1	Marine phytoplankton in subtropical coastal
2	waters showing lower thermal sensitivity than
3	microzooplankton
4	
5	Kailin Liu ¹ , Bingzhang Chen ² , Shuwen Zhang ³ , Mitsuhide Sato ¹ ,
6	Zhiyuan Shi ¹ , Hongbin Liu ¹ *
7	
8	¹ Department of Ocean Science, Hong Kong University of Science and Technology, Hong
9	Kong
10	² Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
11	³ College of Life Science, South China Normal University, 55 of Zhongshan West
12	Avenue, Guangzhou 510631, PR China
13	*Corresponding author: <u>liuhb@ust.hk.</u> Tel: +852-23587341, Fax: +852-23581559.
14	Key words: activation energy; optimal temperature; phytoplankton growth;
15	microzooplankton grazing

16 Running head: lower thermal sensitivity of phytoplankton

18 Abstract

19	Temperature sensitivity of plankton in terms of activation energy (E_a , eV) in the
20	Arrhenius equation is critical for predicting how marine productivity and carbon export
21	will respond to ocean warming. In this study, we quantified the temperature responses of
22	phytoplankton growth rate and microzooplankton grazing rate by conducting short-term
23	temperature modulation experiments on natural communities at two subtropical sites with
24	contrasting nutrient conditions. Our results showed that the activation energy of
25	phytoplankton growth rate ($E_a = 0.36 \text{ eV}$, 95% CI = 0.28 to 0.44 eV) at each station was
26	less than that of microzooplankton grazing rate ($E_a = 0.53 \text{ eV}$, 95% CI = 0.47 to 0.59 eV),
27	indicating an increasing grazing pressure on phytoplankton under warming conditions.
28	Although the difference is consistent with that reported in previous studies, it is very
29	likely to arise from another reason, i.e., differential proximities of the optimal
30	temperature (T_{opt} in nonlinear temperature responses of rates) of phytoplankton and
31	microzooplankton to the environmental temperature, as we found that the environmental
32	temperature is closer to the optimal temperature of phytoplankton growth than to that of
33	microzooplankton grazing in this subtropical environment. Our results suggest that

- 34 nonlinear temperature responses of plankton should be considered when evaluating and
- 35 predicting the effects of ocean warming on ecosystem productivity and food web
- 36 dynamics, especially in subtropical and tropical waters.

38 Introduction

39	Marine phytoplankton plays a vital role in marine food web and global
40	biogeochemical cycling (Field et al. 1998). How marine primary production and the
41	efficiency of marine biological pump will respond to ocean warming strongly depends on
42	the effect of temperature on phytoplankton growth (Sarmiento et al. 2004; Taucher and
43	Oschlies 2011; Cael and Follows 2016). Temperature can affect phytoplankton through
44	both bottom-up and top-down controls. For example, enhanced upper-ocean stratification
45	in a warming ocean reduces nutrient supply, resulting in the decline of primary
46	production and phytoplankton biomass (Behrenfeld et al. 2006; Boyce et al. 2010).
47	Meanwhile, marine zooplankton grazing activities exert a top-down control on
48	phytoplankton, which is also temperature dependent (Rose and Caron 2007). According
49	to the Metabolic Theory of Ecology (MTE; Brown et al. 2004), the temperature
50	sensitivity, in terms of activation energy (E_a , eV), is lower for autotrophic processes (~
51	0.32 eV), such as phytoplankton growth, than for heterotrophic processes (~ 0.65 eV),
52	such as zooplankton grazing activity and respiration (Allen et al. 2005; López-Urrutia et

53	al. 2006; Chen et al. 2012). If this were true, warming may exacerbate the top-down
54	control on phytoplankton biomass, contributing to the decrease of primary production,
55	which ultimately affects the functioning and services of marine ecosystem. This point has
56	been used to explain the common occurrence of phytoplankton blooms in cold waters
57	(Rose and Caron 2007; López-Urrutia 2008) and to predict a more heterotrophic ocean
58	under projected ocean warming because more CO ₂ will be released with increasing
59	upper-ocean temperature (Brown et al. 2004; López-Urrutia et al. 2006). However, the
60	difference of temperature sensitivity between autotrophic and heterotrophic rates is still
61	contentious, partly because the estimate of temperature sensitivity is sensitive to the
62	method used.
63	The widely used temperature sensitivity ($Q_{10} = 1.88$) is estimated from the Eppley
64	curve by fitting the upper envelope of the maximum growth rate of phytoplankton and
65	temperature in a laboratory dataset including all kinds of species (Eppley 1972; Rose and
66	Carron 2007; Bissinger et al. 2008). Instead of focusing on the envelope relationships
67	across all species, some studies suggested to consider the average rates of species under

68	different temperatures, and applied the ordinary least squares (OLS) regression to fit
69	average growth rate vs. temperature in the laboratory dataset (Sal and López-Urrutia
70	2011). These studies provided evidence for a lower temperature sensitivity of autotrophic
71	processes, which were used to predict warming effect on marine ecosystems. However,
72	the problems hidden in the statistical approach used in the above-mentioned studies when
73	analyzing the dataset should not be ignored (Chen and Laws 2017). The OLS regression
74	used in previous studies was usually applied on a pooled dataset including all data pairs
75	of rates and temperatures to estimate the activation energy without considering the errors
76	in the predictor (X) and the interdependence among the residuals. As a rule of thumb, the
77	rates measured for the same taxa or assemblages at different temperatures are more
78	correlated with each other than with those of different taxa or assemblages at different
79	temperatures. Thus, using a single regression on a pooled dataset, which contains the
80	rates of both the same and different taxa or assemblages, usually violates the assumption
81	of the OLS about the independence of the residuals, resulting in an underestimate of
82	temperature sensitivity (Chen and Laws 2017). For example, a single OLS regression on

83	a pooled dataset of fast-growing diatoms, which can dominate in cold environments, and
84	of slow-growing cyanobacteria, which tend to dominate in warm environments, will
85	underestimate the regression slope and hence the temperature sensitivity. Thus, a more
86	appropriate method to estimate the temperature sensitivity is to average the responses of
87	individual species to temperatures within a physiologically relevant range (Dell et al.
88	2011), with the results suggesting that there may be no difference in mean intraspecific
89	temperature sensitivity between phytoplankton and zooplankton (Chen and Liu 2015,
90	Chen and Laws 2017).
91	Although the median values of the intraspecific E_a between phytoplankton growth
92	rate and zooplankton grazing rate are similar, it does not mean that their E_a should be the
93	same for all communities. Some analysis based on laboratory culture data suggested that
94	there is great variability in the E_a of phytoplankton growth around the median value of
95	0.65 eV, and it varies among different phytoplankton taxa (Dell et al. 2011; Chen and
96	Laws 2017). Kremer et al. (2017) also found that the estimate of temperature sensitivity
97	was affected by phytoplankton functional groups. Thus, when estimating the temperature

98	sensitivity of in situ phytoplankton communities, a preferable approach is to measure E_a
99	of natural plankton assemblages instead of laboratory species, to take the community
100	composition into consideration. When quantifying the temperature sensitivity of natural
101	assemblages, it is also inappropriate to run a single regression for a pooled dataset
102	consisting of data pairs collected from different locations at different time points (Rose
103	and Caron 2007; Chen et al. 2012; Regaudie-De-Gioux and Duarte 2012), due to similar
104	statistical problems involved in the analysis of laboratory data (Chen and Laws 2017).
105	The key is that the assemblages used in the analysis should have similar compositions.
106	For now, the best approach might be to run short-term temperature modulation
107	experiments to circumvent the issue of community composition shift as shown in Vaquer-
108	Sunyer & Duarte (2013) and Chen & Liu (2015), although acclimation may be a problem
109	in such experiments. Our previous study at a subtropical coastal site using such approach
110	(Chen and Liu 2015) provided useful insights into thermal response of the natural
111	phytoplankton community dominated by diatoms. However, to generalize these patterns,
112	we need to investigate the temperature sensitivity of plankton in various environments.

113	One important component of the present study is to examine the responses of
114	different size classes of phytoplankton to temperature. Size is usually regarded as the
115	master trait of phytoplankton (Lichtman and Klausmeier 2008). There are ongoing
116	debates about the role of temperature in affecting phytoplankton size structure. Marañón
117	and his colleagues (Marañón et al. 2013, 2014, 2015) strongly believed that nutrient
118	supply rather than temperature plays the overriding role in determining phytoplankton
119	size structure, while some scientists argued that the effect of temperature cannot be
120	totally neglected (Lopez-Urrutia and Morán 2015; Ward 2015). Nonetheless, all the
121	above-mentioned studies relied on correlations of chlorophyll with temperature and
122	nutrients. The best evidence should come from the comparison between nutrient- and
123	temperature-related growth rates of different size classes. As previous studies have
124	already pointed out that pico-phytoplankton, especially cyanobacteria, has a higher
125	temperature sensitivity than larger phytoplankton (Kulk et al. 2012; Chen et al. 2014;
126	Chen and Laws 2017), we expect that different phytoplankton size classes will respond
127	differently to the same temperature variation.

