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Abstract

The recently developed ordinary state-based peridynamics (OSPD) is further
enhanced to study elastodynamic propagating crack based on the dynamic
stress intensity factors (DSIFs). The displacement discontinuity such as a
crack surface is represented by a bond-failure. Variations of the mixed-mode
DSIFs with time are evaluated by the interaction integral method for the
dynamic crack propagation. In terms of OSPD fracture modeling, numer-
ical oscillation of DSIFs becomes a critical issue during the evolution of a
crack. To overcome this numerical oscillation problem, we introduce a new
model of bond-failure, the transition bond. The enhanced OSPD approach
using the new transition bond model offers accurate and acceptable results,
suppressing the numerical oscillation of responses and reflecting an effective
approach. The effects of different types of transition bond are numerically
analyzed. Accuracy of the DSIFs is examined employing the various damping
parameters and effectiveness of the new PD fracture model is verified. The
Kalthoff-Winkler impact test is considered for evaluating the mixed-mode
DSIFs and the crack paths.
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1. Introduction

Evaluation of dynamic crack propagation in solids and structures is a
long-standing issue in the physics and engineering mechanics research fields.
Dynamic fracture and crack propagation can critically damage the struc-
ture. Therefore, quantitative evaluation of the dynamic fracture phenomena
is essential for structural safety and reliability assessment. Dynamic fracture
problems have been investigated by a number of researchers, and the achieve-
ments are summarized in Refs. [1,2]. Dynamic fracture includes intrinsically
difficult issues, e.g., transient, fast moving boundary, dynamic loading, crack
branching, and rate- and material-dependent problems. Further investiga-
tions are required to clarify such complicated physical phenomena.

Recently, computational fracture mechanics has become a powerful tool
for the evaluation of fracture mechanics behavior. The finite element method
(FEM) [3], eXtended FEM (X-FEM) [4], and meshfree method [5,6] have
been used to evaluate fracture mechanics parameters. Aoki et al. [7,8] and
Kishimoto et al. [9] used mode-I dynamic stress intensity factor (DSIF) to
evaluate dynamic crack propagation using singular elements. Dynamic crack
propagation problems have also been analyzed using X-FEM under mixed-
mode loading conditions [10-13].

The aforementioned numerical methods were formulated based on classi-
cal continuum mechanics theory. Although the methods can be used to accu-
rately analyze several fracture problems, there are certain drawbacks in treat-
ing crack initiation, branching, and fragmentation problems. Peridynamics
(PD), which is a non-classical continuum mechanics approach proposed by
Silling [14], has potential in dealing with fracture mechanics problems. In
analyzing cracked solids and structures, particles are scattered throughout
the body. An interaction relationship is established between each particle
within a horizon. The interaction is called a bond in the PD framework.
A force state is defined for each bond to represent the bond forces between
material points in the PD theory. Fracture can be modeled by breaking the
bond, i.e., bond failure. Currently, the PD theory can be categorized into
bond-based PD, ordinary state-based PD (OSPD), and non-ordinary state-
based PD based on the force state description [15,16]. Dual-horizion PD was
also proposed to analyze different spatial resolution problems effectively for
varying horizon size [17,18].

The prototype microelastic brittle (PMB) model [15] has been employed
for the fracture criterion in the PD theory and brittle materials have been
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analyzed [19-22]. Alternatively, the DSIFs can be utilized in the PD theory.
The fracture mechanics parameters are well established based on classical
fracture mechanics theory and are suitable for discussing dynamic fracture
behaviors. By introducing DSIF evaluation in the PD theory, crack branch-
ing phenomena can be analyzed. In our previous studies [23,24], the dynamic
J-integral and the mixed-mode DSIFs of a stationary crack under dynamic
loading were accurately evaluated using a two-dimensional (2D) OSPD [25].
A moving least squares approximation (MLSA) [26] and meshfree discretiza-
tion technique, i.e., the diffraction method [27], were introduced to accurately
evaluate the physical values around the crack tip.

In the present study, DSIF evaluation was extended for dynamic crack
propagation problem. However, numerical oscillations were found during
crack propagation when evaluating the DSIFs. The oscillations become seri-
ous when crack propagation direction is evaluated by maximum circumferen-
tial stress criterion. Therefore, a new PD fracture model reducing numerical
oscillations was proposed for elastodynamic crack propagation problems. The
problem was carefully examined and a damping effect was introduced in the
bond failure model. Mode-I and mixed-mode fracture problems were inves-
tigated and the effectiveness of the present PD fracture model and the DSIF
evaluation technique is discussed. Although some methodologies have been
proposed for evaluating fracture parameters in PD theories [28,29], no stud-
ies have addressed the numerical oscillations for dynamic fracture problems
to get accurate DSIFs.

