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Abstract

We present a stochastic age-dependent population model that accounts for Markovian switching
and variable delay. By using the approximate value at the nearest grid-point on the left of the
delayed argument to estimate the delay function, we propose a class of split-step §-method for
solving stochastic delay age-dependent population equations (SDAPEs) with Markovian switch-
ing. We show that the numerical method is convergent under the given conditions. Numerical
examples are provided to illustrate our results.
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1. Introduction

Stochastic differential equations (SDEs) are becoming increasingly used to model real world
phenomena in different fields, such as economics, biology, finance and population dynamics. As
an important branch of SDEs, stochastic population equations have received a great deal of atten-
tion. In the present investigation, the random behavior described by different stochastic processes
such as Markovian switching, Poisson jumps, and fractional Brownian motion is incorporated in-
to the stochastic age-dependent population equations (SAPEs) (see e.g., [T, 221 28]).
In these population dynamics, one assumes that the system is governed by a principle of causal-
ity, that is the future state of the system is determined solely by the present states. However, in
real world population system, it takes certain time for individuals to mature as well as for infec-
tious diseases to be cured. This motivates us to develop a more realistic model including some of
the past states of the system called time delay to describe the relationship between the causes and
their effects (see e.g., [9] [14] [16]). Then this stochastic delay age-dependent population
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system with Markovian switching can be defined by the following form:

d;P; = _% —u(t,a)P, + f(r(t), P, Psq)) | dt
+ g(r (1), Py, Psp))dW, (t,a) € [0,T] x [0,A] 11
P(t,a) = ¢(t,a), (t,a) € [-1,0] x [0, A] (1.1
A
P(t,0) = f B(t,a)P(t,a)da, te[0,T]
0

where 7 > 0, d,P; = %dl, 6(1) stands for the time delay (-7 < 6(¢) < 1), A denotes the maximum
age, r(t) is a Markov chain, W, is a Wiener process, P, = P(t,a) denotes the population density
of age a at time ¢, Ps;) = P(6(1), a) denotes the population density of age a at time 6(¢) , B(t, a)
denotes the fertility rate of females of age a at time ¢, u(t, a) denotes the mortality rate of age a at
time ¢, f(r(?), P;, Ps)) denotes the effects of an external environment for the population system,
g(r(2), P;, Ps(y)) 1s a diffusion coefficient.

With its simple algebraic structure, cheap computational cost and acceptable convergence
rate, Euler-Maruyama (EM) method has been widely used to solve SDEs (see e.g., [4} 5, 15, 25|
27]). Since most SAPEs cannot be solved explicitly, the constructions of efficient computational
method have become essential. For example, Zhang et al. [11} 28} 29] investigated the conver-
gence of numerical solutions to SAPEs, Li et al. [[10] considered the convergence of numerical
solutions to SAPEs with Markovian switching. In recent years, influenced by Higham, Mao
and Stuart [0, [7]], split-step #-method (SS6 method) has attracted a lot of concern due to their
advantages in dealing with the flexibility and the stability for the SDEs (see e.g., [2} [16} 23]).
Researchers find that the SSO method or its improved forms have desirable stability properties,
convergence rates and structure-preserving properties (see e.g., [8,[17]). Tan et al. [22] construct-
ed a class of SSO method for SAPEs with Poisson jumps. In [19], Rathinasamy introduced a class
of SSO method for SAPEs with Markovian switching. In our stochastic population model (I.1),
we allow the time delay to be a function of time, namely variable delay, which is more general
than the constant delay. The main difficulty in dealing with variable delays by numerical method
is that at the current time-step the delayed argument may not hit a precious time-step (see [16]).
In order to overcome this difficulty we use the the approximate value at the nearest grid-point on
the left of the delayed argument to estimate the delay function. We then present a class of SS6
method for SDAPEs with Markovian switching. The SS6 method includes the split-step forward
method and the split-step backward Euler method by choosing # = 0 and 6§ = 1 and it is more
general than the two methods. The convergent result is proved under the given conditions.

The outline of the paper is organized as follows. In Section 2, we will introduce some basic
preliminaries. A class of SS6 method for solving SDAPEs with Markovian switching will be
proposed in Section 3. In Section 4, the SS6 method converge strongly to the exact solutions of
SDAPEs with Markovian switching will be shown. Numerical experiments will be given in the
final section.

2. Preliminaries

Throughout this paper, unless otherwise specified, let (Q, 7 ,P) be a complete probability
space with a filtration {¥},> satisfying the usual conditions(i.e., it is increasing and right con-
tinuous while ¥\ contains all P-null sets). Let r(¢), ¢ > 0, be a right-continuous Markov chain
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on the probability space taking values in a finite state space S = {1,2,---, N} with generator
I' = (¥ij)nxy given by

Pir(t + A) = jir() = i} = {1 +yih+o(A) ifi=j

where A > 0. Here y;; > 0 is the transition rate from i to j if i # j, while y; = =3 ;5 7ij-
35 We assume that the Markov chain r(-) is independent of the Brownian motion. It is well known
that almost every sample path of r(¢) is a right-continuous step function with a finite number of

simple jumps in any finite subinterval of R*.

Let

V= H'(10,4]) = {¢| pe2(0.AD, 5 € Lz([O,A])}

Whereg—f[ is the generalized partial derivative and V is a Sobolev space. H = L*([0, A]) such that
w0 V = H=H < V. V' is the dual space of V. We denote by |||, |-| and ||||. the norms in

V, H and V' respectively; by (., -) the duality product between V and V’, and by (-, -) the scalar

product in H. Let W, be a Wiener process defined on (Q, 7, {F;}:>0, P) and taking its values in the

separable Hilbert space K, with increment covariance operator W. For an operator B € L(K, H)

being the space of all bounded linear operators from K to H, we denote by ||B||, be the Hilbert-
s Schmidt norm, i.e. ||B||, = trace(BWBT). Let C = C([-7,]); H) be the space of all continuous

function from [, #] into H, with sup-norm ||¢,||c = sup_..,, |¢(s)|, and L’;, = LP([0,T); H).

