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Abstract 18 

Temperature sensitivity of plankton in terms of activation energy (Ea, eV) in the 19 

Arrhenius equation is critical for predicting how marine productivity and carbon export 20 

will respond to ocean warming. In this study, we quantified the temperature responses of 21 

phytoplankton growth rate and microzooplankton grazing rate by conducting short-term 22 

temperature modulation experiments on natural communities at two subtropical sites with 23 

contrasting nutrient conditions. Our results showed that the activation energy of 24 

phytoplankton growth rate (Ea = 0.36 eV, 95% CI = 0.28 to 0.44 eV) at each station was 25 

less than that of microzooplankton grazing rate (Ea = 0.53 eV, 95% CI = 0.47 to 0.59 eV), 26 

indicating an increasing grazing pressure on phytoplankton under warming conditions. 27 

Although the difference is consistent with that reported in previous studies, it is very 28 

likely to arise from another reason, i.e., differential proximities of the optimal 29 

temperature (Topt in nonlinear temperature responses of rates) of phytoplankton and 30 

microzooplankton to the environmental temperature, as we found that the environmental 31 

temperature is closer to the optimal temperature of phytoplankton growth than to that of 32 

microzooplankton grazing in this subtropical environment. Our results suggest that 33 
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nonlinear temperature responses of plankton should be considered when evaluating and 34 

predicting the effects of ocean warming on ecosystem productivity and food web 35 

dynamics, especially in subtropical and tropical waters. 36 

37 
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Introduction 38 

Marine phytoplankton plays a vital role in marine food web and global 39 

biogeochemical cycling (Field et al. 1998). How marine primary production and the 40 

efficiency of marine biological pump will respond to ocean warming strongly depends on 41 

the effect of temperature on phytoplankton growth (Sarmiento et al. 2004; Taucher and 42 

Oschlies 2011; Cael and Follows 2016). Temperature can affect phytoplankton through 43 

both bottom-up and top-down controls. For example, enhanced upper-ocean stratification 44 

in a warming ocean reduces nutrient supply, resulting in the decline of primary 45 

production and phytoplankton biomass (Behrenfeld et al. 2006; Boyce et al. 2010). 46 

Meanwhile, marine zooplankton grazing activities exert a top-down control on 47 

phytoplankton, which is also temperature dependent (Rose and Caron 2007). According 48 

to the Metabolic Theory of Ecology (MTE; Brown et al. 2004), the temperature 49 

sensitivity, in terms of activation energy (Ea, eV), is lower for autotrophic processes (~ 50 

0.32 eV), such as phytoplankton growth, than for heterotrophic processes (~ 0.65 eV), 51 

such as zooplankton grazing activity and respiration (Allen et al. 2005; López-Urrutia et 52 
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al. 2006; Chen et al. 2012). If this were true, warming may exacerbate the top-down 53 

control on phytoplankton biomass, contributing to the decrease of primary production, 54 

which ultimately affects the functioning and services of marine ecosystem. This point has 55 

been used to explain the common occurrence of phytoplankton blooms in cold waters 56 

(Rose and Caron 2007; López-Urrutia 2008) and to predict a more heterotrophic ocean 57 

under projected ocean warming because more CO2 will be released with increasing 58 

upper-ocean temperature (Brown et al. 2004; López-Urrutia et al. 2006). However, the 59 

difference of temperature sensitivity between autotrophic and heterotrophic rates is still 60 

contentious, partly because the estimate of temperature sensitivity is sensitive to the 61 

method used. 62 

The widely used temperature sensitivity (Q10 = 1.88) is estimated from the Eppley 63 

curve by fitting the upper envelope of the maximum growth rate of phytoplankton and 64 

temperature in a laboratory dataset including all kinds of species (Eppley 1972; Rose and 65 

Carron 2007; Bissinger et al. 2008). Instead of focusing on the envelope relationships 66 

across all species, some studies suggested to consider the average rates of species under 67 
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different temperatures, and applied the ordinary least squares (OLS) regression to fit 68 

average growth rate vs. temperature in the laboratory dataset (Sal and López-Urrutia 69 

2011). These studies provided evidence for a lower temperature sensitivity of autotrophic 70 

processes, which were used to predict warming effect on marine ecosystems. However, 71 

the problems hidden in the statistical approach used in the above-mentioned studies when 72 

analyzing the dataset should not be ignored (Chen and Laws 2017). The OLS regression 73 

used in previous studies was usually applied on a pooled dataset including all data pairs 74 

of rates and temperatures to estimate the activation energy without considering the errors 75 

in the predictor (X) and the interdependence among the residuals. As a rule of thumb, the 76 

rates measured for the same taxa or assemblages at different temperatures are more 77 

correlated with each other than with those of different taxa or assemblages at different 78 

temperatures. Thus, using a single regression on a pooled dataset, which contains the 79 

rates of both the same and different taxa or assemblages, usually violates the assumption 80 

of the OLS about the independence of the residuals, resulting in an underestimate of 81 

temperature sensitivity (Chen and Laws 2017). For example, a single OLS regression on 82 
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a pooled dataset of fast-growing diatoms, which can dominate in cold environments, and 83 

of slow-growing cyanobacteria, which tend to dominate in warm environments, will 84 

underestimate the regression slope and hence the temperature sensitivity. Thus, a more 85 

appropriate method to estimate the temperature sensitivity is to average the responses of 86 

individual species to temperatures within a physiologically relevant range (Dell et al. 87 

2011), with the results suggesting that there may be no difference in mean intraspecific 88 

temperature sensitivity between phytoplankton and zooplankton (Chen and Liu 2015, 89 

Chen and Laws 2017). 90 

Although the median values of the intraspecific Ea between phytoplankton growth 91 

rate and zooplankton grazing rate are similar, it does not mean that their Ea should be the 92 

same for all communities. Some analysis based on laboratory culture data suggested that 93 

there is great variability in the Ea of phytoplankton growth around the median value of 94 

0.65 eV, and it varies among different phytoplankton taxa (Dell et al. 2011; Chen and 95 

Laws 2017). Kremer et al. (2017) also found that the estimate of temperature sensitivity 96 

was affected by phytoplankton functional groups. Thus, when estimating the temperature 97 
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sensitivity of in situ phytoplankton communities, a preferable approach is to measure Ea 98 

of natural plankton assemblages instead of laboratory species, to take the community 99 

composition into consideration. When quantifying the temperature sensitivity of natural 100 

assemblages, it is also inappropriate to run a single regression for a pooled dataset 101 

consisting of data pairs collected from different locations at different time points (Rose 102 

and Caron 2007; Chen et al. 2012; Regaudie-De-Gioux and Duarte 2012), due to similar 103 

statistical problems involved in the analysis of laboratory data (Chen and Laws 2017). 104 

The key is that the assemblages used in the analysis should have similar compositions. 105 

For now, the best approach might be to run short-term temperature modulation 106 

experiments to circumvent the issue of community composition shift as shown in Vaquer-107 

Sunyer & Duarte (2013) and Chen & Liu (2015), although acclimation may be a problem 108 

in such experiments. Our previous study at a subtropical coastal site using such approach 109 

(Chen and Liu 2015) provided useful insights into thermal response of the natural 110 

phytoplankton community dominated by diatoms. However, to generalize these patterns, 111 

we need to investigate the temperature sensitivity of plankton in various environments. 112 
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One important component of the present study is to examine the responses of 113 

different size classes of phytoplankton to temperature. Size is usually regarded as the 114 

master trait of phytoplankton (Lichtman and Klausmeier 2008). There are ongoing 115 

debates about the role of temperature in affecting phytoplankton size structure. Marañón 116 

and his colleagues (Marañón et al. 2013, 2014, 2015) strongly believed that nutrient 117 

supply rather than temperature plays the overriding role in determining phytoplankton 118 

size structure, while some scientists argued that the effect of temperature cannot be 119 

totally neglected (Lopez-Urrutia and Morán 2015; Ward 2015). Nonetheless, all the 120 

above-mentioned studies relied on correlations of chlorophyll with temperature and 121 

nutrients. The best evidence should come from the comparison between nutrient- and 122 

temperature-related growth rates of different size classes. As previous studies have 123 

already pointed out that pico-phytoplankton, especially cyanobacteria, has a higher 124 

temperature sensitivity than larger phytoplankton (Kulk et al. 2012; Chen et al. 2014; 125 

Chen and Laws 2017), we expect that different phytoplankton size classes will respond 126 

differently to the same temperature variation. 127 
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With the above points in mind, we compared the acute responses of phytoplankton 128 

growth rate and microzooplankon grazing rate to short-term temperature modulations at 129 

two contrasting subtropical sites in the Hong Kong coastal waters. One site (Western 130 

Estuarine Station, or WE) is located in the downstream of the Pearl River and is 131 

dominated by large phytoplankton, such as diatoms, due to its eutrophic environment 132 

(Chen et al. 2009). The other site (Eastern Oceanic Station, or EO) is jointly affected by 133 

the China Coastal Current and oceanic water from the South China Sea, where the 134 

phytoplankton community is usually nutrient-limited and is dominated by cyanobacteria 135 