The paper is organized as follows. The 2D OSPD is briefly introduced in
Section 2. The mixed-mode DSIF evaluation technique and fracture criteria
for dynamically propagating cracks are presented in Section 3. In Section 4,
a mode-I problem is analyzed. A damping effect is introduced into the bond
failure model and the effectiveness is examined. A mixed-mode problem is
then examined to verify the effectiveness of the proposed PD fracture model.
Conclusions are presented in Section 5.
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2. Peridynamic theory

2.1. Basic theory

The basic formulation of PD theory can be derived from the equation of
motion [16]. The equation of motion at position vector x in a finite body
can be written as

ρü(x, t) =

∫

Hx

[
T (x, t)⟨x′ − x⟩ − T (x′, t)⟨x− x′⟩

]
dVx′ + b(x, t), (1)

where ρ is the mass density, ü(x, t) is the acceleration vector, and b(x, t)
is the external force vector per unit volume. In PD modeling, a finite body
is modeled by scattered particles. The particles located at x have a volume
dVx. T (x, t)⟨x′−x⟩ (= T ) and T (x′, t)⟨x−x′⟩ (= T ′) are the force density
vectors of particles located at x and x′, respectively, which are interacting
with each other. A particle interacts with other particles within an influence
radius, given by the horizon δ. Hx is the neighborhood of the particle located
at x.

In OSPD modeling, the force state can be written as

T = tm, (2)

where m is a unit direction vector, m = (ξ + η)/|ξ + η|. ξ (= x− x′) and
η (= u−u′) are the relative position and displacement vectors, respectively.
t stands for the magnitude of the force density and its definition for the plane
stress is given [25], by

t =
2(2ν − 1)

ν − 1

(
κ′θ − α

3
(ωed) • |ξ|

) ω|ξ|
(ω|ξ|) • |ξ| + αωed, (3)

θ =
2(2ν − 1)

ν − 1

(ω|ξ|) • e
(ω|ξ|) • |ξ| , (4)

α =
8G

(ω|ξ|) • |ξ| , (5)

κ′ = K +
G(ν + 1)2

9(2ν − 1)2
, (6)

and for plane strain condition, by

t = 2
(
κ′θ − α

3
ωed • |ξ|

) ω|ξ|
(ω|ξ|) • |ξ| + αωed, (7)
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θ = 2
(ω|ξ|) • e
(ω|ξ|) • |ξ| , (8)

α =
8G

(ω|ξ|) • |ξ| , (9)

κ′ = K +
G

9
, (10)

where ν, G and K are Poisson’s ratio, the elastic shear and bulk moduli,
respectively. ω is an arbitrary influence function which depends on the dis-
tance between particles. ed and θ are deviatoric part of the extension state
and the volume dilatation.
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3. Evaluation of DSIFs and fracture modeling

According to linear fracture mechanics theory, materials fail if the energy
of crack growth is larger than the resistance of material. SIFs can express the
state of the crack tip and it is well known that there is a certain relationship
between the SIFs and energy release rate. In the present study, critical
stress intensity factor KIc is adopted for the fracture toughness based on the
classical fracture mechanics theory.

3.1. Interaction integral for dynamic crack propagation

Mixed-mode DSIFs are evaluated for dynamic propagating cracks. The
interaction integral method was introduced into the OSPD for the stationary
crack problems under the dynamic loading condition in [24]. The interaction
integral method for dynamic propagating cracks proposed by Réthoré et al.
[10] is employed. The velocity field near the crack tip is required to evaluate
the interaction integral for a dynamic propagating crack. The interaction
integral I is given by

I =

∫

Ω

q1,j
[
(σaux

ij uact
i,k + σact

ij uaux
i,k )− (σaux

ml uact
m,l − ρu̇act

l u̇aux
l )δkj

]

+ q1
[
(σaux

ij,j uact
i,k + σact

ij,j u
aux
i,k ) + ρ(u̇aux

i u̇act
i,k + u̇act

i u̇aux
i,k )

]
dΩ,

(11)

where the superscripts “act” and “aux” indicate the actual and auxiliary
field variables, respectively. σij, ui and u̇i are the component of stress, dis-
placement and velocity. Ω is the integration domain and δkj is the Kronecker
delta. The spatial derivative of the variables is evaluated using MLSA. q1 is
a weight function for evaluation of the domain integral, as

q1 =

⎧
⎨

⎩

1 rq < rq1
1− (rq − rq1)/(rq2 − rq1) rq1 < rq < rq2
0 otherwise

, (12)

where rq is the distance from the crack tip and rq1 and rq2 are arbitrary
values that satisfy rq1 < rq2.

