
A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the Version of Record. Please cite this article as 

doi: 10.1111/pim.12606 

This article is protected by copyright. All rights reserved. 

DR CRAIG  ROBERTS (Orcid ID : 0000-0002-0653-835X) 

Article type      : Commissioned Review or Article 

 

How does Toxoplasmosis affect the maternal-fetal immune interface and pregnancy? 

 

Running title: Toxoplasma immune response and pregnancy 

 

Margarida Borges
1*

, Tânia Magalhães Silva
2
, Carina Brito

1
, NatérciaTeixeira

1
 and Craig W. 

Roberts
3*

 

 
 

1 
UCIBIO/REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy University 

of Porto, Porto, Portugal.  

2 
Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal. 

3
 Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 

Glasgow, UK. 

 

 

Correspondence to: Margarida Borges, University of Porto. Email: mborges@ff.up.pt; Craig 

W. Roberts, University of Strathclyde. Email: c.w.roberts@strath.ac.uk 

Disclosures: no conflicts of interest. 

 

Keywords: Zoonosis, Congenital Toxoplasmosis, Immunopathogenesis, Maternal-fetal 

Interface, Activated-Macrophage, Pregnancy.  

Disclosures 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/199216204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fpim.12606&domain=pdf&date_stamp=2018-11-24


A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Summary 

Toxoplasma gondii is a zoonotic parasite which, depending on the geographical location, can 

infect between 10 to 90% of humans. Infection during pregnancy may result in congenital 

toxoplasmosis. The effects on the fetus vary depending on the stage of gestation in which 

primary maternal infection arises. A large body of research has focused on understanding 

immune response to toxoplasmosis, although few studies have addressed how it is affected by 

pregnancy or the pathological consequences of infection at the maternal-fetal interface. There 

is a lack of knowledge about how maternal immune cells, specifically macrophages are 

modulated during infection and the resulting consequences for parasite control and pathology. 

Herein, we discuss the potential of T. gondii infection to affect the maternal-fetal interface 

and the potential of pregnancy to disrupt maternal immunity to T. gondii infection. 

 

1. Introduction 

Toxoplasma gondii is a protozoan parasite with a global distribution. It is an important 

pathogen of humans and their livestock. In humans, it can cause abortion or a spectrum of 

clinical diseases dependent on the parasite isolate, the host immune status and whether 

infection is acquired post-natally or in utero 
1,2

. T. gondii infection causes substantial losses 

due to abortion in livestock (including sheep, goats and pigs) and the ability of livestock to 

act as reservoir of disease is a public health risk 
3
. Limited genetic variability has been 

recognised in T. gondii strains isolated from Europe and North America for some time. The 

vast majority of T. gondii isolates characterised to date can be classified as Type I, II and III 

4
. Each of these canonical T. gondii lineages have different patterns of virulence as 

empirically determined in mice and supported by restriction length polymorphisms, 

isoenzyme analysis, large-scale genome sequencing and transcriptomics. However, more 

recent analyses of T. gondii isolates from diverse geographical regions, most notably South 

America has revealed a greater genetic diversity with at least 15 haplogroups that fall into 6 

major clades 
2,4-7

. The rapidly-replicating tachyzoite life cycle stage predominates for around 

10-14 days post infection before differentiating into bradyzoites, which replicate more slowly 

and form cysts in tissues throughout the body 
8
. Tissue cysts are long-lived and are generally 

not considered responsible for significant disease, although associations with seropositivity 

and some neuropsychiatric diseases have now been recognised 
9
. Infection of immune-

competent adults with these canonical strains of T. gondii has been generally considered self-

resolving. This is largely due to a robust systemic immune response to T. gondii that controls, 

but does not eliminate infection 
10

. However, tissue cysts are assumed to rupture from time to 

time and in people with immunodeficiencies disease reactivation occurs, causing neurological 
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and sometimes ocular or systemic disease 
8
. T. gondii can also cause congenital disease and 

abortion, almost exclusively in women infected for the first time during pregnancy 
11

. 

Congenitally infected individuals are also at risk of repeated disease reactivation, mostly 

evident through ocular and neurological disease, though the reason for this remains to be 

determined 
12

. It is now recognised that certain lineages and recombinant strains of T. gondii 

that are common in South America are responsible for severe disease in humans even when 

acquired as immune-competent 
5,13

.  

 

2. Immune response during T. gondii infection  

The major findings concerning systemic T. gondii immune response have come from 

experimental murine models, and much of this has been corroborated through clinical studies 

and in vitro studies
8,14

. Challenges exist in extrapolating the data between studies as 

differences including the mouse strain, parasite strain and life-cycle stage used to infect, dose 

of inoculum and route of infection often varies
15

. It is not usually ethically possible to test if 

the murine studies can be translated into humans as this would involve deliberately infecting 

humans. Nonetheless a consensus of the sequence of immunological events after infection 

emerges 
1,14

. 