The integral version of (I.T)) is given by the equations:

P, =Py — f oP, ds — f u(s,a)Pyds + f F(r(s), Py, Psc))ds
o Oa 0 0
+ f 8(r(s), Py, Ps(5))dWy, (t,a) € [0,T] x [0,A]
0
P(t,a) = ¢(t, a), (t,a) € [-7,0] X [0,A]
A
P(t,0) = f B(t,a)P(t,a)da, t€[0,T]
’ @2.1)

where f(i,-,-) : S X L3, X L3, — H be a family of non-linear operators, %, measurable almost

surely int, g(i,-,-) : SX L% X L2, — L(K, H) is the family of non-linear operators, 7, measurable

almost surely in ¢, the other notions are defined in (I.I). As the standing hypotheses we always
so assume that:

o The Lipschitz continuous function ¢ : [0, +00) — R satisfies
—7<6() <t and |6(t)-d(s) <plt—s|, Vt,s=>0 (2.2)
for a positive constant p.

o There exist a constant K > O such thatfor -1 < s <t<0,0<a <A

E| sup |et,a)—¢(s,a)?|<K|t—s]. (2.3)

—7<5<t<0
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e Fork>2and0<a <A,

E[ sup le(t,a)l*| < co.
—7<1<0

Moreover, we shall impose the following assumptions:
(H1) f(,0,0) =0, g@1,0,0)=0, VieSs.
(H2) There exists a positive constant L such that for x,y € C,i € S,

G x,y) = fG XV gl x, y) = g(G X, Pl < Llllx = Xl + Iy = Slle)-

(H3) u(t, a), B(t, a) are continuous in [0, T] x [0, A] and there exist positive constants yg, @ and 5
such that

0<py<u(t,a) <a < oo,

0<B(t,a) << .
From (H1) and (H2), we obtain that for x,y € C

|F G x, I = 1 G, x,y) = £G,0,00 < 2L2(IIxIZ + (IVII2),
g, x, VI3 = g, x,y) — 8, 0,0)I13 < 2LA(IIxlIZ + [IyII2). (2.4)

These inequalitis will be very useful in what follows.

3. Split-step -method
For any given time T > 0, there exist sufficiently large positive integers m and M, such that

0o<a=*=-L 1.
m M

Lett, = nA, AW, = W, — W,. We denote |u] by the integer part of the real number u. For
t € [0,T1], there is an integer n € [0, M — 1] such that 7 € [nA, (n + 1)A). Recalling (Z:2) that
—7 < 6(t) < t, we obtain

—-mA = -1 < 6(nA) < nA.
Thus, we get
-m < 0(nA)/A < n,
which means
-m < [8(nA)/A] < n.

Hence, we obtain
—1 = —mA < |6(nA)/AJA < nA.
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Then the SS6 method is defined by the following:

£3 BQﬂ
Qn = Qn - Oa A+ (1 - 0)[ - #(tna a)Qn + f(rﬁ, Qn, QL&(nA)/AJ)]A,
+ 0] = ultn, Q% + FS, Q% QlsiayaD]A, O<n<M-1
Qi1 = O + g(ry, O, Qusnnya)) AWy, 0O<n<M-1
anﬁo(tnaa) -m<n<0

(3.1)
with the initial value Qg = ¢(0,a), r§ = ro, Qu(1,0) = fOA B(t,a)Qyda, ry = r(nA), for 0 < n <
M — 1. Let Q, be the approximation to P(t,,a) for ¢t, = nA. We set 0 < § < 1. The choice
6 = 1 gives the split-step backward Euler method. If 6 = 0, the SS6 method degenerates to the
split-step forward method. The first equation in (3-I)) is an implicit equation in Q}; that must be
solved in order to obtain the intermediate approximation Q. Having obtained Q;, substituting
it into the second of (3.I) produces the next approximation Q,.;. Using the classical Banach
contraction mapping theorem, the first equation in (3.1) has a unique fixed Q; (see [21]]). We
now present present the following lemma.

Lemma 3.1. Assume that f : RX R X [0, T] — R satisfies (H1) and (H2). Let 0 < 6 < 1 and
0 < A < 1/(L6). Then for any a,b,c € R, the implicit equation x = a + AGf(b, x, ¢) has a unique
solution x.

We define the following step functions:

M-1
Z = Z Onllina (e 1yay (@),
n=0

M-1
Z, = Z 01568y A i (e 18y (),

=
(=]

(3.2)

N

N
I
g

O ina (ne 1) (D),

=
(=]

N

) = r”AH[nA,(nH)A)(t),

n=

(=)

where 1 is the indicator function. It is convenient to use the continuous-time approximation

0 =P f 9 s 4 f (1= O —pu(s, a)Z, + f(H(s). Zy, Z))1dis
0o Oa 0

" f Ol—(s, )2, + f(F(s), 20, Z,)1ds + f (). 2, Zyaw,, o<i<r Y
0 0

: = ¢(t, a), -7<t<0

with Qy = Py = ¢(0,a), Q(t,0) = fOA B(t,a)Q.da, O, = Q(t,a), 7(0) = iy. Clearly, (33) can also
be written as

00y
oa

t-t)+1- 9)[ = u(ty, a)Qy + f(rr?’ Ons Qlﬁ(nA)/AJ)](t — 1)
5

Qtan_
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+ 0 — u(tn, )0 + f(rh, Oy Qo ap](t — 1)
+g(rh, Q% Quseaya)Wi = W), (3.4)

fort, < t < t,41. It is straightforward to check that Z(t,,a) = Q, = Q(t,,a), for—-m <n <M —1
and P, = Q; = ¢(t,a), for -7 <t < 0.
4. Strong convergence

In this section, We shall discuss the strong convergence of SS6 approximate solution under
the given conditions. We first give several lemmas which are useful for the main results.

Lemma 4.1. Let P, be the solution of 2.1)). Then

oP, 1 =2 5
(P, =L)< ~AB|P
<z’aa>—2ﬁ|t|,

where A, B is the same as before.

Proof. It is easy to see that

A A
- P,,% - f P,%da - f P(t,a)d,P(t, a)
861 0 6a 0

- [(arca=-LEes-reo)
2Jy " 2V e

Recalling that P(t, a) denote the population density of the age a at time ¢, we have P(t,A) = 0 for
the maximum age A and any 7 € [0, T']. By (2.I)) and the Cauchy-Schwarz inequality, we have

oP\ 1, 1 ’
—<Pt,%>—§P (t,O)—E( fo ,B(I,a)P(t,a)da)

L - 1 2050
<= B (t,a)da P (t,a)da < -AB |P{".
2 Jo 0 2

Thus, the proof is complete. O

Remark 4.2. If we denote fy(P;) := _9h _ u(t,a)P; for all P, € V. By Lemma we have

da

oP, 1
(0P, P) = (= 2 — (. @)Py. P) < GAB® — o)l PP, VP eV (4.1)

which means that fy is a linear operator in V and satisfies the one-sided linear growth condition.
This viewpoint will be of great help in the following analysis.

