and compositions. 109 

From the proceeding analysis it is deduced that most of the published gaseous fuel interchangeability 110 

studies were carried out by employing experimental methods, which are case dependent, time-consuming 111 

and involve considerable cost. On the other hand, a two-zone zero-dimensional model can be an effective 112 

tool to investigate the fuel interchangeability as well as the knocking performance of internal combustion 113 

engines. In addition, most of the numerical methods for thermodynamic properties estimation are limited 114 

to specific fuel types, which are not applicable for the model development of an internal combustion 115 

engine running on flexible fuels. 116 

In this respect, this study aims at extending a zero-dimensional model, which was initially developed 117 

for diesel engines, taking into consideration the thermodynamic properties of a number gaseous fuels −in  118 

specific natural gas (NG) and hydrogen (H2)− as well as their combustion products, thus allowing for the 119 

development of a model capable of the performance prediction of multi-fuel engines. The model 120 



applicability is verified by using experimental data from single-fuel and multi-fuel engines, including a 121 

diesel engine, a natural gas spark-ignited (SI) engine, a dual-fuel engine and a tri-fuel engine. 122 

Subsequently, the validated model is used to investigate the interchangeability between gaseous fuels 123 

with same WI and the influence of inert gases (carbon dioxide and nitrogen) addition on the engine 124 

knocking resistance.  125 

The novelty of this study is summarised as follows: (a) Extension of a zero-dimensional single-zone 126 

model initially developed for diesel engines to a two-zone zero-dimensional model, which is capable of 127 

predicting the performance of single-fuel engines and multi-fuel engines; (b) investigation of the engine 128 

performance with fuels with the same WI; and (c) Investigation of the influence of the inert gases addition 129 

on the engine knocking performance during the fuel interchangeability by employing the developed two-130 

zone knocking model. 131 

 132 

2. Model Description 133 

This section described the two-zone zero-dimensional model employed in this study in order to 134 

investigate the gaseous fuel interchangeability. A number of submodels are used for estimating the 135 

combustion heat release rate, the heat transfer from the gas to the engine cylinder walls, the working 136 

medium properties, as well as the knocking prediction. The developed model was implemented in the 137 

MATLAB/SIMULINK computational environment. 138 

 139 

2.1 Calculation Principles 140 

The proposed model simulates the closed cycle of one engine cylinder, i.e., the compression, 141 

combustion and expansion stage. The specific assumptions for developing the model are outlined as 142 

follows. 143 

1) The working medium inside the cylinder is uniformly distributed, which indicates that its pressure, 144 

temperature and concentration are the same throughout the cylinder. 145 

2) The in-cylinder gas is considered to be ideal but non-perfect. Thus, its thermodynamic properties 146 

can be calculated as functions of its temperature and composition. 147 

3) Dissociation effects are not taken into account. Only the hydrocarbons (HC), sulphur (S) and oxygen 148 

(O2) take part in the reaction and end up with complete combustion products like nitrogen (N2), 149 

oxygen (O2), argon (Ar), carbon dioxide (CO2) and water (H2O).  150 



4) Blowby and valves leakage in the engine cylinder are not considered. 151 

 152 

2.1.1 Heat Release 153 

Semi-empirical formulas are usually employed to simulate the combustion Heat Release Rate (HRR). 154 

Typically, the HRR determining methods include the Triangular Exothermic function, the Polygon-155 

hyperbola function and the Vibe function [30], among which the Vibe function is most widely used. The 156 

burnt fuel fraction simulated by a single Vibe function [31] is represented by the following equation: 157 
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where, xb is the burnt fuel fraction; a is the coefficient related to the combustion efficiency, which is 159 

usually set at 6.9078 to maintain a combustion efficiency of 99.9%; τv is the normalized combustion time; 160 

and mv is the shape factor. 161 

The total heat release in a multi-fuel engine can be obtained by employing several Vibe functions. 162 

Generally, two Vibe functions can sufficiently represent the combustion process of a directly injected 163 

diesel fuel, which consists of a premixed combustion stage and a diffusion combustion stage. One Vibe 164 

function is able to characterize the combustion process of a premixed gas engine as it represents the main 165 

characteristics of a premixed combustion. In this study, two parameters, in specific the Total Energy Input 166 

(TEI ) and Accumulated Heat Release (AHR ) are defined to describe the total heat release calculated by 167 

using the lower heating value (LHV) and the combustion heat, by employing Eq (2) and Eq (3), 168 

respectively. The Combustion Heat (ucomb) is the specific heat release corresponding to the specific 169 

internal energy difference between the combustion reactants and products [27], which will be described 170 

in detail in the following section. 171 
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where, M is the number of the direct injection liquid fuels; N is the number of all the employed fuels; 174 

SOC and EOC denote the start and end timing of the fuel combustion. SOC and EOC (for each fuel and 175 

Vibe function employed) are estimated by the HRR analysis, which can be either calculated by using the 176 

experimentally measured in-cylinder pressure or by using CFD combustion modelling. For per liquid 177 

fuel, which requires two Vibe functions to characterise the premixed and diffusion combustion 178 

respectively, the SOCs and EOCs are considered the same for both functions in order to simplify the 179 



modelling; m is the injected fuel mass of each fuel; bi,1 and bi,2 are the weigh factors for premixed 180 

combustion stage and diffusion combustion stage of direct injection liquid fuels, bi,1+ bi,2=1; mv is the 181 

shape factor; ucomb,eff,i is the effective combustion heat of each liquid fuel; ucomb,j is the combustion heat of 182 

each gaseous fuel. 183 

 184 

2.1.2 Heat Transfer 185 

The cylinder walls include three parts: the surface of the cylinder head and valves, the surface of the 186 

cylinder liner and the top surface of the piston. The temperature of each part of the heat transfer surface 187 

is considered to be constant as its variation is small enough to be neglected compared to the in-cylinder 188 

gas temperature. The Woschni model [32] is considered for calculating the instantaneous heat transfer 189 

coefficient αg→w from the in-cylinder gas to walls. The heat transfer between the working medium and 190 

the cylinder walls is calculated according to the following equation: 191 

 
3

loss , ,
1

( )g w wall i wall iQ T T A        (4) 192 

where, αg→w is the instantaneous heat transfer coefficient from the in-cylinder gas to the walls; Twall,i is 193 

the average wall temperature of each surface. i=1, 2, 3, which represents the cylinder head and valves, 194 

the cylinder liner and the cylinder piston respectively; and Awall,i is the heat transfer surface area.  195 

 196 

2.1.3 Mass Balance and Composition 197 

In order to estimate the in-cylinder working medium properties in internal combustion engines, the 198 

in-cylinder gas is considered as a mixture of several well-defined basic mixtures; in specific, air, gaseous 199 

fuel (if any) and stoichiometric gas, whilst all the basic species are considered as ideal but non-perfect. 200 

The stoichiometric gas is defined as the complete combustion product of the stoichiometric air-fuel 201 

mixture. The constituents of air, gaseous fuel and stoichiometric gas are listed as follows.  202 

1) Air: Fixed-fraction dry air (N2, O2, Ar, CO2) and water vapour (H2O); 203 

2) Gaseous fuel: methane (CH4), ethane (C2H6), propane (C3H8), n-butane (n-C4H10), i-butane (i-204 

C4H10), pentane (C5H12), N2, CO2 (taking natural gas for example); 205 

3) Stoichiometric gas: N2, O2, Ar, CO2, H2O. 206 

For direct injection engines, only the air and the stoichiometric gas need to be considered on the 207 

assumption that the injected fuel burns immediately after its injection within the engine cylinder. The 208 



mass fractions of the different species in the gaseous fuel and the air can be obtained from the fuel type 209 

and the ambient air humidity respectively, whilst that of the stoichiometric gas needs to be calculated 210 

according to the complete combustion chemical reaction. Assuming that only Hydrocarbons, Sulphur 211 

and Oxygen take part in the combustion reaction, the following equation is used for representing the 212 

combustion. 213 

 2 2 2 2C H S O CO H O O
4 2n m l

m m
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  (5) 214 

For direct injection engines, the instantaneous mass fraction of the in-cylinder air can be calculated 215 

by using Eq (6). The two terms of the numerator of the right-hand side represent the initial air mass and 216 

accumulated burnt air.  217 
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where, m0 is the mass of the in-cylinder mixture at Inlet Valves Close (IVC); x0 is the initial mass fraction 219 

of fresh air at IVC; σ is stoichiometric air-fuel ratio; ξ is the combustion rate obtained by Vibe function. 220 