 

Following oral infection, enterocytes are the first line of defense against T. gondii, since this 

parasite is acquired mainly via oral ingestion in mouse, human and other intermediate hosts. 

Parasites disseminate within the lymphatic and circulatory systems and spread throughout the 

body. There is evidence that by invading dendritic cells (DCs) and macrophages, previously 

recruited by the chemokines secreted by infected enterocytes, T. gondii is able to cross 

endothelial barriers, thus allowing entry into sites such as the brain 
8,15

. Neutrophils, DCs, 

macrophages and natural killer (NK) cells, have been shown to play an important role in the 

innate immune response to T. gondii by controlling parasite multiplication 
10

. During acute T. 

gondii infection chemokines, belonging to the CC and CXC chemokine superfamilies and 

their receptors have an important role in the recruitment of NK, DCs, monocytes, neutrophils 

and in the induction of T helper (Th)1 and CD8+ cytotoxic T cells, as reviewed elsewhere 
16

. 

The process of neutrophil recruitment and control of parasite numbers during the initial 

stages of T. gondii infection has been shown to be dependent on interleukin (IL)-17 signaling 

17
. 
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T. gondii has a unique cyclophilin 18 with the ability to bind C-C chemokine receptor type 5 

(CCR5) and a number of ligands for toll-like receptors (TLRs) including, 

glycosylphosphatidylinositol-anchored proteins (GIPLs), heat shock protein 70 (HSP70) and 

profilin, which interact with TLR-2, 4 and 11 
10,18

. This results in induction of many 

cytokines including IL-12 produced by parasite-infected DCs, macrophages and neutrophils. 

Interferon (IFN)-γ acts in a synergic way with tumor necrosis factor (TNF)-α, inducing nitric 

oxide (NO) production by macrophages. NO can inhibit essential parasite mitochondrial and 

nuclear enzymes, thereby killing tachyzoites or inducing their conversion to the bradyzoite 

stage 
19

. IFN-γ also controls: (1) generation of reactive oxygen intermediates with 

toxoplasmacidal activity in human infected macrophages; (2) iron deprivation within T. 

gondii infected enterocytes, leading to inhibition of parasite replication; (3) tryptophan 

starvation through indoleamine-2,3-dioxygenase pathway, inhibiting T. gondii growth, and 

(4) activation of the p47 GTPases that bind to subcellular membranes, such as endoplasmic 

reticulum and Golgi bodies, thereby mediating disruption of the parasitophorous vacuole by 

exposing the parasite to the cytosol 
20

. However, an excessive Th1 response leads to tissue 

damage, which may lead to the development of pathology. Notably, both IL-4 deficient and 

IL-10 deficient mice have reduced survival following infection with T. gondii relative to 

wild-type mice as a likely consequence of reduced Treg and Th2 cell 
15,21,22

. Thus, the ability 

of the host to balance this response by maximizing pathogen clearance and minimizing 

immunopathology 
19

 (Figure 1). 

 

3. Congenital Toxoplasmosis 

Congenital toxoplasmosis constitutes a major problem for human health, leading to severe 

implications for those affected from fetus to adulthood 
1,8

. However, it is known that the 

relative risk to the fetus depends on various factors, such as the mother’s immunological 

status and genotype, parasite genotype and virulence as well as the gestational period when 

infection is acquired 
1,4,8

. Other disease determinants include the infectious dose, whether 

infection is initiated with oocysts or tissue cysts or the occurrence of co-infections 
1,4

.  

 

Primary T. gondii infection in the first trimester is associated with a high risk of several 

adverse pregnancy outcomes including abortion, stillbirth and premature birth, but with a low 

risk of congenital transmission 
11

. If pregnancy results in a viable child, T. gondii infection 

may cause a wide range of clinical manifestations, such as neonatal malformations that are 

severe enough to ultimately result in blindness, chorioretinitis, mental retardation, heart and 
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brain defects, permanent neurological damage and death 
11

. If transmission occurs at later 

stages of pregnancy, abortion is unlikely, but the risk of congenital infection is increased 

(Figure 2) 
23

. Under these circumstances, infected newborns will often be asymptomatic at 

birth, but essentially will all develop chorioretinitis later in life 
1,11,24

. If infection occurs prior 

to pregnancy, the risk to the unborn child is extremely low, even if the mother is re-exposed 

to another infection. However, there is a growing body of literature which demonstrates, in a 

small number of cases, that maternal disease reactivation can occur during pregnancy and 

sometimes result in adverse effects on the developing fetus 
1,11,25,26

,
27

. In addition, other cases 

have been reported in which pregnant women with immune suppression due, for example, to 