Synechoccocus in summer. The dilution technique, the most commonly used method to 136 

directly measure phytoplankton specific growth rate and microzooplankton grazing rate 137 

simultaneously (Landry and Hassett 1982; Calbet and Landry 2004; Laws 2013), was 138 

applied to measure phytoplankton growth rate and grazing loss rate of the whole 139 

phytoplankton community and three different size classes (micro-, nano-, and pico-140 

phytoplankton) at five different temperatures in a range possibly including the 141 

temperature optima of constituent species. We aim to find out the thermal responses of 142 
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growth rate and grazing loss rate of natural phytoplankton assemblages, and to test the 143 

following hypothesis: cyanobacteria should have a higher temperature sensitivity than 144 

other phytoplankton, which can affect the temperature sensitivity of the whole 145 

phytoplankton community. Therefore, the temperature sensitivity of phytoplankton 146 

community at Station EO, which is dominated by small phytoplankton, should be higher 147 

than that at Station WE, which is dominated by large phytoplankton. We expect that at 148 

the eutrophic station WE, the average temperature sensitivity should be roughly equal 149 

between phytoplankton growth and microzooplankton grazing, while at Station EO 150 

dominated by small phytoplankton, the temperature sensitivity of phytoplankton growth 151 

should be a little higher than that of microzooplankton grazing, particularly for the small 152 

size classes. 153 

Materials and Methods 154 

Study sites and measurements of environmental parameters  155 

We evaluated the impacts of temperature on phytoplankton growth rate and 156 

microzooplankton grazing rate at Station WE (22° 21.32'N, 113° 56.78'E) and Station EO 157 
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(22° 20.45'N, 114° 17.70'E), both in the Hong Kong coastal waters. These two stations 158 

have distinct hydrographic and trophic characteristics (Fig. 1). Experiments were 159 

conducted monthly from May 2016 to April 2017. Water temperature and salinity were 160 

measured using a YSI EXO2 multi-probe sensor, which was calibrated before each 161 

sampling. Surface sea water (ca. 30 L) was collected in the polycarbonate carboys from 162 

these two stations, and brought back to the laboratory for the following experiments. The 163 

samples for inorganic nutrients were collected from the sea water filtered through a 0.2 164 

μm filter capsule, stored in -20ºC freezer, and thawed at room temperature prior to 165 

analysis. Inorganic nutrient concentrations including nitrate, nitrite, ammonia, phosphate, 166 

and silicate were measured using a Skalar auto-analyzer (San Plus system, Netherlands) 167 

in the laboratory according to the JGOFS protocol. 168 

Phytoplankton size structure measurements 169 

Phytoplankton were divided into three size classes by filtering 250 mL sea water 170 

sequentially through 20, 2, and 0.2 μm polycarbonate membrane filters (GVS 171 

Corporation) using a vacuum pump under low pressure. The phytoplankton retained on 172 
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the 20, 2, and 0.2 μm filters were defined as micro-, nano-, and pico-phytoplankton, 173 

respectively (Sieburth et al. 1978; Marañón et al. 2001). The biomass of each size class 174 

was represented by Chlorophyll a (Chl a) concentration, which was measured following 175 

the JGOFS protocol. After filtration, each filter was immediately stored in a freezer at -176 

80ºC until further treatment. For pigment extraction, the filters were soaked in 5 mL 90% 177 

acetone at -20ºC in the darkness for 20 hours. After the extraction, the samples were 178 

centrifuged to remove detritus, and the suspensions were then used for measuring 179 

fluorescence using a Turner Designs Model 7200 fluorometer with a non-acidification 180 

module. The fluorometer was checked against a solid standard each time before 181 

measurement (Strickland and Parsons 1972; Ducklow and Dickson 1994). The total 182 

phytoplankton biomass was the sum of Chl a concentrations of the three size classes. 183 

Short-term temperature modulation experiments 184 

Phytoplankton growth rate and microzooplankton grazing rate were estimated at five 185 

different temperatures using the dilution technique (Landry and Hassett 1982). The 186 

temperatures for the experiments were set up according to in situ ambient temperature T, 187 
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which was measured using a YSI EXO2 multi-probe sensor when collecting sea water: T 188 

– 5ºC, T – 3ºC, TºC, T + 3ºC, and T + 5ºC. In summer, T – 7ºC instead of T + 5ºC was 189 

used to minimize the problem of high temperature inhibition. In the dilution experiments, 190 

through diluting the natural sea water with filtered sea water at the same site to several 191 

proportions and incubating the bottles for 24 hours, the net growth rate of phytoplankton 192 

can be calculated. Assuming that phytoplankton growth rate is unaffected by the dilution, 193 

and microzooplankton grazing rate is proportional to the fraction of natural sea water, 194 

both rates can be estimated through the linear regression of net growth rate against the 195 

dilution factors (the proportion of the original unfiltered sea water). In this study, we used 196 

two dilution treatments (15% and 100% of natural sea water) in duplicates of 1.2 L PC 197 

bottles, known as “two-point” dilution technique, which was modified from the original 198 

dilution approach and has been shown to be as accurate as the standard dilution approach 199 

(Landry et al. 1984; Strom and Fredrickson 2008; Sherr et al. 2013; Chen 2015a). 200 

In each set of dilution experiments (five sets for five temperatures in total), sea 201 

water was filtered using a 0.2 μm filter capsule (Pall Corporation) to obtain particle-free 202 
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sea water, and was added into two 1.2 L polycarbonate bottles to a prescribed volume. 203 

These bottles were then filled with unfiltered sea water to full capacity to get a mixture of 204 

85% particle-free sea water and 15% unfiltered sea water that contained natural plankton. 205 

Duplicate 1.2 L polycarbonate bottles filled with unfiltered sea water were prepared for 206 

the 100% dilution treatment (100% natural seawater). During this process, unfiltered sea 207 

water in carboy was gently stirred occasionally and distributed to bottles as evenly as 208 

possible. To ensure sufficient nutrients for phytoplankton growth, especially under higher 209 

temperature incubation conditions, nutrients (NO3
-: 10 μmol L-1, PO4

3-: 1 μmol L-1 in 210 

final concentration) were added into all experimental bottles. Extra duplicated bottles of 211 

100% unfiltered seawater without nutrient amendment were also prepared and incubated 212 

under in situ temperatures to evaluate the influence of adding nutrients. Then, all the 213 

bottles were capped tightly and placed in an incubator that has five independent enclosed 214 

shelves with different temperatures (FIRSTEK) for 24 hours. All five shelves shared the 215 

same light intensity of approximately 100 μmol photons m-2 s-1, which simulated the 216 

average in situ light intensity experienced by phytoplankton in the nature, and a light: 217 
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dark cycle of 14:10. The samples for determining Chl a concentrations of three size 218 

classes (size - fractionated Chl a) were collected from the initial unfiltered seawater, as 219 

well as from each bottle after incubation as described above. Samples for determining 220 

cell abundances of pico-phytoplankton including Synechococcus and pico-eukaryotes 221 

were also collected before and after incubation, and analyzed using a Becton-Dickson 222 

FACSCalibur flow cytometer (details are given in the Supplementary Information). 223 

Experimental equipment including carboys, filters, bottles, and tubing was acid-washed 224 

with 10% HCl, followed by Milli-Q and in situ sea water rinses before each experiment. 225 

Estimates of growth rate and grazing rate  226 

Growth rates and grazing mortality rates of the total phytoplankton and three size 227 

classes were estimated following Landry et al. (2008). Briefly, by assuming exponential 228 

growth for phytoplankton, the net growth rate (k) in each bottle was calculated as 229 

(1/t)ln(P/dP0), where P is the final biomass of the total phytoplankton and/or each of the 230 

three size classes of phytoplankton, which is represented by Chl a concentration or cell 231 

abundance of pico-phytoplankton, P0 is the initial phytoplankton biomass/abundance, d is 232 



 18 

the dilution factor (15% or 100%) of each bottle, and t is the duration of incubation time 233 

(24 hours). The intrinsic growth rate (μn; d
-1) and mortality grazing rate (m; d-1) of 234 

phytoplankton were determined from the linear regression between net growth rate (k) 235 

and dilution factor (d) by assuming an identical intrinsic phytoplankton growth rate in 236 

each bottle. At in situ temperature, the instantaneous growth rate (μ0; d
-1) was calculated 237 

by adding the net growth rate of the bottles without adding nutrients to the mortality 238 

grazing rate (μ0 = m + k 100%-without nutrient addition). 239 

Estimation of temperature sensitivity and optimal temperature (Topt) 240 

According to the MTE, the Boltzmann-Arrhenius (BA) model of biochemical reaction 241 

kinetics can be used to predict thermal responses of metabolism-linked rates within a 242 

physiological temperature range (PTR; the temperature range below optimal temperature) 243 

(Gillooly et al. 2001; Pawar et al. 2016). For the metabolism-linked rate (R), i.e., the 244 

phytoplankton growth rate or microzooplankton grazing rate, the model can be described 245 

as follows: 246 

R = 𝑅0𝑒
−𝐸𝑎
𝑘𝑏𝑇                            (1) 247 
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where R0 is the normalization coefficient that includes the effect of body size, Ea is the 248 

activation energy (eV) that indicates temperature sensitivity, kb is Boltzmann’s constant 249 