For premixed combustion engines, the instantaneous mass fraction of air-fuel mixture can be obtained 221 

on the assumption that air and gaseous fuel react at the stoichiometric ratio, according to Eq(7).   222 
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where, x1 is the initial mass fraction of air-fuel mixture at IVC.  224 

 225 

2.1.4 In-cylinder gas properties 226 

Assuming that the in-cylinder gas behaves as an ideal but non-prefect gas, the thermodynamic 227 

parameters of each species only depend on the in-cylinder temperature and can be obtained by the power 228 

series equation that varies with the normalized temperature according to Eq (8). Yaws [33] and Borman 229 

[34] obtained the fitting coefficients of various types of gases by using experimental methods. 230 
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where, ak is the fitting coefficient of specific heat at constant pressure; θ is normalized temperature, θ = 232 

(T - Tshift) / Tnorm; Tshift is the shift temperature, Tshift=0 K; Tnorm is the normalised reference temperature, 233 

Tnorm=1000 K. 234 



 The specific heat at constant volume of each species can be calculated by using the gas constant 235 

and the molar mass, according to the following equation. 236 

 v,j p,j j jc c R / M   (9) 237 

The specific enthalpy and internal energy of each species can be calculated by Eq (10) and Eq (11), 238 

respectively. 239 
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where, ref
jh  and ref

ju are specific enthalpy and internal energy at standard conditions; θref is normalized 242 

reference temperature. 243 

Since each species in air, gaseous fuel and stoichiometric gas are considered ideal but non-prefect 244 

gases, the mixtures behave as ideal but non-prefect as well. Thus, the specific heat, enthalpy and internal 245 

energy of the considered mixtures are functions of the average temperature and their composition. A 246 

power series of the normalized temperature is used to fit these property data for all the species and the 247 

properties of the mixtures can be obtained considering ideal mixtures.  248 

The in-cylinder working gas properties, i.e. the specific heat, specific enthalpy and specific internal 249 

energy, can be calculated by species property data and composition fractions according to the following 250 

equation:  251 
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where, T is the average in-cylinder temperature; fj(T) is the property data (cv, h and u) for each basic 253 

species; xj is the mass fraction of the considered mixture constituents; xl is the mass fraction of air, gaseous 254 

fuel and stoichiometric gas. 255 

 256 

2.1.5 Combustion Heat 257 

The Combustion Heat (ucomb) is introduced for calculating the specific heat release by using the 258 

difference of the specific internal energy between the combustion reactants and products [27]. Compared 259 

to the traditional heating value (HV) determination methods, it considers the influence of instantaneous 260 

temperature on the specific heat release. The combustion heat can be calculated by considering the 261 



specific internal energy of the fuel, the air and the stoichiometric gas according to the following equation: 262 

  1comb f a sgu =u u u       (13) 263 

where, uf, ua and usg are the specific internal energy of the fuel, the air and the stoichiometric gas 264 

calculated by using the average cylinder temperature and the gas composition. 265 

For direct injection engines (including liquid and gaseous fuel engines), the energy change caused 266 

by the difference between the injection pressure and the in-cylinder pressure must be taken into 267 

consideration. In addition, the evaporation heat must also be included in the energy change for the direct 268 

injection engines running on liquid fuels. A direct injection diesel engine is taken as an example to 269 

illustrate these two parts of the energy change. The energy change during the process of the diesel fuel 270 

injection includes two parts: (a) the kinetic energy increase caused by the velocity variation, and (b) the 271 

liquid diesel fuel evaporation. Ef is introduced to represent the sum of these two parts of the energy and 272 

it can be calculated by the difference between the specific enthalpy of the liquid diesel and the specific 273 

internal energy of the evaporated gaseous diesel [27], according to the following equation: 274 

  in
f f ,in f f ,in f ,liquid f ,gasE m e m h u        (14) 275 

where, in
f ,liquidh   is the specific enthalpy of the liquid diesel fuel; uf,gas is the specific internal energy of the 276 

evaporated gaseous diesel fuel; f ,inm   is the injected diesel fuel flow rate. Since the injection rate, 277 

evaporation rate and combustion rate are assumed to be the same for the zero-dimensional engine 278 

modelling, f ,inm equals the diesel combustion rate ξD. 279 

Combining Eq (13), Eq (14) and after some manipulation, Eq (15) is derived, which provides the 280 

Effective Combustion Heat (ucomb,eff) for a direct injection engine running on liquid diesel fuel. 281 
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where, ucomb,D is the combustion heat of diesel fuel calculated by Eq (13); ef is the specific energy 283 

accounting for the injection pressure difference and the fuel evaporation process. 284 

 285 

2.1.6 Knocking Prediction 286 

The knocking phenomenon, including conventional knocking and super knocking, is the main 287 

obstacle to employ a high compression ratio for improving the thermal efficiency of gas engines. It is 288 



generally accepted that the super knocking originates from the pre-ignition in highly boosted gas engines, 289 

especially for fuel direct injection engines in the low-speed high-load operating conditions [35]. 290 

According to [36], the conventional knocking is associated with auto-ignition in the unburnt zone after 291 

the combustion start. As the investigated 2135 NG engine is naturally aspirated, only the conventional 292 

knocking phenomenon will be considered in this study. The probability and corresponding crank angle 293 

position of knocking can be determined by Eq (16). According to Livengood and Wu [37], knocking 294 

occurs when the integral of Eq (16) reaches unity. 295 
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where τ (in ms) is the induction time calculated according to Eq (17) as function of the instantaneous 297 

temperature and pressure in unburnt zone; t is the elapsed time from the start of the compression process 298 

of the unburnt zone, and ti is the time of auto-ignition. 299 
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where ON is the octane number of the fuel; p is absolute pressure in atmosphere, and T2 is the temperature 301 

in unburnt zone. 302 

When the temperature and pressure time variation of the unburnt gas during an individual cycle are 303 

known, Eq (16) and Eq (17) can be used to determine whether auto-ignition occurs before the normally 304 

propagating flame consumes the unburnt gas. 305 

 306 

2.2 Model Calculation Flowchart 307 

Figure 1 shows the calculation flowchart of the prediction model for evaluating the gaseous fuels 308 

interchangeability.  A zero-dimensional model initially developed for diesel engines is extended with 309 

the consideration of the thermodynamic properties of gaseous fuels (NG, H2) and is subsequently 310 

embedded into a two-zone knocking model proposed in previous work [22], which enables the prediction 311 

of the engine performance and the knocking resistance during the gaseous fuel interchangeability.  312 

In the extended zero-dimensional model, the Vibe model is used to calculate the combustion rate, 313 

which is then employed for the determination of the mass balance and instantaneous composition fraction. 314 

The properties library is built on the assumption that the thermodynamic properties of the in-cylinder gas 315 

are functions of the composition and the temperature, which provides the combustion heat, the internal 316 



energy, the enthalpy and the specific heat. The heat release rate is obtained by multiplying the combustion 317 

heat with fuel burning rate. The heat transfer coefficient in Heat Loss sub-model is estimated by using 318 

the Woschni formula. The in-cylinder temperature is calculated by employing the First Law of 319 

Thermodynamics.  320 

The overall model consists of a two-zone module for representing the combustion phase and a single-321 

zone module for modelling the compression and expansion phases. Both modules are developed based 322 

on the extended single-zone zero-dimensional model. The combustion submodel uses the multi-Vibe 323 

function to estimate the heat release rate. The in-cylinder parameters, including the air fraction, as well 324 

as the pressure and temperature of the unburnt zone are used to as input to calculate the knocking 325 

parameters. 326 

CA

L
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 327 

Figure 1．Calculation flowchart of the prediction model for gaseous fuels interchangeability 328 