128	With the above points in mind, we compared the acute responses of phytoplankton
129	growth rate and microzooplankon grazing rate to short-term temperature modulations at
130	two contrasting subtropical sites in the Hong Kong coastal waters. One site (Western
131	Estuarine Station, or WE) is located in the downstream of the Pearl River and is
132	dominated by large phytoplankton, such as diatoms, due to its eutrophic environment
133	(Chen et al. 2009). The other site (Eastern Oceanic Station, or EO) is jointly affected by
134	the China Coastal Current and oceanic water from the South China Sea, where the
135	phytoplankton community is usually nutrient-limited and is dominated by cyanobacteria
136	Synechoccocus in summer. The dilution technique, the most commonly used method to
137	directly measure phytoplankton specific growth rate and microzooplankton grazing rate
138	simultaneously (Landry and Hassett 1982; Calbet and Landry 2004; Laws 2013), was
139	applied to measure phytoplankton growth rate and grazing loss rate of the whole
140	phytoplankton community and three different size classes (micro-, nano-, and pico-
141	phytoplankton) at five different temperatures in a range possibly including the
142	temperature optima of constituent species. We aim to find out the thermal responses of

143	growth rate and grazing loss rate of natural phytoplankton assemblages, and to test the
144	following hypothesis: cyanobacteria should have a higher temperature sensitivity than
145	other phytoplankton, which can affect the temperature sensitivity of the whole
146	phytoplankton community. Therefore, the temperature sensitivity of phytoplankton
147	community at Station EO, which is dominated by small phytoplankton, should be higher
148	than that at Station WE, which is dominated by large phytoplankton. We expect that at
149	the eutrophic station WE, the average temperature sensitivity should be roughly equal
150	between phytoplankton growth and microzooplankton grazing, while at Station EO
151	dominated by small phytoplankton, the temperature sensitivity of phytoplankton growth
152	should be a little higher than that of microzooplankton grazing, particularly for the small
153	size classes.
154	Materials and Methods
155	Study sites and measurements of environmental parameters

157 microzooplankton grazing rate at Station WE (22° 21.32'N, 113° 56.78'E) and Station EO

We evaluated the impacts of temperature on phytoplankton growth rate and

156

158	$(22^{\circ} 20.45$ 'N, $114^{\circ} 17.70$ 'E), both in the Hong Kong coastal waters. These two stations
159	have distinct hydrographic and trophic characteristics (Fig. 1). Experiments were
160	conducted monthly from May 2016 to April 2017. Water temperature and salinity were
161	measured using a YSI EXO2 multi-probe sensor, which was calibrated before each
162	sampling. Surface sea water (ca. 30 L) was collected in the polycarbonate carboys from
163	these two stations, and brought back to the laboratory for the following experiments. The
164	samples for inorganic nutrients were collected from the sea water filtered through a 0.2
165	μ m filter capsule, stored in -20°C freezer, and thawed at room temperature prior to
166	analysis. Inorganic nutrient concentrations including nitrate, nitrite, ammonia, phosphate,
167	and silicate were measured using a Skalar auto-analyzer (San Plus system, Netherlands)
168	in the laboratory according to the JGOFS protocol.
169	Phytoplankton size structure measurements
170	Phytoplankton were divided into three size classes by filtering 250 mL sea water
171	sequentially through 20, 2, and 0.2 μ m polycarbonate membrane filters (GVS

172 Corporation) using a vacuum pump under low pressure. The phytoplankton retained on

173	the 20, 2, and 0.2 μ m filters were defined as micro-, nano-, and pico-phytoplankton,
174	respectively (Sieburth et al. 1978; Marañón et al. 2001). The biomass of each size class
175	was represented by Chlorophyll a (Chl a) concentration, which was measured following
176	the JGOFS protocol. After filtration, each filter was immediately stored in a freezer at -
177	80°C until further treatment. For pigment extraction, the filters were soaked in 5 mL 90%
178	acetone at -20°C in the darkness for 20 hours. After the extraction, the samples were
179	centrifuged to remove detritus, and the suspensions were then used for measuring
180	fluorescence using a Turner Designs Model 7200 fluorometer with a non-acidification
181	module. The fluorometer was checked against a solid standard each time before
182	measurement (Strickland and Parsons 1972; Ducklow and Dickson 1994). The total
183	phytoplankton biomass was the sum of Chl a concentrations of the three size classes.
184	Short-term temperature modulation experiments
185	Phytoplankton growth rate and microzooplankton grazing rate were estimated at five
186	different temperatures using the dilution technique (Landry and Hassett 1982). The
187	temperatures for the experiments were set up according to <i>in situ</i> ambient temperature T,

188	which was measured using a YSI EXO2 multi-probe sensor when collecting sea water: T
189	-5° C, T -3° C, T $^{\circ}$ C, T $+3^{\circ}$ C, and T $+5^{\circ}$ C. In summer, T -7° C instead of T $+5^{\circ}$ C was
190	used to minimize the problem of high temperature inhibition. In the dilution experiments,
191	through diluting the natural sea water with filtered sea water at the same site to several
192	proportions and incubating the bottles for 24 hours, the net growth rate of phytoplankton
193	can be calculated. Assuming that phytoplankton growth rate is unaffected by the dilution,
194	and microzooplankton grazing rate is proportional to the fraction of natural sea water,
195	both rates can be estimated through the linear regression of net growth rate against the
196	dilution factors (the proportion of the original unfiltered sea water). In this study, we used
197	two dilution treatments (15% and 100% of natural sea water) in duplicates of 1.2 L PC
198	bottles, known as "two-point" dilution technique, which was modified from the original
199	dilution approach and has been shown to be as accurate as the standard dilution approach
200	(Landry et al. 1984; Strom and Fredrickson 2008; Sherr et al. 2013; Chen 2015a).
201	In each set of dilution experiments (five sets for five temperatures in total), sea
202	water was filtered using a 0.2 μ m filter capsule (Pall Corporation) to obtain particle-free

203	sea water, and was added into two 1.2 L polycarbonate bottles to a prescribed volume.
204	These bottles were then filled with unfiltered sea water to full capacity to get a mixture of
205	85% particle-free sea water and 15% unfiltered sea water that contained natural plankton.
206	Duplicate 1.2 L polycarbonate bottles filled with unfiltered sea water were prepared for
207	the 100% dilution treatment (100% natural seawater). During this process, unfiltered sea
208	water in carboy was gently stirred occasionally and distributed to bottles as evenly as
209	possible. To ensure sufficient nutrients for phytoplankton growth, especially under higher
210	temperature incubation conditions, nutrients (NO ₃ ⁻ : 10 μ mol L ⁻¹ , PO ₄ ³⁻ : 1 μ mol L ⁻¹ in
211	final concentration) were added into all experimental bottles. Extra duplicated bottles of
212	100% unfiltered seawater without nutrient amendment were also prepared and incubated
213	under in situ temperatures to evaluate the influence of adding nutrients. Then, all the
214	bottles were capped tightly and placed in an incubator that has five independent enclosed
215	shelves with different temperatures (FIRSTEK) for 24 hours. All five shelves shared the
216	same light intensity of approximately 100 μ mol photons m ⁻² s ⁻¹ , which simulated the
217	average in situ light intensity experienced by phytoplankton in the nature, and a light:

218	dark cycle of 14:10. The samples for determining Chl a concentrations of three size
219	classes (size - fractionated Chl a) were collected from the initial unfiltered seawater, as
220	well as from each bottle after incubation as described above. Samples for determining
221	cell abundances of pico-phytoplankton including Synechococcus and pico-eukaryotes
222	were also collected before and after incubation, and analyzed using a Becton-Dickson
223	FACSCalibur flow cytometer (details are given in the Supplementary Information).
224	Experimental equipment including carboys, filters, bottles, and tubing was acid-washed
225	with 10% HCl, followed by Milli-Q and <i>in situ</i> sea water rinses before each experiment.
226	Estimates of growth rate and grazing rate
227	Growth rates and grazing mortality rates of the total phytoplankton and three size
228	classes were estimated following Landry et al. (2008). Briefly, by assuming exponential
229	growth for phytoplankton, the net growth rate (k) in each bottle was calculated as
230	$(1/t)\ln(P/dP_0)$, where P is the final biomass of the total phytoplankton and/or each of the
231	three size classes of phytoplankton, which is represented by Chl a concentration or cell
232	abundance of pico-phytoplankton, P_0 is the initial phytoplankton biomass/abundance, d is

233	the dilution factor (15% or 100%) of each bottle, and t is the duration of incubation time
234	(24 hours). The intrinsic growth rate (μ_n ; d ⁻¹) and mortality grazing rate (m ; d ⁻¹) of
235	phytoplankton were determined from the linear regression between net growth rate (k)
236	and dilution factor (d) by assuming an identical intrinsic phytoplankton growth rate in
237	each bottle. At <i>in situ</i> temperature, the instantaneous growth rate (μ_0 ; d ⁻¹) was calculated
238	by adding the net growth rate of the bottles without adding nutrients to the mortality
239	grazing rate ($\mu_0 = m + k_{100\%}$ -without nutrient addition).
240	Estimation of temperature sensitivity and optimal temperature (T_{opt})
241	According to the MTE, the Boltzmann-Arrhenius (BA) model of biochemical reaction
242	kinetics can be used to predict thermal responses of metabolism-linked rates within a
243	physiological temperature range (PTR; the temperature range below optimal temperature)
244	(Gillooly et al. 2001; Pawar et al. 2016). For the metabolism-linked rate (R) , i.e., the
245	phytoplankton growth rate or microzooplankton grazing rate, the model can be described
246	as follows:

 $\mathbf{R} = R_0 e^{\frac{-E_a}{k_b T}}$ (1)

248	where R_0 is the normalization coefficient that includes the effect of body size, E_a is the
249	activation energy (eV) that indicates temperature sensitivity, k_b is Boltzmann's constant
250	$(8.617 \times 10^{-5} \text{ eV K}^{-1})$, and T is temperature in Kelvin (K). After logarithmically
251	transforming the terms on both sides of Eq. (1), the activation energy (E_a) was estimated
252	as the slope of linear regression of the log-transformed rate against the Boltzmann
253	temperature $-1/k_bT$ (Brown et al. 2004; Kremer et al. 2017).
254	As the thermal responses of metabolism-linked rates are usually unimodal in a
255	sufficiently wide temperature range, a unimodal extension of the BA model (Johnson and
256	Lewin 1946; Dell et al. 2011; Chen and Laws 2017) is used to describe the relationship
257	between metabolism-linked rates and temperature in a temperature range without
258	restricting the data to the PTR:

259
$$r = r_0 \frac{e^{\frac{E_a}{k_b}(\frac{1}{T_0} - \frac{1}{T})}}{1 + \frac{E_a}{E_h - E_a} e^{\frac{E_h}{k_b}(\frac{1}{T_o pt} - \frac{1}{T})}}$$
 (2)

where T_{opt} is the optimal temperature, at which the rate reaches the maximum value; E_h is added to describe the "steepness" of the decrease of the rate at higher temperature than T_{opt} , and E_a determines how fast the rate increases with temperature below T_{opt} , which shares 263 the same definition with the linear model mentioned above. r is the growth rate or grazing 264 rate at temperature *T*. r_0 is the normalization constant. Other items are the same as those in 265 *Eq.* (1).