HIV infection, have resulted in congenital toxoplasmosis 
28,29

. Furthermore, several studies 

monitoring females with previously acquired T. gondii infection through pregnancy found 

maternal disease reactivation at the ocular site 
27,30

. The cysts stages are presumed to be the 

source of disease reactivation in all of the above scenarios. Altogether, these data suggest that 

in the vast majority of cases, a previous maternal infection protects against congenital 

transmission, even when exposed to a heterologous challenge. However, hormonal-induced 

alteration of systemic immunity occurs in some pregnancies and can result in disease 

activation and, occasionally, in vertical transmission (Figure 2) 
1,25,26,31  

 

4. Effect of T. gondii infection on implantation 

Healthy pregnancy is highly dependent on appropriate immune responses from coitus to post-

partum
32,33

. Seminal plasma released during coitus contains a variety of immunologically 

active components including transforming growth factor (TGF)-, CXCL8, IFN- and 

prostaglandin E 
34,35

. These mediators are responsible for changes in local gene expression, 

recruitment of monocytes, DCs, NK cells, T cells and expansion of Treg cells and, thus, sets 

the immunological context for the first encounter of the maternal immune system with 

paternal antigens 
33,35,36

. As the blastocyst undergoes implantation, macrophages are required 

to clear apoptotic maternal uterine cells 
37-39

. There is now evidence of progressive maternal 

immune regulation at the maternal-fetal interface comprising the fetus-derived placenta and 

the decidua 
33,40

. The development of a decidua is dependent on progesterone and is crucial 

for implantation 
41,42

. The blastocyst breaches the uterine epithelium, an event that is 

accompanied by inflammation and infiltration of decidual leukocytes, including NK cells, 

macrophages, dendritic cells and T cells 
33

. The success of implantation is dependent on the 

expression of a number of cytokines and chemokines including leukemia inhibitory factor 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

(LIF), IL-6, IL-15, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-33, 

CXCL8, CXCL1, MIP-1α and RANTES and activation of signalling pathways like JAK-

STAT, MAPK, Notch, Smad and PI3K 
33,43,44

. Macrophages, decidual NK cells (dNK), 

decidual dendritic cells (dDC) and other leukocytes are present in the endometrium at this 

stage and have been demonstrated to play important roles during implantation and, 

subsequently, promote tolerance to the fetus 
33,36,38,45

. Treg cells expand in peripheral blood 

and lymphoid organs in the preimplantation period, migrating and, subsequently, 

accumulating in the decidual tissue 
46

. Besides their importance in ovarian homeostasis and 

ovulation, these cells have a central role in implantation, preventing maternal anti-fetal 

responses, and are thus determinant in the maintenance of pregnancy 
33,46

.  

 

The potential for T. gondii to disrupt these early events in pregnancy has scarcely been 

studied. Nevertheless, in murine models, chronic T. gondii infection has been shown to 

increase reproductive failure 
47

. These alterations have been attributed to tissue cysts of T. 

gondii in various organs, especially in the brain, potentially causing damage in the 

hypothalamic–pituitary–gonadal axis and leading to alteration in the female estrus cycle 
47

. 

However, in other infection models, such as for Trypanosoma cruzi, inhibition of 

implantation and cell division has also been described 
47

. Nevertheless, T. gondii acute 

infection induces transient changes in systemic expression of many immune mediators, which 

in theory have the potential to antagonise normal immune changes during pregnancy (Figure 

1) 
8,10,17,48-50

.  

 

5. Effect of T. gondii infection on the developing placenta, decidua and fetus 

As pregnancy progresses there are a number of alterations in the maternal immune system, 

which facilitate fetoplacental development and prevent fetal rejection 
32

. Successful healthy 

pregnancy is highly dependent on specific regulation and balance of maternal immune 

responses within the decidua and placenta. This immune regulation enables growth and 

provides protection of the semi-allogeneic fetus, expressing paternal major histocompatibility 

antigens from maternal immune rejection 
51,52

. Dysfunction of this immune regulation by 

extrinsic factors, as in the case of infection, compromises pregnancy maintenance leading to 

adverse gestational outcomes  
53

.  
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T. gondii infection can have profound effects on the systemic maternal cellular immune 

responses and affects normal immune mechanisms at the maternal-fetal interface and can thus 

influence pregnancy outcome 
2
. T. gondii strains with different virulence are known to infect 

decidual immune cell populations and the placenta, a prime anatomical location to alter 

immune responses at the maternal-fetal interface 
48,54,55

. On the other hand, the 

immunomodulation during pregnancy may contribute to the development of an environment 

(dominated by Th2 and Treg cells) that facilitates the escape of T. gondii from the immune 

response, leading to increased maternal pathology or an increased likelihood of congenital 

transmission 
56

.  