(8.617 × 10-5 eV K-1), and T is temperature in Kelvin (K). After logarithmically 250 

transforming the terms on both sides of Eq. (1), the activation energy (Ea) was estimated 251 

as the slope of linear regression of the log-transformed rate against the Boltzmann 252 

temperature -1/kbT (Brown et al. 2004; Kremer et al. 2017). 253 

As the thermal responses of metabolism-linked rates are usually unimodal in a 254 

sufficiently wide temperature range, a unimodal extension of the BA model (Johnson and 255 

Lewin 1946; Dell et al. 2011; Chen and Laws 2017) is used to describe the relationship 256 

between metabolism-linked rates and temperature in a temperature range without 257 

restricting the data to the PTR: 258 

r = 𝑟0
𝑒

𝐸𝑎
𝑘𝑏

(
1
𝑇0

−
1
𝑇
)

1+
𝐸𝑎

𝐸ℎ−𝐸𝑎
𝑒

𝐸ℎ
𝑘𝑏

(
1

𝑇𝑜𝑝𝑡
−
1
𝑇
)
                 (2) 259 

where Topt is the optimal temperature, at which the rate reaches the maximum value; Eh is 260 

added to describe the “steepness” of the decrease of the rate at higher temperature than Topt, 261 

and Ea determines how fast the rate increases with temperature below Topt, which shares 262 
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the same definition with the linear model mentioned above. r is the growth rate or grazing 263 

rate at temperature T. r0 is the normalization constant. Other items are the same as those in 264 

Eq. (1). 265 

In the majority of our experimental groups, the relationship between phytoplankton 266 

growth rate (or microzooplankton grazing rate) and temperature within the 10-degree 267 

thermal range was unimodal. Eq. (2) was used to fit the data in each set of experiments. 268 

Nevertheless, sometimes the estimated values of Ea and Eh were extremely high with high 269 

variance because the temperature range used in the model was relatively small and most of 270 

the data located around the peak of the curve, which only allowed robust estimate of the 271 

optimal temperature (Topt). Insufficient sampling of temperature range was due to the 272 

limitation of the short-term incubation experiments on natural communities. We had to 273 

limit the experimental temperatures to a small range to avoid deteriorating the plankton 274 

community and to be ecologically realistic. Practically, the number of temperature 275 

treatments was restricted by resource and limited manpower. Therefore, the unimodal 276 

function was only used in the estimate of Topt but not of Ea. 277 
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The BA model was applied to estimate Ea of phytoplankton growth rate and 278 

microzooplankton grazing rate through fitting the rate vs. temperature data within the PTR. 279 

The data were restricted to the PTR by removing the rates that surpassed the optimal 280 

temperature from every temperature modulated experiment. Totally, 13 sets of experiments 281 

were conducted at each station, and 37% and 34% of the total data of phytoplankton 282 

community growth rate and microzooplankton grazing rate were excluded from the 283 

calculation. The Ea of each set of experiments was calculated through an OLS linear 284 

regression. As the Ea values at each station varied randomly without apparent seasonal 285 

pattern (Fig. S1), we used the linear mixed effects model treating months as random effects 286 

associated with Ea to estimate the average Ea at each station. This model allows random 287 

variations of both slope and intercept to account for hierarchical data structure, and has 288 

been applied in some studies on data analysis related to MTE (Van de Pol and Wright 2009; 289 

Bates et al. 2014; Kremer et al. 2017). The model for phytoplankton growth rate can be 290 

described as follows: 291 

ln𝜈𝑖,𝑗 = (𝑙𝑛𝜈0 + 𝜆𝐷𝑖 + 𝜃𝜈𝑖) +
𝐸𝑎𝜈+𝛽𝐷𝑖+𝜃𝐸𝑎𝜈𝑖

𝑘𝑏
(
1

𝑇0
−

1

𝑇𝑖,𝑗
) + 𝜀𝑖,𝑗                 (3) 292 
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where  is the growth rate of total phytoplankton or each of the three size classes at the 293 

jth temperature Ti,j in the ith experiment;  is the normalization coefficient at reference 294 

temperature T0 (288.15K); is the mean activation energy for phytoplankton growth 295 

rate; and 𝜃𝜈𝑖 and 𝜃𝐸𝑎𝜈𝑖 represent the deviations of intercept (𝑙𝑛𝜈0) and slope (𝐸𝑎𝜈) in 296 

the ith experiment from the mean, respectively. Di is a dummy variable indicating the 297 

station information. Di is set to 0 at Station EO, and to 1 at Station WE. Thus, λ and β are 298 

the differences in intercept and slope, respectively, between the two stations. Since we 299 

incubated all bottles at the same light condition and added the same concentration of 300 

nutrients (to ensure phytoplankton growth), we did not include the effects of light and 301 

nutrient in this model. 302 

To calculate the temperature sensitivity of microzooplankton grazing rate, 303 

microzooplankton biomass was added to the model as follows: 304 

ln𝑚𝑖,𝑗 = 𝛼ln(𝑀𝑍𝑖) + (𝑙𝑛𝑚0 + 𝜆𝐷𝑖 + 𝜃𝑚𝑖) +
𝐸𝑎𝑚+𝛽𝐷𝑖+𝜃𝐸𝑎𝑚𝑖

𝑘𝑏
(
1

𝑇0
−

1

𝑇𝑖,𝑗
) + 𝜀𝑖,𝑗       (4) 305 

where 𝑚𝑖,𝑗 is the microzooplankton grazing rate at the jth temperature Ti,j in ith experiment, 306 

m0 is the normalization coefficient at reference temperature T0 (288.15K); Eam is the mean 307 
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activation energy for microzooplankton grazing rate; 𝜃𝑚𝑖  and 𝜃𝐸𝑎𝑚𝑖  represent the 308 

random effects of intercept (𝑙𝑛𝑚0) and slope (𝐸𝑎𝑚) in the ith experiment, respectively; MZ 309 

is the microzooplankton biomass in carbon units (µg C L–1) in the ith experiment, which 310 

was estimated based on the microscopic enumeration and bio-volume measurement of the 311 

microzooplankton in each experiment (details are in Supplementary Information); and α is 312 

a constant describing the relationship between grazing rate (m) and biomass (MZ). Dummy 313 

variable (Di) representing the station information is also included in this model as in Eq. 314 

(3). 315 

All statistical analyses were performed using the software R 3.1.2 (Team 2014). The 316 

nonlinear regression analysis was applied using the R function “nls”. The linear mixed 317 

effects model was performed using “lmer” in R package “lme4”. The conditional R2 and 318 

marginal R2 were calculated to assess the goodness of the fit of the model using 319 

“r.squaredGLMM” in the R package “MuMIn” (Nakagawa and Schielzeth 2013). To 320 

compare the activation energies among size classes at each station, Welch’s ANOVA (R 321 

function “oneway.test”) was used instead of the classic one-way ANOVA because the data 322 
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violated the assumption of homogeneity of variance. Finally, Welch’s t-test was performed 323 

to identify the difference of activation energies between every group and every other group 324 

of rates. (Ruxton et al. 2006). 325 

Results 326 

Environmental condition and phytoplankton size structure 327 

Pronounced seasonality was observed at both stations. Sea surface temperatures at 328 

the two stations varied similarly (Fig. 2), but the concentrations of inorganic nutrients 329 

differed dramatically between the two stations (Table S1). Both total dissolved inorganic 330 

nitrogen (TIN, the total concentration of nitrate, nitrite, and ammonia) and phosphate 331 

concentration at Station WE were remarkably higher (ca. 8-fold higher) than those at 332 

Station EO. Total Chl a concentration was also much higher at Station WE (7.58 ± 8.53 333 

µg L-1, range: 0.97-30.31 µg L-1) than at Station EO (3.14 ± 1.89 µg L-1, range: 1.13-7.06 334 

µg L-1) (Fig. 2). Micro-phytoplankton (> 20 µm) accounted for the major proportion of 335 

the phytoplankton biomass at both stations, and were more dominant at Station WE (WE: 336 

44% ± 28%; EO: 38% ± 23%). Total Chl a concentration was positively correlated with 337 
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the concentration of micro-phytoplankton at Station WE, while it was correlated with the 338 

concentration of nano-phytoplankton at Station EO, where nano-phytoplankton 339 

accounted for 30% ± 16% of the total. Flow cytometric analysis demonstrated that 340 

Synechococcus was more abundant in summer at both stations, and their cell 341 

concentrations were positively correlated with temperatures (Spearman rank correlation 342 

test, for EO, r = 0.91, p < 0.001; for WE, r = 0.95, p < 0.001) (Fig. S2). 343 

Temperature sensitivity of phytoplankton community growth rate and grazing mortality 344 

rate by microzooplankton 345 

Monthly Ea varied randomly without any discernable trend at both stations (Fig. S1). 346 

