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Abstract

In this paper we consider the dynamics of point islands during submonolayer

deposition, in which the fragmentation of subcritical size islands is allowed. To

understand asymptotics of solutions, we use methods of centre manifold theory,

and for globalisation, we employ results from the theories of compartmental sys-

tems and of asymptotically autonomous dynamical systems. We also compare

our results with those obtained by making the quasi-steady state assumption.

Keywords: submonolayer deposition, centre manifold theory, compartmental

systems, asymptotically autonomous dynamical systems

2010 MSC: 34A35, 34E05, 37C19, 82D30

1. Introduction

Submonolayer deposition, a process in which atoms or molecules are deposited

onto a substrate, diffuse and form islands, is a foundational technology in the

creation of smart and nanomaterials [12]. A mathematical theory of submono-
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layer deposition that describes spatial distribution and the size statistics of the

islands is an important goal of research. At present there are many competing

models to describe the spatial distribution of islands; see, for example [15], and

the work that paper has led to.

Size distribution of islands is usually tackled by models that disregard the spa-

tial structure, and deal only with coagulation and fragmentation of clusters

composed of adatoms deposited onto a surface. Such models lead to infinite

systems of ordinary differential equations (ODEs) for the various species, these

are known as rate equations; see e.g. [9, 7].

If furthermore one assumes that the structure of these clusters is also disre-

garded, one deals with point islands, and then it makes sense to assume that

coagulation and fragmentation rates are not size-dependent. Studies of this type

of rate equations have been initiated by da Costa et al. [4]; see also [6, 5], all of

which are relevant to the present work.

As in [6] we further assume that there exists a critical island size i such that

islands (adatom clusters) of size j ≥ n := i+ 1 are immobile and can only grow

by attachment of single adatoms.

There is a number of possibilities how to model islands of size 1 < j ≤ i. The

one considered in [6] is that clusters of size 1 < j ≤ i simply do not arise.

There is one other physically relevant possibility, i.e. that clusters of every size

1 < j ≤ i are allowed to fragment (at some rate independent of the cluster

size, which is consistent with the point-island assumption). This possibility has

been considered formally in [2, 13]. In this paper we consider this mechanism,

basically using centre manifold techniques [3] and globalising the results.

In [4] and in [6] as well, it was possible by a change of variables, to decouple

the infinite system of ODEs in a way that reduced its analysis to an analysis of

a two-dimensional system. In our case, the reduction is to n = i+ 1 equations,

and the remarkable property of these equations is that the complexity of the
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calculations is independent of n. Furthermore, it appears that computations

can be significantly simplified by making a sweeping assumption that all the

clusters of size 1 < j ≤ i are at a quasi-steady state (the quasi-steady state

assumption, QSSA). We show that making this assumption results in the same

leading term behaviour as the centre manifold computation and emphasise the

differences between the two approaches.

The plan of the paper is as follows. In section 2 we introduce the governing

equations, perform the finite dimensional reduction, and formulate an equiva-

lence theorem between the reduced n-dimensional system of equations and the

original infinite-dimensional one. In section 3 we perform the centre manifold

analysis; the monomer asymptotics for large times are computed in section 5

and are used to discuss the consequences for the asymptotic behaviour of islands

of all sizes. In section 4 we globalise these results. In section 6 we compare our

results to those obtained by making the QSSA, and finally in section 7 we relate

our results to those of [2] and [13] and conclude.

2. Governing Equations

We consider a system containing clusters of any number j ≥ 1 or monomers;

We assume that the following reactions occur:

j −mer + monomer
1

�
β

(j + 1)−mer

for 1 ≤ j < i and

j −mer + monomer
1→ (j + 1)−mer.

if j ≥ i. In other words, we allow clusters of size less than i+ 1 to fragment at

a rate β > 0.

If we set α̃ to be the deposition rate, denote by Cj(t) the concentration of j-

mers. and use primes for differentiation with respect to time t, the laws of mass

kinetics give us the following infinite system of ODEs:
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C ′1 = α̃− 2C2
1 + 2βC2 − C1

∞∑
k=2

Ck + β

i∑
k=3

Ck,

C ′j = C1Cj−1 − C1Cj − βCj + βCj+1, 1 < j < i,

C ′j = C1Cj−1 − C1Cj − βCj , j = i,

C ′j = C1Cj−1 − C1Cj , j > i.