Additionally, the interaction integral I can be represented by DSIFs with
the actual and auxiliary fields using the relationship between the energy
release rate and SIF as follows

I =
2

E∗ (AI(ȧ)K
act
I Kaux

I + AII(ȧ)K
act
II Kaux

II ), (13)
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where AI(ȧ) and AII(ȧ) are the universal functions that depend on the crack
speed ȧ. The universal functions are defined by Freund [1] as

AI(ȧ) =
4αd(1− α2

s)

(κ+ 1)D
, (14)

AII(ȧ) =
4αs(1− α2

s)

(κ+ 1)D
, (15)

where κ = (3 − ν)/(1 + ν), E∗ = E and κ = 3 − 4ν, E∗ = E/(1 − ν2) are
defined for the plane stress and plane strain conditions, respectively. αd, αs,
and D are determined as

αd =

√

1− ȧ2

c2d
, (16)

αs =

√

1− ȧ2

c2s
, (17)

D = 4αdαs − (1 + α2
s)

2. (18)

cd and cs are the longitudinal and transverse wave speeds, respectively.

3.2. Failure criterion and propagation direction

The crack propagation direction is evaluated by the maximum circum-
ferential stress criterion [30], which states the crack propagates toward the
direction on which the circumferential stress is maximum. Consequently, the
DSIF of mode-I and mode-II cracks become maximum and zero, respectively.
The direction θc of the crack propagation is represented by DSIFs KI and
KII as

θc = 2 arctan
[1
4

{KI

KII
− sgn(KII)

(K2
I

K2
II

+ 8
) 1

2
}]

. (19)

In case of the single-mode problem, if DSIF KI is greater than the critical
SIF KIc, the crack propagates straight. For a mixed-mode crack problem, the
equivalent SIF Kθc is compared with KIc. If Kθc ≥ KIc, the crack propagates
toward the direction θc. Kθc is given by

Kθc = cos3
(θc
2

)
KI −

3

2
cos

(θc
2

)
sin(θc)KII. (20)
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4. Discretization

4.1. Discretization of peridynamic formula

The equation of motion in Eq.(1) is discretized, for the i-th particle as

ρ(i)ü(i) =
N∑

j

(T (i)(j) − T (j)(i))A(j) + b(i), (21)

where the subscripts (i) and (j) indicate variables of i- and j-th particle, and
T (i)(j) and T (j)(i) are the force density of i- and j-th particles interact each
other. N is the number of particles in neighborhood. The central difference
scheme is used for the time integration and the equation of motion can be
written as

un+1
(i) =

∆t2

ρ(i)

[ N∑

j

(T n
(i)(j) − T n

(j)(i))A(j) + bn(i)

]
+ 2un

(i) − un−1
(i) , (22)

where ∆t is the time interval and the superscripts n−1, n and n+1 indicate
variables at (n − 1)-, (n)- and (n + 1)-th step. The magnitude of the force
state between i- and j-th particles for plane stress in discretized form can be
written as

t(i)(j) =
2(2ν − 1)

ν − 1

(
κ′
(i)θ(i) −

α(i)

3

N∑

j

ω(i)(j)e
d
(i)(j)|ξ(i)(j)|A(j)

)

×
ω(i)(j)|ξ(i)(j)|

N∑

j

ω(i)(j)|ξ(i)(j)||ξ(i)(j)|A(j)

+ α(i)ω(i)(j)e
d
(i)(j),

(23)

with

θ(i) =
2(2ν − 1)

ν − 1

N∑

j

ω(i)(j)|ξ(i)(j)|e
d
(i)(j)A(j)

N∑

j

ω(i)(j)|ξ(i)(j)||ξ(i)(j)|A(j)

, (24)
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where ω(i)(j) is the influence function between i- and j-th particle. The
fracture modeling is controlled by introducing an on/off bond condition in
the standard PD theory. If the bond of i- and j-th particle is broken, the
influence function becomes zero (ω(i)(j) = 0). This bond condition can be
written by scalar value function fb as follows:

fb =

{
1 unbroken bond
0 broken bond

. (25)

Consequently, the influence function considering a bond breakage is defined
ω̂(i)(j) = fb · ω(i)(j), then Eqs.(23) and (24) can be rewritten by

t(i)(j) =
2(2ν − 1)