266 In the majority of our experimental groups, the relationship between phytoplankton 267 growth rate (or microzooplankton grazing rate) and temperature within the 10-degree 268 thermal range was unimodal. Eq. (2) was used to fit the data in each set of experiments. Nevertheless, sometimes the estimated values of E_a and E_h were extremely high with high 269 270 variance because the temperature range used in the model was relatively small and most of the data located around the peak of the curve, which only allowed robust estimate of the 271 272 optimal temperature (T_{opt}) . Insufficient sampling of temperature range was due to the 273 limitation of the short-term incubation experiments on natural communities. We had to 274 limit the experimental temperatures to a small range to avoid deteriorating the plankton 275 community and to be ecologically realistic. Practically, the number of temperature 276 treatments was restricted by resource and limited manpower. Therefore, the unimodal function was only used in the estimate of T_{opt} but not of E_a . 277

278	The BA model was applied to estimate E_a of phytoplankton growth rate and
279	microzooplankton grazing rate through fitting the rate vs. temperature data within the PTR.
280	The data were restricted to the PTR by removing the rates that surpassed the optimal
281	temperature from every temperature modulated experiment. Totally, 13 sets of experiments
282	were conducted at each station, and 37% and 34% of the total data of phytoplankton
283	community growth rate and microzooplankton grazing rate were excluded from the
284	calculation. The E_a of each set of experiments was calculated through an OLS linear
285	regression. As the E_a values at each station varied randomly without apparent seasonal
286	pattern (Fig. S1), we used the linear mixed effects model treating months as random effects
287	associated with E_a to estimate the average E_a at each station. This model allows random
288	variations of both slope and intercept to account for hierarchical data structure, and has
289	been applied in some studies on data analysis related to MTE (Van de Pol and Wright 2009;
290	Bates et al. 2014; Kremer et al. 2017). The model for phytoplankton growth rate can be
291	described as follows:

292
$$\ln \nu_{i,j} = (\ln \nu_0 + \lambda D_i + \theta_{\nu i}) + \frac{E_{a\nu} + \beta D_i + \theta_{Ea\nu i}}{k_b} \left(\frac{1}{T_0} - \frac{1}{T_{i,j}}\right) + \varepsilon_{i,j}$$
(3)

293	where $v_{i,j}$ is the growth rate of total phytoplankton or each of the three size classes at the
294	j^{th} temperature $T_{i,j}$ in the i^{th} experiment; ν_0 is the normalization coefficient at reference
295	temperature T_0 (288.15K); E_{av} is the mean activation energy for phytoplankton growth
296	rate; and $\theta_{\nu i}$ and $\theta_{Ea\nu i}$ represent the deviations of intercept $(ln\nu_0)$ and slope $(E_{a\nu})$ in
297	the i^{th} experiment from the mean, respectively. D_i is a dummy variable indicating the
298	station information. D_i is set to 0 at Station EO, and to 1 at Station WE. Thus, λ and β are
299	the differences in intercept and slope, respectively, between the two stations. Since we
300	incubated all bottles at the same light condition and added the same concentration of
301	nutrients (to ensure phytoplankton growth), we did not include the effects of light and
302	nutrient in this model.
303	To calculate the temperature sensitivity of microzooplankton grazing rate,

304 microzooplankton biomass was added to the model as follows:

$$305 \quad \ln m_{i,j} = \alpha \ln(MZ_i) + (\ln m_0 + \lambda D_i + \theta_{mi}) + \frac{E_{am} + \beta D_i + \theta_{Eami}}{k_b} \left(\frac{1}{T_0} - \frac{1}{T_{i,j}}\right) + \varepsilon_{i,j} \tag{4}$$

306 where $m_{i,j}$ is the microzooplankton grazing rate at the *j*th temperature $T_{i,j}$ in *i*th experiment, 307 m_0 is the normalization coefficient at reference temperature T_0 (288.15K); E_{am} is the mean

308	activation energy for microzooplankton grazing rate; θ_{mi} and θ_{Eami} represent the
309	random effects of intercept (lnm_0) and slope (E_{am}) in the <i>i</i> th experiment, respectively; <i>MZ</i>
310	is the microzooplankton biomass in carbon units ($\mu g \ C \ L^{-1}$) in the <i>i</i> th experiment, which
311	was estimated based on the microscopic enumeration and bio-volume measurement of the
312	microzooplankton in each experiment (details are in Supplementary Information); and α is
313	a constant describing the relationship between grazing rate (m) and biomass (MZ) . Dummy
314	variable (D_i) representing the station information is also included in this model as in Eq.
315	(3).
316	All statistical analyses were performed using the software R 3.1.2 (Team 2014). The
317	nonlinear regression analysis was applied using the R function "nls". The linear mixed
318	effects model was performed using " <i>lmer</i> " in R package "lme4". The conditional R^2 and
319	marginal \mathbb{R}^2 were calculated to assess the goodness of the fit of the model using
320	"r.squaredGLMM" in the R package "MuMIn" (Nakagawa and Schielzeth 2013). To
321	compare the activation energies among size classes at each station, Welch's ANOVA (R
322	function "oneway.test") was used instead of the classic one-way ANOVA because the data

323	violated the assumption of homogeneity of variance. Finally, Welch's <i>t</i> -test was performed
324	to identify the difference of activation energies between every group and every other group
325	of rates. (Ruxton et al. 2006).
326	Results
327	Environmental condition and phytoplankton size structure
328	Pronounced seasonality was observed at both stations. Sea surface temperatures at
329	the two stations varied similarly (Fig. 2), but the concentrations of inorganic nutrients
330	differed dramatically between the two stations (Table S1). Both total dissolved inorganic
331	nitrogen (TIN, the total concentration of nitrate, nitrite, and ammonia) and phosphate
332	concentration at Station WE were remarkably higher (ca. 8-fold higher) than those at
333	Station EO. Total Chl <i>a</i> concentration was also much higher at Station WE (7.58 ± 8.53
334	μ g L ⁻¹ , range: 0.97-30.31 μ g L ⁻¹) than at Station EO (3.14 ± 1.89 μ g L ⁻¹ , range: 1.13-7.06
335	μ g L ⁻¹) (Fig. 2). Micro-phytoplankton (> 20 μ m) accounted for the major proportion of
336	the phytoplankton biomass at both stations, and were more dominant at Station WE (WE:
337	44% \pm 28%; EO: 38% \pm 23%). Total Chl <i>a</i> concentration was positively correlated with

338	the concentration of micro-phytoplankton at Station WE, while it was correlated with the
339	concentration of nano-phytoplankton at Station EO, where nano-phytoplankton
340	accounted for 30% \pm 16% of the total. Flow cytometric analysis demonstrated that
341	Synechococcus was more abundant in summer at both stations, and their cell
342	concentrations were positively correlated with temperatures (Spearman rank correlation
343	test, for EO, <i>r</i> = 0.91, <i>p</i> < 0.001; for WE, <i>r</i> = 0.95, <i>p</i> < 0.001) (Fig. S2).
344	Temperature sensitivity of phytoplankton community growth rate and grazing mortality
345	rate by microzooplankton
346	Monthly E_a varied randomly without any discernable trend at both stations (Fig. S1).
347	Based on the linear mixed effects model (Eqs. 3, 4), the mean E_a of the whole
348	phytoplankton growth rate was 0.35 eV (95% CI = 0.24 to 0.46 eV) at Station EO and
349	was 0.37 eV (95% CI = 0.27 to 0.48 eV) at Station WE (Table 1, Fig. 3). No significant
350	difference was found between these two stations (<i>p</i> value for β in <i>Eq.</i> 3: <i>p</i> > 0.05), which
351	contrasted with our initial expectation. Both fixed and random effects in the mixed effects
352	model explained about 90% variance of the whole phytoplankton community growth rate,

but only $\sim 50\%$ of the total variance can be interpreted by the fixed effects at each station,

354 which suggested the importance of random effects (Table 1).

355 Surprisingly, microzooplankton biomass did not play a significant role in the model

356 predicting grazing rate at Station EO ($\chi^2 = 0.45$, p > 0.05). Although it was found

357 significant at Station WE ($\chi^2 = 6.23$, p < 0.05), the results were not much different from

358 the ones without microzooplankton biomass (Welch's *t*-test, p > 0.05). Hence, the

variable of microzooplankton biomass was removed from the models. The average E_a of

360 microzooplankton grazing rate also showed no significant difference between the two

361 stations (EO: 0.64 eV, 95% CI = 0.38 to 0.89 eV; WE: 0.57 eV, 95% CI = 0.36 to 0.78

362 eV; p value for β in Eq. 4: p > 0.05; Table 2, Fig. 4), which agreed with the canonic value

(0.65 eV) of MTE at both stations.