(1)

It makes sense to scale the variables and the deposition rate to remove β from

the equations. Thus scaling t → T := βt, retaining primes for differentiation

with respect to the new times scale, setting Cj(t) = βcj(T ) and α = α̃/β2, we

obtain the system

c′1 = α− 2c21 + 2c2 − c1
∞∑
k=2

ck +

i∑
k=3

ck,

c′j = c1cj−1 − c1cj − cj + cj+1, 1 < j < i,

c′j = c1cj−1 − c1cj − cj , j = i,

c′j = c1cj−1 − c1cj , j > i.

(2)

We next compactify the equations by setting z =
∑∞
k=2 ck and v = α − c1z.

Then v satisfies the equation

v′ = − 1

c1

[
c41 − c21c2 + αv − v2 − 2αc21 + 2c21v + 2αc2

−2c2v + α

i∑
k=3

ck − v
i∑

k=3

ck

]
.

(3)

Then the equation for c1 becomes

c′1 = v − 2c21 + 2c2 +

i∑
k=3

ck. (4)

Theorem 1. If
∑∞
k=1 ck(0) < ∞, a solution of (4), (2) for j > 1 and (3) is

also a solution of (2) (for all j ≥ 1).
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The argument of the proof is the same as in [4, Theorem 1].

Note that this means that the equations (2) for 1 < j ≤ i, together with (3)

and (4) can be decoupled from the rest.

We now change time from T to τ =
∫ T
0

1
c1(s)

ds. Letting dots represent the

derivatives with respect to τ , the i+ 1 ODEs for v and cj , 1 ≤ j ≤ i become

ċ1 = c1(v − 2c21 + 2c2 +

i∑
k=3

ck),

ċj = c1(c1cj−1 − c1cj − cj + cj+1), 1 < j < i,

ċi = c1(c1ci−1 − c1ci − ci),

(5)

and

v̇ = −

[
c41 − c21c2 + αv − v2 − 2αc21 + 2c21v + 2αc2 − 2c2v + α

i∑
k=3

ck − v
i∑

k=3

ck

]
.

(6)

Note that 0 ∈ Ri+1 is a rest point of the system of equations (5)–(6). The object

of interest is to establish stability properties of this rest point and the way in

which it is approached.

It is useful to make another change of variable. We set

w = v + 2c2 +

i∑
k=3

ck.

In the (c1, c2, . . . , ci, w) variables (4) becomes conveniently

ċ1 = c1(w − 2c21), (7)

the equations for c2, · · · , ci remain as before in (5) and obviously we have

ẇ = v̇ + 2ċ2 +

i∑
k=3

ċk = −αw + 2αc21 − 2c1c2 + 2c31 + c1c3 + 4c21c2 − 2c21w

− 2c2w − c21ci − w
i∑

k=3

ck + 2c21

i∑
k=3

ck − c41 + w2.

(8)
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3. Centre Manifold Analysis

Now we appeal to centre manifold theory [3], according to which in a neigh-

bourhood of the origin in Ri+1, equations (7), (5) for 1 < j ≤ i and (8) admit

an i-dimensional centre manifold, w = h(c1, c2, · · · , ci).

On this centre manifold, the flow is given by

ċ1 = c1(h(c1, c2, · · · , ci)− 2c21),

ċj = c1(c1cj−1 − c1cj − cj + cj+1), 1 < j < i,

ċi = c1(c1ci−1 − c1ci − ci).

(9)

But we can reparameterise time by going back to the T variable to obtain on

the centre manifold w = h(·) the equations

c′1 = h(c1, c2, · · · , ci)− 2c21,

c′j = c1cj−1 − c1cj − cj + cj+1, 1 < j < i,

c′i = c1ci−1 − c1ci − ci.

(10)

Since by centre manifold theory the asymptotic expansion of h(·) contains only

quadratic terms and above, this means that inside the centre manifold w = h(·)

there is another, one-dimensional centre manifold, i.e. a curve parameterised

by c1, with components cj = gj(c1), 1 < j ≤ i. We will write gw(c1) =

h(c1, g2(c1), . . . , gi(c1)). Furthermore, we also know by centre manifold theory

that that as c1 → 0,

gj(c1) ∼
∞∑
k=2

γj,kc
k
1 ,

where we use ∼ to mean “is asymptotic to as c1 → 0”. We also have

gw(c1) ∼
∞∑
k=2

γw,kc
k
1 .