ν − 1

(
κ′
(i)θ(i) −

α(i)

3

N∑

j

ω̂(i)(j)e
d
(i)(j)|ξ(i)(j)|A(j)

)

×
ω̂(i)(j)|ξ(i)(j)|

N∑

j

ω̂(i)(j)|ξ(i)(j)||ξ(i)(j)|A(j)

+ α(i)ω̂(i)(j)e
d
(i)(j),

(26)

with

θ(i) =
2(2ν − 1)

ν − 1

N∑

j

ω̂(i)(j)|ξ(i)(j)|e
d
(i)(j)A(j)

N∑

j

ω̂(i)(j)|ξ(i)(j)||ξ(i)(j)|A(j)

. (27)

The bond conditions fb = 1 and fb = 0 are respectively called “connected
bond” and “disconnected bond”, in this paper. Fig.1(b) and (c) represent
an important aspect in crack propagation modeling with the PD approach.
Originally, a connected bond becomes a disconnected bond when the line
segment of the bond crosses the crack segment. This issue is schematically
sketched in Fig.1(b). Once the crack starts propagating, the connected bond
also becomes a disconnected bond as shown in Fig.1(c).
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(a) Crack propagation

Initial crack

(b) (c)

Bond Disconnected bond

Figure 1: Schematic of crack modeling: (a) bond force model with a scalar function fb,
(b) the initial crack, and (c) a propagating crack.

4.2. Interaction integral

The interaction integral I in Eq.(11) is discretized as

I =
NP∑

n

q(n)1,j
[
(σaux

(n)ij u
act
(n)i,k + σact

(n)ij u
aux
(n)i,k)

− (σaux
(n)ml u

act
(n)m,l − ρ(n)u̇

act
(n)l u̇

aux
(n)l)δkj

]

+ q(n)1
[
(σaux

(n)ij,j u
act
(n)i,k + σact

(n)ij,j u
aux
(n)i,k)

+ ρ(n)(u̇
aux
(n)i u̇

act
(n)i,k + u̇act

(n)i u̇
aux
(n)i,k)

]
A(n).

(28)

NP is number of particles for computing the interaction integral I. Prac-
tically, the interaction integral is used for separation to classical fracture
modes. The actual DSIFs of mode-I and -II can be computed by assum-
ing the auxiliary field as the pure mode-I (Kaux

I = 1, Kaux
II = 0) and -II

(Kaux
I = 0, Kaux

II = 1) condition, as follows

Kact
I =

E∗

2AI(ȧ)
II,

Kact
II =

E∗

2AII(ȧ)
III,

(29)

where, II and III are the interaction integral assuming the auxiliary field as
the pure mode-I and -II and their discretization form can be written as
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II =
NP∑

n

q(n)1,j
[
(σaux

I(n)ij u
act
(n)i,k + σact

(n)ij u
aux
I(n)i,k)

− (σaux
I(n)ml u

act
(n)m,l − ρ(n)u̇

act
(n)l u̇

aux
I(n)l)δkj

]

+ q(n)1
[
(σaux

I(n)ij,j u
act
(n)i,k + σact

(n)ij,j u
aux
I(n)i,k)

+ ρ(n)(u̇
aux
I(n)i u̇

act
(n)i,k + u̇act

(n)i u̇
aux
I(n)i,k)

]
A(n),

(30)

III =
NP∑

n

q(n)1,j
[
(σaux

II(n)ij u
act
(n)i,k + σact

(n)ij u
aux
II(n)i,k)

− (σaux
II(n)ml u

act
(n)m,l − ρ(n)u̇

act
(n)l u̇

aux
II(n)l)δkj

]

+ q(n)1
[
(σaux

II(n)ij,j u
act
(n)i,k + σact

(n)ij,j u
aux
II(n)i,k)

+ ρ(n)(u̇
aux
II(n)i u̇

act
(n)i,k + u̇act

(n)i u̇
aux
II(n)i,k)

]
A(n),

(31)

where variable that has the superscript “aux” and the subscript “I” and “II”
indicates variable of auxiliary field for pure mode-I and -II. Stress is evaluated
by collapsed stress tensor, defined by

σact
(n) =

NP∑

k

T (n)(k) ⊗ ξ
(n)(k)

A(k). (32)

The derivative of the displacement and the velocity are evaluated by

uact
(n)i,k = φ(n)i,ku

act
(n)i,

u̇act
(n)i,k = φ(n)i,ku̇

act
(n)i,

(33)

where φ(n) is the MLS shape function of n-th particleɽ

4.3. Moving least squares approximation

In MLSA [26], the approximated function gh(x) located at x is defined
by

gh(x) = pT (x)a(x), (34)
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where pT (x) is a basis function and a quadratic basis pT (x) = [1 x1 x2 x2
1 x1x2 x2