Lemma 4.3. Under the assumptions (H1)-(H3), for any k > 2, there is a constants C; > 0 such
that

IE[ sup |P,ATR|k] <y,

—7<t<T

where Tg = inf {t > 0 : |P,| > R} and C is independent of A.
6



Proof. Applying the 1td formula to |P;,, ¥ yields

. ‘ ATR 2 algs ATR 2
|P" = |Pol" +k L it ds+k [PsI"== {—p(s, @) Py, Pss)) ds
0 0

fATR B k [ B 5
vk f PP, FO(5), Py, Py s + 5 f P2 |g(r(s). Py Poco)|[ds
0 0

N k(k

_ 2) INTR _ 2
- f P4 [Py g(r(5). Py, Pao)|[ ds + Mt A ),
0

where .
MG AR) = k f PP, g(H(s), Py Pogy))AW,.
0

By Lemma[4.1] we have

P, 1 -
——,P) < SABIPP.
<aa,s>_2ﬁls|

By the assumptions (H1)-(H3), we get that

IATR IATR
kf |f)S|k_2 <_ﬂ(s’ a)PS9 P&(S)) dS < _k/'lof Sup IPulde,
0 0 —T<u<s
IATR IATR
k f |PS[<"2(Py, £(r(s), Py, Pscs)))ds < 2kL f sup |P,[ds,
0 0 —T<u<s
k (AT k-2 2 2 TR k-2 2 2
3 P2 ||g(r(5), Py, Poo)||,ds < kL IP2APSIE + 1Pseoli)d s
0 0

IATR
< 2kIL? f sup |P,[ds,
0

—T<U<s

k(k—2) [ ) L [ )
— f 1P4|(Py. 8(r(s), Py, Poo)||, ds < 2k(k = 2)L f sup |P,[ds.
0 0

—T<u<s

Substituting @3)-@-7) into @2)) yields

k _ IATR
|P|F < |Polf + E(Af;2 —2u0 + 4k —2)L* + 4L) f sup |Puffds + M(t A Tp).
0

—T<U<s

Note that for # € [0, T'],

IE[ sup |P”MR|k] = E[ sup0|Pu,\TR|k v E

—T<u<t —T<u<

sup |Pu,\TR|k} .

O<u<t

7

4.2)

(4.3)

4.4

4.5)

(4.6)

.7

(4.8)



Now, it follows that

E[ sup |Pulk] s]E[ sup Igo(u,a)lk]

—T<u<t —7<u<0

k Y IATR
+ z(A,B —2up + 4(k — 2)L* + 4L) f E[ sup |Pu|"} ds
0 —T<u<s

+ kE

O<u<t

By the Burkholder-Davis-Gundy inequality, we have

IATR
E [ sup f |Ps[<=2(Py, g(r(s), Py, P5<s>)>dws}
0

0<s<t
1/2

IATR ~ 5
< SE[ f P2 (Py. g(r(5), Py, Pos)| ds]
0

ATk ,
< SE{ sup |Pu|k/2[f P ||g(r(s), Ps,Pa(s))”z ds] }
0

—T<u<t

—T<u<t

1
< EE[ sup |Pu|k

IATR
+ KoE [ fo P52 g (s), PS,P5<5>)||§ ds]

IATR
+4K0L2f E[ sup IPSIk} ds
0

—TSUSS

1
<_—FE P,
<% [SUPIMI

—T<us<t

for a positive constant Kj. Note that

B[ 1P o), Pos P | < 287 [P AP + 1P 1)

< 4L2E[ sup |Pu|"].

—T<u<t

Consequently,

E[ sup |Pu|k} sE[ sup le(u, a)f

—T<u<t —7<u<0

1
+ E]E[ sup IPL,Ik}

—T<u<t

k _ IATR
+ E(Aﬁ2 ~ 2y + 4k — 2)L% + AL + 8K, L2) f IE[ sup |Pu|"] ds.
0 —T<u<s
Using the Gronwall inequality implies the required result with

Cy =2E| sup lp(u,a)*

—T<u<0

] ek(ABZ—2y0+4(k—2)L2+4L+8K0L2)T/2

Thus, the proof is complete. O

Lemma 4.4. Under the assumptions (H1)-(H3), let A < min {1, 1/(/12(a? + 2L2))} and ]Elaa%
oo, 0 <n < M — 1. Then there exist positive constants C,, Cs, Cy4, such that

2 2
< GE|Q, P + C3E|QL6(nA)/AJ| +Cs, 0<nsM-1

E|0;

where Q,, Qi is defined in (3.1) and C», Cs, Cy is independent of A.
8

tATR
sup fo PPy, g(r(s), Ps,Pas))dWs)} . 4.9)

2
<



Proof. Squaring both sides of the first equation in (3.1), we have

2
A* +3|(1 = O)[—(tn, Qs + (2, Ons Qsunyya))]

% s 2
+ 0[—uty, )0}, + F(ry, Qs Qo) | A
00,2 _ 2
<310, + 3|2 6 + 12(@10,8 + |0, O Qusnyian )7

o2 \ 2
i + (b, 0y Ousunyyay)| )AZ-
By the assumptions (H1)-(H3), we have

90n
da

P 90,
o <310 + 3|5

+ 12(@2

2
;" <310, + 3|2 A2 + 1208710, + 21210, + 2L2| Qs a | 142

_ 5 |2 2
+12[2°|, O;|" + 2L%| Q15| 1A
= [3 + 12(@° + 2LHA?]|Q,1* + 12(@* + 2LH)A?|Q;

2 ror?

2

902
+ 3'% A + 4817 N Qy50my/a) -

Hence, we get

481*A?
1—12(a% + 2L2)A?

*
n

2 (3+12a°+ 210N
T 1 -12(a? + 2LH)A?
3|2 [’ A2
1 —12(a? + 2L?)A?
< GE|Q.f + C3E|QL6(nA)/AJ|2 + Cy.