Hence (see [3]) the flow on the one dimensional centre manifold is given by

c′1 = gw(c1)− 2c21, (11)
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and if the rest point at the origin of the one-dimensional ODE (11) is stable, the

one-dimensional centre manifold (g2(c1), . . . , gi(c1)) attracts nearby solutions,

so all (apart possibly from sets of zero i + 1-dimensional Lebesgue measure)

approach the origin along this curve.

We have

Theorem 2. c1 asymptotically satisfies the differential equation

c′1 ∼
1

α

(
−ci+3

1 + ci+4
1 − c2i+3

1

)
+O(c2i+4

1 ).

Proof: Before we start the computation of the coefficients γj,k and γw,k, let us

indicate the flow of logic. The equations we are dealing with, (10) and (8), have

a very special structure that we are going to exploit.

On the centre manifold, the equations determining gj(c1) (2 ≤ j ≤ i) have the

form

dg2
dc1

(c1)(gw(c1)− 2c21) = c21 − c1g2(c1) + c1g3(c1)− g2(c1) + g3(c1)

dgj
dc1

(c1)(gw(c1)− 2c21) = c1gj−1(c1)− c1gj(c1)− gj(c1) + gj+1(c1), 2 < j < i

dgi
dc1

(c1)(gw(c1)− 2c21) = c1gi−1(c1)− c1gi(c1)− gi(c1),

to which we, denoting the right-hand side of (8) by F (c1, c2, . . . , ci, w), add the

equation

dgw
dc1

(c1)(gw(c1)− 2c21) = F (c1, g2(c1), . . . , gi(c1), gw(c1)).

By inspection, one can immediately determine γw,2, then consecutively γi,2,

γi−1,2 and all the way to γ2,2. Once this is done, we can find γw,3 and proceed

in that way to find as many terms of the expansion as we wish. See [1] for

details of the form of later terms of the expansion.

For example, we have

Proposition 3. For all j, 2 ≤ j ≤ i, gj(c1) = O(cj1) and γj,j = 1.
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The final result is the following representation:

Proposition 4. The functions gj(c1), 2 ≤ j < i, gi(c1), and gw(c1) have the

following asymptotic expansions as c1 → 0:

gj(c1) ∼ cj1 − c
i+1
1 + ci+j1 +O(ci+j+2

1 ), gi(c1) ∼ ci1 − ci+1
1 + c2i1 +O(c2i+1

1 ),

and

gw(c1) ∼ 2c21 +
1

α

(
−ci+3

1 + ci+4
1 − c2i+3

1

)
+O(c2i+4

1 ).

Given this Proposition, the result of Theorem 2 follows immediately. �

Note that beyond terms of O(ci+j1 ) the interplay among gj(c1), 1 < j ≤ i, and

gw(c1) becomes complex, and that the later coefficients of these functions depend

on α. Computations using MAPLE [1] indicate that the radius of convergence

of the various expansions is 0 for all α > 0.

4. Globalisation

In this section we consider the global dynamics of equations satisfied by cj(T ),

1 ≤ j ≤ i, and v(T ) = α − c1(T )
∑∞
k=2 ck(T ), and establish that all solutions

of these equations with non-negative initial data approach the origin. This in

turn establishes that the flow on the centre manifold, as given by Theorem

2, describes the asymptotics of every non-negative solution of this system of

equations.

For that purpose, it is more convenient to rewrite these equations as follows:

c′1 = α− 2c21 + 2c2 − c1
i∑

k=2

ck +

i∑
k=3

ck − c1y,

c′j = c1cj−1 − c1cj − cj + cj+1, 1 < j < i,

c′i = c1ci−1 − c1ci − ci,

y′ = c1ci,

(12)

8



where we have put y(T ) =
∑∞
k=i+1 ck(T ).

We first consider a system without outflows through higher clusters, i.e.

c′1 = α− 2c21 + 2c2 − c1
i∑

k=2

ck +

i∑
k=3

ck,

c′j = c1cj−1 − c1cj − cj + cj+1, 1 < j < i,

c′i = c1ci−1 − c1ci − ci.

(13)

Let us show that the system (13) is a compartmental system in the sense of

Jacquez and Simon []. To that end, we introduce some notation.

Let I1 = α and let Ij = 0 for all 2 ≤ j ≤ i. Now put

Fj1 = c1cj−1, j = 2, . . . , i;

F12 = 2c2 and F1j = cj j = 3, . . . , i.

For k = j − 1, 2 ≤ k ≤ i − 1 put Fkj = cj , Fjk = c1ck and for k = j + 1,

2 ≤ j ≤ i−1, put Fkj = cj . Finally, let F0k = 0 if k 6= 1, i and F0i = F01 = c1ci,

the only outflows from the system.