2]
is used. a(x) is the coefficient so as to minimize the weighted L2-norm Q, as

Q =
m∑

i

w(x− xi)[p
T (xi)a(x)− g(xi)]

2

= (Pa− g)TW (x)(Pa− g),

(35)

where m is the number of particles for approximation. Therefore, the ap-
proximated function gh(x) can be written by

gh(x) = p(x)TC−1(x)D(x)g

= φ(x)g,
(36)

where
W (x) = diag

[
w(x− x1) · · ·w(x− xn)

]
, (37)

P =

⎡

⎢⎢⎢⎣

p1(x1) p2(x1) · · · pm(xn)
p1(x2) p2(x2) · · · pm(xn)

...
...

. . .
...

p1(xn) p2(xn) · · · pm(xn)

⎤

⎥⎥⎥⎦
, (38)

C(x) = W (x)PP T , (39)

D(x) = W (x)P , (40)

w(x− xi) =

⎧
⎨

⎩

1− 3
2s

2 + 3
4s

3 (0 ≤ s ≤ 1)
1
4(2− s)3 (1 ≤ s ≤ 2)
0 (2 ≤ s)

, (41)

s = |x− xi|/δ. (42)

The diffraction method [27] is introduced to describe the near crack-tip.
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5. Representative numerical examples and discussion

5.1. A semi-infinite plate with a crack subjected to tensile loads

The dynamic propagating crack model is discussed by considering a semi-
infinite plate as depicted in Fig.2. The semi-infinite plate is subjected to a
tensile load, and this is a mode-I crack problem. The dynamic loading σ0

is applied on both sides of the surface, and symmetric boundary conditions
are adopted. The plate is 40 mm high and 52 mm wide and the crack length
is a = 12 mm. The Young’s modulus is E = 75.629 GPa, the Poisson’s
ratio is ν = 0.286, and the mass density is ρ = 2, 456 kg/m3. The particle
distance dl = 0.2 mm and Horizon δ = 4dl are used. The time interval
∆t = 2.5 × 10−2 µs is chosen for the stable computation. In Eq.(12),
rq1 = 2.0 mm and rq2 = 4.0 mm are chosen for computing DSIFs. This
is known as the major moving crack problem and the analytical solution is
defined by Freund [1] as

KI = 2σ0k(v)

√
cdt(1− 2ν)/π

1− ν
(t > t̄), (43)

where t̄ = H/cd and half the plate height H = 20 mm is used. k(v) is
approximated by

k(v) ≈ (1− v/cR)/
√

1− ν/cd, (44)

where cd and cR are the longitudinal and Rayleigh wave speeds, respectively.
The mode-I DSIF is normalized by σ0

√
πa as

K̄I = KI/σ0

√
πa. (45)

In this example, the crack propagation criterion is used as simple condi-
tion instead of Eq.(20) for the purpose of comparison of the computed DSIF
with the analytical solution. For the crack propagation, the bond failure
modeling in Eq.(25) and Fig.1 is used. The crack remains stationary until
the critical time tcr = 4.4 µs, then the crack propagates with a crack velocity
ȧ = 1, 000 m/s toward the crack propagation direction θc = 0. The crack
propagation criterion can be written as

ȧ =

{
0 t ≤ tcr

1, 000 tcr < t
. (46)
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The normalized DSIFs are compared with the analytical solution in Eq.(45)
and the reference solution evaluated by Nishioka and Atluri [31]. The results
are shown in Fig.3. For the stationary crack, the result is in good agreement
with analytical and reference solutions. After the crack propagation, nu-
merical oscillations are found, although inclination of the DSIF agreed well.
The crack initiation and propagation direction are evaluated by DSIFs with
the maximum circumferential stress theory. The crack propagation direction
is evaluated by the ratio of DSIFs of mode-I and mode-II in Eq.(19). The
oscillation is significant. After careful examination, the spurious oscillation
occurs because of sudden bond release. To overcome this issue, a damping
effect model is introduced to suppress the numerical oscillations.

4
0

 m
m

52 mm

12 mm

Figure 2: Schematic of the semi-infinite plate.