364 At each station, E_a of bulk phytoplankton growth rate was significantly lower than

that of microzooplankton grazing rate (Welch's *t*-test, EO: p = 0.037 < 0.05; WE: p =

0.019 < 0.05; Fig. 5), which again differed from our hypothesis. As such, the percentage

367 of phytoplankton consumed by microzooplankton, which is represented by $m: \mu$ (Calbet

368	and Landry 2004), increased with rising temperature in each group. The result of the
369	linear mixed effects model using Eq. (3) on m : μ , exhibiting the distance in activation
370	energy between growth rate and grazing rate ($\Delta E_a = E_m - E_\mu$), was 0.30 eV (95% CI =
371	0.16 to 0.44 eV), which further supported that microzooplankton grazing rate was more
372	sensitive to temperature increase compared with phytoplankton growth rate.
373	Temperature sensitivity of growth rate and grazing mortality rate by microzooplankton of
374	three size classes of phytoplankton
375	The mean E_a values of phytoplankton growth rate at both stations differed for the
376	three size classes (Table 1, Fig. 5). At Station WE, only micro-phytoplankton growth rate
377	was less sensitive to temperature increase than the grazing rate (0.34 eV, 95% $CI = 0.25$
378	to 0.43 eV, Table 1, Fig. S3a). This was consistent with the whole phytoplankton
379	community growth rate (Welch's <i>t</i> -test, $p > 0.05$) due to the dominance of micro-
380	phytoplankton. The E_a values of nano- and pico-phytoplankton growth rates were slightly
381	higher than that of the whole phytoplankton community (Table 1; Welch's <i>t</i> -test, nano: <i>p</i>
382	= 0.009 < 0.01; pico: $p = 0.047 < 0.05$). While at Station EO, E_a of pico-phytoplankton

383 growth rate was the closest to that of the whole phytoplankton community (0.31 eV, 95% 384 CI = 0.16 to 0.46 eV; Welch's *t*-test, p > 0.05), and the growth rate of micro-385 phytoplankton had a significantly higher value than that of the whole phytoplankton (0.52 386 eV, 95% CI = 0.33 to 0.7 eV, Welch's *t*-test, p = 0.001 < 0.01). However, E_a of micro-387 phytoplankton may be biased because of its data structure (Fig S3a). In the estimate of E_{a} , 388 since data should be restricted to below optimal temperature to meet the requirement of 389 the BA model, there were only two data points remained in some groups. Estimates based 390 on restricted dataset in which at least three points were required were also carried out to 391 examine the accuracy of our results (Table S2). No significant changes were observed in 392 these estimates except for E_a of micro-phytoplankton growth rate with a value of 0.22 eV 393 (95% CI = 0.06 to 0.38 eV). Therefore, more observations were required to confirm the 394 $E_{\rm a}$ value of micro-phytoplankton growth rate at Station EO. The temperature sensitivity 395 of *Synechococcus* was significantly greater than that of the whole phytoplankton 396 community and that of pico-phytoplankton at both stations (Welch's *t*-test, p < 0.001; 397 Fig. 5). These results were in concordance with previous studies (Kulk et al. 2012; Chen

398	et al. 2014; Stawiarski et al. 2016; Chen and Laws 2017), which revealed that
399	cyanobacteria has a lower growth rate but higher temperature sensitivity than large
400	eukaryotic phytoplankton such as diatoms.
401	No pronounced difference was found in E_a of microzooplankton grazing rates of
402	three size classes at Station EO (Welch's ANOVA, $p > 0.05$). The E_a value of grazing
403	rate on nano-phytoplankton was slightly higher than that of nano-phytoplankton growth
404	rate (Welch's <i>t</i> -test, $p = 0.038 < 0.05$; Fig. 5). At Station WE, the grazing rate on nano-
405	phytoplankton had a high E_a value (0.97 eV, 95% CI = 0.57 to 1.37 eV, Fig. S4b). The E_a
406	values for the other size classes and Synechococcus showed no obvious differences from
407	that for the grazing rates on community and were close to the predicted values.
408	Optimal temperatures of phytoplankton growth rate and grazing mortality rate by
409	microzooplankton
410	The nonlinear least-squares regression model was used to fit the data of each set of
411	experiments when there was a unimodal relationship between growth rate (or grazing
412	rate) and temperature (solid lines in Figs. 3, 4). The optimal temperatures for growth rate

413	and grazing rate were obtained from the nonlinear models. The overall mean optimal
414	temperature of phytoplankton community growth rate was 23.7 ± 3.2 °C, significantly
415	lower than that of microzooplankton grazing rate (25.9 \pm 4°C; paired t-test, df = 20, p =
416	0.013 < 0.05; Fig. 6). The optimal temperatures of both growth rate and grazing rate were
417	positively correlated with the environmental temperature (growth rate: $r = 0.88$, df = 23, p
418	< 0.001; grazing rate: r = 0.88, df = 20, p < 0.001; Fig. S5). For the three phytoplankton
419	size classes, their growth rates showed slightly lower optimal temperatures compared
420	with corresponding grazing rates, but the difference was not significant. For
421	Synechococcus and pico-eukaryotes, no difference was observed in the optimal
422	temperatures between growth rate and grazing rate.
423	Discussion
424	Implications of different thermal sensitivity of phytoplankton growth rate and
425	microzooplankton grazing rate
426	Predicting how marine primary production, the efficiency of biological pump and
427	food web stability respond to the projected warming entails reliably quantifying the

428	temperature sensitivity of various plankton rates, especially phytoplankton growth rate.
429	Accurately estimating the temperature sensitivity requires us to be aware of the potential
430	statistical problems in previous analyses (Chen and Laws 2017). In the current study, we
431	used a short-term temperature modulation approach to minimize the statistical problems
432	as much as possible, and to circumvent the issue of community structure shift under
433	warming conditions. Our results showed that at the community level, the average
434	temperature sensitivity of phytoplankton growth rate was 0.35 eV, lower than that of
435	microzooplankton grazing rate at the two contrasting stations in the subtropical coastal
436	waters. At the face value, this difference seems consistent with the classic conception of
437	lower temperature sensitivity of autotrophs (Allen et al. 2005; Rose and Caron 2007;
438	Yvon-Durocher et al. 2010; Chen et al. 2012; Regaudie-De-Gioux and Duarte 2012),
439	which has strong implications for the effect of warming on some critical ecosystem
440	processes, such as net community production (López-Urrutia et al. 2006; Regaudie-De-
441	Gioux and Duarte 2012) and the efficiency of the biological pump (Laws et al. 2000;
442	Cael and Follows 2016). Different thermal responses of phytoplankton and their

443	predators would also affect the dynamics and stability of marine food webs under global
444	warming (Vasseur and McCann 2005; Rose and Caron 2007; Fussmann et al. 2014). Due
445	to the lower temperature sensitivity, more phytoplankton biomass would subject to
446	microzooplankton grazing as temperature increases, which would reduce possible
447	occurrences of phytoplankton blooms under warming in the eutrophic coastal waters
448	(Rose and Caron 2007; Cloern 2018). Nevertheless, the above speculations are based on
449	projected transient responses. In the future, it is necessary to take into account thermal
450	adaptive behaviors of phytoplankton for predicting warming effects on plankton
451	ecosystems (García et al. 2018).
452	Why is phytoplankton temperature sensitivity lower? – Influence of optimal temperature
453	on estimating activation energy
454	It is intriguing that our results still predict lower E_a of phytoplankton than that of
455	microzooplankton even though we tried our best to minimize the statistical problems and
456	took into account the influences of community composition (Chen and Laws 2017). We
457	believe that the main reason is related to the effects of optimal temperature (T_{opt}) of

458 growth rate. Based on the nonlinear thermal response function that is extended from the

459 Arrhenius equation (Johnson and Lewin 1946; Dell et al. 2011; Chen and Laws 2017): $ln\mu = ln\mu_0 + \frac{E_a}{k_b} \left(\frac{1}{T_0} - \frac{1}{T}\right) - ln \left[1 + \frac{E_a}{E_h - E_a} e^{\frac{E_h}{k_b} \left(\frac{1}{T_{opt}} - \frac{1}{T}\right)}\right]$ 460 (5) 461 it is clear that the apparent slope of the linear regression of log-transformed growth rate $(\ln\mu)$ against Boltzmann temperature $\left(\frac{1}{k_b}\left(\frac{1}{T_0}-\frac{1}{T}\right)\right)$ is affected not only by E_a but also by 462 463 $T_{\text{opt.}}$ When $T \ll T_{\text{opt}}$, the apparent linear slope is close to E_a . But when T approaches T_{opt} , 464 the last term in Eq. (5) becomes significantly positive, leading to reduction of the apparent linear slope. When $T > T_{opt}$, the slope eventually becomes negative. In addition, 465 466 the apparent linear slope also depends on the temperature range of the experiments, 467 which is necessarily small in our studies due to the concern of short-term thermal shock. 468 This phenomenon has been observed previously (Pawar et al. 2016). It has been repeatedly reported that T_{opt} of many organisms including phytoplankton becomes closer 469 470 to environmental temperature in warm environments (Deutsch et al. 2008; Huey et al.

471 2009; Thomas et al. 2012; Chen 2015b). As a consequence, the reduced sensitivity of

473 tropical environments.