 329 

2.3 Model Setup 330 

The geometric dimensions are the primary input of the proposed single-zone model. The engine 331 

rotational speed and the injected fuel mass need to be provided for determining the working conditions 332 

of the investigated internal combustion engines. The in-cylinder pressure and temperature at IVC are 333 

used to calculate the gas mass trapped in the cylinder at IVC. The charge efficiency is defined as the 334 



mass ratio of the fresh air and the total trapped gas, which considers the existence of residual gas from 335 

previous working cycle. The employed fuels (liquid or gaseous) along with their compositions needs to 336 

be provided as input. For the combustion simulation of a direct-injection liquid fuel engine, the injection 337 

pressure is essential to evaluate the specific energy (ef) caused by the injection pressure difference and 338 

the evaporation. In addition, the wall temperatures of the cylinder head, the cylinder liner and the piston 339 

top need to be set. In the Combustion Model, the Vibe parameters are required to calculate the heat release 340 

rate. The simulation period is set from the IVC to the exhaust valve opening (EVO), whilst the simulation 341 

step is set to be 0.5°CA. The crank angle is obtained from the time integration of the rotational speed 342 

assuming that the rotational speed remains constant. In addition, the fourth-order Runge-Kutta algorithm 343 

is used as the equations solver. Table 1 shows the input parameters of the single-zone model. 344 

Table 1. Single-zone model input parameters 345 

Geometric 

dimensions  

Bore [m] 
Fuel 

parameters 

Composition 

Stroke [m] Injection pressure [bar] 

Compression ratio [-]  

Connecting rod length [m] 
Combustion 

model 

SOC, EOC [°CA] 

IVC timing [°CA] bi 

EVO timing [°CA] mv, i 

Working 

condition 

Rotational speed [r/min] 
Heat loss 

model 

Thead [K] 

Injected fuel mass 

[kg/cycle/cylinder] 

Tliner [K] 

Tpiston [K] 

Initial 

conditions 

Pressure [bar] 
Simulation 

parameters 

Duration 

Temperature [K] Step 

Charge efficiency [-] Solver 

For the two-zone knocking prediction model, three more parameters (Smass, λent and SHH ) need to be 346 

provided as input besides the parameters shown in Table 1. The initial mass coefficient Smass is defined 347 

as the ratio of the initial mass of the burnt zone and the overall cylinder zone, whereas λent and SHH are 348 

used to describe the mass and energy flow between the two gas phase zones. The entrainment factor λent 349 

is introduced to account for the existence of the stoichiometric gas in the unburnt zone and the possibility 350 

that the excess air ratio entrained from the unburnt zone to the burnt zone could be more than or less than 351 



1. The Heider–Holhbaum factor SHH [22] is defined as the ratio of the stoichiometric gas flow leaving 352 

the burnt zone and the stoichiometric gas production rate. 353 

 354 

2.4 Combustion Model Calibration 355 

As the combustion characteristics varies with the engine working conditions, the combustion model 356 

needs to be calibrated before being used to predict the engine performance. In this study, heat release 357 

analysis is applied to determine the Vibe parameters, which are then used to simulate the fuel burning 358 

rate of single-fuel engines or multi-fuel engines.  359 

 360 

Figure 2. Calculation flowchart of the combustion model calibration[23] 361 

Sui [23] proposed a way to calculate the heat release rate of diesel engines by applying an inverse 362 

in-cylinder model. Figure 2 presents the calculation flow of the combustion model calibration, which can 363 

be illustrated as follow. 364 

1) The heat release rate can be obtained from the HRR analysis by using the measured in-cylinder 365 

pressure by employing heat release calculation model. Alternatively, Computational Fluid 366 

Dynamics (CFD) simulation tools can be used to estimate the heat release rate in case the measured 367 

pressure is not available. 368 

2) For representing the obtained heat release rate with the combustion fit model, the number of the 369 

adopted Vibe functions needs to be determined according to the involved fuel types and the fuel 370 

injection method. In order to reduce the parameters number, the combustion start timing for all the 371 

gaseous fuels are considered to be the same. Then a curve fit method is applied to identify the Vibe 372 

parameters, including the start of combustion (SOC), the end of combustion (EOC), weight factors 373 

(bi) and shape factors (mv,i). a is set at 6.9078 to maintain a combustion efficiency of 99.9%. 374 

3) The HRR obtained by employing the approach described above provides a smoother HRR than the 375 

one calculated from the in-cylinder pressure by using filtering. Thus, it is more suitable for the in-376 

cylinder combustion modelling as the measurement fluctuations are eliminated [23]. 377 

 378 

3. Model Validation 379 



As a number of issues may occur during the operation of gaseous fuel engines, such as the 380 

deteriorated engine dynamic behaviour as well as knocking or misfiring tendency, the fuel flexibility is 381 

proposed as a counter measure in gas or dual-fuel internal combustion engines like diesel-natural gas 382 

engines [38] and diesel-H2-natural gas engines [39]  As the proposed model is based on the calculation 383 

of the working medium thermodynamic properties and multi-Vibe combustion functions, it is practically 384 

capable of predicting the performance of all types of internal combustion engines with the developed 385 

properties library and the appropriate combustion model calibration. The model validation was carried 386 

out for four internal combustion engine cases, in specific, the MAN 20/27 diesel engine, the 2135 spark-387 

ignited natural gas engine, the YC6K dual-fuel engine and the Lister Petter TR2 diesel-H2-natural gas 388 

engine. The experimental data of the first three engines was obtained from engine tests [27], whilst that 389 

of the Lister Petter TR2 diesel-H2-natural gas engine was taken from [41]. 390 

 391 

3.1 Diesel Engine 392 

In this section, the model application to diesel engines is verified by comparing the derived results 393 

against experimental data from a MAN 20/27 diesel engine. The main characteristics of the MAN 20/27 394 

engine are shown in Table 2. ABDC represents after Bottom Dead Centre. BBDC represents before 395 

Bottom Dead Centre. 396 

Table 2. Main characteristics of MAN 20/27 diesel engine [27] 397 

Parameter  

Bore [mm] 200 

Stroke [mm] 270 

Nominal Engine Speed [rpm] 1000 

Nominal power per cylinder [kW] 84 

Compression Ratio 13.4:1 

IVC [°CA, ABDC] 20 

EVO [°CA, BBDC] 60 

Figure 3(a) shows the comparison of the experimentally obtained data and the simulation results for 398 

the in-cylinder pressure of the MAN 20/27 diesel engine. As shown in Figure 3(a), the derived in-cylinder 399 

pressure sufficiently coincides with the measured one. In Figure 3(b), ucomb and ucomb, eff represent the 400 



combustion heat calculated by Eq (13) and Eq (15), respectively. The relative error between the ucomb 401 

and the LHV ranges from 1.31% to 2.81%, which implies that using the LHV in simulation tools would 402 

not provide a considerable error in the calculation of the heat release and engine power. With considering 403 

the influence of the liquid fuel evaporation, ucomb,eff exhibits a sharp decrease of approximately 404 

2.7 106 J/kg and a subsequent increase of 0.7 106  J/kg, resulting in the largest relative deviation (from 405 

the LHV) of 8.03% at around 208°CA.  406 

 

 (a)   

 

(b) 

Figure 3. Simulation results and comparison with available experimental data for the MAN 20/27 

diesel engine operating at its nominal power and speed; (a) the in-cylinder pressure; (b) the 

combustion heat. 

 407 

3.2 Natural Gas Engine 408 

Experimental data from the 2135 natural gas (NG) engine is used to verify the application of the 409 

proposed method on premixed SI engines operating with natural gas. The natural gas composition and 410 

the main characteristics of 2135 engine are provided in Table 3 and  411 

Table 4. 412 

Table 3. Natural gas composition  413 

Composition Fraction (%) 

CH4 76.66 

C2H6 17.76 

C3H8 4.61 

n-C4H10 0.41 

i-C4H10 0.19 
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C5H12 0.06 

N2 0.31 

 414 

Table 4. Main characteristics of 2135 natural gas engine 415 

Parameter  

Bore [mm] 135 

Stroke [mm] 140 

Nominal Engine Speed [rpm] 1500 

Nominal power per cylinder [kW] 11.92 

Compression Ratio 11:1 

IVC [°CA, ABDC] 48 

EVO [°CA, BBDC] 48 

 

(a) 

 

(b) 

 

(c) 

 

Figure 4. Simulation results and comparison with available experimental data for the 2135 natural 
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gas engine operating at its nominal power and speed; (a) the in-cylinder pressure; (b) the in-cylinder 

temperature; (c) the combustion heat. 