 

6. The placenta and T. gondii infection 

Trophoblasts are epithelial-type cells that constitute the fetal placenta. Cytotrophoblasts act as 

stem cells for other trophoblast cell types: the syncytiotrophoblast and extravillous 

trophoblasts. The syncytiotrophoblast forms a multinucleated cell layer that is directly in 

contact with maternal blood, allowing an intimate interaction between mother and fetus. 

Extravillous trophoblasts have the ability to invade maternal tissues. These cells essentially 

function to protect the fetus from harmful substances, while facilitating the passage of 

nutrients and factors important for fetal development. The immune response within the 

placenta provides protection from infection and contributes to maternal tissue remodeling, 

which is fundamental for fetus development 
1,57

.  

 

Human and experimental animal models have shown that trophoblasts are a component of the 

innate immune system, since they recognize pathogens, produce chemokines and cytokines, 

which influence the differentiation and migration of macrophages, NK, Treg and DCs at the 

decidua 
58-60

. Trophoblasts are responsible for the production of a variety of anti-

inflammatory mediators, including TGF-β, IL-10 and Fas ligand 
61

. However, in some 

situations, trophoblasts may also initiate signals that promote fetal rejection 
62,63

.  For 

example, studies have demonstrated that activation of TLR3 in the trophoblast, by Poly[I:C], 

a synthetic analog of viral dsRNA induces preterm delivery in mice. In vitro studies 

demonstrate that Poly[I:C] stimulation of both mouse primary trophoblast or human 

trophoblast induces a range of cytokines and chemokines (including MCP-1, RANTES, IL-6 

and IL-12), supporting the idea that these cells function as an immune regulators and 

influence the differentiation and migration of immune cells 
62

. Although T. gondii does not 

have TLR3 ligands, it does have ligands that can activate TLR2,4 and 11 and these could 
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have similar effects
8
. Indeed, infection may alter crosstalk, inducing TLR-mediated 

trophoblast inflammatory or apoptotic responses, influencing the recruited and resident 

maternal immune cells. In extreme cases, as during T. gondii infection, these cells shift from 

a protective to an aggressive phenotype promoting fetal rejection 
55,60

. Notably in this respect, 

administration of the TLR4 ligand, lipopolysaccharide (LPS) to pregnant mice induces 

abortion through the induction of TNF- and nitric oxide synthase 
64

.  

 

Trophoblasts are also inextricably linked to parasite transmission to the fetus, since they are 

strategically located between maternal and fetal blood circulation systems and are efficiently 

infected with T. gondii 
54

. In vitro studies using Bewo cells, a human trophoblast cell line, 

have shown that trophoblast susceptibility to T. gondii increases in response to high 

concentrations of macrophage inhibitory factor (MIF)
65

. In contrast, treatment of Bewo cells 

with IL-10 or TGF- promoted T. gondii proliferation. In contrast to parallel experiments 

performed in HELA cells, the addition of IFN-γ to Bewo cells did not curtail T. gondii 

proliferation unless IL-10 or TGF- were neutralised with specific antibodies 
66

. Thus, IFN-, 

was not able to control T. gondii proliferation in Bewo cells, contrary to expected, suggesting 

that this cytokine has different activities at the maternal-fetal interface, depending on other 

host factors 
66

.  

 

Recently, ex-vivo experiments, using primary human trophoblasts isolated from placentas of 

both the second and third trimesters, have shown that syncytiotrophoblast cells are able to 

restrict T. gondii attachment and intracellular parasite replication in an IFN-γ-independent 

manner 
67

. The T regulatory chemoattractant CCL22 expression has been associated with 

miscarriage 
68

, and levels of this ligand were increased in primary human placental cells 

isolated from full-term placentas in response to T. gondii infection 
67

. It has also been shown, 

that earlier in human pregnancy, using mid-gestation chorionic villous explants, trophoblasts 

was also able to restrict T. gondii attachment and increase CCL22 production 
67

. Increased 

trophoblast apoptosis and necrosis occurring after T. gondii infection is dependent on 

inflammatory cytokines, such as IFN, which can be a factor in determining pregnancy 

outcomes in women infected by this parasite 
69

. In contrast, IL-10 is able to reduce T. gondii–

infected trophoblast apoptosis levels 
69

. If trophoblast invasion is excessive, which occurs 

during a T. gondii infection, IFN-γ has a dual function, thereby limiting parasite replication 

and promoting its removal 
40,66

. Adhesion of infected monocytes to trophoblasts could also 
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promote placental and fetal infection. However, trophoblasts are able to modulate monocyte 

activity controlling T. gondii infection, thus promoting pregnancy maintenance
70

. Overall, the 

interaction between trophoblast cells and maternal-fetal immune cells, specifically 

macrophages are likely to determine T. gondii survival and putative vertical transmission 

65,66,70,71
.   