Based on the linear mixed effects model (Eqs. 3, 4), the mean Ea of the whole 347 

phytoplankton growth rate was 0.35 eV (95% CI = 0.24 to 0.46 eV) at Station EO and 348 

was 0.37 eV (95% CI = 0.27 to 0.48 eV) at Station WE (Table 1, Fig. 3). No significant 349 

difference was found between these two stations (p value for β in Eq. 3: p > 0.05), which 350 

contrasted with our initial expectation. Both fixed and random effects in the mixed effects 351 

model explained about 90% variance of the whole phytoplankton community growth rate, 352 
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but only ~50% of the total variance can be interpreted by the fixed effects at each station, 353 

which suggested the importance of random effects (Table 1). 354 

Surprisingly, microzooplankton biomass did not play a significant role in the model 355 

predicting grazing rate at Station EO (χ2 = 0.45, p > 0.05). Although it was found 356 

significant at Station WE (χ2 = 6.23, p < 0.05), the results were not much different from 357 

the ones without microzooplankton biomass (Welch’s t-test, p > 0.05). Hence, the 358 

variable of microzooplankton biomass was removed from the models. The average Ea of 359 

microzooplankton grazing rate also showed no significant difference between the two 360 

stations (EO: 0.64 eV, 95% CI = 0.38 to 0.89 eV; WE: 0.57 eV, 95% CI = 0.36 to 0.78 361 

eV; p value for β in Eq. 4: p > 0.05; Table 2, Fig. 4), which agreed with the canonic value 362 

(0.65 eV) of MTE at both stations. 363 

At each station, Ea of bulk phytoplankton growth rate was significantly lower than 364 

that of microzooplankton grazing rate (Welch’s t-test, EO: p = 0.037 < 0.05; WE: p = 365 

0.019 < 0.05; Fig. 5), which again differed from our hypothesis. As such, the percentage 366 

of phytoplankton consumed by microzooplankton, which is represented by m: µ (Calbet 367 
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and Landry 2004), increased with rising temperature in each group. The result of the 368 

linear mixed effects model using Eq. (3) on m: µ, exhibiting the distance in activation 369 

energy between growth rate and grazing rate (∆Ea = Em - Eµ), was 0.30 eV (95% CI = 370 

0.16 to 0.44 eV), which further supported that microzooplankton grazing rate was more 371 

sensitive to temperature increase compared with phytoplankton growth rate. 372 

Temperature sensitivity of growth rate and grazing mortality rate by microzooplankton of 373 

three size classes of phytoplankton 374 

The mean Ea values of phytoplankton growth rate at both stations differed for the 375 

three size classes (Table 1, Fig. 5). At Station WE, only micro-phytoplankton growth rate 376 

was less sensitive to temperature increase than the grazing rate (0.34 eV, 95% CI = 0.25 377 

to 0.43 eV, Table 1, Fig. S3a). This was consistent with the whole phytoplankton 378 

community growth rate (Welch’s t-test, p > 0.05) due to the dominance of micro-379 

phytoplankton. The Ea values of nano- and pico-phytoplankton growth rates were slightly 380 

higher than that of the whole phytoplankton community (Table 1; Welch’s t-test, nano: p 381 

= 0.009 < 0.01; pico: p = 0.047 < 0.05). While at Station EO, Ea of pico-phytoplankton 382 
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growth rate was the closest to that of the whole phytoplankton community (0.31 eV, 95% 383 

CI = 0.16 to 0.46 eV; Welch’s t-test, p > 0.05), and the growth rate of micro-384 

phytoplankton had a significantly higher value than that of the whole phytoplankton (0.52 385 

eV, 95% CI = 0.33 to 0.7 eV, Welch’s t-test, p = 0.001< 0.01). However, Ea of micro-386 

phytoplankton may be biased because of its data structure (Fig S3a). In the estimate of Ea, 387 

since data should be restricted to below optimal temperature to meet the requirement of 388 

the BA model, there were only two data points remained in some groups. Estimates based 389 

on restricted dataset in which at least three points were required were also carried out to 390 

examine the accuracy of our results (Table S2). No significant changes were observed in 391 

these estimates except for Ea of micro-phytoplankton growth rate with a value of 0.22 eV 392 

(95% CI = 0.06 to 0.38 eV). Therefore, more observations were required to confirm the 393 

Ea value of micro-phytoplankton growth rate at Station EO. The temperature sensitivity 394 

of Synechococcus was significantly greater than that of the whole phytoplankton 395 

community and that of pico-phytoplankton at both stations (Welch’s t-test, p < 0.001; 396 

Fig. 5). These results were in concordance with previous studies (Kulk et al. 2012; Chen 397 
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et al. 2014; Stawiarski et al. 2016; Chen and Laws 2017), which revealed that 398 

cyanobacteria has a lower growth rate but higher temperature sensitivity than large 399 

eukaryotic phytoplankton such as diatoms. 400 

No pronounced difference was found in Ea of microzooplankton grazing rates of 401 

three size classes at Station EO (Welch’s ANOVA, p > 0.05). The Ea value of grazing 402 

rate on nano-phytoplankton was slightly higher than that of nano-phytoplankton growth 403 

rate (Welch’s t-test, p =0.038 < 0.05; Fig. 5). At Station WE, the grazing rate on nano-404 

phytoplankton had a high Ea value (0.97 eV, 95% CI = 0.57 to 1.37 eV, Fig. S4b). The Ea 405 

values for the other size classes and Synechococcus showed no obvious differences from 406 

that for the grazing rates on community and were close to the predicted values. 407 

Optimal temperatures of phytoplankton growth rate and grazing mortality rate by 408 

microzooplankton 409 

The nonlinear least-squares regression model was used to fit the data of each set of 410 

experiments when there was a unimodal relationship between growth rate (or grazing 411 

rate) and temperature (solid lines in Figs. 3, 4). The optimal temperatures for growth rate 412 
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and grazing rate were obtained from the nonlinear models. The overall mean optimal 413 

temperature of phytoplankton community growth rate was 23.7 ± 3.2ºC, significantly 414 

lower than that of microzooplankton grazing rate (25.9 ± 4ºC; paired t-test, df = 20, p = 415 

0.013 < 0.05; Fig. 6). The optimal temperatures of both growth rate and grazing rate were 416 

positively correlated with the environmental temperature (growth rate: r = 0.88, df = 23, p 417 

< 0.001; grazing rate: r = 0.88, df = 20, p < 0.001; Fig. S5). For the three phytoplankton 418 

size classes, their growth rates showed slightly lower optimal temperatures compared 419 

with corresponding grazing rates, but the difference was not significant. For 420 

Synechococcus and pico-eukaryotes, no difference was observed in the optimal 421 

temperatures between growth rate and grazing rate. 422 

Discussion 423 

Implications of different thermal sensitivity of phytoplankton growth rate and 424 

microzooplankton grazing rate 425 

Predicting how marine primary production, the efficiency of biological pump and 426 

food web stability respond to the projected warming entails reliably quantifying the 427 
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temperature sensitivity of various plankton rates, especially phytoplankton growth rate. 428 

Accurately estimating the temperature sensitivity requires us to be aware of the potential 429 

statistical problems in previous analyses (Chen and Laws 2017). In the current study, we 430 

used a short-term temperature modulation approach to minimize the statistical problems 431 

as much as possible, and to circumvent the issue of community structure shift under 432 

warming conditions. Our results showed that at the community level, the average 433 

temperature sensitivity of phytoplankton growth rate was 0.35 eV, lower than that of 434 

microzooplankton grazing rate at the two contrasting stations in the subtropical coastal 435 

waters. At the face value, this difference seems consistent with the classic conception of 436 

lower temperature sensitivity of autotrophs (Allen et al. 2005; Rose and Caron 2007; 437 

Yvon-Durocher et al. 2010; Chen et al. 2012; Regaudie-De-Gioux and Duarte 2012), 438 

which has strong implications for the effect of warming on some critical ecosystem 439 

processes, such as net community production (López-Urrutia et al. 2006; Regaudie-De-440 

Gioux and Duarte 2012) and the efficiency of the biological pump (Laws et al. 2000; 441 

Cael and Follows 2016). Different thermal responses of phytoplankton and their 442 
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predators would also affect the dynamics and stability of marine food webs under global 443 

warming (Vasseur and McCann 2005; Rose and Caron 2007; Fussmann et al. 2014). Due 444 

to the lower temperature sensitivity, more phytoplankton biomass would subject to 445 

microzooplankton grazing as temperature increases, which would reduce possible 446 

occurrences of phytoplankton blooms under warming in the eutrophic coastal waters 447 

(Rose and Caron 2007; Cloern 2018). Nevertheless, the above speculations are based on 448 

projected transient responses. In the future, it is necessary to take into account thermal 449 

adaptive behaviors of phytoplankton for predicting warming effects on plankton 450 

ecosystems (García et al. 2018). 451 

Why is phytoplankton temperature sensitivity lower? – Influence of optimal temperature 452 

on estimating activation energy 453 

It is intriguing that our results still predict lower Ea of phytoplankton than that of 454 

microzooplankton even though we tried our best to minimize the statistical problems and 455 

took into account the influences of community composition (Chen and Laws 2017). We 456 

believe that the main reason is related to the effects of optimal temperature (Topt) of 457 
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growth rate. Based on the nonlinear thermal response function that is extended from the 458 

Arrhenius equation (Johnson and Lewin 1946; Dell et al. 2011; Chen and Laws 2017): 459 