5.2. New PD fracture model

The numerical response of the DSIFs indicates the significance of numer-
ical oscillations when the bond is suddenly released. We introduce a new
bond condition called a “transition bond” to suppress the numerical oscilla-
tions. The scalar function fb is modified to take a value from 0 to 1. The
function depended on the time t− tcr and the crack velocity ȧ. t− tcr is the
elapsed time when the bond is broken. The scalar function fb is redefined as

fb(t, ȧ) =

⎧
⎨

⎩

1 for connected bond
0 < fb < 1 for transition bond
0 for disconnected bond

. (47)

When a crack segment crosses the line segment of a bond, the connected
bond becomes a transition bond. An updated crack modeling schematic is
shown in Fig.4.
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Figure 3: Comparison of normalized DSIFs.

15



The transition time is defined as the time at which the crack passes the
damping length ∆a as shown in Fig.5. It takes fb from 1 to 0. fb is 1 just
before the crack growth is initiated as the crack growth length da = 0 at
critical time t = tcr. Then, when the crack growth length da = ȧ(t − tcr)
is equal to the damping length ∆a, fb becomes 0. The longer the transition
time, the smoother the bond failure. We discuss the effect of several types
of transition bonds in the next section.

(a) Crack propagation

Initial crack

(b) (c)

Bond Disconnected bond Transition bond

Figure 4: Schematic of crack modeling including the damping model: (a) a bond force
modeled with a scalar function fb, (b) the initial crack, and (c) a propagating crack.

Crack

Crack propagation

Damping length

Figure 5: Schematic of crack propagation for defining the damping length.

5.3. A semi-infinite plate with a crack subjected to tensile loads with the
transition bond

To suppress the numerical oscillations, the transition bond is introduced
as the damping model. A basic scalar function is chosen as follows

fb = (1− da/∆a)n, (48)
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where ∆a is the damping length and n is the damping coefficient. fb is simple
function and it only depends on ∆a and n. The damping length ∆a controls
a damping time. The damping coefficient n controls value of a bond force.
If n = 1 is chosen, a bond force is decreasing linearly. Different damping
lengths and damping coefficients are considered to examine the effect of the
transition bond model.

Damping lengths ∆a = δ, δ/2, and δ/4 (at a damping coefficient n = 1)
are used to determine the effect of the damping length. The shape of the
scalar function fb is shown in Fig.6(a). The normalized DSIFs are shown in
Fig.6(b). The oscillations are suppressed well compared with those of sud-
denly release model. The difference in DSIF values are further investigated at
the moment of crack propagation (area A) and after crack propagation (area
B) in Fig.6(b). A close-up view of areas A and B are shown in Fig.6(c) and
(d), respectively. There are difference in DSIF values among the transition
models in Fig.6(c). The crack propagation is delayed when a larger damping
length was used. The crack propagation is similar to that of the suddenly
release model when a small damping length is used.

Damping coefficients n = 1, 2, and 4 (at a damping length ∆a = δ/2) is
used to determine the effect of the damping coefficient. The shape of fb is
shown in Fig.7(a). The results are shown in Fig.7(b)-(d). As expected, the
numerical oscillations with the transition bond are suppressed well compared
with those that resulted from the suddenly release model in Fig.7(b). There
are differences among the three transition models at the moment of crack
propagation, as shown in Fig.7(c). When the damping coefficient n is set
large, value of fb of left hand side becomes small, as shown in Fig.7(a).
Therefore, crack propagation delay is improved. After the crack propagation,
there are small differences among the transition bond models, as shown in
Fig.7(d). Considering the above results, damping length ∆a = δ/2 and
damping coefficient n = 4 are used in the following numerical examples.

The velocity fields computed by the suddenly release and the transition
bond models at t = 20.0 µs are shown in Fig.8(a) and (b), respectively.
Numerical oscillations are found near the crack surface in Fig.8(a). How-
ever, numerical oscillations are suppressed with the transition bond model,
as shown in Fig.8(b). The interaction integral I are evaluated by the velocity
field near the crack tip. The oscillations induce deterioration in DSIFs when
the interaction integral are computed.

Moreover, effectiveness of the transition bond is examined using some
parameters, for instance, time interval ∆t, horizon δ and particle distance
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dl. Analysis conditions are same as above example except survey parameter
for following examples. First, ∆t = 1.0 × 10−2, 2.5 × 10−2 and 5.0 × 10−2

µs are used for examining the influence of time interval on numerical oscilla-
tion. The results using the suddenly released model and the transition bond
for different time interval ∆t are shown in Fig.9(a) and (b). The different
horizon δ = 3.5dl, 4.0dl and 4.5dl are also analyzed. The results of DSIFs be-
tween the suddenly released model and the transition bond model are shown
in Fig.10(a) and (b). The result of DSIFs for different particle distances
dl = 0.5, 0.2 and 0.1 mm are shown in Fig.11(a) and (b) as well. Numer-
ical oscillation occurred in all cases used the suddenly released model. As
expected, numerical oscillation is suppressed well using the transition bond
model for different parameters.