474	The observed differences of temperature sensitivity (i.e., the apparent E_a estimated
475	from the linear regression), hence, can be well explained by the discrepancy of T_{opt}
476	between microzooplankton and phytoplankton. T_{opt} of microzooplankton grazing rate
477	(17.3-32.2°C) was higher than that of phytoplankton growth rate (18.2-29.6°C) in our
478	study (Fig. 6). Thus, higher T_{opt} of microzooplankton relative to the environment
479	temperature T in Eq . (5) would result in a higher apparent linear slope compared with that
480	of phytoplankton. Physiologically, the lower T_{opt} of phytoplankton might be related to the
481	substantial requirement for RubisoCO enzyme at high temperature (Flynn and Raven
482	2016). In laboratory experiments, it is also true that T_{opt} of zooplankton was higher than
483	that of phytoplankton or even cannot be observed in some designed experimental
484	temperature range (Renaud et al. 2002; Chen and Laws 2017). Difference in the optimal
485	temperatures between phytoplankton and microzooplankton holds the potential to
486	influence the dynamics of microbial food web under climate warming. The

487	microzooplankton grazing rate would keep rising to reach its maximum when
488	temperature increases, while the phytoplankton growth is prone to deviate away from its
489	best fitness because it is more likely that the increased temperature can surpass the
490	optima. Thus, more phytoplankton biomass would be consumed by enhanced
491	microzooplankton grazing activities in a warming future. In addition, the ratio of $m:\mu$,
492	which represents the grazing impact of microzooplankton on phytoplankton, also
493	increases with temperature and has a high optimal temperature ($26.2 \pm 3.6^{\circ}$ C), indicating
494	an increasing grazing pressure on phytoplankton under warming conditions. Interestingly,
495	Boersma et al. (2016) suggested that when going up the trophic level, fish also seem to
496	have much higher T_{opt} than phytoplankton under the same environmental temperature.
497	Further considering the evolution of endothermy, we suspect that as organisms evolve
498	from unicellular to more complicated forms that confer them maintain a higher body
499	temperature than the environment, their T_{opt} might also evolve to be higher to take
500	advantage of the greater fitness under higher temperature (Huey and Kingsolver 1989).

501	It is a challenging question why in our earlier investigation (Chen and Liu 2015), few
502	incidences of T_{opt} were observed for both phytoplankton and microzooplankton (i.e., the
503	rates kept increasing with temperature in most experiments). The most likely reason is
504	that T_{opt} was much higher than the environmental temperature in the study region
505	investigated in Chen & Liu (2015), leaving few opportunities to capture T_{opt} within the
506	designed experimental temperature range. Some studies have suggested a considerably
507	larger discrepancy between the environmental temperature and optimal temperature for
508	the phytoplankton living in polar and temperate waters where the annual mean
509	temperature is under ~25°C (see Fig. 2A in Thomas et al. 2012). Although the study
510	region in Chen & Liu (2015) was in the subtropical waters, the annual mean temperature
511	$(20.2 \pm 5.4^{\circ}C)$ was lower than 25°C, and also lower compared with that of the current
512	study region ($25 \pm 4.3^{\circ}$ C). In addition, the study site in Chen & Liu (2015) was extremely
513	eutrophic, with nitrate concentration always exceeding 15 μ mol L ⁻¹ . It was also found
514	that less nutrient availability can reduce T_{opt} for phytoplankton (Thomas et al. 2017).

515	Thus, the lower T_{opt} observed in the present study probably is related to the mesotrophic
516	nature of the study region.
517	Different temperature sensitivities among three size classes of phytoplankton at the two
518	stations
519	Community composition plays an important role in determining the temperature
520	sensitivity of phytoplankton growth rate in natural environments (Chen and Laws 2017).
521	We hypothesized that the phytoplankton community at Station EO dominated by small
522	phytoplankton, mainly by cyanobacteria, would be more sensitive to temperature increase
523	than that at Station WE, which was dominated by larger phytoplankton such as diatoms.
524	However, the estimated E_a for phytoplankton growth rate of the whole community was
525	not significantly different at the two stations, and was lower than that of
526	microzooplankton grazing rate (Tables 1, 2, Fig. 5). This suggests that the influence of
527	nonlinear temperature response (i.e., T_{opt}) is much greater than that of community
528	structure.

529	The E_a value of phytoplankton growth rate varied among different size classes or
530	groups. Nano- and pico-phytoplankton growth rates showed higher E _a than micro-
531	phytoplankton growth rate at Station WE (Fig. 5b), which could drive an increase in the
532	contribution of small phytoplankton to the bulk biomass, and shift the community
533	structure under climate warming. It has also been shown that small phytoplankton
534	increased with increasing temperature in mesocosm experiments using either marine and
535	freshwater plankton communities (Sommer and Lengfellner 2008; Yvon-Durocher et al.
536	2011). The underlying mechanism could be a combination of faster response of small
537	phytoplankton to warmer temperature and enhanced grazing pressure on large
538	phytoplankton due to the difference in temperature sensitivities between micro-
539	phytoplankton and their predators (Fig. 5). Because small phytoplankton are less prone to
540	sinking and would accelerate nutrient regeneration by stimulating the growth of
541	microzooplankton, ocean warming, by shifting the phytoplankton community to smaller
542	sizes, would reduce the efficiency of carbon export (Laws et al. 2000).

543 Cyanobacteria having high temperature sensitivity

544	The estimated activation energy of <i>Synechococcus</i> growth rate was consistently high
545	at both stations (EO: 0.58 eV, 95% CI = 0.36 to 0.80 eV; WE: 0.54 eV, 95% CI = 0.41 to
546	0.67 eV; Fig. 5), close to the canonic value of 0.65 eV and in line with previous studies of
547	both freshwater and marine cyanobacteria (Joehnk et al. 2008; Chen et al. 2014; Chen
548	and Laws 2017). It has also been found that several eukaryotic strains isolated from the
549	oligotrophic ocean have lower temperature coefficient (Q_{10}) than pico-prokaryotes,
550	including Synechococcus and Prochlorococcus (Kulk et al. 2012; Stawiarski et al. 2016).
551	Similar results were observed at Station EO (Fig. 5a), which is closer to the open ocean.
552	Some studies pointed out that cyanobacteria have relatively higher T_{opt} than pico-
553	eukaryotes, which relieves them from high temperature inhibition in (sub)tropical
554	environments (Chen et al. 2014; Chen and Laws 2017). Thus, it is not surprising to find
555	its peak abundance in summer in coastal waters (Fig. S2; Agawin et al. 1998; Chen et al.
556	2009; Chen et al. 2014), and its abundance increases with rising annual mean temperature
557	under nutrient-sufficient conditions (Li 1998).

experiments

560	Every methodology may have its own bias or drawback. For the incubation method
561	we used, one problem might be the latent influence of the resource supply such as light
562	and nutrients on the estimate of E_a . The effects of temperature on phytoplankton growth
563	usually interact with light and nutrients. The interactive effects on growth are
564	complicated as they are not simple combination of additive effects (Thomas et al. 2017).
565	Practically, this study focused on the effect of temperature on phytoplankton growth
566	under replete resource supply. Thus, additional nutrients were added to ensure sufficient
567	nutrients for phytoplankton growth. Although the light intensity (about 100 μ mol photons
568	m ⁻² s ⁻¹) used in the experiments may not be sufficient for some phytoplankton species
569	during the incubation, especially when temperature increases (Collins and Boylen 1982),
570	it was assumed to be saturating irradiance for the growth of phytoplankton community in
571	some studies (Edwards et al. 2016). We also assumed that the effect of light should be
572	negligible in the estimate of E_a in our study. Actually, as the light intensity was set to

573	imitate the <i>in situ</i> situation experienced by the phytoplankton, which were continuously
574	mixed within the mixed layer at a time scale less than 24 hours (Franks 2015; Chen and
575	Smith 2018), our estimates could be more relevant to the <i>in situ</i> conditions. Recent
576	studies found that nutrient-limitation or light-limitation would reduce the optimal
577	temperature of phytoplankton growth and diminish the temperature sensitivity (Edwards
578	et al. 2016; Thomas et al 2017). If so, the lower temperature sensitivity and optimal
579	temperature for phytoplankton growth found in the current study may be more critical
580	when involving the effects of resource supply in the real ocean.
581	Another problem is the possible damage to plankton community caused by the
582	temperature manipulation especially temperature extremes, which could impose "thermal
583	shock" to the plankton. To alleviate this problem, the experimental temperature gradients
584	were prudently designed to be confined to small deviations from the <i>in situ</i> temperature.
585	The experimentally elevated temperatures would not cause damage to the majority of
586	plankton in our experiments because significant increase of phytoplankton biomass can
587	be observed after incubation. Our estimates of E_a were consistent with many previous

588	studies, such as Laws et al. (2000), Allen et al. (2005), Lopez-Urrutia et al. (2006), Rose
589	and Caron (2007), Cael and Follows (2016), and Kremer et al. (2017), although for
590	different reasons, which suggested that the problem of temperature manipulation did not
591	bias the estimate of E_a substantially. However, the restricted temperature range might
592	lead to high variation (uncertainty) of the estimates of E_a . Moreover, as ocean warming is
593	very slow relative to warming used in the experimental design, the results of such short-
594	term experiments should be applied cautiously in predicting the effects of warming on the
595	marine plankton on a long-term scale. Despite the above-mentioned issues of short-term
596	experiments, our estimates provide some useful information about the temperature
597	sensitivity, which is an important trait of the plankton community to predict how the
598	marine ecosystem responds to ocean warming.
599	Conclusion
600	Our results suggest that the heterotrophs are more sensitive to the increase of
601	temperature than the autotrophs in the subtropical regions even when the statistical
602	problems were minimized and the community composition was taken into consideration