2
E|lQ EIQ,I* + E| Q150

s Thus, the proof is complete. O

Lemma 4.5. Under the assumptions (H1)-(H3) and let A < min {1, 1/(+/12(a? + 2L2))} , there
exist a positive constant Cs independent of A such that

E[ Sup |Qt/\(rR
T

—T<t<

2] <Cs,
where og = inf {t > 0 : |Q,| > R}.

Proof: Applying the 1t6 formula to |szk|2 yields

0mef =102 42 [ (=22 0 ) as
0
0 a

+2 f ”R (1 = 0)f(7(5), Zs, Zs) + OF (F(5), Zs> Zs), Q)ds
0

tATR

2 [ s (1 - 002, + 62,1, 0,)ds + f *llgF(s), 20, Zy)I12ds
0 0

+2f R(Qs,g(?(S),Zs,Z)dWs). (4.10)
0
9



Recalling Lemma4.1] we have

<_0QS

L 2o
5 ,Qs> < SABTIQI

By the elementary inequality 2ab < a*> + b* and (H1)-(H3), we have

Ao _ Aok thow _
> f (1 = O)f(7(5), 20, Zy), 0,)ds < f 10,Pds + 21 f (ZJE + 1Z12)ds,
0 0 0

AR ~ - tAOR INTR 5 —
2 [ - oree.2.20.00ds < [ loPds 22 [ AZIE HIZ s
0 0 0

tATR

fATR
_ B -2
-2 (u(s,a)(1 - 0)Z,, Q,)ds < @ f (z|" +10,Pads,
0 0
IAOR . IAOR )
2 f Ous, )2y, 0,)ds < @ f (0P + 12,P)ds,
0 0
AR S, s noR _
f le(F(s). 25, Z,Rds < 2L f UZIE + 1Z12)ds.
0 0
Inserting (4.11)-(4.16) into (4.10) gives
) IAOR IAOR - 5
Qe <100 + K, f 10.Pds + K f 1ZJds
0 0

INTR ) INTR
+ Ky f 12,|Pds + K f Zds + Myt A o),
0 0
where
_ 272 - 72, = _A72 . =
Ki=A8 +2a+2,K, =2L"+a,K; =4L" + @,
IANOR -
Ky = 6L* M(t A og) = 2f (Qs, 8(F(s), Zs, Z5)dWy)
0

By Lemma4.4] it follows that for any ¢, € [0, T']

IE[ sup |Q,MRI2]

0<t<t

tATR
SEIQoI2+K1E[SUP f |0,1Pds
0

0<t<t

tATR
+(K2+K3C2)]E[sup f |Zs|2ds]
0

0<t<t

+ KrC4T +2E| sup Mi(t A or)

0<t<t

IAO R _
+(K4+K3C3)E[sup f Z.[ ds
0

0<r<t

For s € [0, T], we have

VA s]E[ sup |Qu|2],

—T<u<s

EIIZ,|% < ]E[ sup |Qu|2}.

—T<u<s

10
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Inserting this into @.18)) gives

s [0

0<t<t;

W AOR
§E|Q0|2+K5f ]E[ sup |Qulds|+ K,C4T +2E
0

—T<u<s

sup Mi(t A O'R)] s 4.19)
0<t<t
where

Ks = K| + K> + K3C, + Ky + K3C3.

By the Burkholder-Davis-Gundy inequality and the Young inequality, we have

E[ sup fo " (Qx,g@(s),ZS,Z)dWs)]

0<t<t
1/2
<3E

ATk _
f 10, Pllg(F(s), 24, Z,)IPds
0

] ) fAOR - 2
E[sup |0 | + 9E fo |le(F(s). Z,. Z,)||dt

< -
4 0<t<t

1 fAO R . _
< ZE[ sup Ierz] + 1812 f E(IZ I + 1 Zl2)dt. (4.20)
0<t<h 0

Substituting this into @.19) yields

<E| sup |e(s,a)f

—7<5<0

1
+ EE[ sup |Qt/\(rR

—71<t<1)

|2

1WAOR
+ (Ks + 36L(Cy + C3)) f ]E[ sup |Qu|2ds]
0

—T<Us<s

E[ sup 'Qr/\o-R

—T<I<h
P| + B6L* + Ky)CuT. 4.21)

Applying the Gronwall inequality, we get

E[ sup |Q,MR|2] <Cs, 1 €[0,T)

—T<I<t)

Thus, the proof is complete. O
Next, we shall employ the technique in [27] to bound the errors of replacing the right-
e continuous Markov chain by the interpolation of the discrete time Markov chain.

Lemma 4.6. Let A < min {1, 1/(\12a? + 2L7))}, for any t € [0, T]
IAVR . o~ 9
E f (51, 20, 7o) — F(1(5), Z5, Zo) dis < o,
0
fAVR - . o~ 2
Ef |f(F(5), Zs, Zs) — f(r(s), Zs, Z)| ds < C7A,
0

FAVR _ o
B [ g9 2. 20 - g00(5). 2 Z0lRds < G,
0

where Tg = inf{t>0:|P| >R}, og = inf{t>0:|0; =R}, vk = T A 0g and Cg, C7, Cg is
independent of A.
11



Proof. Using (H1)-(H3), we have

v _ _ o,
E f (51,20 Z0) - F(9), 20 Z ds < Y M, 4.22)
0 =0
where

My := Ef ) |F(7(5), Ok, Quswaya)) — F(r(s), Ok, QL&(kA)/AJ)|2dS

AVR

Tk+1 AVR _ 2
= ]Ef |F(#(5), Ok, Quswaya)) — F(r(s), Oks Qusaaya)| Lirtsreran(s)dss
73

AVR

Tk+1 AVR
2
< 4L2Ef [0k + | Quoearal] Mircsyern(s)ds
173

AVR

=417 f BRI + Qs 1r O TE Ty (9] ds. (4.23)

AVR

In the last step we use the fact that Qx, Q|ska)/a; and r(s) # r(t) are conditionally independent
with respect to the o-algebra generated by r(#;). But, by the Markov property,

Bl (9)|r(t0)] = Z P(r(t) = ))P(r(s) # r(to)|r(t) = i)

icS

= > P(rt) =) ) Pr(s) = jlre) = )

= J#i

< ) P(rE) =) ) (rgh + o(A))
ieS J#i

= > P(r(t) = (=i + o(A))
i€S

<A,

where ¥ = [N max (=y:i)]- Substituting this into @23)) along with Lemmalﬁ gives
<i<