𝑙𝑛𝜇 = 𝑙𝑛 +
Ea

kb
(
1

T0
−

1

T
)-𝑙𝑛[1 +

Ea

Eh−Ea
e
Eh
kb
(

1

Topt
−
1

T
)
]                          (5) 460 

it is clear that the apparent slope of the linear regression of log-transformed growth rate 461 

(lnµ) against Boltzmann temperature (
1

𝑘𝑏
(
1

𝑇0
−

1

𝑇
)) is affected not only by Ea but also by 462 

Topt. When T << Topt , the apparent linear slope is close to Ea. But when T approaches Topt, 463 

the last term in Eq. (5) becomes significantly positive, leading to reduction of the 464 

apparent linear slope. When T > Topt, the slope eventually becomes negative. In addition, 465 

the apparent linear slope also depends on the temperature range of the experiments, 466 

which is necessarily small in our studies due to the concern of short-term thermal shock. 467 

This phenomenon has been observed previously (Pawar et al. 2016). It has been 468 

repeatedly reported that Topt of many organisms including phytoplankton becomes closer 469 

to environmental temperature in warm environments (Deutsch et al. 2008; Huey et al. 470 

2009; Thomas et al. 2012; Chen 2015b). As a consequence, the reduced sensitivity of 471 
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phytoplankton growth rate to temperature should be a universal pattern in subtropical and 472 

tropical environments. 473 

The observed differences of temperature sensitivity (i.e., the apparent Ea estimated 474 

from the linear regression), hence, can be well explained by the discrepancy of Topt 475 

between microzooplankton and phytoplankton. Topt of microzooplankton grazing rate 476 

(17.3-32.2ºC) was higher than that of phytoplankton growth rate (18.2-29.6ºC) in our 477 

study (Fig. 6). Thus, higher Topt of microzooplankton relative to the environment 478 

temperature T in Eq. (5) would result in a higher apparent linear slope compared with that 479 

of phytoplankton. Physiologically, the lower Topt of phytoplankton might be related to the 480 

substantial requirement for RubisoCO enzyme at high temperature (Flynn and Raven 481 

2016). In laboratory experiments, it is also true that Topt of zooplankton was higher than 482 

that of phytoplankton or even cannot be observed in some designed experimental 483 

temperature range (Renaud et al. 2002; Chen and Laws 2017). Difference in the optimal 484 

temperatures between phytoplankton and microzooplankton holds the potential to 485 

influence the dynamics of microbial food web under climate warming. The 486 
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microzooplankton grazing rate would keep rising to reach its maximum when 487 

temperature increases, while the phytoplankton growth is prone to deviate away from its 488 

best fitness because it is more likely that the increased temperature can surpass the 489 

optima. Thus, more phytoplankton biomass would be consumed by enhanced 490 

microzooplankton grazing activities in a warming future. In addition, the ratio of m:µ, 491 

which represents the grazing impact of microzooplankton on phytoplankton, also 492 

increases with temperature and has a high optimal temperature (26.2 ± 3.6ºC), indicating 493 

an increasing grazing pressure on phytoplankton under warming conditions. Interestingly, 494 

Boersma et al. (2016) suggested that when going up the trophic level, fish also seem to 495 

have much higher Topt than phytoplankton under the same environmental temperature. 496 

Further considering the evolution of endothermy, we suspect that as organisms evolve 497 

from unicellular to more complicated forms that confer them maintain a higher body 498 

temperature than the environment, their Topt might also evolve to be higher to take 499 

advantage of the greater fitness under higher temperature (Huey and Kingsolver 1989).  500 
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It is a challenging question why in our earlier investigation (Chen and Liu 2015), few 501 

incidences of Topt were observed for both phytoplankton and microzooplankton (i.e., the 502 

rates kept increasing with temperature in most experiments). The most likely reason is 503 

that Topt was much higher than the environmental temperature in the study region 504 

investigated in Chen & Liu (2015), leaving few opportunities to capture Topt within the 505 

designed experimental temperature range. Some studies have suggested a considerably 506 

larger discrepancy between the environmental temperature and optimal temperature for 507 

the phytoplankton living in polar and temperate waters where the annual mean 508 

temperature is under ~25°C (see Fig. 2A in Thomas et al. 2012). Although the study 509 

region in Chen & Liu (2015) was in the subtropical waters, the annual mean temperature 510 

(20.2 ± 5.4°C) was lower than 25°C, and also lower compared with that of the current 511 

study region (25 ± 4.3°C). In addition, the study site in Chen & Liu (2015) was extremely 512 

eutrophic, with nitrate concentration always exceeding 15 µmol L-1. It was also found 513 

that less nutrient availability can reduce Topt for phytoplankton (Thomas et al. 2017). 514 
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Thus, the lower Topt observed in the present study probably is related to the mesotrophic 515 

nature of the study region. 516 

Different temperature sensitivities among three size classes of phytoplankton at the two 517 

stations 518 

Community composition plays an important role in determining the temperature 519 

sensitivity of phytoplankton growth rate in natural environments (Chen and Laws 2017). 520 

We hypothesized that the phytoplankton community at Station EO dominated by small 521 

phytoplankton, mainly by cyanobacteria, would be more sensitive to temperature increase 522 

than that at Station WE, which was dominated by larger phytoplankton such as diatoms. 523 

However, the estimated Ea for phytoplankton growth rate of the whole community was 524 

not significantly different at the two stations, and was lower than that of 525 

microzooplankton grazing rate (Tables 1, 2, Fig. 5). This suggests that the influence of 526 

nonlinear temperature response (i.e., Topt) is much greater than that of community 527 

structure. 528 
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The Ea value of phytoplankton growth rate varied among different size classes or 529 

groups. Nano- and pico-phytoplankton growth rates showed higher Ea than micro-530 

phytoplankton growth rate at Station WE (Fig. 5b), which could drive an increase in the 531 

contribution of small phytoplankton to the bulk biomass, and shift the community 532 

structure under climate warming. It has also been shown that small phytoplankton 533 

increased with increasing temperature in mesocosm experiments using either marine and 534 

freshwater plankton communities (Sommer and Lengfellner 2008; Yvon-Durocher et al. 535 

2011). The underlying mechanism could be a combination of faster response of small 536 

phytoplankton to warmer temperature and enhanced grazing pressure on large 537 

phytoplankton due to the difference in temperature sensitivities between micro-538 

phytoplankton and their predators (Fig. 5). Because small phytoplankton are less prone to 539 

sinking and would accelerate nutrient regeneration by stimulating the growth of 540 

microzooplankton, ocean warming, by shifting the phytoplankton community to smaller 541 

sizes, would reduce the efficiency of carbon export (Laws et al. 2000).  542 

Cyanobacteria having high temperature sensitivity 543 



 39 

The estimated activation energy of Synechococcus growth rate was consistently high 544 

at both stations (EO: 0.58 eV, 95% CI = 0.36 to 0.80 eV; WE: 0.54 eV, 95% CI = 0.41 to 545 

0.67 eV; Fig. 5), close to the canonic value of 0.65 eV and in line with previous studies of 546 

both freshwater and marine cyanobacteria (Joehnk et al. 2008; Chen et al. 2014; Chen 547 

and Laws 2017). It has also been found that several eukaryotic strains isolated from the 548 

oligotrophic ocean have lower temperature coefficient (Q10) than pico-prokaryotes, 549 

including Synechococcus and Prochlorococcus (Kulk et al. 2012; Stawiarski et al. 2016). 550 

Similar results were observed at Station EO (Fig. 5a), which is closer to the open ocean. 551 

Some studies pointed out that cyanobacteria have relatively higher Topt than pico-552 

eukaryotes, which relieves them from high temperature inhibition in (sub)tropical 553 

environments (Chen et al. 2014; Chen and Laws 2017). Thus, it is not surprising to find 554 

its peak abundance in summer in coastal waters (Fig. S2; Agawin et al. 1998; Chen et al. 555 

2009; Chen et al. 2014), and its abundance increases with rising annual mean temperature 556 

under nutrient-sufficient conditions (Li 1998). 557 
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Potential problems in the estimate of Ea in such short-term temperature modulation 558 

experiments 559 

Every methodology may have its own bias or drawback. For the incubation method 560 

we used, one problem might be the latent influence of the resource supply such as light 561 

and nutrients on the estimate of Ea. The effects of temperature on phytoplankton growth 562 

usually interact with light and nutrients. The interactive effects on growth are 563 

complicated as they are not simple combination of additive effects (Thomas et al. 2017). 564 

Practically, this study focused on the effect of temperature on phytoplankton growth 565 

under replete resource supply. Thus, additional nutrients were added to ensure sufficient 566 

nutrients for phytoplankton growth. Although the light intensity (about 100 μmol photons 567 

m-2 s-1) used in the experiments may not be sufficient for some phytoplankton species 568 

during the incubation, especially when temperature increases (Collins and Boylen 1982), 569 

it was assumed to be saturating irradiance for the growth of phytoplankton community in 570 

some studies (Edwards et al. 2016). We also assumed that the effect of light should be 571 

negligible in the estimate of Ea in our study. Actually, as the light intensity was set to 572 
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imitate the in situ situation experienced by the phytoplankton, which were continuously 573 

mixed within the mixed layer at a time scale less than 24 hours (Franks 2015; Chen and 574 