603	in our experiments. This difference arises due to a new problem that is the different
604	discrepancies of the optimal temperature of phytoplankton and microzooplankton to the
605	environmental temperature. It does not suggest the above-mentioned statistical problems
606	do not occur in previous studies.
607	Our study highlights the importance of considering nonlinear temperature responses
608	when estimating the temperature sensitivity of plankton in the subtropical and tropical
609	regions, where environmental temperatures are often close to the optimal temperature of
610	phytoplankton, but probably less so for zooplankton. This has significant implications for
611	the impact of global warming on ocean ecosystems. We expect that warming will
612	continue to shift phytoplankton to small size (cyanobacteria) and microzooplankton will
613	probably flourish, leading to a more active microbial loop. How these repercussions will
614	affect key ocean ecosystem functioning, such as the marine biological pump or fishery,
615	remains important tasks for oceanographers and ecologists.
616	

617 **References**

618	Agawin, N. S. R., C. M. Duarte, and S. Agusti. 1998. Growth and abundance of
619	Synechococcus sp. in a Mediterranean Bay: seasonality and relationship with
620	temperature. Mar. Ecol. Prog. Ser. 170: 45-53. doi: 10.3354/meps170045
621	Allen, A. P., J. F. Gillooly, and J. H. Brown. 2005. Linking the global carbon cycle to
622	individual metabolism. Funct. Ecol. 19: 202-213. doi: 10.1111/j.1365-
623	2435.2005.00952.x
624	Bates, D., M. Maechler, B. Bolker, and S. Walker. 2014. Ime4: Linear mixed-effects
625	models using Eigen and S4. R package version 1: 1-23.
626	Behrenfeld, M. J., R. T. O'Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C.
627	Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss. 2006.
628	Climate-driven trends in contemporary ocean productivity. Nature 444: 752-755.
629	doi: 10.1038/nature05317
630	Bissinger, J. E., D. J. Montagnes, J. harples, and D. Atkinson. 2008. Predicting marine
631	phytoplankton maximum growth rates from temperature: Improving on the Eppley

632	curve using quantile regression. Limnol. Oceanogr. 53 (2), 487-493. doi:
633	10.4319/lo.2008.53.2.0487
634	Boersma, M., N. Grüner, N. T. Signorelli, P. E. M. González, M. A. Peck, and K. H.
635	Wiltshire 2016. Projecting effects of climate change on marine systems: is the mean
636	all that matters? Proc. R. Soc. B, 283(1823), 20152274. doi:
637	10.1098/rspb.2015.2274
638	Boyce, D. G., M. R. Lewis, and B. Worm. 2010. Global phytoplankton decline over the
639	past century. Nature 466: 591-596. doi: 10.1038/nature09268
640	Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West. 2004. Toward a
641	metabolic theory of ecology. Ecology 85: 1771-1789. doi: 10.1890/03-9000
642	Cael, B. B. and M. J. Follows. 2016. On the temperature dependence of oceanic export
643	efficiency. Geophys. Res. Lett. 43(10): 5170-5175. doi: 10.1002/2016GL068877
644	Calbet, A., and M. R. Landry. 2004. Phytoplankton growth, microzooplankton grazing,
645	and carbon cycling in marine systems. Limnol. Oceanogr. 49: 51-57. doi:
646	10.4319/lo.2004.49.1.0051

647	Chen, B. Z., M. R. Landry, B. Q. Huang, and H. B. Liu. 2012. Does warming enhance the
648	effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol.
649	Oceanogr. 57: 519-526. doi: 10.4319/lo.2012.57.2.0519
650	Chen, B. Z., and E. A. Laws. 2017. Is there a difference of temperature sensitivity between
651	marine phytoplankton and heterotrophs? Limnol. Oceanogr. 62: 806-817. doi:
652	10.1002/lno.10462
653	Chen, B. Z., H. B. Liu, B. Q. Huang, and J. Wang. 2014. Temperature effects on the growth
654	rate of marine picoplankton. Mar. Ecol. Prog. Ser. 505: 37-47. doi:
655	10.3354/meps10773
656	Chen, B. Z., H. B. Liu, M. R. Landry, M. Chen, J. Sun, L. Shek, X. H. Chen, and P. J.
657	Harrison. 2009. Estuarine nutrient loading affects phytoplankton growth and
658	microzooplankton grazing at two contrasting sites in Hong Kong coastal waters.
659	Mar. Ecol. Prog. Ser. 379: 77-90. doi: 10.3354/meps07888

660	Chen, B. Z., and K. L. Liu. 2015. Responses of autotrophic and heterotrophic rates of
661	plankton from a subtropical coastal site to short-term temperature modulations. Mar.
662	Ecol. Prog. Ser. 527: 59-71. doi: 10.3354/meps11218
663	Chen, B. Z. 2015a. Assessing the accuracy of the "two-point" dilution technique. Limnol.
664	Oceanogr.: Methods. 13: 521-526. doi: 10.1002/lom3.10044
665	Chen, B. Z. 2015b. Patterns of thermal limits of phytoplankton. J. Plankton Res. 37(2),
666	285-292. doi:10.1093/plankt/fbv009
667	Chen, B. Z., S. L. Smith, and K. W. Wirtz. 2018. Effect of phytoplankton size diversity on
668	primary productivity in the North Pacific: trait distributions under environmental
669	variability. Ecol. Lett. doi:10.1111/ele.13167
670	Cloern, J. E. 2018. Why large cells dominate estuarine phytoplankton. Limnol. Oceanogr.
671	63 (S1): S392-S409. doi: 10.1002/lno.10749
672	Collins, C. D., and C. W. Boylen. 1982. Physiological responses of Anabaena variabilis

(Cyanophyceae) to Instantaneous Exposure to Various combinations of light 673

674	intensity and temperature. J. Phycol 18(2), 206-211. doi:10.1111/j.1529-
675	8817.1982.tb03175.x
676	Dell, A. I., S. Pawar, and V. M. Savage. 2011. Systematic variation in the temperature
677	dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. USA 108:
678	10591-10596. doi: 10.1073/pnas.1015178108
679	Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak,
680	and P. R. Martin. 2008. Impacts of climate warming on terrestrial ectotherms across
681	latitude. Proc. Natl. Acad. Sci. USA 105: 6668-6672. doi:
682	10.1073/pnas.0709472105
683	Ducklow, H., and A. Dickson. 1994. Chapter 14. Measurement of chlorophyll a and
684	paeopigments by fluorometric analysis, p. 119-122. In A. Knap, A. Michaels, A.
685	Close, H. Ducklow, and A. Dickson. [eds.], Protocols for the Joint Global Ocean
686	Flux Study (JGOFS) core measurements. UNESCO.

687	Edwards, K. F., M. K. Thomas, C. A. Klausmeier, and E. Litchman. 2016. Phytoplankton
688	growth and the interaction of light and temperature: A synthesis at the species and
689	community level. ? Limnol. Oceanogr. 61(4), 1232-1244. doi: 10.1002/lno.10282
690	Eppley, R. W. 1972. Temperature and phytoplankton growth in the sea. Fish. bull, 70 (4),
691	1063-1085.
692	Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski. 1998. Primary production
693	of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237-
694	240. doi: 10.1126/science.281.5374.237
695	Franks, P. J. 2014. Has Sverdrup's critical depth hypothesis been tested? Mixed layers vs.
696	turbulent layers. ICES J Mar. Sci. 72(6), 1897-1907. doi: 10.1093/icesjms/fsu175
697	Flynn, K. J., and J. A. Raven, 2016. What is the limit for photoautotrophic plankton growth
698	rates? J. Plankton Res. 39 (1), 13-22. 10.1093/plankt/fbw067
699	Fussmann, K. E., F. Schwarzmüller, U. Brose, A. Jousset, and B. C. Rall. 2014. Ecological
700	stability in response to warming. Nat. Clim. Change, 4(3), 206. doi:
701	10.1038/nclimate2134

702	García, F. C., E. Bestion, R. Warfield, and G. Yvon-Durocher. 2018. Changes in
703	temperature alter the relationship between biodiversity and ecosystem functioning.
704	Proc. Natl. Acad. Sci. USA. 115(43), 10989-10994. doi: 0.1073/pnas.1805518115
705	Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov. 2001. Effects
706	of size and temperature on metabolic rate. Science 293: 2248-2251. doi:
707	10.1126/science.1061967
708	Huey, R. B., and J. G. Kingsolver. 1989. Evolution of thermal sensitivity of ectotherm
709	performance. Trends Ecol. Evol. 4(5), 131-135. doi: 10.1016/0169-
710	5347(89)90211-5
711	Huey, R. B., C. A. Deutsch, J. J. Tewksbury, L. J. Vitt, P. E. Hertz, H. J. Á. Pérez, and T.
712	Garland. 2009. Why tropical forest lizards are vulnerable to climate warming. Proc.
713	R. Soc. B 276, 1939-1948. doi:10.1098/rspb.2008.1957
714	Joehnk, K. D., J. Huisman, J. Sharples, B. Sommeijer, P. M. Visser, and J. M. Stroom.
715	2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Chang.
716	Biol. 14: 495-512. doi: 10.1111/j.1365-2486.2007.01510.x

717	Johnson, F. H., and I. Lewin. 1946. The growth rate of <i>E. coli</i> in relation to temperature,
718	quinine and coenzyme. J. Cell. Physiol. 28: 47-75. doi: 10.1002/jcp.1030280104
719	Kremer, C. T., M. K. Thomas, and E. Litchman. 2017. Temperature-and size-scaling of
720	phytoplankton population growth rates: Reconciling the Eppley curve and the
721	metabolic theory of ecology. Limnol. Oceanogr. 62(4), 1658-1670. doi:
722	10.1002/lno.10523
723	Kulk, G., P. de Vries, W. H. van de Poll, R. J. W. Visser, and A. G. J. Buma. 2012.
724	Temperature-dependent growth and photophysiology of prokaryotic and eukaryotic
725	oceanic picophytoplankton. Mar. Ecol. Prog. Ser. 466: 43-55. doi:
726	10.3354/meps09898
727	Landry, M. R., and R. P. Hassett. 1982. Estimating the grazing impact of marine micro-
728	zooplankton. Mar. Biol. 67: 283–288. doi:10.1007/BF00397668
729	Landry, M. R., S. L. Brown, Y. M. Rii, K. E. Selph, R. R. Bidigare, E. J. Yang, and M. P.
730	Simmons. 2008. Depth-stratified phytoplankton dynamics in Cyclone Opal, a