Tk+1 AVR

M, < 4L2A f

Ik AVR

2 N
ElO* + |Quswaya)| 1ds < 8L*CsyA%. (4.24)
Combining #.22) and @.24), we obtain that

tAVR . o

E’f |f(7'(S),ZS,ZS) - f(r(S), Zs, Zs)|2dS < 8L2C5’?TA = C6A
0
Similarly, we can prove that
fAVR . . o~ 2
Ef \f(7(8), Zs, Zy) = f(r(9), Zs, Z)| ds < C7A,
0

fAVR o -
E f le(F(s). Zo.Zy) — g(r(s). 22, Zy)l2ds < CsA.
0

Thus, the proof is complete. O
12



Lemma 4.7. Under the assumptions(H1)-(H3) and let A < min {1, 1/(\/12(a2 + 2L?))}, for any
k > 2, there is a positive constant Cy such that

< Co,

2] s foun]
-7<t<T

where og = inf{t > 0 : |Q,| > R} and Cy is independent of A.

9 The proof is similar to that of Lemma 4.3.

Lemma 4.8. Under the Assumptions (H1)-(H3) and let A < min {1, 1/(§/12(a2 + 2L2))}, E[%f <
oo, there exist positive constants C1o and Cy; independent of A such that

E[ sup 10, - Z] < CioA,
0<t<T

E[ sup 10, - Z] < CuiA.

0<t<T

Proof. For ¢ € [0, T], there exists an integer k such that 7 € [kA, (k + 1)A), we have

0 -7 =- f 0y 4 f (1 = O)f(F(5), 20, Zy) + OF(F(5), 2, Zo))ds
k. kA

A da
3 _ R ! -
- f u(s,a)((1 = 0)Zs + 0Z5)ds + f g(7(s), Zs, Zs)dW,. (4.25)
kA kA
Applying (a+ b +c + d)? < 4a? + 4b* + 4c? + 4d? and conditions (H1)-(H2), we find that
aQk

10, - Z)? < 4' tds ' +4‘f (1 = O f(7(5), Zs, Zs) + OF (7(s), 2, Zs ))ds'

N o~
9 Sy &8

+ 4' f (u(s, a)((1 = 6)Z, + OZS))ds + 4| f
kA kA

! a t . N~
<4A f |ﬁ|2ds+4A f (1 = 0)f((s), Z,, Z,) + 0f (7(s), 2, Z,))[ ds
k' Oa kA
! !
+4a2Af (1 -6 +92f|2ds+4|f
kA kA
100k 2 2 T 502 17 (12
<4A |a_| ds +8L°A | (IZ e + Zslle + 1121l + 11Zlic)d s
kA Oa kA

!
+4a@*A f (1Z,?
kA

Taking expectations, we have

E[ sup |0~ ZP|<E[ max sup [0, -Z[|

0<t<T OsksM—=1 pA<u<(k+1)A

A o~
> 8y &S

A o~
9 ISy &8

2100k 2 ) el 2
< max (4A IE| " +4a*A (]E|Z| + EIZ,[})ds
0<k<M-1 a kA

(+ DA _ R _
#8028 [ BIZIE + BIZIE + N2 + BIZIR)as)
k

A
+4El max sup ‘f”g p ZJ.
kA

Osk<sM—=1 pA<u<(k+1)A

13
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Using the Doob martingale inequality (see e.g. [6,11]), Lemma[4.4|and[4.5] we have

(k+ DA _
E[ sup |0, - Z*| <16 max | f Ellg(7(s). Zs, Z.)l3ds| + o(A)
kA

0<1<T 0<k<M-1
(k+1)A _
<3217 El|Z|[% + E|Z|[2)ds | + o(A
<3207 max | fk o EIZIE + BIZIEds| + o)
<32L°A max (CIEIQ + (C3 + DEIQsuayal” + Ca) + 0(A)

< 32L2((Ca + C3 + 1)Co + CA + o(A).

A similar analysis gives
E| sup 10, - Z*] < CuiA.
0<t<T
Thus, the proof is complete. O
Next, we will employ the method due to Mao [16] to prove the following lemma.

Lemma 4.9. Under the assumptions (H1)-(H3) and let A < min{1,1/(/12(a + 2L2))}, E|%& <
o0, there exists a positive constant C, independent of A such that

E[ sup Qs —le] < CpA.
0<t<T

Proof. For ¢ € [0, T], there exists an integer k such that ¢ € [kA, (k + 1)A). By [2.2) and the
triangle inequality, we yield

16(t) — LO(kA)/AJA| < 6(F) — S(kA)| + |8(KA) — L6(kA)/AJA] (4.26)
< pA + 6(kA) /A — | S(kA)/AJIA
<(p+DA.

To show the desired result, let us consider the following four possible cases:

o If 5(r) > [6(kA)/AA > 0 or [6(kA)/AJA > §(f) > 0, we have

|05 - Zi
(1) an (1) . .
=|- Tk s + (1 = O)f(F(s). 2o, Zo) + OF (7(5). 2y, Z,))ds
lskay/aja Oa LSCkAY/AJA

) 0] _
- f u(s,a)(1 = 0)Z; + 6Z,)ds + f 8(F(s), Zs, Z)dW;|.

Lo(kA)/AJA Lo(kA)/A LA

Applying (a + b + ¢ + d)* < 4a® + 4b* + 4¢? + 4d* and ([#26)), we have
Qs — ZiI*

(1) an 5(1) o o )

<4 ksl +4] f (1= O)f((5), Zy, Zs) + 6F (7(5), Ze, Zo))ds]
L6(ka)/AJA 04 Lo(KA)/AJA

(6]

A o~
> 8y &S

5(6)
+ 4|f (u(s, a)((1 = 0)Z; + 07 ))ds + 4‘ f

L6(kA)Y/AJA L6(kA)/AJA
14




(0 0 2 0(1) _ — .
<4(p+ I)Af | | ds + 8L (p + I)Af IZJIZ + 21Z 1% + 12112)ds
da L6(kA)/A)A

Lo(kA)/AJA
S(t) o(1) . =
+4d/2(p+1)Af (2,12 + 12,2 )ds+4|f 2.7,
L6(kA)/AJA LS(kA)/A JA

Taking expectations and using Lemma [@.4] and .3 as well as (#.26)), we have

2
1

E[ sup Qs — Z:
0<i<T

<E| max su 105 — Zul?