 

7. The decidua and T. gondii infection 

The decidua results from proliferation and differentiation of stromal endometrial cells into 

decidual stromal cells (DSC) by a process called decidualization. These cells are important 

for embryo implantation, placentation and modulation of local immune cell functions that are 

essential for maternal/fetal tolerance and protection against infections. DSC are activated by 

TLR signalling, produce growth factors, such as G-CSF, cytokines including IL-6 and TNFα, 

as well as chemokines, like IL-8, CXCL1, and possess the chemokine receptors CXCR4. 

These chemokines induce the recruitment of T cells, monocytes and peripheral NK, 

modulating the activation profile at the decidua 
72,73

. Depending on the decidua environment, 

DSC can contribute to a successful pregnancy or miscarriage
74,75

. T. gondii tropism is not 

clearly understood, although the decidua/trophoblasts interface is highly vulnerable to 

infection after parasite dissemination through maternal leukocytes 
54

. As yet, there is no 

description regarding the interplay between DSC and T. gondii infection. 

 

8. Decidual immune cells and T. gondii infection 

The decidua is a highly dynamic immunological tissue composed of different maternal 

immune cell types, and is also modulated by placental-derived factors 
51,76

. Recently, murine 

studies have suggested an important role for CCR5 and RANTES in abortion caused by T. 

gondii infection
77

. In fact, it is suggested that embryo loss results from alteration of decidual 

and trophoblastic function, induced by recruitment of macrophages, DCs and T cells in 

response to increased expression levels of CCR5 and RANTES, in implantation units from T. 

gondii infected mice
77

. Quantitative proteomic analysis of T. gondii-infected human decidual 

immune cells has revealed differential expression of protein levels involved in immune 

tolerance, fetal intrauterine growth and trophoblast invasion, essential biological processes 

during pregnancy. For instance, decreased levels of IL-1 and increased levels of Granzyme 

A and CCAAT/enhancer-binding protein  (C/EBPβ) expression were found in T. gondii-

infected decidual immune cells compared with uninfected ones 
78

. Decreased IL-1 levels 
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during T. gondii infection would affect the immune-balance at the maternal-fetal interface 

and restrict decidualization, placenta development and development of the fetus
78

. Increased 

granzyme A levels is indicative of increased NK cells and cytotoxic T cells and again could 

affect decidualization and fetus development 
78

. C/EBPβ is involved in ERK1/2 signalling 

during decidualization in human and mice, and in macrophage activation 
79,80

. These 

observations suggest that, by interfering with the related-pathways to decidual immune 

responses, T. gondii infection can negatively affect pregnancy outcome 
78

. 

 

8.1. Decidual NK cells and T. gondii infection 

The NK cells present at the uterine mucosa and decidua, referred to as dNK cells, constitute 

the main leukocyte cell population during implantation and early pregnancy. These cells 

account for 70% of all decidual leukocytes and are functionally and phenotypically different 

from blood-circulating NK cells 
81

. Specifically, the majority of dNK cells are highly 

granulated and characterized as CD56
bright

/CD16
-
 non-cytotoxic NK cells 

38,57,81
. These cells 

interact with the invading trophoblast cells, helping them to migrate and invade, thus 

contributing to the remodeling of decidual spiral arteries into high-conductance blood vessels. 

This allows sufficient blood flow at the maternal-fetal interface, which is crucial for a healthy 

gestation 
38,57,82

. In addition, these cells express angiogenic factors, like vascular endothelial 

growth factor and angiopoietin-2, contributing to the development of placental vascular bed. 

dNK cells also secrete a variety of cytokines, such as TNF-α, TNF-β, IL-10, IL-13 and GM-

CSF 
38

. These immune cells are the main source of IFN-γ, which are essential for 

implantation and early placental progression 
48

. In recent years, several studies have 

demonstrated the ability of T. gondii to modify the immune profile of decidual cells and to 

invade and multiply within uterine dNK cells 
40

. T. gondii infection not only increases IFN-γ 

secretion by dNK cells, but is also associated with higher levels of trophoblast apoptosis, via 

the caspase-3 and caspase-8 mediated pathways 
40

. Additionally, T. gondii infection results in 

the increase of the expression of the human dNK cell-activating receptor (NKG2D), which 

may trigger a higher cytotoxic activity of dNK towards trophoblast cells. It is believed that 

these modifications contribute to abnormal pregnancy outcomes 
83

.  
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8.2. Decidual macrophages during T. gondii infection 