Then clearly for each j = 1, . . . i we can write

c′j =

i∑
k 6=j

−Fkj + Fjk + Ij − F0j , (14)

with all the F s and Is positive, which shows that (13) is a compartmental

system.

Also note that
∂Fjk
∂cm

≥ 0 for all 1 ≤ j, k,m ≤ i, j 6= k. (15)

Then we can use the theorem of Maeda, Kodama and Ohta [11]; see also part

(i) of Theorem 9 of [10]:
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Theorem 5 ([11]). Given a compartmental system (14) with time-independent

inputs Ij that satisfies the monotonicity condition (15), every non-negative so-

lution of the system is bounded iff the system has a positive rest point.

Since it is not hard to compute that the system (13) admits the unique positive

equilibrium

(c1, c2, . . . , ci) = (α
1

i+1 , α
2

i+1 , . . . , α
i

i+1 ),

we conclude using Theorem ([11]) that all non-negative solutions of (13) are

bounded.

Now consider the first i equations of the system (12). Since the system (12)

preserves non-negativity, and y(T ) is a positive function, by comparison with

solutions of (13) it follows that the (c1, . . . , ci) components of non-negative so-

lutions of (12) are bounded for any positive initial condition.

Now consider the dynamics of the last component of (12), y(T ). As it is

monotone-increasing it can either converge to some limit l < ∞ or it can go

to infinity.

Let us show that the first possibility cannot occur. For if it did, we could use the

theorem of Thieme [17, Theorem 4.2] on behaviour as T →∞ of asymptotically

autonomous systems, combined with the fact that all non-negative solutions of

(12) are bounded and the uniqueness of the positive equilibrium, to conclude

that the ω-limit set of every orbit of (12) would be the same as that of the

system

c′1 = α− 2c21 + 2c2 − c1
i∑

k=2

ck +

i∑
k=3

ck − c1l

c′j = c1cj−1 − c1cj − cj + cj+1, 1 < j < i,

c′i = c1ci−1 − c1ci − ci.

(16)

But if y(T ) → l as T → ∞, we must have that either c1(T ) → 0 or ci(T ) → 0.
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If we suppose, for example, that ci(T )→ 0, we see from the c′i equation of (16)

that then either c1(T ) or ci−1(T ) must go to zero. Continuing in this way, we

see that all cj(T ) must go to zero as T →∞, but the origin is not a rest point

of the first i equations of (16). Hence we conclude that y(T )→∞.

Furthermore, since the positive orthant of Ri+1 is invariant under the flow of

(12), this must mean that c1(T )→ 0 as T →∞.

Now, from the equations for ci, ci−1, . . . , c2 it follows consecutively that for all

2 ≤ k ≤ i, ck(T )→ 0 as T →∞, again using the same result of Thieme [17] for

asymptotically autonomous differential equations. Applying these results to the

c1 equation in (12) we finally conclude that c1(T )y(T ) → α as T → ∞, which

is equivalent to saying that v(T )→ 0 as T →∞.

We collect these results as a theorem:

Theorem 6. As T →∞, for all non-negative initial data, ck(T )→ 0, 1 ≤ k ≤

i, and

c1(T )

∞∑
k=2

ck(T )→ α.

5. Asymptotics of Solutions

Armed with Theorem 2, which holds for any non-negative solution of (2) by the

globalisation results of Section 4, we can discuss asymptotics of solutions of (1),

using the methods of [4, 5], which were also used in [6]. As proofs are similar

to those used in the above papers, they are omitted here; see for details [1].

Further terms in the expansions are computed using the machinery of [5]; here

we just state the leading terms, denoting higher order terms by h.o.t. Going

back to our original variables Cj(t) to exhibit the complicated dependence of

the results on β, we have the following statements:
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Lemma 7. The asymptotics of C1(t) are given by

C1(t) ∼

 α̃βi−1

(i+ 2)t

 1
i+2

+ h.o.t.

Note that if we set β = 1 in the equation above we obtain the same result as in

[6]. Already at the level of C1(t) one sees that the influence of the fragmentation

rate β is not intuitive.

Once we know the asymptotics of C1(t) from Lemma 7, the asymptotics of Cj(t)

when 1 ≤ j ≤ i follow from Proposition 4:

Lemma 8. The asymptotics of cj(t) when 1 ≤ j ≤ i are given by

Cj(t) ∼

 α̃β i−3j+2
j

(i+ 2)t


j

i+2

+ h.o.t.