Additionally, the accuracy of the DSIFs in an irregular particle arrange-
ment is examined. The irregularity of the particle arrangement is defined
by

xirr = x+ dl · rc · αirr, (49)

where x and xirr are the position vectors for the regular and irregular ar-
rangements, respectively. dl is the particle distance, rc is a randomization
factor, and an irregularity factor αirr = 0.3 is chosen. Comparison between
the analytical solution, reference solution, and the present model are shown
in Fig.12. The DSIFs of the regular and irregular arrangements are in good
agreement with the analytical and reference solutions.

5.4. Investigation of load-displacement curve

The load-displacement curve is examined to further investigate effective-
ness of the transition bond model. The analysis model is shown in Fig.13
and tensile speed is applied at point A and B. The dimension and material
properties are same as Section 5.1 and time step ∆t = 2.5×10−2 µs, horizon
δ = 4.0dl, particle distance dl = 0.2 mm are chosen. The tensile speed is
increasing gradually until vy = 10 m/s for quasi-static loading. The displace-
ment of the loading point becomes uy = 0.1 mm, then the crack propagates
with crack speed ȧ = 0.01cs m/s for the crack propagation criterion. The
load-displacement curve using the suddenly released model and the transi-
tion bond model are shown in Fig.14. In the suddenly released model, the
reaction force oscillates and the amplitude increases as the time increases.
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Figure 10: Comparison of normalized DSIFs with different horizon δ: (a) the suddenly
released bond model and (b) the transition bond model.
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Figure 11: Comparison of normalized DSIFs with different particle distance dl: (a) the
suddenly released bond model and (b) the transition bond model.
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On the other hand, in the transition bond model, the reaction force does not
oscillate. Therefore, the effectiveness of the transition bond is demonstrated
for the load-displacement curve.
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5.5. Mixed-mode crack propagation problem

The Kalthoff-Winkler impact test [32] is considered as a mixed-mode
crack propagation problem. In the test, a projectile impacts the plate and a
large shear load is applied to the crack tip and the crack propagates at an
angle. In experiments, the crack angle is observed to be about 70◦. A half
model is employed because of the symmetry of the problem. The prescribed
velocity is applied as the impact condition, and the analysis model is shown
in Fig.15. The height and width are 100 mm and the crack length is 50 mm.
The impact velocity is 16.5 m/s. The Young’s modulus is E = 190.0 GPa,
Poisson’s ratio is ν = 0.3, the mass density is ρ = 8, 000 kg/mm3, and the
fracture toughness is KIc = 68 MPa

√
m. The crack velocity is ȧ = 750 m/s

[10]. The crack angle is evaluated by the maximum circumferential stress
criterion. rq1 = 2.0 mm and rq2 = 4.0 mm are chosen for computing DSIFs.
DSIFs of mode-I and -II are computed by Eq.(29). DSIFs are evaluated in
regular and irregular particle arrangements. The irregularity factors αirr =
0.3 and 0.6 are used. The next crack tip position is evaluated along the crack
propagation direction θc, as

x = ∆t · ȧ cos(θc),
y = ∆t · ȧ sin(θc).

(50)

DSIFs are evaluated at αirr = 0.0, 0.3, and 0.6, as shown in Fig.16(a). The
DSIFs are in good agreement with each arrangement. The crack paths are
shown in Fig.16(b), and the overall crack propagation angle is about 73.6◦.
The crack paths and crack angles are in good agreement with the experimen-
tal result. Fig.16(a) shows that the mode-I DSIF is positive and the mode-II
DSIF is close to zero in accordance with the maximum circumferential stress
theory.
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6. Conclusion