As it can be inferred from Figure 4(a), the simulation results adequately coincide with the measured 416 

in-cylinder pressure from the 2135 natural gas engine, which verifies the accuracy of the single-zone in-417 

cylinder model. Figure 4(b) and Figure 4(c) present the in-cylinder temperature and the combustion heat. 418 

The combustion heat varies in a same trend with the in-cylinder temperature during the combustion 419 

period as it is highly dependent on the temperature variation. In addition, ucomb is smaller than the LHV 420 

during the periods of 169°CA to 177°CA and 252°CA to 265°CA due to the relatively lower temperature 421 

of the in-cylinder working medium. The difference between the ucomb and the LHV of natural gas is quite 422 

small (less than 0.55%) comparing to that of diesel fuel in Figure 3(b), which indicates that even a 423 

constant LHV would not considerably affect the calculation accuracy. 424 

 425 

3.3 Dual-fuel Engine  426 

The YC6K dual fuel engine was converted from YC6K diesel engine by adding a natural gas supply 427 

system and updating its Electronic Control Unit (ECU). It works in two different modes, the diesel mode 428 

and dual-fuel mode. Diesel fuel with lower auto-ignition temperature serves as an ignition source for the 429 

natural gas combustion. The diesel fuel contributes to 25.7% of the total energy release in dual-fuel mode 430 

at the nominal working condition. The main characteristics of the YC6K dual-fuel engine are shown in 431 

Table 5. Three Vibe functions are used to simulate the heat release corresponding to the diesel fuel 432 

premixed combustion, the diesel fuel diffusion combustion and the natural gas combustion. 433 

 434 

Table 5. Main characteristics of YC6K dual-fuel engine 435 

Parameter  

Bore [mm] 129 

Stroke [mm] 155 

Nominal Engine Speed [rpm] 1800 

Nominal power per cylinder [kW] 65 

Compression Ratio 16.5:1 

IVC [°CA, ABDC] 2 



EVO [°CA, BBDC] 31 

 436 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5. Simulation results and comparison with available experimental data for the YC6K dual 

fuel engine operating at its nominal power and speed; (a) in-cylinder pressure; (b) in-cylinder 

temperature; (c) combustion rates of diesel fuel and natural gas; (d) combustion heat of diesel fuel 

and natural gas.  

Figure 5(a) presents the comparison of the derived in-cylinder pressure variation and the 437 

corresponding measured data. The measured pressure was obtained from an AVL combustion analyser, 438 

which smoothed the original pressure signal with its inbuilt algorithm. The simulation results are in 439 

sufficient coincidence with the measured pressure, whereas the predicted peak pressure crank angle is 440 

about 2.5°CA advanced in comparison with the experimental data. In this case, the dominant combustion 441 

phase is retarded after the top dead centre by delaying the diesel injection timing in order to decrease the 442 

average in-cylinder temperature for reducing the NOx emissions. As can be inferred from Figure 5(b), the 443 

in-cylinder temperature is roughly controlled under 2000 K, which is the threshold that the thermal NOx 444 
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begins to form rapidly [42].  445 

Figure 5(c) shows the estimated total heat release rate, which consists of three parts corresponding 446 

to the diesel fuel premixed combustion, the diesel fuel diffusion combustion and the natural gas premixed 447 

combustion, respectively. One single Vibe function is used to characterize the combustion rate of natural 448 

gas as it exhibits a premixed combustion behaviour [43]. In order to reduce the employed Vibe function 449 

parameters number, the start and end timings of premixed combustion and diffusion combustion of the 450 

diesel fuel are assumed to be the same. The start timing of the natural gas combustion is set at 8°CA after 451 

that of the diesel fuel. Figure 5(d) shows the effective combustion heat variations of the diesel and the 452 

natural gas fuels. The considerable drop (during 175°CA ~207°CA) caused by the liquid diesel fuel 453 

evaporation can be easily spotted on the combustion heat of diesel fuel. By multiplying the combustion 454 

heat by combustion rate, it can be inferred that the diesel fuel contributes 25.7% of the total energy 455 

release.  456 

 457 

3.4 Tri-fuel Engine 458 

Lean burn technology is now widely used in NG engines to decrease the average in-cylinder 459 

temperature for reducing the NOx emissions. However, due to the slow flame speed of the NG mixture, 460 

operational limitations of the engine settings (air-fuel ratio, injection/spark timing, etc.) must be imposed 461 

for to ensure the smooth engine operation and low controlled emissions. In this respect, meeting the 462 

existing and future emissions regulations without compromising the engine efficiency is a quite 463 

challenging task [44], which depends on the engine type and application [45]. The enrichment of NG 464 

with a fast-burning fuel, i.e. hydrogen, which has a laminar burning velocity sevenfold higher than that 465 

of the NG and a low ignition energy limit, was reported to be an effective method to extend the lean 466 

operation limit of the NG engines [41]. 467 

Abu-Jrai [41] carried out an experimental study by using a Lister Petter TR2 engine to study the 468 

effect of tri-fuel (Ultra Low Sulfur Diesel (ULSD), H2 and CH4) operation on the combustion 469 

characteristics. Engine tests using 20% (volumetric percentage of the total air inlet charge) H2-CH4 470 

mixture injected in the inlet ports and direct injected ULSD were performed in three engine loads (25%, 471 

50% and 75%) at a constant engine speed of 1500 rpm. The total air-fuel equivalence ratio was controlled 472 

and was set at 1.4 for all the testing conditions. Part of the experimental data in [41] is used in this study 473 

to verify the model applicability to the tri-fuel engines. The selected experimental data was measured at 474 



1500 rpm and 75% load when the Lister Petter TR2 tri-fuel engine operated on two gaseous fuel-air 475 

mixtures (H50M50 and H75M25, respectively) and the ULSD. The constituents of H50M50 are 10% H2, 476 

10% CH4 and 80% air, whilst the H75M25 consists of 15% H2, 5% CH4 and 80% air. Table 6 shows the 477 

main characteristics of the Lister Petter TR2 tri-fuel engine. 478 

Table 6. Main characteristics of Lister Petter TR2 engine[41] 479 

Parameter  

Bore [mm] 98.42 

Stroke [mm] 101.6 

Nominal Engine Speed [rpm] 1500 

Nominal power per cylinder [kW] 6.05 

Compression Ratio 15.5:1 

IVC [°CA, ABDC] 32 

EVO [°CA, BBDC] 76 

Four Vibe functions are employed to calculate the HRR of the tri-fuel engine. This approach requires 480 

16 Vibe parameters to be determined as listed in Table 7. In order to reduce the Vibe parameters number, 481 

the weight factors estimated for the 20/27 diesel engine combustion (b1 and b2) are used to represent the 482 

premixed combustion stage and diffusion combustion stage of the ULSD. The shape factors estimated 483 

for the 20/27diesel engine combustion (m1 and m2) and the 2135 NG engine combustion (m3) are used to 484 

simulate the heat release rate of ULSD and CH4 in the tri-fuel engine combustion model. In addition, the 485 

H2 and CH4 are assumed to start combustion at the same timing and have the same combustion duration. 486 

The combustion start timings of the ULSD (SOC1 and SOC2) and the gaseous fuels (SOC3 and SOC4) can 487 

be deduced from the sharp increasing points on the measured HRR curves. The remaining three Vibe 488 

parameters m4, Δθ1 (also equal to Δθ2) and Δθ3 (also equal to Δθ4) are obtained by employing a curve 489 

fitting method. It is inferred from Table 7 that the gaseous fuels with higher H2 content start combustion 490 

1°CA earlier, which is accompanied with shorter combustion durations for the diesel, CH4 and H2 fuels.  491 

Table 7. Vibe parameters for HRR calculation in the tri-fuel engine model 492 

 SOC1 SOC2 SOC3 SOC4 Δθ1 Δθ2 Δθ3 Δθ4 

H50M50 176.5 176.5 180.5 180.5 22 22 10 10 



H75M25 176.5 176.5 179.5 179.5 10 10 7.5 7.5 

 m1 m2 m3 m4 b1 b2   

H50M50 0.4 3 1.5 1.0 0.88 0.12   

H75M25 0.4 3 1.5 1.0 0.88 0.12   

 493 

 

 (a)  

 

(b) 

 

(c) 

  

Figure 6. Simulation results and comparison with available experimental data for the Lister Petter 

TR2 tri-fuel engine operating at 1500 rpm and 75% load with H50M50 and H75M25 mixtures; (a) 

heat release rate; (b) in-cylinder pressure; (c) combustion heat. 