[0<k<M IAA<L4<(E+1)A QO( ) J

00k 2 L6*A)/AIMHp+DA )

< max (4(P + 1)2A2E| | + 4@2(,0 + l)Af (E|Zs|2 i E|Zs|2)ds
Oa

O<k<M- L6(kA)/AJA

L6(kA)/AJA+(p+ 1A _ _ R
+8L2(p + DA f (BIZ,IR. + 2EIZI + ENZI2)ds)
L6(kA)Y/AJA
@) o
+4E[ max ' 7(s),Ls, L s ]
OsksM- 1kA<u<(k+1)A Lo(kA)/AIA
o(u) - 2
< 48] max [ a2 Zoaw [ ]+ o)
O<k<M— 1kA<u<(A+1)A L(S(kA)/AJA

Using the Doob martingale inequality along with Lemma4.4]and [4.3] we have

E[ sup Qs — ZIZ]

0<t<T

LS(kA)/AJA+(p+ DA o
f Ellg(?(s),Zs,Zs)llids] +0(A)

<16 max

O<k<M-=1% J|5kA)/AJA

5 [0(kA)/AJA+(p+ 1A - =
< 32L° max ENZll¢ + ElZlI-)ds| + oA
Jmax fw o EIZAE + BIZIE)s] + o)

<32L%p+ DA ,Jmax_ (CEIQk? + (C3 + DEIQs0eayall* + Ca) + 0(A)
<32L%(p + D((C2 + C3 + DCo + CHA + o(A).
o If 5(t) < [6(kA)/AJA < 0 or |5(kA)/AJA < 6() < 0. Then, by (1) and (3:2), we have
Qs = Zi = ¢(8(1), @) = p(|5(kA) /A A, ).

By €2), €3 and (EZD), we g
[ sup Qs — Zil ]

0<t<T

=2
< E[ max sup Qs — Zul ]
OsksM=1 pA<u<(k+1)A

<E| max sup  1g(8(1). @) — p(LS(KA)/A A, a)?]
0<ksM=1 _r<5u),16(kA)/AJAO

Ko@) — L6(kA)/AJA|

< K(+ DA.
15



o If |6(kA)/AJA < 0 < 6(r). Then, —[8(kA)/AJA < (p + DA, 6(t) < (p + 1)A. Hence
E| sup 1050 — Z 1|
0<t<T

< 2]E[OSUPT Qs — Qo] + 2E[ sup |Z, - (0, a)P]

<t< 0<t<T

< 2E[ sup |Qs) — Qo[+ 2E[ max  sup  |p(0,) - @(L6(kA)/AJA, a)P |
0<t<T O<k<M—1 _r<|5(kA)/A]A<0

< 64L%(p + 1)((C2 + C3 + 1)Co + Co)A + 2K(p + DA + o(A).
o If6(¢) <0 < L6(kA)/AJA. Then, we have

]E[ sup Qs — Z|2]
0<t<T

< 2E[ sup Qs ~ Qo] + 2E[ sup |Z, ~ (0. a)]
0<t<T 0<t<T

<2E[ sup 1¢(8(0),a) — @(8(1), )| + 2| sup Z, — Qo

—7<6(1)<0 0<t<T

<2K(p+ DA+ 64L2(p + D((Cy + C3 + 1)Cy + Co)A + o(A).

Combining these different cases together, we get

E[ sup Qs — le] < CpA,
0<t<T

as required. O

Theorem 4.10. Under the assumptions (H1)-(H3) and let A < min {1, 1/(\12(a? + 2L2))}, then

2
E[ sup |Pt/\VR - Qt/\vR| } < Ci3A,

0<t<T

where g = inf{t > 0: |P/| > R},0g =inf{t > 0: |Q,| > R}, vg = TrACg and C}3 is independent
of A.
Proof. By (2.1 and (3.3), we have

Pinvg = Oipvg = — f " Mds - f - u(s,)[(1 = O)(Py — Zy) + 6(Py — Z1ds
0 Oa 0
" fo [(1 = O)(f(r(s). Py, Poy) — F(F(5), Zss Z,))ds
" fo BCF(F(5). Py Pagy) — F(F(s), 22, Zy)ds

" fo (g(r(s). Py, Pay) — 8(F(s). 25, Z,))dW,.

16



Using the generalized It6 formula yields

tAVR ap, - 0,
lPMVR - QMVR|2 = _2f <Pv - Q‘v’ %>dé‘
0 a

2 fo (Ps = Qs (5, L1 = O)P; = Z;) + O(P; = Z,)1ds)
2 fo (Ps = Q. (1 = O)F((5). P, Po)) = f(H(). 20, Z)ds
+2 fo (Py = Qs 6(f(1(5), Py, Psi)) = fF(s), 2, Z))ds

e [ et P ) 50790 2. Z B

2 fo (P = 0y, (4(r(s), Py, Pas)) — g(F(s). 20, Z)dAW,).  (4.27)

Let
Ja(8) = f(1(5), Zss Ziis) — f(F(5), Zy, Z),
J5(8) := F(r(8), Zs» Zogsy) — F(7(5), 25, Zy),
Jo(8) 1= 8(r(8), Zs, Zs(s)) — 8(F(), Zs» Zy).
Lemma[.T| gives

fAVR _ TAVR
2 f <PS -0, M>als < AEZ f P, — Q,%ds. (4.28)
0 da 0

By (H1)-(H3) and the elementary inequalities
20, vy < Jul + P, (1= Ou+6vP < jul® + P, uveR",

we get
-2 f ! (Ps = Oy (s, @[(1 = O)(Ps = Zy) + 0P — Zy)])d's
0

tAVR _ A
< d’f (|Ps - Qs|2 + |Ps - Zs|2 + |Ps - Zs|2)ds
0

IA

tAVR
&f (|Ps - Qs|2 + 2|Ps - Qs|2 + 2|QS - Zslz + 2|Ps - Qs|2 + 2|Qs - Zslz)ds
0

tAVR tAVR _n TAVR A2
<5a f P, — Q,ds + 2a f |0, - Z| ds +2a f |0, — Z| ds. (4.29)
0 0

0

Similarly, we have
2]()‘ (PA - QS’ (1 - 9)(f(r(s)’ PAW P(s(b)) - f(f(s)’ ZS’ZS)))dS