Smith 2018), our estimates could be more relevant to the in situ conditions. Recent 575 

studies found that nutrient-limitation or light-limitation would reduce the optimal 576 

temperature of phytoplankton growth and diminish the temperature sensitivity (Edwards 577 

et al. 2016; Thomas et al 2017). If so, the lower temperature sensitivity and optimal 578 

temperature for phytoplankton growth found in the current study may be more critical 579 

when involving the effects of resource supply in the real ocean. 580 

Another problem is the possible damage to plankton community caused by the 581 

temperature manipulation especially temperature extremes, which could impose “thermal 582 

shock” to the plankton. To alleviate this problem, the experimental temperature gradients 583 

were prudently designed to be confined to small deviations from the in situ temperature. 584 

The experimentally elevated temperatures would not cause damage to the majority of 585 

plankton in our experiments because significant increase of phytoplankton biomass can 586 

be observed after incubation. Our estimates of Ea were consistent with many previous 587 
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studies, such as Laws et al. (2000), Allen et al. (2005), Lopez-Urrutia et al. (2006), Rose 588 

and Caron (2007), Cael and Follows (2016), and Kremer et al. (2017), although for 589 

different reasons, which suggested that the problem of temperature manipulation did not 590 

bias the estimate of Ea substantially. However, the restricted temperature range might 591 

lead to high variation (uncertainty) of the estimates of Ea. Moreover, as ocean warming is 592 

very slow relative to warming used in the experimental design, the results of such short-593 

term experiments should be applied cautiously in predicting the effects of warming on the 594 

marine plankton on a long-term scale. Despite the above-mentioned issues of short-term 595 

experiments, our estimates provide some useful information about the temperature 596 

sensitivity, which is an important trait of the plankton community to predict how the 597 

marine ecosystem responds to ocean warming. 598 

Conclusion 599 

Our results suggest that the heterotrophs are more sensitive to the increase of 600 

temperature than the autotrophs in the subtropical regions even when the statistical 601 

problems were minimized and the community composition was taken into consideration 602 
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in our experiments. This difference arises due to a new problem that is the different 603 

discrepancies of the optimal temperature of phytoplankton and microzooplankton to the 604 

environmental temperature. It does not suggest the above-mentioned statistical problems 605 

do not occur in previous studies. 606 

Our study highlights the importance of considering nonlinear temperature responses 607 

when estimating the temperature sensitivity of plankton in the subtropical and tropical 608 

regions, where environmental temperatures are often close to the optimal temperature of 609 

phytoplankton, but probably less so for zooplankton. This has significant implications for 610 

the impact of global warming on ocean ecosystems. We expect that warming will 611 

continue to shift phytoplankton to small size (cyanobacteria) and microzooplankton will 612 

probably flourish, leading to a more active microbial loop. How these repercussions will 613 

affect key ocean ecosystem functioning, such as the marine biological pump or fishery, 614 

remains important tasks for oceanographers and ecologists. 615 

  616 



 44 

References 617 

Agawin, N. S. R., C. M. Duarte, and S. Agusti. 1998. Growth and abundance of 618 

Synechococcus sp. in a Mediterranean Bay: seasonality and relationship with 619 

temperature. Mar. Ecol. Prog. Ser. 170: 45-53. doi: 10.3354/meps170045 620 

Allen, A. P., J. F. Gillooly, and J. H. Brown. 2005. Linking the global carbon cycle to 621 

individual metabolism. Funct. Ecol. 19: 202-213. doi: 10.1111/j.1365-622 

2435.2005.00952.x 623 

Bates, D., M. Maechler, B. Bolker, and S. Walker. 2014. lme4: Linear mixed-effects 624 

models using Eigen and S4. R package version 1: 1-23. 625 

Behrenfeld, M. J., R. T. O'Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. 626 

Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss. 2006. 627 

Climate-driven trends in contemporary ocean productivity. Nature 444: 752-755. 628 

doi: 10.1038/nature05317 629 

Bissinger, J. E., D. J. Montagnes, J. harples, and D. Atkinson. 2008. Predicting marine 630 

phytoplankton maximum growth rates from temperature: Improving on the Eppley 631 



 45 

curve using quantile regression. Limnol. Oceanogr. 53(2), 487-493. doi: 632 

10.4319/lo.2008.53.2.0487  633 

Boersma, M., N. Grüner, N. T. Signorelli, P. E. M. González, M. A. Peck, and K. H. 634 

Wiltshire 2016. Projecting effects of climate change on marine systems: is the mean 635 

all that matters? Proc. R. Soc. B, 283(1823), 20152274. doi: 636 

10.1098/rspb.2015.2274 637 

Boyce, D. G., M. R. Lewis, and B. Worm. 2010. Global phytoplankton decline over the 638 

past century. Nature 466: 591-596. doi: 10.1038/nature09268 639 

Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West. 2004. Toward a 640 

metabolic theory of ecology. Ecology 85: 1771-1789. doi: 10.1890/03-9000 641 

Cael, B. B. and M. J. Follows. 2016. On the temperature dependence of oceanic export 642 

efficiency. Geophys. Res. Lett. 43(10): 5170-5175. doi: 10.1002/2016GL068877 643 

Calbet, A., and M. R. Landry. 2004. Phytoplankton growth, microzooplankton grazing, 644 

and carbon cycling in marine systems. Limnol. Oceanogr. 49: 51-57. doi: 645 

10.4319/lo.2004.49.1.0051 646 



 46 

Chen, B. Z., M. R. Landry, B. Q. Huang, and H. B. Liu. 2012. Does warming enhance the 647 

effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol. 648 

Oceanogr. 57: 519-526. doi: 10.4319/lo.2012.57.2.0519 649 

Chen, B. Z., and E. A. Laws. 2017. Is there a difference of temperature sensitivity between 650 

marine phytoplankton and heterotrophs? Limnol. Oceanogr. 62: 806-817. doi: 651 

10.1002/lno.10462 652 

Chen, B. Z., H. B. Liu, B. Q. Huang, and J. Wang. 2014. Temperature effects on the growth 653 

rate of marine picoplankton. Mar. Ecol. Prog. Ser. 505: 37-47. doi: 654 

10.3354/meps10773 655 

Chen, B. Z., H. B. Liu, M. R. Landry, M. Chen, J. Sun, L. Shek, X. H. Chen, and P. J. 656 

Harrison. 2009. Estuarine nutrient loading affects phytoplankton growth and 657 

microzooplankton grazing at two contrasting sites in Hong Kong coastal waters. 658 

Mar. Ecol. Prog. Ser. 379: 77-90. doi: 10.3354/meps07888 659 



 47 

Chen, B. Z., and K. L. Liu. 2015. Responses of autotrophic and heterotrophic rates of 660 

plankton from a subtropical coastal site to short-term temperature modulations. Mar. 661 

Ecol. Prog. Ser. 527: 59-71. doi: 10.3354/meps11218 662 

Chen, B. Z. 2015a. Assessing the accuracy of the “two‐point” dilution technique. Limnol. 663 

Oceanogr.: Methods. 13: 521-526. doi: 10.1002/lom3.10044 664 

Chen, B. Z. 2015b. Patterns of thermal limits of phytoplankton. J. Plankton Res. 37(2), 665 

285-292. doi:10.1093/plankt/fbv009 666 

Chen, B. Z., S. L. Smith, and K. W. Wirtz. 2018. Effect of phytoplankton size diversity on 667 

primary productivity in the North Pacific: trait distributions under environmental 668 

variability. Ecol. Lett. doi:10.1111/ele.13167 669 

Cloern, J. E. 2018. Why large cells dominate estuarine phytoplankton. Limnol. Oceanogr. 670 

63(S1): S392-S409. doi: 10.1002/lno.10749 671 

Collins, C. D., and C. W. Boylen. 1982. Physiological responses of Anabaena variabilis 672 

(Cyanophyceae) to Instantaneous Exposure to Various combinations of light 673 



 48 

intensity and temperature. J. Phycol 18(2), 206-211. doi:10.1111/j.1529-674 

8817.1982.tb03175.x 675 

Dell, A. I., S. Pawar, and V. M. Savage. 2011. Systematic variation in the temperature 676 

dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. USA 108: 677 

10591-10596. doi: 10.1073/pnas.1015178108 678 

Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak, 679 

and P. R. Martin. 2008. Impacts of climate warming on terrestrial ectotherms across 680 

latitude. Proc. Natl. Acad. Sci. USA 105: 6668-6672. doi: 681 

10.1073/pnas.0709472105 682 

Ducklow, H., and A. Dickson. 1994. Chapter 14. Measurement of chlorophyll a and 683 

paeopigments by fluorometric analysis, p. 119-122. In A. Knap, A. Michaels, A. 684 

Close, H. Ducklow, and A. Dickson. [eds.], Protocols for the Joint Global Ocean 685 

Flux Study (JGOFS) core measurements. UNESCO. 686 



 49 

Edwards, K. F., M. K. Thomas, C. A. Klausmeier, and E. Litchman. 2016. Phytoplankton 687 

growth and the interaction of light and temperature: A synthesis at the species and 688 

community level. ? Limnol. Oceanogr. 61(4), 1232-1244. doi: 10.1002/lno.10282 689 