Decidual Macrophages (dM) constitute 20% of the decidual leukocyte population and 

represent the second most abundant immune cell-type population in decidua 
37,76

. dM are 

recruited to the maternal-fetal interface by stromal and trophoblast cells, where they have 

specialized functions, such as decidual homeostasis, placental development and tolerance to 

the semi-allogeneic trophoblast. They also form a major line of defense against invading 

pathogens in the decidua and thus protect the fetus from infection 
37,84,85

. In vitro studies have 

shown that dM differentiation and polarization are regulated by factors produced by 

trophoblasts such as IL-10, supressing IFN -induced Stat1 activation 
86

. During early 

gestation, dM are also major producers of IL-10 and are able to supress and regulate the 

decidua immune response 
37,38

. dM can decrease the cytolytic activity of dNK cells against 

invading trophoblasts. These leukocytes also play a role in the induction and expansion of 

Treg cells, contributing to the maintenance and support of uterine tissue homeostasis and 

remodelling 
37,38,87

.  

 

dM are able to recognize, phagocytose and eliminate pathogens. In addition, they also 

remove apoptotic cells and cellular debris and, therefore, promote normal fetal development 

and acceptance, preventing tissue damage and fetal rejection 
37,38,87,88

. T. gondii infection of 

human trophoblasts modulates trophoblast-macrophage crosstalk, in order to favor its 

establishment in the host cell 
71

. The polarization of dM is modulated by T. gondii infection, 

but it is still unclear at present how this occurs during human pregnancy 
85

. Human and 

animal studies support the occurrence of both classical and alternative activation in 

macrophages responding to T. gondii 
89

. Macrophages have a variety of activation states, 

being able to adapt their functions to cytokine environmental changes, described as innate 

TLR ligation, classical/M1 or alternative/M2 activation states 
90,91

. Innate macrophages are 

activated after a microbial stimulus, through LPS stimulation or other TLR ligands, 

producing TNF-α, IL-6, IL-12 and NO 
92,93

. M1 macrophages are antigen-presenting cells, 

activated usually through a combination of LPS and IFN-γ, producing IL-12, IL-23 and 

reactive oxygen species. M2 macrophages can be induced by IL-4, IL-10, IL-13, IL-33, TGF-

β and granulocyte-colony stimulating factor (G-CSF) 
87,92

 and are important regulators of the 

wound-healing response, tissue homeostasis and adiposity 
93

.  
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M1 and M2 macrophages are often associated with polarised Th1 and Th2 responses, 

respectively. However, M1 and M2 functions can occur either in the presence or absence of T 

cells 
94

. Additionally, during an inflammatory response, M1 and M2 activation profiles are 

present, suggesting a switch between M1 and M2, thereby highlighting the dual role of 

macrophages in initiating and, subsequently, resolving inflammation. Whether this switch 

occurs by local conversion of M1 macrophages to anti-inflammatory M2 cells, or by 

sequential recruitment from distinct precursor cell populations from the blood is currently 

under debate 
95

. Several studies have shown that M2 activation profile includes several stages 

89,96,97
. Thus, while classical macrophage activation can control T. gondii replication through 

induction of iNOS, alternative activation can control parasite replication through induction of 

arginase and depletion of arginine, since this parasite is auxotrophic for arginine 
89,98

. M1 

macrophages induced by a Th1 response in murine models exhibit cytotoxic and 

antimicrobial activities against T. gondii infection. This same response is also associated with 

immunopathology and adverse pregnancy outcomes 
89,99

. In humans, during implantation, 

decidual macrophages consist of a M1/M2 heterogeneous activation profile population. This 

mixed decidual macrophage profile continues to predominate during the first trimester and at 

the beginning of the second trimester of pregnancy, coincident with the vasculature 

remodelling at the uterus. After placental growth, in the final stages of the second trimester, 

decidual macrophages exhibit predominantly an M2 polarized profile, promoting fetus 

maintenance and growth 
85,87,92

.  

 

Several studies have focused on macrophage activation profiles in normal and complicated 

pregnancy. Some of these have associated an imbalance of the macrophage polarization with 

T. gondii intrauterine infection, but failed to determine the context of macrophage polarity 

and the mechanisms promoting their dysregulation at the maternal-fetal interface 
87

. Recently, 

it has been reported that human dM upon T. gondii infection showed upregulated M1 

markers and downregulated M2 macrophage markers concomitantly with a downregulation 

of human leukocyte immunoglobulin-like receptor subfamily B member 4, an important 

factor in immune tolerance and immune regulation during normal pregnancy 
100

. These 

alterations provide a possible explanation for the disruption of pregnancy 
39,100