Figure 6 shows the comparison of the simulation results with the respective experimental data for 494 

the tri-fuel engine with H50M50 and H75M25 fuel mixtures. In this figure, E represents the experimental 495 

data from literature [41], whilst S denotes the simulation results. The Vibe parameters in Table 7 were 496 

used to simulate the heat release rate of the tri-fuel engine, which adequately matches the experimental 497 

data during the dominant combustion phase except the zone I and Zone II parts, as shown in Figure 6(a). 498 

The deviation between the simulation and experimental data in Zone I is mainly attributed to the liquid 499 
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diesel fuel evaporation, which starts earlier than the combustion start, as an injection model is not used 500 

in this study. The difference in Zone II is due to the heat loss that is included in the heat release calculated 501 

from the experimentally obtained cylinder pressure, but not being considered for the calculation of the 502 

net heat release in the developed model.    503 

As can be deduced from Figure 6(b), the simulation results sufficiently agree with the measured in-504 

cylinder pressure for the investigated cases. Higher H2 percentage tends to achieve a greater peak cylinder 505 

pressure in an advanced crank angle than the respective ones in the case of a fuel mixture with a lower 506 

H2 percentage. This is attributed to the high hydrogen burning velocity, which result in a faster and 507 

advanced heat release after the diesel fuel ignition, as shown in Figure 6 (a). 508 

Figure 6(c) shows the combustion heat of the H2, the CH4 and the ULSD in comparison with their 509 

LHVs. The combustion heat of H2 is much higher than that of other fuels due to its extremely small molar 510 

mass. The effective combustion heat of the liquid diesel fuel exhibits a decrease with a maximum relative 511 

deviation of 8.03% compared to its LHV, whilst that of H2, CH4 slightly increase exhibiting a maximum 512 

relative deviation of 1.67% and 0.3%, respectively compared to their LHVs. 513 

 514 

3.5 Quantitative Comparison 515 

Four in-cylinder parameters are chosen as criteria to verify the accuracy of the proposed single-zone 516 

zero-dimensional model quantitatively, in specific, the Indicated Mean Effective Pressure (IMEP), the 517 

pressure at EVO (pEO), the peak pressure (pmax) and the corresponding crank angle (α1). IMEP, pmax and 518 

pEO are related to the mechanical load and heat load of the cylinder to a certain extend. The comparison 519 

of the simulation results and the experimental data is shown in Table 8. The error of α1 is presented in the 520 

form of absolute difference (°CA), whilst that of pmax and pEO are indicated by the absolute error 521 

percentage (%). In addition, pEO for the tri-fuel engine case in Table 8 is actually the pressure value at 522 

30°CA after top dead centre (ATDC), as Abu-Jrai [41] provided the in-cylinder pressure from 20°CA 523 

before top dead centre (BTDC) to 30°CA ATDC instead of the complete in-cylinder process. The IMEP 524 

comparison of the tri-fuel engine is not included in Table 8 due to the same reason. As can be seen from 525 

Table 8, the relative errors of IMEP, pmax and pEO are below 3%, whilst the absolute difference of the peak 526 

pressure position are less than 3°CA. Thus, it can be inferred that the proposed in-cylinder single-zone 527 

model is able to predict the performance of internal combustion engines operating with flexible fuels and 528 

can be used with fidelity for the calculation presented in the next section. 529 



 530 

Table 8. The quantitative comparison of pmax and pEO between the simulation and the measurement 531 

 
Parameters 

IMEP 

(bar) 

pEO 

(bar) 

pmax 

(bar) 

α1 

(°CA ATDC) 

Diesel engine 

Simulation  11.96 8.88 91.54 8.1 

Measurement 12.02 8.93 93.33 9.7 

Error [% or °CA] 0.55 0.56 1.92 1.6 

Natural gas 

engine 

Simulation 4.65 2.44 44.22 4.0 

Measurement  4.76 2.51 44.31 7.0 

Error [% or °CA] 2.35 2.79 0.20 3.0 

Dual-fuel 

engine 

Simulation 21.00 8.52 136.00 16.8 

Measurement  21.39 8.76 136.10 19.0 

Error [% or °CA] 1.84 2.74 0.07 2.2 

Tri-fuel 

engine 

(H50M50) 

Simulation   29.19 75.71 6.8 

Measurement  29.05 74.96 6.5 

Error [% or °CA]  0.48 1.00 0.3 

Tri-fuel 

engine 

(H75M25) 

Simulation   29.47 79.17 4.5 

Measurement  29.43 79.02 4.3 

Error [% or °CA]  0.14 0.19 0.2 

 532 

4. Investigation on the Gaseous Fuel Interchangeability 533 

The Wobbe Index has been widely-used in practice as an unambiguous reference to assess the 534 

interchangeability of gaseous fuels. According to the WI definition, the energy supplied to the engine 535 

remains constant when the WI holds the same values for a constant engine air flow. Nevertheless, the WI 536 

just provides a rough prediction of the involved fuel energy, which is not enough to evaluate the engine 537 

performance with sufficient accuracy. In addition, inert gases like CO2 and N2 are often added to the raw 538 

natural gas to maintain a constant WI in order to meet the fuel interchangeability requirements as well as 539 

for avoiding controlling the variation of engine settings (i.e. spark timing or pilot fuel injection start). 540 

The knocking resistance of a gaseous fuel-air mixture depends on its composition, the engine load, the 541 



trapped air-fuel ratio and the temperature of the unburnt zone [10]. Thus, the addition of inert gases 542 

affects the engine knocking performance as the decreased LHV could reduce the in-cylinder temperature. 543 

In this section, the developed engine model is employed to investigate the engine performance in 544 

cases where fuels (or gaseous fuels mixtures) with the same WI are used. In addition, the inert gas 545 

addition on engine knocking performance is investigated. 546 

 547 

4.1 Engine Performance Prediction using fuels with the same Wobbe Index 548 

In this section, the model as presented in the previous section is used to investigate the energy input 549 

and the engine power of the 2135 engine operating on three gaseous fuels with same WI. The composition 550 

and properties of the employed gaseous fuels were taken from [10], and shown in Table 9. As the fuel 551 

composition does not noticeably influence the combustion velocity [10], the heat release rate can be 552 

considered the same for the three investigated cases. The theoretical energy input of each cylinder is 553 

fixed at 3.8 kJ as it provides an approximate power of 11.92 kW. Then, the mass flow of the gaseous fuel 554 

and air can be calculated according to the fuel LHV considering that the air-fuel ratio is kept at its 555 

stoichiometric value as presented in Table 9. LPG represents liquefied petroleum gas. 556 

Table 9. Fuel composition and properties of the investigated gaseous fuels [10] 557 

 
Volumetric fraction (%) Heating value WI 

Stoichiometric 

air-fuel ratio 

CH4 C3H8 CO2 N2 MJ/m3 MJ/kg MJ/m3 [-] 

Natural gas  81 2 3 14 31.68 38.11 39.47 12.62 

LPG-CO2 - 54 46 - 50.33 23.95 39.47 8.59 

LPG-N2 - 47 - 53 43.81 27.52 39.47 9.26 

Table 10 shows the comparison of the theoretical values and the simulated results for the heat release 558 

and the engine power. The simulated energy input of the LPG-CO2 mixture is 5.53% higher than its 559 

theoretical value, whilst the ones of the natural gas and the LPG-N2 mixture are 5.26% and 1.05% lower 560 

than their theoretical values, respectively. Despite the 1.05% decrease from the theoretical energy input, 561 

the predicted engine power when the engine operates with LPG-N2 mixture is 2.77% higher than its 562 

reference value. The derived engine power of the NG and the LPG-CO2 mixture are 3.02 % lower and 563 

8.98 % higher than their theoretical values respectively, which are in accordance with the relative error 564 



trend of their heat release.  565 

Table 10. The energy input and the engine power with three gaseous fuels 566 

 Heat release Engine power 

 Theoretical 

value 

(kJ) 

Calculated  

value 

(kJ) 

Relative 

error 

(%) 

Reference 

value 

(kW) 

Calculated  

value 

 (kW) 

Relative 

error 

(%) 

NG 3.80 3.60 -5.26 11.92 11.56 -3.02 

LPG-CO2 3.80 4.01 5.53 11.92 12.99 8.98 

LPG-N2 3.80 3.76 -1.05 11.92 12.25 2.77 

 567 

 

(a) 

 

(b) 

Figure 7. Simulation results for the 2135 engine operating at nominal conditions with natural gas, 

LPG-CO2 mixture and LPG-N2 mixture; (a) combustion heat versus crank angle; (b) specific heat of 

the in-cylinder gases versus in-cylinder temperature. 