Eppley, R. W. 1972. Temperature and phytoplankton growth in the sea. Fish. bull, 70(4), 690 

1063-1085. 691 

Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski. 1998. Primary production 692 

of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237-693 

240. doi: 10.1126/science.281.5374.237 694 

Franks, P. J. 2014. Has Sverdrup's critical depth hypothesis been tested? Mixed layers vs. 695 

turbulent layers. ICES J Mar. Sci. 72(6), 1897-1907. doi: 10.1093/icesjms/fsu175 696 

Flynn, K. J., and J. A. Raven, 2016. What is the limit for photoautotrophic plankton growth 697 

rates? J. Plankton Res. 39(1), 13-22. 10.1093/plankt/fbw067 698 

Fussmann, K. E., F. Schwarzmüller, U. Brose, A. Jousset, and B. C. Rall. 2014. Ecological 699 

stability in response to warming. Nat. Clim. Change, 4(3), 206. doi: 700 

10.1038/nclimate2134 701 



 50 

García, F. C., E. Bestion, R. Warfield, and G. Yvon-Durocher. 2018. Changes in 702 

temperature alter the relationship between biodiversity and ecosystem functioning. 703 

Proc. Natl. Acad. Sci. USA. 115(43), 10989-10994. doi: 0.1073/pnas.1805518115 704 

Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov. 2001. Effects 705 

of size and temperature on metabolic rate. Science 293: 2248-2251. doi: 706 

10.1126/science.1061967 707 

Huey, R. B., and J. G. Kingsolver. 1989. Evolution of thermal sensitivity of ectotherm 708 

performance. Trends Ecol. Evol. 4(5), 131-135. doi: 10.1016/0169-709 

5347(89)90211-5  710 

Huey, R. B., C. A. Deutsch, J. J. Tewksbury, L. J. Vitt, P. E. Hertz, H. J. Á. Pérez, and T. 711 

Garland. 2009. Why tropical forest lizards are vulnerable to climate warming. Proc. 712 

R. Soc. B 276, 1939-1948. doi:10.1098/rspb.2008.1957  713 

Joehnk, K. D., J. Huisman, J. Sharples, B. Sommeijer, P. M. Visser, and J. M. Stroom. 714 

2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Chang. 715 

Biol. 14: 495-512. doi: 10.1111/j.1365-2486.2007.01510.x 716 



 51 

Johnson, F. H., and I. Lewin. 1946. The growth rate of E. coli in relation to temperature, 717 

quinine and coenzyme. J. Cell. Physiol. 28: 47-75. doi: 10.1002/jcp.1030280104 718 

Kremer, C. T., M. K. Thomas, and E. Litchman. 2017. Temperature‐and size‐scaling of 719 

phytoplankton population growth rates: Reconciling the Eppley curve and the 720 

metabolic theory of ecology. Limnol. Oceanogr. 62(4), 1658-1670. doi: 721 

10.1002/lno.10523 722 

Kulk, G., P. de Vries, W. H. van de Poll, R. J. W. Visser, and A. G. J. Buma. 2012. 723 

Temperature-dependent growth and photophysiology of prokaryotic and eukaryotic 724 

oceanic picophytoplankton. Mar. Ecol. Prog. Ser. 466: 43-55. doi: 725 

10.3354/meps09898 726 

Landry, M. R., and R. P. Hassett. 1982. Estimating the grazing impact of marine micro-727 

zooplankton. Mar. Biol. 67: 283–288. doi:10.1007/BF00397668 728 

Landry, M. R., S. L. Brown, Y. M. Rii, K. E. Selph, R. R. Bidigare, E. J. Yang, and M. P. 729 

Simmons. 2008. Depth-stratified phytoplankton dynamics in Cyclone Opal, a 730 



 52 

subtropical mesoscale eddy. Deep-Sea Res. II 55: 1348-1359. doi: 731 

10.1016/j.dsr2.2008.02.001 732 

Landry, M. R., L. W. Haas, and V. L. Fagerness. 1984. Dynamics of Microbial Plankton 733 

Communities - Experiments in Kaneohe Bay, Hawaii. Mar. Ecol. Prog. Ser. 16: 734 

127-133. doi: 10.3354/meps016127 735 

Laws, E. A., P. G. Falkowski, J. W. O. Smith, H. Ducklow, and J. J. McCarthy. 2000. 736 

Temperature affects export production in the open ocean. Global Biogeochem. 737 

Cycles. 14: 1231–1246. doi:10.1029/1999GB001229 738 

Laws, E. A. (2013). Evaluation of in situ phytoplankton growth rates: a synthesis of data 739 

from varied approaches. Annu. Rev. Mar. Sci. 5, 247-268. doi: 10.1146/annurev-740 

marine-121211-172258 741 

Li, W. K. 1998. Annual average abundance of heterotrophic bacteria and Synechococcus 742 

in surface ocean waters. Limnol. Oceanogr. 43(7), 1746-1753. doi: 743 

10.4319/lo.1998.43.7.1746 744 



 53 

Litchman, E., and C. A. Klausmeier. 2008. Trait-based community ecology of 745 

phytoplankton. Ann. Rev. Ecol. Evol. Syst. 39: 615-639. doi: 746 

10.1146/annurev.ecolsys.39.110707.173549 747 

López-Urrutia, Á., E. San Martin, R. P. Harris, and X. Irigoien. 2006. Scaling the metabolic 748 

balance of the oceans. Proc. Natl. Acad. Sci. USA 103: 8739-8744. doi: 749 

10.1073/pnas.0601137103 750 

López-Urrutia, Á. 2008. The metabolic theory of ecology and algal bloom formation. 751 

Limnol. Oceanogr. 53: 2046-2047. doi: 10.4319/lo.2008.53.5.2046 752 

López-Urrutia, Á., and X. A. G. Morán. 2015. Temperature affects the size-structure of 753 

phytoplankton communities in the ocean. Limnol. Oceanogr. 60: 733–738. doi: 754 

10.1002/lno.10049 755 

Marañón, E., P. Cermeño, D. C. López‐Sandoval, T. Rodríguez‐Ramos, C. Sobrino, M. 756 

Huete-Ortega, J. M. Blanco, and J. Rodríguez. 2013. Unimodal size scaling of 757 

phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. 758 

Lett. 16: 371-379. doi: 10.1111/ele.12052 759 



 54 

Marañón, E., P. Cermeño, M. Huete-Ortega, D. C. López‐Sandoval, B. Mouriño-760 

Carballido, and T. Rodríguez‐Ramos. 2014. Resource supply overrides temperature 761 

as a controlling factor of marine phytoplankton growth. PLoS One 9: e99312. doi: 762 

10.1371/journal.pone.0099312 763 

Marañón, E., P. Cermeño, M. Latasa, and R. D. Tadonléké. 2015. Resource supply alone 764 

explains the variability of marine phytoplankton size structure. Limnol. Oceanogr. 765 

60: 1848–1854. doi:10.1002/lno.10138 766 

Marañón, E., P. M. Holligan, R. Barciela, N. González, B. Mouriño, M. J. Pazó, and M. 767 

Varela. 2001. Patterns of phytoplankton size structure and productivity in 768 

contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216: 43-56. doi: 769 

10.3354/meps216043 770 

Morán, X. A. G., A. López-Urrutia, Á. Calvo-Díaz, and W. K. W. Li. 2010. Increasing 771 

importance of small phytoplankton in a warmer ocean. Glob. Chang. Biol. 16: 772 

1137-1144. doi: 10.1111/j.1365-2486.2009.01960.x 773 



 55 

Nakagawa, S., and H. Schielzeth. 2013. A general and simple method for obtaining R2 774 

from generalized linear mixed‐effects models. Methods Ecol. Evol. 4(2), 133-142. 775 

doi: 10.1111/j.2041-210x.2012.00261.x 776 

Pawar, S., A. I. Dell, V. M. Savage, and J. L. Knies. 2016. Real versus Artificial Variation 777 

in the Thermal Sensitivity of Biological Traits. Am. Nat. 187: E41-E52. doi: 778 

10.1086/684590 779 

Regaudie-De-Gioux, A., and C. M. Duarte. 2012. Temperature dependence of planktonic 780 

metabolism in the ocean. Global Biogeochem. Cycles 26: GB1015. doi: 781 

10.1029/2010gb003907 782 

Renaud, S. M., L. V. Thinh, G. Lambrinidis, and D. L. Parry. 2002. Effect of temperature 783 

on growth, chemical composition and fatty acid composition of tropical Australian 784 

microalgae grown in batch cultures. Aquaculture, 211(1-4), 195-214. doi: 785 

10.1016/S0044-8486(01)00875-4 786 



 56 

Rose, J. M., and D. A. Caron. 2007. Does low temperature constrain the growth rates of 787 

heterotrophic protists? Evidence and implications for algal blooms in cold waters. 788 

Limnol. Oceanogr. 52: 886-895. doi: 10.4319/lo.2007.52.2.0886 789 

Ruxton, G. D. 2006. The unequal variance t-test is an underused alternative to Student's t-790 

test and the Mann–Whitney U test. Beha. Ecol. 17(4), 688-690. doi: 791 

10.1093/beheco/ark016 792 

Sarmiento, J. L., R. Slater, R. Barber, L. Bopp, S. C. Doney, A. C. Hirst, J. Kleypas, R. 793 