. Other 

infection models, such as malaria during pregnancy indicates that macrophage accumulation 

in the placenta is a key determinant in the immune pathology associated with this parasite 

101,102
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8.3. Decidual DCs during T. gondii infection 

DCs are antigen-presenting cells priming T cell responses, but dDCs fail to initiate 

immunogenic T cell responses to placental antigens, thus contributing to maternal-fetal 

tolerance 
38,103

. Despite the fewer number of human DCs at the decidua, they play 

determinant roles in normal and pathological pregnancies 
104,105

. In addition, DCs are 

important for materno-fetal tolerance and are also involved in angiogenic responses at the 

maternal-fetal interface 
105

. In normal human decidua, both immature myeloid – identifiable 

by their expression of DC-SIGN (CD209) – and mature myeloid DCs coexist 
105

. In early 

human pregnancy the presence of DC-SIGN+ cells and dNK clusters indicate that the 

interconnection between these cell subsets is essential in pregnancy maintenance 
106

. In fact, 

dNK cells induce apoptosis in DC-SIGN+ cells, constituting a mechanism of maternal-fetal 

tolerance 
106

. Other models of infection, namely with Coxiella burnetii and Brucella abortus, 

revealed that myeloid dDCs are unable to mature in response to bacterial ligands, such as 

peptidoglycan or LPS, or to produce inflammatory cytokines. This would prevent 

development of effective immunity and favour pathogen multiplication 
107

. However, 

contrary to these observations during bacterial infections, in vitro studies have shown that T. 

gondii-infected human dDCs produced IL-12 which increased the cytotoxicity of dNK cells 

as determined by increased expression of NKG2D and production of IFN-. The presence of 

increased IL-12 and IFN- levels would favor Th1 cells and suppress Th2 cells and thus 

contribute to disruption of pregnancy 
48

. 

 

8.4. Decidual T cells and T. gondii infection 

The relative balance of lymphoid cells, such as Th1, Th2 and Treg cells, present at the 

decidua coordinate macrophage polarization and are vital for successful pregnancy 
108

. In the 

past it was accepted that maternal-fetal immunological balance could be disturbed by T. 

gondii infection by disrupting a pregnancy-induced bias from Th2–type environment 

(associated with IL-4 and IL-10) toward Th1-type environment (associated with IFN-, TNF-

 and IL-12 production), which has been demonstrated to be abortogenic. The discovery of 

new cytokines at the fetal/maternal interface which did not fit the Th1/Th2 paradigm led 

researchers to move away from this dichotomy and explore the Th1/Th2/Th17 and Treg 

paradigm in reproductive immunology 
109

. Th17 cells secrete the cytokines IL-17, IL-21 and 

IL-22, promoting the inflammatory response during pregnancy in T. gondii-infected women 

17
. Treg cells are key players present in the pregnant uterus, contributing to immune 
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regulation, decidualization, maternal immune tolerance and acceptance of the fetus 
38,51,53

. 

Increased Treg cells are positively correlated with the enzyme placental Indoleamine-2,3-

dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) during pregnancy and are linked 

to maternal tolerance 
110,111

. IDO expression is induced by IFN and converts L-tryptophan, 

an essential amino acid during pregnancy, into kynurenine, which favours expansion of Treg 

cells 
111,112

. The importance of these events is evident as reduced levels of kynurenine and 

other downstream metabolites of tryptophan degradation as well as reduced transcripts for 

IDO and TDO are associated with fetal growth restriction 
111

. Furthermore, IDO expression is 

increased in the placenta during acute T. gondii infection at late gestation 
113

. 

 

Recently, a decrease in the ratio Treg/Th17 in T. gondii-infected pregnant mice was reported, 

suggesting a role for this imbalance in T. gondii-induced embryo loss 
114

. During T. gondii 

infection, a decrease in maternal Treg cells has been reported to disrupt fetal tolerance and to 

be associated with pregnancy complications 
115

.  

 

9. Progesterone and T. gondii infection 

Pregnancy-specific factors, such as maternal hormones, are able to modulate the maternal 

immune response and affect the activation of macrophages and lymphocytes 
41,116,117

. 