Hence we are now in a position to express the asymptotics of Cj(t) when j > i

basically solving linear non-homogeneous ODEs as in [4]:

Lemma 9. The asymptotics of Cj(t) when j > i are given by

Cj(t) ∼

 α̃β −2i+2
i

(i+ 2)t

 i
i+2

+ h.o.t.

From this information we have the equivalent of Theorem 6 of [6] concerning

similarity solutions of (1). To formulate it, we set

〈j〉 =

∑∞
j=1 jCj(t)∑∞
j=1 Cj(t)

∼
(
α̃βi−1

i+ 2

) 1
i+2

t
i+1
i+2 + h.o.t,

and the function Ψ(η) given by

Ψ(η) =

{
(1− η)−

i
i+1 if η < 1,

0 otherwise.

With these definitions, we have
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Theorem 10. As t→∞

Cj(t) =

 〈j〉−
i

i+1 Ψ

(
(i+1)β

− i+1
i+2

i+2
j
〈j〉

)
if (i+1)β

− i+1
i+2

i+2
j
〈j〉 < 1,

0 otherwise.

6. Quasi-Steady State Assumption

In this section we would like to investigate whether the asymptotics of solutions

obtained in Section 5 based on the centre manifold of Section 3 can be recovered

more easily by combining centre manifold reasoning with a largely heuristic

technique that is often used in the engineering community, the quasi-steady

state approximation (QSSA; see [8, 14, 16]). As in the famous example from

enzyme kinetics due to Segel and Slemrod [16], we show that QSSA correctly

captures the leading term asymptotics, though of course there will be differences

in higher order terms.

We restart with equations (2), but now we immediately make the QSSA as-

sumption that c′j = 0 for 1 < j ≤ i. Now we solve these i algebraic equations

for cj , 1 < j ≤ i, in terms of c1. This clearly can be done consecutively, by

starting with the ci equation and solving it in terms of c1 and ci−1, substituting

the expression we get for ci into the ci−1 equation and continuing in this way,

till c2 has been solved in terms of c1, after which we back-substitute.

This procedure gives us that under the QSSA assumption

cj =

∑i−j+1
k=1 ck+j−11∑i
k=1 c

k−1
1

, j = 2, . . . i.

Note that these are global objects, defined for all values of c1 > 0. We will need

their Maclaurin expansions around 0,

cj = cj1 +

n∑
k=1

(
−cki+1

1 + cki+j1

)
+O(c

(n+1)i+1
1 ). (17)

Now we can go back to the equation for ẇ (8), write w = gw(c1), remember that

by the centre manifold theorem gw contains terms that are at least quadratic in

13



c1, and substituting instead of cj , 1 < j ≤ i, the expressions from (17), obtain

that

gw(c1) ∼ 2c21 +
1

α

n∑
k=1

(
−cki+3

1 + cki+4
1

)
+O(c

(n+1)i+3
1 ).

In the series above we can take n as large as we wish. Hence under the QSSA

assumption, setting h(c1, . . . , ci) = gw(c1) in the first equation of (10), the

dynamics of c1 is governed by the equation

c′1 ∼
1

α

(
−ci+3

1 + ci+4
1 − c2i+3

1 + c2i+4
1

)
+O(c3i+3

1 ),

which by inspection yields the same first three terms as the centre manifold

computation of Theorem 2 for a fraction of the effort.

7. Conclusions

In this paper we complemented the analysis of [6] by considering a more real-

istic dynamics of nucleating point islands with critical island size i by allowing

subcritical islands of size 2 ≤ j ≤ i− 1 to form and fragment. The mathemat-

ics of this new system of equations is more challenging than the fundamentally

2-dimensional system considered in [6] and we had to use both centre manifold

techniques and a sophisticated globalisation argument using ideas from theo-

ries of compartmental systems and of asymptotically autonomous differential

equations; the globalisation methods used in this paper are in our opinion more

elegant than the “brute-force” asymptotics in [6].

Our asymptotic results in section 5 are consistent with the leading term asymp-

totics for c1(t) of [13] (see our Lemma 7) and for cj(t) (1 ≤ j ≤ i) of [2] (see

Lemma 8), as well as with the conjecture in [13] about the behaviour of cj(t),

j > i (see Lemma 9). Of course our methods are not restricted to the compu-

tation of leading terms of the asymptotics.
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