The main objectives of the present work were to accurately evaluate the
DSIFs and model dynamic crack propagation using PD theory by reducing
numerical oscillation. Some major findings are summarized as follows. It
was shown in the first numerical example that the numerical oscillations be-
come significant for the suddenly released model and should be removed.
The crack initiation criterion and the crack propagation direction cannot be
evaluated well due to these oscillations. Additionally, the ratio of mode-I and
mode-II DSIF is required when the direction is evaluated by the maximum
circumferential stress criterion. Therefore, the oscillations are again impor-
tant. To suppress the numerical oscillations, we proposed a new concept of
the bond state, named as the transition bond. In the standard bond failure
model, the connected bond becomes the disconnected bond when the crack is
generated or grows. In the present concept, a connected bond first becomes
a transition bond, then a disconnected bond when a crack crosses the line
segment of a bond. The bond force decreases gradually in the transition
bond. The effectiveness of the transition bond was examined using several
damping lengths and damping coefficients. DSIFs for the irregular particle
arrangement were also in good agreement with the reference solution. The
Kalthoff-Winkler impact test was simulated as the mixed-mode crack propa-
gation problem. The crack path of several particle arrangements agreed well
with the experimental result. Furthermore, it is straightforward to extend
the proposed technique to three dimensional problems because the transition
effect is introduced when a bond is broken. Therefore, the proposed method
is general and it is potentially applicable to other complex dynamic fracture,
e.g., crack branching [33-35].

As a conclusion, the bond failure description based on sudden release
model such as PMB model causes numerical oscillations when a bond is
suddenly broken. The effect of the oscillations for different failure models
should be further investigated which will be considered in a future study.
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Nomenclature 

 

Latin symbols  
𝑎, �̇� : crack length and crack velocity 

𝐴𝐼, 𝐴𝐼𝐼 : universal function for Eq.(5) 

𝒃 : external force vector  

𝑐𝑑, 𝑐𝑠, 𝑐R : longitudinal, transvers Rayleigh wave speed 

𝑑𝑎 : crack growth length  

𝑑𝑙 : particle distance  

𝐷 : parameter for universal function 𝐴𝐼, 𝐴𝐼𝐼  

𝐸, 𝐸∗: Young’s modulus and modified Young’s modulus for plane stress/strain condition 

𝑓𝑏 : damping function  

𝐼 : interaction integral 

𝑘(𝑣) : coefficient depends on velocity 𝑣 in Eq.(13) 

𝐾𝑖
act, 𝐾𝑖

aux (𝑖 = I, II) : SIF of actual and auxiliary field 
𝐾𝜃𝑐 : equivalent SIF 

𝐾Ic : fracture toughness 

𝐾 : normalized SIF 
𝑚 : unit direction vector  

𝑛 : damping coefficient 

𝑞𝑖, 𝑞𝑖,𝑗 : weight function and its derivative for interaction integral 

𝑟𝑞, 𝑟𝑞1, 𝑟𝑞2 : parameters of interaction integral 

𝑟𝑐 : randomization factor 

𝑡 : magnitude for force density  

𝑡𝑐𝑟 : critical time for crack growth  

𝑇 : force density vector  

𝒖, �̇�, �̈� : displacement, velocity and acceleration vectors 

𝑢𝑖
act, 𝑢𝑖

aux : components of displacement on actual and auxiliary field in Eq.(3) 
𝑢𝑖,𝑗

act, 𝑢𝑖,𝑗
aux : derivatives of 𝑢𝑖

act, 𝑢𝑖
aux with respect to 𝑥𝑗  in Eq.(3) 

�̇�𝑖
act, �̇�𝑖

aux : components of velocity of actual and auxiliary field in Eq.(3) 
�̇�𝑖,𝑗

act, �̇�𝑖,𝑗
aux : derivatives of �̇�𝑖

act, �̇�𝑖
aux with respect to 𝑥𝑗  in Eq.(3) 

𝑉 : volume  

𝒙 : position vector  

 

 

 



 

 Greek symbols 

𝛼𝑑, 𝛼𝑠 : parameter for universal function 𝐴𝐼, 𝐴𝐼𝐼  

𝛼𝑖𝑟𝑟 : irregularity factor  

𝛿 : horizon 

𝛥𝑎 : damping length  

𝜼 : relative displacement vector  

𝜃𝑐 : crack propagation direction  

𝜅  : parameter for universal function 𝐴𝐼, 𝐴𝐼𝐼  

𝜈 : Poisson’s ratio  

𝝃 : relative position vector  

𝜌 : mass density  

𝜎0 : applied stress  

𝜎𝑖𝑗,𝑘
act , 𝜎𝑖𝑗,𝑘

aux : derivative of 𝜎𝑖𝑗
act, 𝜎𝑖𝑗

aux with respect to 𝑥𝑘 

𝜎𝑖𝑗
act, 𝜎𝑖𝑗

aux : component of stress on actual and auxiliary field  

 

Abbreviations 

PD : peridynamics 

OSPD : ordinary state-based peridynamics  

SIF : stress intensity factor 

DSIF : dynamic stress intensity factor 

FEM : finite element method 

X-FEM : extended finite element method 

PMB : prototype microelastic brittle 

MLSA : moving least squares approximation 

 