< fo (IPs — Q% + 21 (1(5), Py, Pscsy) — f(r(5), Zy, Z,)P
17



+ 20 (r(5), Zg, Zs) — F(7(5), Z, Zo)I* )ds

IAVR —_
< f (1Ps = QuF° + 4L2IIP; = ZJli¢. + 4L21Pos) = Zllg: + 21Ja(s)P)dss
0

IAVR
< f (1Ps = Q. + 8LIIP; = Oyllz- + 8LIIQ; — ZilI¢
0

+ 8L2|IPss) — Qsoll2 + 8L21Qss) — ZolI% + 21J4(s)P)ds, (4.30)

2](; (Ps = Qs O(f(r(5), Py, Pots)) = [(H(5), 2, Z)))ds

< fo (IPs = Q% + 21 (1(5), Py, Pssy) — f(r(5), Zs, Z,)P
+ 20f(r(5), 2, Zs) — F(7(5), 2, Zo)I* )ds

TAVR _—
< f (IPs = Qs* + 4L2||Ps = ZJ|IZ. + 4L2||Pss) — Z,lIZ + 21J5(s)P)ds
0

TAVR
< f (P, — O, +8L2IIP, - Q,J% + 8L210; — 2|12
0
+ 8L2||Pscs) — Qsoll% + 8L2N|Qss) — ZlIZ + 21J5()P)ds 4.31)
and

fAVR _
f 1g(r(s). Py Pocy) — g(F(s), 20, ZIds
0

IAVR .
< f Qllg(r(s), Py, Pas)) — &(r(5), Zs, ZOI3
0
+ 20lg(r(5), 2, Zy) — g(7(s), Zs, Z,)|I% )ds

tAVR .
< f (AL2Ps = ZlIz- + 4L2|Pss) — ZlIz- + 21J6(5)|P)ds
0

tAVR .
< f BL|Ps — Q4llz + 8L*1Q5 — Z4lIZ
0
+ 8L2||Pscs) — Qseoll> + 8L2N|Qss) — ZolIZ + 21J6(s)P)ds. (4.32)
o Substituting (#28)-@.32) into #27), we have

tAVR

5 TAVR B
1Porse = Qunoe* < 115 f 1P, — OJIds + uy f 10, - Z,J2ds
0 0
tAVR . TAVR
+ Us f ”Qs - Zs”%‘ds + U6 f ”Pé(s) - Q&(s)”%‘ds
0 0
tAVR . tAVR
+ 17 f Qs — Zillgds +2 f (JaIP + Is()F + Jo(s)P)ds
0 0

+ 2]; (PS - QS’ (g(r(s)9 PS» Pé(s)) - g(f(s), Zss ZS))dWS)5 (433)
18



where
ws = AB? + 5@ + 24L% + 2, s = 2a + 812,
us =2a+ 16L%, g = 24L°, w7 = 2412,
By the Bukholder-Davis-Gundy inequality, the Young inequality and (@.32)), we have
SAVR .
E [ sup f (Ps - Qs’ (g("(s), Ps’ P6(s)) - 8(7(5),Zs,zs))dWs)}
0

0<s<t
1 2 1o tAVR ) .~ 2
<-E sup |PS/\VR - Qs/\vR| +—E ||g(r(s), Psa Pﬁ(s)) - g(r(s), Zs, Zs)”st
4 0<s<t 4 0
) TAVR R
|| + f (2 L’ElIP, — O4lI¢ + 2u: L*ENQ; — ZlIZ
0

1
< ZE [ sup |Ps/\vk = Osane

0<s<t

7 H
+ 24 LElPscy — Qoo Iz + 2L BNl Qs — Zille: + 5 E6(s)F s, (4.34)

where (1, is a positive constant. Combining (#.33) with #34)), we have

E[ sup |Pt/\vR - Qt/\vR|2:|

0<t<t;

11 AVR
S:u3f ]E[SUP |Pu_Qu|2
0

0<u<s

11 AVR _
ds+ 1 f EQ, - ZJRds
0

1 AVR 11 AVR
+ s f ElQ; — Zllgds + pe f EllPss) — Qscs)lle-ds
0 0
HAVR _ TAVR
+ 17 f EllQs(s) — Zocslleds +2 f E4(s)* + Els(s)]* + ElJs()I*)ds
0 0

[ AVR
2 A
I+ f (42 L2ElIP, — QylI% + 4 L*EIQ, — Z4I
0

1

+ EE[ sup |Pt/\vR = Oinvg
0<t<t

+ 4 L*E||Pss) — Qsslle + 42 LBl Qo) — Zs”%‘ + i ElJ6(s)I)ds.

By Lemma[4.6] [A.8]and .9] we have

1 2
EEl: Sup |PT/\VR - Ql/\VRl ]
0<t<t

I AVR B
dseps [ BIQ. - ZiRds
0

11 AVR

+ (s + dun L?) f ENQ;s — Zllgds + (u7 + 4unL?) f EllQss) — Zsslleds
0 0

+ 2(C6 + C7 + Cg)A + ﬂngA

11
< (/13 + U6 + 8/12L2)f E |: sup |Pu/\vR - Qu/\vklz] ds
0

il
< (u3 + e + 82 L%) f E [ Sup 1Punve = Quavil®
0

0<u<s

11 AVR

0<u<s

+ (aCiroT + (s + Y L)C T + (7 + 4 L)C12T + 2(Co + C7 + Cs) + 2 Cy)A.
Applying the Gronwall inequality, we obtain

2
E[ SUp |Poave = Oinve| | < Ci3AA.

0<1<T
19




100

105

Thus, the proof is complete. O
Letting R — co, we have the following theorem.

Theorem 4.11. Suppose that the preceding assumptions hold, then

. 2
fmy =l 1 OF ] =

Remark 4.12. The result is known without time delay in [19], but it is new in the case of vari-
able delay. As we stated in the Introduction section, so far most of the existing strong conver-
gence result for numerical methods requires the coefficients of the SAPEs to be globally Lipschitz
continuous (see, e.g, [19 22| 23)]) and little is yet known about the convergence for numerical
solution to SAPEs under the local Lipschitz condition. As sequels to this work, we shall discuss
the strong convergence result for numerical methods under the local Lipschitz condition in future
work.