Figure 7(a) presents the combustion heat variation with the crank angle for the three investigated 568 

gaseous fuels. As deduced from Figure 7(a), the combustion heat of the LPG-N2 mixture roughly equals 569 

to its LHV, leading to the smallest relative error for the heat release and the engine power when the 2135 570 

engine operates with LPG-N2 mixture. The average combustion heat of the NG is about 5.3% lower than 571 

its LHV, whilst the average combustion heat of the LPG-CO2 mixture is approximately 5.5% higher than 572 

its LHV, which matches to the engine power variation trend. 573 

Figure 7(b) shows the specific heats at constant volume of the in-cylinder gases as functions of the in-574 

cylinder temperature. The high content of the H2O vapour in the NG combustion products results in a 575 
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higher specific heat than that of the other mixtures during the combustion phase. With regard to the 576 

comparison between the LPG-CO2 and the LPG-N2 mixtures, the greater amount of CO2 that has a higher 577 

specific heat results in a greater specific heat of the LPG-CO2 mixture (the latter is higher in comparison 578 

with that of the LPG-N2 mixture). 579 

 580 

4.2 Influence of Inert Gas Addition on Knocking Performance  581 

In this section, the influence of the CO2 and N2 addition on the knocking performance of the 2135 582 

engine operating on natural gas is investigated. The Adu Dhabi natural gas [46], which has one of the 583 

lowest knock resistances because of its high ethane content, is used as the baseline gaseous fuel herein, 584 

whilst the volumetric addition of CO2 and N2 is set to be 5%, 10%, 15% and 20%, as shown in Table 11. 585 

Motor Octane Numbers (MON) of the fuel-inert gas mixtures are obtained according to the equation for 586 

MON and MN [46, 47]. The fuel consumption rate in each case is calculated referring to the fact that the 587 

volumetric flow of the gaseous fuel is inversely proportional to the square root of its density for a 588 

naturally aspirated premixed engine. 589 

Table 11. Composition and MON of natural gas with different inert gas additions 590 

Volumetric  

Fraction 

(%) 

Natural 

gas 

CO2 addition N2 addition 

+ 5% + 10% + 15% +20% + 5% + 10% + 15% 20% 

CH4 82 77.9 73.8 69.7 65.6 77.9 73.8 69.7 65.6 

C2H6 15.8 15.01 14.22 13.43 12.64 15.01 14.22 13.43 12.64 

C3H8 2.2 2.09 1.98 1.87 1.76 2.09 1.98 1.87 1.76 

CO2 0 5 10 15 20 0 0 0 0 

N2 0 0 0 0 0 5 5 15 20 

MON 119.2 122.4 125.7 128.9 132.2 120.3 121.4 122.5 123.6 
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(a) 

 

(b) 

Figure 8. Simulation results for the 2135 engine operating on natural gas with 5%, 10%, 15% and 

20% addition of CO2 and N2; (a) Wobbe Index variation; (b) Energy input variation.  

Figure 8(a) shows the Wobbe Index variation of the natural gas with 0%, 5%, 10%, 15% and 20% 592 

CO2 and N2 additions, respectively. As shown in Figure 8(a), in both cases the Wobbe Index decreases 593 

almost linearly with the increase of the CO2 and N2 addition. CO2 proves to be more effective than N2 in 594 

the Wobbe Index reduction as the CO2 density is about 1.6 times the N2 density under standard conditions 595 

(p=101.325 kPa, T=273.15 K).  596 

In Figure 8(b), the derived (for an engine cylinder) Theoretical Energy Input (TEI) and the 597 

Accumulated Heat Release (AHR) variations with different inert gas addition volumetric percentages are 598 

presented. The TEI is calculated by the LHV and the supplied fuel mass, whilst the AHR is obtained from 599 

the simulation model. As the input of the chemical fuel energy is directly proportional to the value of the 600 

Wobbe Index for a naturally aspirated premixed engine, both TEI values with the CO2 and N2 additions 601 

appear to decease in the same trend with the WI variation shown in Figure 8(a). In addition, the AHR 602 

values for all cases are smaller than the corresponding TEI values (except for the case of 20%(vol) CO2 603 

addition), as they are calculated by the internal energy difference of the combustion reactants and 604 

products as function of the average in-cylinder gas temperature, which is much greater than the 605 

temperature in standard conditions. 606 

As the detection of knocking onset in NG engines might be sensitive to the simulation step, various 607 

simulation step values (0.5oCA, 0.2oCA and 0.1oCA) were tested to investigate the effects of the 608 

simulation step on the knocking onset. However, the knocking onset remains at 15oCA ATDC, which 609 

indicates that the investigated simulation step values did not affect considerably the knocking onset. This 610 

is attributed to the fact that the knocking prediction is based on an empirical knocking formula and a 611 
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two-zone model, which is relatively simplified and does not rely much on the simulation step. Thus, the 612 

following simulation works for the knocking prediction are performed with a fixed simulation step of 613 

0.5 °CA. 614 

Figure 9(a) shows the natural induction time integral with varying inert CO2 and N2 addition rates, 615 

which indicates the occurrence of knocking phenomenon when it reaches unity. As shown in Figure 9(a), 616 

the addition of CO2 causes a significant decrease of the final value of the natural induction time integral, 617 

whilst the N2 addition results in a relatively smaller decrease of the natural induction time. Figure 9(b) 618 

shows the knocking index, which provides the relative knocking probability with different inert gases 619 

addition rates. The knocking index with 0% inert gas addition is set to 100 as it represents the baseline 620 

condition. It can be inferred from Figure 9(b) that both the CO2 addition and the N2 addition can reduce 621 

the knocking probability of the natural gas engine with different levels. The CO2 addition seems to be 622 

more effective than N2 in eliminating the knocking phenomenon, as the knocking index decreases to zero 623 

with a 16% CO2 addition, whilst the knocking index with 20% N2 addition remains at 17. 624 

Figure 9(c) and Figure 9(d) show the knocking position and knocking intensity with different inert 625 

gases (CO2 and N2) addition rates. These two parameters are presented in the form of the crank angle 626 

after the cylinder top dead centre (ATDC) and the mass fraction of the unburnt fuel in unburnt zone when 627 

the knocking phenomenon happens, respectively. The knocking position is retarded by 19°CA with 628 

15%(vol) CO2 addition. For a CO2 addition over 16% (vol), knocking does not occur, therefore, knocking 629 

position is not shown in Figure 9 (c). The knocking intensity decreases from 21.5% to 0% when the CO2 630 

addition increases from 0% to 16%. The N2 addition from 5% to 20% retards the knocking position by 631 

10.5°CA and decreases the knocking intensity by 12%. 632 

 633 
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Figure 9. Simulation results for the 2135 engine operating on natural gas with 5%, 10%, 15% and 

20% addition of CO2 and N2; (a) natural induction time integration; (b) knocking index; (c) 

knocking position; (d) knocking intensity; (e) the average temperature in unburnt zone (original); 

(f) the average temperature in unburnt zone (zoom in). 