731	subtropical mesoscale eddy. Deep-Sea Res. II 55: 1348-1359. doi:
732	10.1016/j.dsr2.2008.02.001
733	Landry, M. R., L. W. Haas, and V. L. Fagerness. 1984. Dynamics of Microbial Plankton
734	Communities - Experiments in Kaneohe Bay, Hawaii. Mar. Ecol. Prog. Ser. 16:
735	127-133. doi: 10.3354/meps016127
736	Laws, E. A., P. G. Falkowski, J. W. O. Smith, H. Ducklow, and J. J. McCarthy. 2000.
737	Temperature affects export production in the open ocean. Global Biogeochem.
738	Cycles. 14: 1231–1246. doi:10.1029/1999GB001229
739	Laws, E. A. (2013). Evaluation of in situ phytoplankton growth rates: a synthesis of data
740	from varied approaches. Annu. Rev. Mar. Sci. 5, 247-268. doi: 10.1146/annurev-
741	marine-121211-172258
742	Li, W. K. 1998. Annual average abundance of heterotrophic bacteria and Synechococcus
743	in surface ocean waters. Limnol. Oceanogr. 43(7), 1746-1753. doi:
744	10.4319/lo.1998.43.7.1746

745	Litchman, E., and C. A. Klausmeier. 2008. Trait-based community ecology of
746	phytoplankton. Ann. Rev. Ecol. Evol. Syst. 39 : 615-639. doi:
747	10.1146/annurev.ecolsys.39.110707.173549
748	López-Urrutia, Á., E. San Martin, R. P. Harris, and X. Irigoien. 2006. Scaling the metabolic
749	balance of the oceans. Proc. Natl. Acad. Sci. USA 103: 8739-8744. doi:
750	10.1073/pnas.0601137103
751	López-Urrutia, Á. 2008. The metabolic theory of ecology and algal bloom formation.
752	Limnol. Oceanogr. 53: 2046-2047. doi: 10.4319/lo.2008.53.5.2046
753	López-Urrutia, Á., and X. A. G. Morán. 2015. Temperature affects the size-structure of
754	phytoplankton communities in the ocean. Limnol. Oceanogr. 60: 733-738. doi:
755	10.1002/lno.10049
756	Marañón, E., P. Cermeño, D. C. López-Sandoval, T. Rodríguez-Ramos, C. Sobrino, M.
757	Huete-Ortega, J. M. Blanco, and J. Rodríguez. 2013. Unimodal size scaling of
758	phytoplankton growth and the size dependence of nutrient uptake and use. Ecol.
759	Lett. 16: 371-379. doi: 10.1111/ele.12052

760	Marañón, E., P. Cermeño, M. Huete-Ortega, D. C. López-Sandoval, B. Mouriño-
761	Carballido, and T. Rodríguez-Ramos. 2014. Resource supply overrides temperature
762	as a controlling factor of marine phytoplankton growth. PLoS One 9: e99312. doi:
763	10.1371/journal.pone.0099312
764	Marañón, E., P. Cermeño, M. Latasa, and R. D. Tadonléké. 2015. Resource supply alone
765	explains the variability of marine phytoplankton size structure. Limnol. Oceanogr.
766	60 : 1848–1854. doi:10.1002/lno.10138
767	Marañón, E., P. M. Holligan, R. Barciela, N. González, B. Mouriño, M. J. Pazó, and M.
768	Varela. 2001. Patterns of phytoplankton size structure and productivity in
769	contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216: 43-56. doi:
770	10.3354/meps216043
771	Morán, X. A. G., A. López-Urrutia, Á. Calvo-Díaz, and W. K. W. Li. 2010. Increasing
772	importance of small phytoplankton in a warmer ocean. Glob. Chang. Biol. 16:
773	1137-1144. doi: 10.1111/j.1365-2486.2009.01960.x

774	Nakagawa, S., and H. Schielzeth. 2013. A general and simple method for obtaining R^2
775	from generalized linear mixed-effects models. Methods Ecol. Evol. 4(2), 133-142.
776	doi: 10.1111/j.2041-210x.2012.00261.x
777	Pawar, S., A. I. Dell, V. M. Savage, and J. L. Knies. 2016. Real versus Artificial Variation
778	in the Thermal Sensitivity of Biological Traits. Am. Nat. 187: E41-E52. doi:
779	10.1086/684590
780	Regaudie-De-Gioux, A., and C. M. Duarte. 2012. Temperature dependence of planktonic
781	metabolism in the ocean. Global Biogeochem. Cycles 26: GB1015. doi:
782	10.1029/2010gb003907
783	Renaud, S. M., L. V. Thinh, G. Lambrinidis, and D. L. Parry. 2002. Effect of temperature
784	on growth, chemical composition and fatty acid composition of tropical Australian
785	microalgae grown in batch cultures. Aquaculture, 211 (1-4), 195-214. doi:
786	10.1016/S0044-8486(01)00875-4

787	Rose, J. M., and D. A. Caron. 2007. Does low temperature constrain the growth rates of
788	heterotrophic protists? Evidence and implications for algal blooms in cold waters.
789	Limnol. Oceanogr. 52: 886-895. doi: 10.4319/lo.2007.52.2.0886
790	Ruxton, G. D. 2006. The unequal variance t-test is an underused alternative to Student's t-
791	test and the Mann-Whitney U test. Beha. Ecol. 17(4), 688-690. doi:
792	10.1093/beheco/ark016
793	Sarmiento, J. L., R. Slater, R. Barber, L. Bopp, S. C. Doney, A. C. Hirst, J. Kleypas, R.
794	Matear, U. Mikolajewicz, P. Monfray, V. Soldatov, S. A. Spall, and R. Stouffer.
795	2004. Response of ocean ecosystems to climate warming. Global Biogeochem.
796	Cycles 18: GB3003. doi: 10.1029/2003GB002134
797	Sherr, E. B., B. F. Sherr, and C. Ross. 2013. Microzooplankton grazing impact in the
798	Bering Sea during spring sea ice conditions. Deep-Sea Res. II 94: 57-67. doi:
799	10.1016/j.dsr2.2013.03.019

800	Sieburth, J. M., V. Smetacek, and J. Lenz. 1978. Pelagic ecosystem structure: heterotrophic
801	compartments of the plankton and their relationship to plankton size fractions.
802	Limnol. Oceanogr. 23: 1256-1263. doi: 10.4319/lo.1978.23.6.1256
803	Sommer, U., and K. Lengfellner. 2008. Climate change and the timing, magnitude, and
804	composition of the phytoplankton spring bloom. Global Change Biol. 14(6), 1199-
805	1208. doi: 10.1111/j.1365-2486.2008.01571.x
806	Stawiarski, B., E. T. Buitenhuis, and C. Le Quéré. 2016. The Physiological Response of
807	Picophytoplankton to Temperature and Its Model Representation. Front. Mar. Sci.
808	3: 164. doi: 10.1002/lno.10745
809	Strickland, J. D., and T. R. Parsons. 1972. A practical handbook of seawater analysis.
810	Strom, S. L., and K. A. Fredrickson. 2008. Intense stratification leads to phytoplankton
811	nutrient limitation and reduced microzooplankton grazing in the southeastern
812	Bering Sea. Deep Sea Res. II 55: 1761-1774. doi: 10.1016/j.dsr2.2008.04.008

813	Taucher, J., and A. Oschlies. 2011. Can we predict the direction of marine primary
814	production change under global warming? Geophys. Res. Lett. 38: L02603. doi:
815	10.1029/2010gl045934
816	Team, R. C. 2014. R: A Language and Environment for Statistical Computing. Vienna: R
817	Foundation for Statistical Computing. Available online at: http. www. R-project.
818	org.
819	Thomas, M. K., C. T. Kremer, C. A. Klausmeier, and E. Litchman. 2012. A Global Pattern
820	of Thermal Adaptation in Marine Phytoplankton. Science 338:1085-1088. doi:
821	10.1126/science.1224836
822	Thomas, M. K., C. T. Kremer, and E. Litchman. 2016. Environment and evolutionary
823	history determine the global biogeography of phytoplankton temperature traits.
824	Glob. Ecol. Biogeogr. 25: 75-86. doi: 10.1111/geb.12387
825	Thomas, M. K., M. Aranguren-Gassis, C. T. Kremer, M. R. Gould, K. Anderson, C. A.
826	Klausmeier, and E. Litchman. 2017. Temperature–nutrient interactions exacerbate

827	sensitivity to warming in phytoplankton. Global Change Biol. 23(8), 3269-3280.										
828	doi:10.1111/gcb.13641										
829	Van de Pol, M., and J. Wright. 2009. A simple method for distinguishing within-versus										
830	between-subject effects using mixed models. Anim. Behav. 77: 753-758. doi:										
831	10.1016/j.anbehav.2008.11.006										
832	Vaquer-Sunyer, R., and C. M. Duarte. 2013. Experimental Evaluation of the Response of										
833	Coastal Mediterranean Planktonic and Benthic Metabolism to Warming. Estuaries										
834	Coasts 36: 697-707. doi: 10.1007/s12237-013-9595-2										
835	Vasseur, D. A., and K. S McCann. 2005. A mechanistic approach for modeling										
836	temperature-dependent consumer-resource dynamics. Am. Nat. 166(2), 184-198.										
837	doi: 10.1086/431285										
838	Ward, B. A. 2015. Temperature-correlated changes in phytoplankton community structure										
839	are restricted to polar waters. PloS one 10(8), e0135581. doi :										
840	10.1371/journal.pone.0135581										