5. Numerical examples

In this section, we consider the numerical solution and the strong convergence of some S-
DAPEs with Markovian switching by the SS8 method given in (3.4). We use sample average to
approximate the expectation. More precisely, we measure the maximum norms errors by

1 M
€ = — max
M 4 1OsnsM—l
i=

|xl(tn) - x:1| s

where M, x'(t,), xi denote the number of sample paths, the ith true solution at time #, and the ith
numerical solution at time ¢,, respectively. In the following simulations, we set M = 1000.

Table 1: The maximum norms errors of SS6 and EM method for solving (5.1))

At 6=0 0=02 0=05 0=0.38 =1 EM
274 * 5.8779e-002 5.3161e-002  5.2947e-002  5.0462e-002 *
275 4.7722e-002  4.9001e-002 4.7601e-002  4.8312e-002  4.7538e-002  5.0948e-002
276 4.7309e-002 4.7939e-002 4.7372e-002  4.7252e-002  4.7173e-002  4.9077e-002
277 4.7076e-002 4.7545e-002 4.6437e-002  4.7967e-002  4.5905e-002  4.6863e-002
Example 5.1. Consider the following SAPEs without Markovian switching as in [11]
oP P
dP, = [——’ - ——— —tP;|dt + P,dW,, (t,a) € (0,1)x (0, 1)
da (1-a)
P(0,a) = ¢(a), ae(0,1) (5.1)
1
P(z,
P(t,0) = f ( a)zda, te(t,a)e0,1)x(0,1)
0o (I-a)

where W, is a scalar Brownian motion, withA = 1, T = 1, u(t,a) = B(t,a) = ﬁ, f(, P) = —tP,

g(t,P) =P, = exp(ﬁ). Clearly, the operators f and g satisfy conditions (H1)-(H2), u(t, a),
20



a t

(a) Exact solution without perturbation (b) EM method

(¢) SSO method with § = 0.5 (d) SSO method with 6 = 1

Fig. 1. Expectation simulations for (5.1)

B(t, a) satisfy condition (H3). By Theorem[.T1] the numerical solution will converge to the exact
solution in the sense of mean square. Note that the explicit solution to (3.1)) without perturbation
is
-1 7
EP(t,a) = exp(—— — =).
l-a 2
It is difficult to obtain the true explicit solution to (3.1, so the explicit solution to (3.1)) can be

replaced by
2

-1 t
exp(—— — =)(1 + AW))
l—-a 2

(see e.g.,[T11 221 24]]). Setting step size Ar = 0.005 and Aa = 0.05, we simulate the expected
value of the exact solution to (5.1) and the numerical solution by EM and SS@ method with
6 = 0.5, 0 = 1, respectively (see Fig.1), where

1 M
EQua)~ — 3 Qult,a).
k=1

21



110

(a) State trajectories of subsystem 1 (b) State trajectories of subsystem 2

[ e
0
(c¢) State trajectories of Markov chian r(¢) (d) State trajectories of switched system

Fig. 2. Single simulation for (5.2) by SS6 method with 6 = 1

The maximum norms errors of SS6 and EM method for solving (5.1)) are shown in Table 1 with
the same age step size Aa = 0.1. Numerical experiments show the smaller error of SS6 method
in comparison with the explicit EM method.

Example 5.2. Let W; be a scalar Brownian motion and r(¢) be a right-continuous Markov
chain taking values in S = {1,2} with generator I' = ( :; é ) SDAPEs with Markovian
switching (5.2) are considered to be a class of hybrid systems, which consist of two distinct sub-
systems, denoted by subsystem 1 and subsystem 2. Note that subsystem 1 differs from subsystem

2 only in the drift and diffusion coefficients, namely, f and g.

d;P; = [_% —ut, a)P, + f(r(2), Ptspé(z))] dt
+ g(r(t)9 Pt9 P5(t))dWI, (t, a) € (0’ 3) X (05 ]) 5 2
P(t,a) = ¢(t,a), r(0) = 1, (t,a) € [-7,0] X (0, 1) 62
1
P(t,0) = f B(t,a)P(t,a)da, (t,a) € (0,3) x (0,1)
0

22



EQ(ta)

0 2 4 6 8 10
t

(¢) Sample mean of solution to switched system (d) Sample mean of total population for switched system

Fig. 3. Expectation simulations for (3.2) by SS6 method with 6 = 1

where
o =t-r, 7=0.1, (5.3)
f,x,y) =15x—-0.2y, g(1,x,y) =0.5x, 5.4
f2,x,y) =-0.5x+0.1y, g(2,x,y) = —sin x, (5.5

2,if02<a<0.6
B a) _{ 0, otherwise (5.6)

10exp(10(a — 0.5))
exp(10(a — 0.5)) + exp(—10(a — 0.5))°

0.5
exp(10(a—0.5) + 1
For switched system (5.2)), we take the birth term B(z, a) to have the form (5.6) which means
that individuals are fecund if they are not too old or too young. The death modulus (3.7) we

used corresponds to a situation where mortality is low until around a certain age, at which point
23

(5.7)

u(t,a) =

(5.8)

p(t,a) =
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mortality increases dramatically (see, e.g., [1, 3]]). The initial population distribution (3.8) is an
expansive shape, which is typical for fast-growing countries where each birth cohort (a group of
people born in the same year or years period ) is larger than the previous one (Latin American,
Africa) (see, e.g.,[20L26]). Obviously, the conditions (H1)-(IH?3) are satisfied. Applying Theorem
B.T1] we can deduce that the numerical solution will tend to the exact solution in the mean square
sense.

We set Aa = 0.05, At = 0.005 and 8 = 1. Fig 2.(c) shows the sample trajectories of Markov
chian r(t), which determine the switching rule in the single simulation. Fig 2.(a), (b) and (d)
give the state trajectories of the solutions to subsystem 1, subsystem 2 and switched system by
SS6 method with 8 = 1, respectively. It seems that subsystem 1 is unstable and subsystem 2 is
stable, but the switched system (3.2) is stable. We also plot the sample mean of the solutions to
the three systems in Fig 3.(a), (b) and (c), respectively, where EQ(?, a) is defined in Example 5.1.
The sample mean of total population density for switched system (3.2) is illustrated in Fig 3.(d),
where total population density «(¢) at time ¢ is defined by

A
k(1) = ) EQ(ta).
a=0
This clearly reveals the population dynamics tendency.
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