Figure 9(e) and Figure 9(f) present the gas temperatures of the unburnt zone with different inert gas 634 

addition rates. The unburnt zone gas temperature reduces with the increase of the CO2 and N2 addition 635 
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rates, which results in the knocking probability reduction according to Eq (17). As CO2 has higher 636 

specific heat capacity and higher density than the N2 (
2

1.977CO  kg/m3, 
2

1.25N  kg/m3
 at standard 637 

conditions), the CO2 addition more significantly reduces the unburnt zone temperature, resulting in better 638 

knocking resistance. 639 

 640 

5. Conclusions 641 

This study proposed an extended zero-dimensional model capable of simulating the multi-fuel 642 

internal combustion engines, which employs the calculation of the thermodynamic properties of multiple 643 

fuel mixtures and their combustion products. Subsequently, the extended model was used to investigate 644 

the interchangeability between gaseous fuels with same WI and the influence of the inert gases (CO2 and 645 

N2) addition on the engine knocking resistance. The main findings of this study are summarised as follow. 646 

1. The maximum error between the simulation results and the respective experimental data was in the 647 

range of 3% (obtained for the prediction of the in-cylinder pressure) implying that the extended 648 

model shows adequate accuracy in predicting the operating parameters of the investigated internal 649 

combustion engines operating on single or multiple fuels, including diesel engines, natural gas spark-650 

ignited engines, dual fuel engines and tri-fuel engines.  651 

2. In terms of the energy input and the engine power, the relative errors between the WI estimation and 652 

the results obtained by the developed model can be as high as 5.53% and 8.98% respectively, which 653 

implies that simulation tools of adequate accuracy must be used for the engine performance 654 

prediction with fuels interchangeability to avoid possible errors occurring by considering the WI. 655 

3. The knocking probability of the 2135 NG engine is eliminated when the CO2 addition rate increases 656 

to around 16%, which is accompanied with a delay of 19°CA for the knocking crank angle and a 657 

decrease of 21.5% for the knocking intensity. 658 

4. The N2 addition from 5% to 20%, it retards the knocking position by 10.5°CA and decreases the 659 

knocking intensity by 12%. 660 

5. Based on the preceding points, it is concluded that the CO2 addition is more effective than the N2 661 

addition for suppressing the engine knocking in the investigated natural gas engine. 662 

The proposed model extension in this paper is based on thermodynamic properties estimation and 663 

multi-Vibe functions, which are practically applicable to the zero-dimensional model development of all 664 



types of internal combustion engines, especially for those operating with flexible fuels. Compared to the 665 

traditional WI method, it provides more accurate and detailed information of the fuel interchangeability 666 

influence on engine performance and knocking resistance and therefore it is expected that the proposed 667 

model will be a useful tool that can be used in the analysis of multi-fuel engines. 668 
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 674 

Abbreviations 675 

ABDC After Bottom Dead Centre 

AGA American Gas Association 

AHR Accumulated Heat Release 

ATDC After Top Dead Centre 

BBDC Before Bottom Dead Centre 

BTDC Before Top Dead Centre 

CA Crank Angle 

CFD Computational Fluid Dynamics 

DFT Density Functional Theory 

ECU Electronic Control Unit 

EVO Exhaust Valve Open 

EOC End of Combustion 

HRR Heat Release Rate 

HV Heating Value 

IMEP Indicated Mean Effective Pressure 

IVC Intake Valve Close 

LHV Lower Heating Value 

LPG Liquefied Petroleum Gas 

MN Methane Number 

MON Motor Octane Number 

NG Natural Gas 

ON  Octane Number 

PM Particulate Matter 

SI Spark-Ignited 

SOC Start of Combustion 



TDC Top Dead Centre 

TEI Theoretical Energy Input 

THC Total Hydrocarbons 

ULSD Ultra Low Sulphur Diesel 

WI Wobbe Index 

 676 

Symbols 677 

Awall,i the heat transfer surface area, [m2] 

Qcomb the total heat release, [J] 

Qloss the total heat loss, [J] 
T the average in-cylinder temperature, [K] 

Tnorm the reference temperature for the thermodynamic property fitting equations, [K] 

Tshift the shift temperature for the thermodynamic property fitting equations, [K] 

T2 the average temperature of the unburnt zone, [K] 

Twall,i the average wall temperature, [K] 

a the coefficient related to the combustion efficiency in Vibe function, [-] 

ak the fitting coefficient for the specific heat at constant pressure, [-] 

αg→w the instantaneous heat transfer coefficient from the in-cylinder gas to the walls, [J/K/m2] 

bi the weigh factor of each fuel, [-] 

cp the specific heat at constant pressure, [J/kg/K] 

cv the specific heat at constant volume, [J/kg/K] 

ef the specific energy variation caused by the liquid fuel injection and evaporation, [J/kg] 

fc the property parameter (cv, h and u) for each basic species, [-] 

h the specific enthalpy, [J/kg] 

in
f ,liquidh   

the specific enthalpy of the liquid fuel, [J/kg] 

ref
jh  

the specific enthalpy at standard condition, [J/kg] 

f ,inm  
the diesel flow rate, [kg/s] 

m0 the mass of the in-cylinder gas mixture at IVC, [kg] 

mi the injected fuel mass of each fuel, [kg] 

mv the shape factor in Vibe function, [-] 

p the average in-cylinder pressure, [pa] 

t the elapsed time from the start of the compression process in unburnt zone, [s] 

ti the time of auto-ignition timing, [s] 

τ the natural induction time, [ms] 

τv the normalized combustion time, [-] 

u the specific energy, [J/kg] 

ua the specific internal energy of air, [J/kg] 

ucomb the combustion heat, [J/kg] 



ucomb,G the combustion heat of the gaseous fuel, [J/kg] 

ucomb,L the combustion heat of the liquid fuel, [J/kg] 

ucomb,eff the effective combustion heat, [J/kg] 

uf the specific internal energy of fuel, [J/kg] 

ref
ju

 
the specific internal energy at standard condition, [J/kg] 

usg the specific internal energy of stoichiometric gas, [J/kg] 

xa the air mass fraction, [%] 

xb the burnt fuel fraction, [%] 

xf the fuel mass fraction, [%] 

xsg the mass fraction of the combustion products, [%] 

xc the mass fraction of the considered mixtures constituents, [%] 

xe the mass fraction of air, gaseous fuel and stoichiometric gas, [%] 

x0 the air mass fraction at IVC, [%] 

x1 the mass fraction of the air-fuel mixture at IVC in premixed engines, [%] 

σ the stoichiometric ratio, [-] 

ξ the fuel burning rate, [kg/s] 

ξG the fuel burning rate of the gaseous fuel, [kg/s] 

ξL the fuel burning rate of the liquid fuel, [kg/s] 

θ the normalized temperature, [-] 

θref the normalized reference temperature, [-] 

 678 

References 679 

1. Mavrelos, C. and G. Theotokatos, Numerical investigation of a premixed combustion large 680 
marine two-stroke dual fuel engine for optimising engine settings via parametric runs. 681 
Energy Conversion and Management, 2018. 160: p. 48-59. 682 

2. Barati, M.R., et al., Comprehensive exergy analysis of a gas engine-equipped anaerobic 683 
digestion plant producing electricity and biofertilizer from organic fraction of municipal 684 
solid waste. Energy Conversion and Management, 2017. 151: p. 753-763. 685 

3. Thomson, H., J.J. Corbett, and J.J. Winebrake, Natural gas as a marine fuel. Energy Policy, 686 
2015. 87: p. 153-167. 687 

4. Ghaderi, M., et al., Design, fabrication and characterization of infrared LVOFs for 688 
measuring gas composition. Journal of Micromechanics and Microengineering, 2014. 24(8): 689 
p. 084001. 690 

5. Kakaee, A.-H., A. Paykani, and M. Ghajar, The influence of fuel composition on the 691 
combustion and emission characteristics of natural gas fueled engines. Renewable and 692 
Sustainable Energy Reviews, 2014. 38: p. 64-78. 693 

6. Jahanian, O. and S. Jazayeri, A comprehensive numerical study on effects of natural gas 694 
composition on the operation of an HCCI engine. Oil & Gas Science and Technology–Revue 695 
d’IFP Energies nouvelles, 2012. 67(3): p. 503-515. 696 

7. Ortíz, J., Fundamentos de la intercambiabilidad del Gas Natural. Ciencia, 2014: p. 6-15. 697 
8. Halchuk-Harrington, R. and R. Wilson, AGA Bulletin #36 and Weaver Interchangeability 698 