841	Yang, Z., L. Zhang, X. Zhu, J. Wang, and D. J. Montagnes. 2016. An evidence-based
842	framework for predicting the impact of differing autotroph-heterotroph thermal
843	sensitivities on consumer-prey dynamics. The ISME journal, 10(7), 1767. doi:
844	10.1038/ismej.2015.225
845	Yvon-Durocher, G., J. I. Jones, M. Trimmer, G. Woodward, and J. M. Montoya. 2010.
846	Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B 365:
847	2117-2126. doi: 10.1098/rstb.2010.0038
848	Yvon-Durocher, G., J. M. Montoya, V. Trimmer, and G. Woodward. 2011. Warming alters
849	the size spectrum andshifts the distribution of biomass in freshwater ecosystems.
850	Global Change Biol. 17 : 1681-1694, doi:10.1111/j.1365-2486.2010.02321.x
851	

852 Acknowledgments

853 We sincerely thank three anonymous reviewers and M. R. Landry for helpful comments,

- W. K. Lau and Y. F. YEUNG for their help with data sampling, and Z. J. Yu for editing
- the manuscript. This study is supported by the National Basic Research Program
- 856 ("973" Program) of China (2015CB954003), Research Grants Council of the Hong Kong
- 857 Special Administrative Region, China (Project No. T21/602/16), Hong Kong Research
- 858 Grants Council (GRF-16128416 and 16101917 and RGC-NSFC joint scheme
- N_HKUST609/15), and the State Key Lab on Marine Pollution (SKLMP) via the Seed
- 860 Collaborative Research Fund (SKLMP/SCRF/XXXX).

862 Figures

863

865 (22°21.32'N, 113°56.78'E); EO: Eastern Oceanic Station (22°20.45'N, 114°17.70'E).

866

Fig. 2 Monthly variations of temperature and chlorophyll *a* (Chl *a*) concentration of three

phytoplankton size classes at Station EO (a) and Station WE (b).

Fig. 3 Linear mixed effects model and nonlinear regression fits of phytoplankton

880

Fig. 4 Linear mixed effects model and nonlinear regression fits of microzooplankton

grazing rates on the total phytoplankton at experimental temperatures at station EO

(a) and station WE (b). Same as Fig. 3.

Fig. 5 Activation energies of growth rates of total phytoplankton, three size classes of

phytoplankton and two pico-phytoplankton and corresponding grazing mortality
rates by microzooplankton at Station EO (a) and Station WE (b). The two dashed
lines represent the theoretical activation energies of autotrophic processes (0.32 eV)

and heterotrophic processes (0.65eV). Significant levels between activation energies

887 of growth rate and grazing rate are given by the *p*-values with the asterisks (* : p <

888

886

889

Fig.6 Optimal temperatures of phytoplankton community growth rate and grazing

891 morality rate by microzooplankton grazing. Dashed line is the 1:1 line.

893	Table 1. Estimated activation energies (E_a , eV) of total, three size classes, and taxa-specific phytoplankton growth rates derived from
894	the linear mixed effects model and OLS regression. The parameters of the linear mixed effects model include the average energy
895	(E_{av} , with 95% CI in brackets), the normalization constant (ln $v_0 \pm$ standard error), standard deviations of the random effects of
896	ln v_0 and E_{av} (θ_v and θ_{Eav}), percentage of variance explained by the random and fixed effect (V_{fr}), percentage of variance explained
897	by the fixed effect only (V_f), number of observations used in the model (N_o), and number of groups used in the model
898	(N_g). E_a (OLS) (eV) is the mean activation energy derived from the OLS regression, 95% CIs are in brackets.

		Linea mixed effects model								Linear model (OLS)
Station	Growth rate	$\ln \nu_0$	Ε _{aν}	$ heta_ u$	$ heta_{Ea u}$	V _{fr}	V _f	No	Ng	E _{a(OLS)}
EO station	Bulk phytoplankton	0.05 ± 0.11	0.35 (0.24, 0.46)	0.23	0.09	0.93	0.56	37	13	0.48 (0.32, 0.63)
	Micro-phytoplankton	-0.03 ± 0.11	0.52 (0.33, 0.70)	0.35	0.22	0.98	0.50	31	13	0.54 (0.39, 0.69)
	Nano-phytoplankton	-0.00 ± 0.15	0.43 (0.29, 0.57)	0.54	0.22	0.96	0.35	39	13	0.45 (0.34, 0.55)
	Pico-phytoplankton	-0.02 ± 0.12	0.31 (0.16, 0.46)	0.38	0.2	0.81	0.37	39	13	0.40 (0.23, 0.57)
	Synechococcus (FCM)	-0.83 ± 0.27	0.58 (0.36, 0.80)	0.9	0.23	0.97	0.19	40	13	0.88 (0.57, 1.19)
	Picoeukaryotes (FCM)	-0.15 ± 0.10	0.38 (0.29, 0.47)	0.31	0.04	0.95	0.29	42	13	0.44 (0.36, 0.52)
WE station	Bulk phytoplankton	$\textbf{0.02} \pm \textbf{0.09}$	0.37 (0.27, 0.48)	0.29	0.12	0.92	0.41	44	13	0.47 (0.27, 0.66)
	Micro-phytoplankton	$\textbf{0.19} \pm \textbf{0.08}$	0.34 (0.25, 0.43)	0.2	0.09	0.91	0.39	45	13	0.38 (0.29, 0.46)
	Nano-phytoplankton	-0.36 ± 0.11	0.63 (0.41, 0.84)	0.34	0.33	0.95	0.44	46	13	0.64 (0.43, 0.85)
	Pico-phytoplankton	-0.15 ± 0.14	0.43 (0.25, 0.61)	0.38	0.02	0.80	0.21	43	13	0.65 (0.34, 0.97)
	Synechococcus (FCM)	-0.15 ± 0.10	0.54 (0.41, 0.67)	0.3	0.14	0.88	0.65	42	13	0.69 (0.47, 0.9)
	Picoeukaryotes (FCM)	-0.06 ± 0.13	0.48 (0.35, 0.60)	0.38	0.07	0.94	0.36	35	12	0.65 (0.43, 0.87)

901	Table 2. Estimated activation energies (E_a , eV) of total, three size classes, and taxa-specific phytoplankton grazing mortality rates by
902	microzooplankton derived from the linear mixed effects model and OLS regression. The parameters of linear mixed effects
903	model include the average energy (E_{am} , with 95% CI in brackets), the normalization constants (ln $m_0 \pm$ standard error), standard
904	deviations of the random effects of ln m_0 and E_{am} (θ_m and θ_{Eam}), percentage of variance explained by the random and fixed effect

905 ($V_{\rm fr}$); percentage of variance explained by the fixed effect only ($V_{\rm f}$). Other parameters are the same with Table <u>1</u>.

		Linear mixed effects model								Linear model (OLS)
Station	Grazing rate	In <i>m</i> 0	E _{am}	θ_{m}	θ_{Eam}	V _{fr}	V _f	No	Ng	E _{a(OLS)}
EO station	Bulk phytoplankton	-1.36 ± 0.31	0.64 (0.38, 0.89)	0.99	0.4	0.97	0.27	38	11	0.70 (0.39, 1.00)
	Micro-phytoplankton	-1.79 ± 0.52	0.45 (-0.34, 1.24)	1.03	0.75	0.58	0.09	25	8	1.78 (0.71, 2.85)
	Nano-phytoplankton	-1.31 ± 0.23	0.58 (0.34, 0.81)	0.57	0.09	0.78	0.29	39	10	0.86 (0.45, 1.27)
	Pico-phytoplankton	-0.70 ± 0.22	0.37 (0.16, 0.59)	0.62	0.19	0.78	0.22	39	11	0.59 (0.35, 0.82)
	Synechococcus (FCM)	-1.17 ± 0.27	0.69 (0.36, 1.03)	0.78	0.38	0.92	0.28	37	12	0.74 (0.45, 1.03)
	Picoeukaryotes (FCM)	-1.00 ± 0.30	0.49 (0.19, 0.80)	0.85	0.35	0.82	0.19	40	11	0.66 (0.18, 1.14)
WE station	Bulk phytoplankton	-1.11 ± 0.14	0.57 (0.36, 0.78)	0.44	0.3	0.91	0.40	47	12	0.61 (0.35, 0.87)
	Micro-phytoplankton	-1.83 ± 0.31	0.77 (0.40, 1.14)	1.07	0.6	0.94	0.28	50	13	0.66 (0.41, 0.91)
	Nano-phytoplankton	-1.44 ± 0.26	0.97 (0.57, 1.37)	0.76	0.54	0.87	0.44	45	12	1.12 (0.64, 1.60)
	Pico-phytoplankton	-0.43 ± 0.21	0.53 (0.32, 0.72)	0.62	0.17	0.90	0.22	39	12	0.72 (0.41, 1.03)
	Synechococcus (FCM)	-0.3 ± 0.16	0.43 (0.24, 0.63)	0.52	0.27	0.97	0.21	33	12	0.44 (0.27, 0.61)
	Picoeukaryotes (FCM)	-0.15 ± 0.18	0.33 (0.20, 0.46)	0.57	0.13	0.98	0.10	33	11	0.35 (0.23, 0.48)