Progesterone (P4), one of the maternal hormones synthetized in the breast, endometrium, 

brain, ovaries and fetoplacental unit, plays a role during pregnancy by regulating immune 

cells, essential for the maintenance of pregnancy 
41,42,116,118

. Low levels of P4 in pregnant 

women infected with T. gondii provides another potential adverse effect of T. gondii infection 

on pregnancy 
119

. P4 is able to regulate selectively the expression of different genes 

associated with alternative macrophage activation 
92

. In this study, it has been shown that P4 

treatment of murine macrophages selectively reduces transcription of mrc1 (coding for 

mannose receptor), but increases transcription of ym1, demonstrating plasticity in alternative 

macrophage activation with potential significant consequences for pregnancy 
92

. In addition, 

P4 contributes to a local Th2-associated cytokines production by murine fetoplacental tissues 

and recently it has been demonstrated to negatively regulate the differentiation of Th cells 

into Th1 and Th17 
92,120

. Therefore, it is possible that during T. gondii infection, low levels of 

P4 may be implicated in altered macrophage polarization and T cell responses, negatively 

affecting pregnancy. Moreover, during pregnancy, progesterone is able to induce the 

secretion of progesterone-induced blocking factor (PIBF) by progesterone-receptor-positive 
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lymphocytes
121

. PIBF is able to modulate Th1/Th2 balance and contribute to the enhanced 

Th2 profile noted during pregnancy, characterized by increased production of IL-4 and IL-

10
121

. Notably, PIBF can also downregulate NK cytotoxicity favoring gestation progression 

(Figure 1) 
121

. 

 

10. Conclusion 

Successful pregnancy requires a delicate, fine-tuned equilibrium of maternal immune cells at 

the maternal-fetal interface to promote fetal tolerance. The activation of maternal immune 

effector cells by infection dysregulate this equilibrium and can lead to fetal loss or fetal 

infection. There is evidence that T. gondii affects the activation states of numerous cells that 

play pivotal roles at the FMI including dendritic cells, macrophages, NK cells and 

trophoblasts. Importantly, T. gondii disrupts the normal balance of T cell subsets during 

pregnancy favouring the development of Th1 and Th17 cells associated with parasite control 

rather than Th2 and Treg cells that are conducive to normal pregnancy.  In recent years, 

scientific advances have contributed to the understanding of the interactions between fetal 

trophoblasts and maternal immune cells. The effect of T. gondii at the maternal-fetal interface 

is evident in human and murine models, although the mechanisms are not totally clarified. 

There is still a need for further research into the pregnancy-related mechanisms regulating 

dDCs, dNK cells, T cells and dM, upon T. gondii infection which might explain adverse 

pregnancy outcomes and pathological features of congenital toxoplasmosis 
122

. Current pre-

natal and postnatal treatment can reduce the chance of congenital transmission and the 

severity of disease sequela, but not prevent either 
4,123

.  At present, no vaccine exists to 

prevent human disease induced by T. gondii. The only commercially available vaccine is 

ToxoVax
®
 (Intervet B.V.), which is based on live attenuated tachyzoites of T. gondii strain 

S48, but is only for veterinary use 
124

. Greater understanding of the immune response at the 

local maternal-fetal interface could suggest new targets for therapeutic intervention of 

congenital toxoplasmosis. 
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Figure Legends 

 

Figure 1. The immune response developing to acute Toxoplasma gondii infection (green) 

and the immune response changes during pregnancy are mutually antagonistic (red). 

Physiological changes are in grey. (A) T. gondii have a number of pathogen-associated 

molecular patterns (PAMPs; including HSP70, GIPLS and profilin) which can ligate TLRs 

on host cells and a chemokine mimic, cyclophilin18, that binds CCR5 to induce activation of 

neutrophils, dendritic cells and macrophages. (B) IL-12 produced by these cells act on NK 

cells to stimulate them to produce IFN-. (C) Together, IFN- and IL-12 preferentially induce 

differentiation of Th1 cells. (D) Th1 cells secrete IFN- and, preferentially favour M1 

macrophage activation. (E) Th2 cells and Treg cells play a role in reducing inflammation 

during T. gondii infection. (F) Pregnancy is associated with an increase in progesterone 

production that stimulates NK cells and T cells to produce PIBF, which downregulates NK 

cell activity and promotes Th2 expansion. (G) Interaction of NK cells with atypical HLAs 

(HLA-C, E and G) in the maternal-fetal interface inhibits NK cell activation. (H) indolamine 

deoxygenase (IDO) induced in monocytes results in degradation of tryptophan and the 

production of kynurenine which in turn expands Treg cells. (I) Th2 cells produce IL-4 and 

IL-13 which favours M2 macrophage activation. (J) Progesterone levels are known to be 

downregulated during T. gondii infection although it is not known if this is via direct effects 

or indirectly through inflammation. The exact interaction of pregnancy and the developing 

immune response to T. gondii infection will be dependent on when during pregnancy 

infection occurs. 

 

Figure 2: Impact of T. gondii infection in pregnancy. Clinical consequences for the fetus and 

newborn and concomitant alteration to maternal immune mediators at the FMI and hormonal 

alterations (Blue: relative levels during normal pregnancy; Red arrows: effect of T. gondii 

infection on these levels during pregnancy and infection). nd: not described. 
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