Methods: Yesterday's Research and Today's Challenges, in Operating Section Proceeding - 699 
Gas Association. 2006, American Gas Association: Paramus, N.J. p. 802-823. 700 

9. Eichmann, S.C., et al., Determination of gas composition in a biogas plant using a Raman-701 
based sensor system. Measurement Science and Technology, 2014. 25(7): p. 075503. 702 

10. Klimstra, J., Interchangeability of Gaseous Fuels—the Importance of the WOBBE-INDEX. 703 



1986, SAE Technical Paper. 704 
11. Karavalakis, G., et al., The effect of natural gas composition on the regulated emissions, 705 

gaseous toxic pollutants, and ultrafine particle number emissions from a refuse hauler 706 
vehicle. Energy, 2013. 50: p. 280-291. 707 

12. Cardona, C.A. and A.A. Amell, Laminar burning velocity and interchangeability analysis of 708 
biogas/C3H8/H2 with normal and oxygen-enriched air. International Journal of Hydrogen 709 
Energy, 2013. 38(19): p. 7994-8001. 710 

13. Honus, S., S. Kumagai, and T. Yoshioka, Replacing conventional fuels in USA, Europe, and 711 
UK with plastic pyrolysis gases–Part I: Experiments and graphical interchangeability 712 
methods. Energy Conversion and Management, 2016. 126: p. 1118-1127. 713 

14. Honus, S., S. Kumagai, and T. Yoshioka, Replacing conventional fuels in USA, Europe, and 714 
UK with plastic pyrolysis gases–Part II: Multi-index interchangeability methods. Energy 715 
Conversion and Management, 2016. 126: p. 1128-1145. 716 

15. Baldi, F., G. Theotokatos, and K. Andersson, Development of a combined mean value–zero 717 
dimensional model and application for a large marine four-stroke Diesel engine simulation. 718 
Applied Energy, 2015. 154: p. 402-415. 719 

16. Ding, Y., D. Stapersma, and H. Grimmelius, Using parametrized finite combustion stage 720 
models to characterize combustion in diesel engines. Energy & Fuels, 2012. 26(12): p. 7099-721 
7106. 722 

17. Maurya, R.K. and P. Mishra, Parametric investigation on combustion and emissions 723 
characteristics of a dual fuel (natural gas port injection and diesel pilot injection) engine 724 
using 0-D SRM and 3D CFD approach. Fuel, 2017. 210: p. 900-913. 725 

18. Demir, U., et al., Evaluation of zero dimensional codes in simulating IC engines using 726 
primary reference fuel. Applied Thermal Engineering, 2015. 76: p. 18-24. 727 

19. Xu, S., et al., A phenomenological combustion analysis of a dual-fuel natural-gas diesel 728 
engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of 729 
Automobile Engineering, 2017. 231(1): p. 66-83. 730 

20. Kaprielian, L., et al., Multi-zone quasi-dimensional combustion models for Spark-Ignition 731 
engines. 2013, SAE Technical Paper. 732 

21. Zhen, X., et al., The engine knock analysis–an overview. Applied Energy, 2012. 92: p. 628-733 
636. 734 

22. Xiang, L., E. Song, and Y. Ding, A Two-Zone Combustion Model for Knocking Prediction of 735 
Marine Natural Gas SI Engines. Energies, 2018. 11(3): p. 561. 736 

23. Sui, C., et al., Mean value modelling of diesel engine combustion based on parameterized 737 
finite stage cylinder process. Ocean Engineering, 2017. 136: p. 218-232. 738 

24. Bulfin, B., et al., Thermodynamics of CeO2 thermochemical fuel production. Energy & Fuels, 739 
2015. 29(2): p. 1001-1009. 740 

25. Hutter, R., et al., Low-Load Limit in a Diesel-Ignited Gas Engine. Energies, 2017. 10(10): p. 741 
1450. 742 

26. Ding, Y., et al., Thermodynamics Properties Modeling of the Diesel Fuel and In-cylinder Gas 743 
for Diesel Engines to Combustion Investigation. Energy & Fuels, 2018. 744 

27. Ding, Y., Characterising combustion in diesel engines, in TU Delft. 2011. 745 
28. Neto, A., et al., Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and 746 

ethanol—gasoline predicted by DFT method. Journal of molecular modeling, 2015. 21(10): 747 
p. 267. 748 

29. Li, W., et al., Experimental and theoretical analysis of effects of equivalence ratio on mixture 749 
properties, combustion, thermal efficiency and exhaust emissions of a pilot-ignited NG 750 
engine at low loads. Fuel, 2016. 171: p. 125-135. 751 

30. Merker, G.P., et al., Simulating Combustion: Simulation of combustion and pollutant 752 
formation for engine-development. Vol. 7. 2005: Springer Science & Business Media. 753 

31. Ghojel, J.I., Review of the development and applications of the Wiebe function: a tribute to 754 
the contribution of Ivan Wiebe to engine research. International Journal of Engine Research, 755 
2010. 11(4): p. 297-312. 756 

32. Woschni, G., A universally applicable equation for the instantaneous heat transfer coefficient 757 
in the internal combustion engine. 1967, SAE Technical paper. 758 

33. Yaws, C.L., Handbook of Thermodynamic Diagrams, Volume 3. Vol. 4. 1986, USA: Gulf 759 
Publication Company. 760 

34. Borman, G.L. and K.W. Ragland, Combustion engineering. 1998: McGraw-Hill 761 



Science/Engineering/Math. 762 
35. Wang, Z., et al., Relationship between super-knock and pre-ignition. International Journal of 763 

Engine Research, 2015. 16(2): p. 166-180. 764 
36. Qi, Y., et al., Effects of thermodynamic conditions on the end gas combustion mode associated 765 

with engine knock. Combustion and Flame, 2015. 162(11): p. 4119-4128. 766 
37. Livengood, J. and P. Wu. Correlation of autoignition phenomena in internal combustion 767 

engines and rapid compression machines. in Symposium (international) on combustion. 1955. 768 
Elsevier. 769 

38. Kakaee, A.-H., P. Rahnama, and A. Paykani, Influence of fuel composition on combustion 770 
and emissions characteristics of natural gas/diesel RCCI engine. Journal of natural gas 771 
science and engineering, 2015. 25: p. 58-65. 772 

39. Mansor, M.R.A., M.M. Abbood, and T.I. Mohamad, The influence of varying hydrogen-773 
methane-diesel mixture ratio on the combustion characteristics and emissions of a direct 774 
injection diesel engine. Fuel, 2017. 190: p. 281-291. 775 

40. !!! INVALID CITATION !!! [38, 39]. 776 
41. Abu-Jrai, A.M., H. Ala'a, and A.O. Hasan, Combustion, performance, and selective catalytic 777 

reduction of NOx for a diesel engine operated with combined tri fuel (H2, CH4, and 778 
conventional diesel). Energy, 2017. 119: p. 901-910. 779 

42. Stiesch, G., Modeling engine spray and combustion processes. Vol. Heat & Mass Transfer. 780 
2013: Springer Science & Business Media. 781 

43. Ghojel, J., Review of the development and applications of the Wiebe function: a tribute to the 782 
contribution of Ivan Wiebe to engine research. International Journal of Engine Research, 783 
2010. 11(4): p. 297-312. 784 

44. Yan, F., L. Xu, and Y. Wang, Application of hydrogen enriched natural gas in spark ignition 785 
IC engines: from fundamental fuel properties to engine performances and emissions. 786 
Renewable and Sustainable Energy Reviews, 2017. 787 

45. Valladolid, P.G., et al., Impact of diesel pilot distribution on the ignition process of a dual 788 
fuel medium speed marine engine. Energy Conversion and Management, 2017. 149: p. 192-789 
205. 790 

46. Brecq, G., et al., Knock prevention of CHP engines by addition of N2 and CO2 to the natural 791 
gas fuel. Applied thermal engineering, 2003. 23(11): p. 1359-1371. 792 

47. Kubesh, J., S.R. King, and W.E. Liss, Effect of gas composition on octane number of natural 793 
gas fuels. SAE transactions, 1993. 101: p. 1862-1862. 794 

 795 