Matear, U. Mikolajewicz, P. Monfray, V. Soldatov, S. A. Spall, and R. Stouffer. 794 

2004. Response of ocean ecosystems to climate warming. Global Biogeochem. 795 

Cycles 18: GB3003. doi: 10.1029/2003GB002134 796 

Sherr, E. B., B. F. Sherr, and C. Ross. 2013. Microzooplankton grazing impact in the 797 

Bering Sea during spring sea ice conditions. Deep-Sea Res. II 94: 57-67. doi: 798 

10.1016/j.dsr2.2013.03.019 799 



 57 

Sieburth, J. M., V. Smetacek, and J. Lenz. 1978. Pelagic ecosystem structure: heterotrophic 800 

compartments of the plankton and their relationship to plankton size fractions. 801 

Limnol. Oceanogr. 23: 1256-1263. doi: 10.4319/lo.1978.23.6.1256 802 

Sommer, U., and K. Lengfellner. 2008. Climate change and the timing, magnitude, and 803 

composition of the phytoplankton spring bloom. Global Change Biol. 14(6), 1199-804 

1208. doi: 10.1111/j.1365-2486.2008.01571.x 805 

Stawiarski, B., E. T. Buitenhuis, and C. Le Quéré. 2016. The Physiological Response of 806 

Picophytoplankton to Temperature and Its Model Representation. Front. Mar. Sci. 807 

3: 164. doi: 10.1002/lno.10745 808 

Strickland, J. D., and T. R. Parsons. 1972. A practical handbook of seawater analysis.  809 

Strom, S. L., and K. A. Fredrickson. 2008. Intense stratification leads to phytoplankton 810 

nutrient limitation and reduced microzooplankton grazing in the southeastern 811 

Bering Sea. Deep Sea Res. II 55: 1761-1774. doi: 10.1016/j.dsr2.2008.04.008 812 



 58 

Taucher, J., and A. Oschlies. 2011. Can we predict the direction of marine primary 813 

production change under global warming? Geophys. Res. Lett. 38: L02603. doi: 814 

10.1029/2010gl045934 815 

Team, R. C. 2014. R: A Language and Environment for Statistical Computing. Vienna: R 816 

Foundation for Statistical Computing. Available online at: http. www. R-project. 817 

org. 818 

Thomas, M. K., C. T. Kremer, C. A. Klausmeier, and E. Litchman. 2012. A Global Pattern 819 

of Thermal Adaptation in Marine Phytoplankton. Science 338:1085-1088. doi: 820 

10.1126/science.1224836 821 

Thomas, M. K., C. T. Kremer, and E. Litchman. 2016. Environment and evolutionary 822 

history determine the global biogeography of phytoplankton temperature traits. 823 

Glob. Ecol. Biogeogr. 25: 75-86. doi: 10.1111/geb.12387 824 

Thomas, M. K., M. Aranguren‐Gassis, C. T. Kremer, M. R. Gould, K. Anderson, C. A. 825 

Klausmeier, and E. Litchman. 2017. Temperature–nutrient interactions exacerbate 826 



 59 

sensitivity to warming in phytoplankton. Global Change Biol. 23(8), 3269-3280. 827 

doi:10.1111/gcb.13641 828 

Van de Pol, M., and J. Wright. 2009. A simple method for distinguishing within-versus 829 

between-subject effects using mixed models. Anim. Behav. 77: 753-758. doi: 830 

10.1016/j.anbehav.2008.11.006 831 

Vaquer-Sunyer, R., and C. M. Duarte. 2013. Experimental Evaluation of the Response of 832 

Coastal Mediterranean Planktonic and Benthic Metabolism to Warming. Estuaries 833 

Coasts 36: 697-707. doi: 10.1007/s12237-013-9595-2 834 

Vasseur, D. A., and K. S McCann. 2005. A mechanistic approach for modeling 835 

temperature-dependent consumer-resource dynamics. Am. Nat. 166(2), 184-198. 836 

doi: 10.1086/431285 837 

Ward, B. A. 2015. Temperature-correlated changes in phytoplankton community structure 838 

are restricted to polar waters. PloS one 10(8), e0135581. doi ：839 

10.1371/journal.pone.0135581 840 



 60 

Yang, Z., L. Zhang, X. Zhu, J. Wang, and D. J. Montagnes. 2016. An evidence-based 841 

framework for predicting the impact of differing autotroph-heterotroph thermal 842 

sensitivities on consumer–prey dynamics. The ISME journal, 10(7), 1767. doi: 843 

10.1038/ismej.2015.225 844 

Yvon-Durocher, G., J. I. Jones, M. Trimmer, G. Woodward, and J. M. Montoya. 2010. 845 

Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B 365: 846 

2117-2126. doi: 10.1098/rstb.2010.0038 847 

Yvon-Durocher, G., J. M. Montoya, V. Trimmer, and G. Woodward. 2011. Warming alters 848 

the size spectrum andshifts the distribution of biomass in freshwater ecosystems. 849 

Global Change Biol. 17: 1681-1694, doi:10.1111/j.1365-2486.2010.02321.x 850 

851 



 61 

Acknowledgments 852 

We sincerely thank three anonymous reviewers and M. R. Landry for helpful comments, 853 

W. K. Lau and Y. F. YEUNG for their help with data sampling, and Z. J. Yu for editing 854 

the manuscript. This study is supported by the National Basic Research Program 855 

(‘‘973’’Program) of China (2015CB954003), Research Grants Council of the Hong Kong 856 

Special Administrative Region, China (Project No. T21/602/16), Hong Kong Research 857 

Grants Council (GRF-16128416 and 16101917 and RGC-NSFC joint scheme 858 

N_HKUST609/15), and the State Key Lab on Marine Pollution (SKLMP) via the Seed 859 

Collaborative Research Fund (SKLMP/SCRF/XXXX). 860 

  861 



 62 

Figures 862 

 863 

Fig. 1 Locations of study stations in Hong Kong waters. WE: Western Estuarine Station 864 

(22°21.32'N, 113°56.78'E); EO: Eastern Oceanic Station (22°20.45'N, 114°17.70'E). 865 



 63 

 866 

Fig. 2 Monthly variations of temperature and chlorophyll a (Chl a) concentration of three 867 

phytoplankton size classes at Station EO (a) and Station WE (b). 868 



 64 

 869 

Fig. 3 Linear mixed effects model and nonlinear regression fits of phytoplankton 870 

community growth rates and experimental temperature for individual experiments at 871 

Station EO (a) and Station WE (b). The dash-dotted line is the fitted line of the 872 

linear mixed effects model results, and the solid line is the fitted line of the nonlinear 873 

regression. Open circles: Data not used in the linear mixed effects model. Ea: 874 

Activation energy obtained from the linear mixed effects model; Topt: Optimal 875 

temperature of growth rate obtained from the nonlinear regression. 876 
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 877 

Fig. 4 Linear mixed effects model and nonlinear regression fits of microzooplankton 878 

grazing rates on the total phytoplankton at experimental temperatures at station EO 879 

(a) and station WE (b). Same as Fig. 3. 880 
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 881 

Fig. 5 Activation energies of growth rates of total phytoplankton, three size classes of 882 

phytoplankton and two pico-phytoplankton and corresponding grazing mortality 883 

rates by microzooplankton at Station EO (a) and Station WE (b). The two dashed 884 

lines represent the theoretical activation energies of autotrophic processes (0.32 eV) 885 
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and heterotrophic processes (0.65eV). Significant levels between activation energies 886 

of growth rate and grazing rate are given by the p-values with the asterisks (* : p < 887 

0.5; ** : p < 0.1; *** : p < 0.001). 888 

 889 

Fig.6 Optimal temperatures of phytoplankton community growth rate and grazing 890 

morality rate by microzooplankton grazing. Dashed line is the 1:1 line. 891 
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Table 1. Estimated activation energies (Ea, eV) of total, three size classes, and taxa‐specific phytoplankton growth rates derived from 893 

the linear mixed effects model and OLS regression. The parameters of the linear mixed effects model include the average energy 894 

(Eaν, with 95% CI in brackets), the normalization constant (ln ν0 ± standard error), standard deviations of the random effects of 895 

ln ν0 and Eaν (θ ν and θEaν), percentage of variance explained by the random and fixed effect (Vfr), percentage of variance explained 896 

by the fixed effect only (Vf), number of observations used in the model (No), and number of groups used in the model 897 

(Ng). Ea (OLS) (eV) is the mean activation energy derived from the OLS regression, 95% CIs are in brackets. 898 
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Table 2. Estimated activation energies (Ea, eV) of total, three size classes, and taxa‐specific phytoplankton grazing mortality rates by 901 

microzooplankton derived from the linear mixed effects model and OLS regression. The parameters of linear mixed effects 902 

model include the average energy (Eam, with 95% CI in brackets), the normalization constants (ln m0 ± standard error), standard 903 

deviations of the random effects of ln m0 and Eam (θm and θEam), percentage of variance explained by the random and fixed effect 904 

(Vfr); percentage of variance explained by the fixed effect only (Vf). Other parameters are the same with Table 1. 905 
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