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Abstract. In this work, we present a new method for predicting complex physical-
chemical properties of organic molecules. The approach utilizes 3D convolutional
neural network (ActivNet4) that uses solvent spatial distributions around solutes as
input. These spatial distributions are obtained by a molecular theory called three-
dimensional reference interaction site model (3D-RISM). We have shown that the
method allows one to achieve a good accuracy of prediction of bioconcentration factor
(BCF) which is difficult to predict by direct application of methods of molecular theory
or simulations. Our research demonstrates that combination of molecular theories with
modern machine learning approaches can be effectively used for predicting properties
that are otherwise inaccessible to purely theory-based models.
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3D matters! 3D-RISM and 3D CNN for accurate BCF prediction 2

1. Introduction

Molecular theories such as three-dimensional reference interaction site model (3D-RISM)
[1, 2, 3], ER-theory[4] or molecular density functional theory (MDFT) [5, 6, 7] rely on
approximations derived from rigorous statistical mechanics to estimate the equilibrium
distribution of solvent around solvated molecules. In turn, these distributions can
be related to many physical-chemical properties of a solvated molecular system[8, 9].
Examples of such properties include solvation free energy[10, 11, 12], partial molar
volume [3, 13], salting-out constants [14] and binding free energies [15, 16, 17]. However,
using a purely theoretical approach, it is difficult to relate these distributions to the
substance’s biological effects which are a result of a large number of complex interrelated
phenomena, such as toxicity or bioaccumulation.

The above does not mean that the solvation structure is not useful for the
understanding of the influence of chemical compounds on the living organisms. On
the contrary, the information encoded in the solvation shell can be used to understand
whether a given compound is hydrophobic or hydrophilic [18] which in turn can provide a
reasonable guess whether it will be able to pass certain membrane channels [19]. In case
of a solution which contains ions, the solvation structure can provide and estimation the
solute affinity towards them [14]. All this information is directly related to compound’s
biological effects but can not be expressed explicitly using equations. On the other
hand, machine learning methods are usually quite good at finding and quantifying such
’hidden’ relations [20, 21, 22].

In this article, we utilize a 3D convolutional neural network (CNN) to develop a
prediction model which can estimate the bioaccumulation propensity of a compound
characterised by the bioconcentration factor (BCF) for a number of different organic
molecules. As an input, we use three-dimensional distributions of water around these
molecules, obtained by 3D-RISM with Kovalenko-Hirata closure (KH) [23]. Artificial
neural networks (ANNs) have been previously used for predicting biological effects of
organic molecules [20, 21, 22]. However, they were combined with a very broad set of
descriptors that have diverse physical meanings. Here we focus on a single descriptor;
solvation shell structure in an attempt to show that this can be a universal descriptor
for prediction of properties of molecules which are difficult to formalise by a theory. To
determine whether the CNN-based machine learning setup is necessary, we also tested
linear and Extreme Gradient Boosting (XGBoost) models and compared them with the
3D CNN approach.

2. Theoretical Background

2.1. 3D Reference Interaction Site Model (3D-RISM)

Calculation of an equilibrium distribution of solvent around an arbitrary molecule is
a challenging problem in computational molecular science [3]. It can be done by
molecular dynamics simulations, but extremely long simulation times are needed to
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3D matters! 3D-RISM and 3D CNN for accurate BCF prediction 3

obtain smooth solvent distributions [24].Theoretical methods of statistical mechanics
like MDFT method can be applied to this problem as well as the 3D-RISM theory
[1, 3, 23, 25, 26, 27] which is used in this work.

As a result of the 3D-RISM calculation, one obtains density distribution functions
(local densities) ργ(r) of every of the solvent sites γ around the solute molecule. We
used a 3-point model of water (SPC/E) meaning that the calculation produces density
distributions for both oxygen and hydrogen atoms. These density distributions can be
regarded as a variant of molecular fields. Notice that the densities obtained from RISM
calculations are not exact [2, 13], but can be successfully used to predict a variety of
physical properties using either empirical or semi-empirical corrections [12, 14, 28, 29, 29]
or QSPR approaches [30].

The 3D-RISM main equation can be written as [2, 13]:

hγ(r) =
ns∑
α=1

(χαγ ∗ cα)(r),

where ∗ denotes convolution, ns stands for the number of solvent sites, and hγ(r) =

ργ(r)/ργ−1, is usually referred to as the total correlation function. One should note that
χγ,α is obtained from a homogeneous solvent, while hγ, cα are solute-solvent correlation
functions that describe a system with a fixed solute molecule, surrounded by solvent.
c(r) is a direct correlation function[27]. Finally, χαγ(r) is a site-site susceptibility
function that can be obtained from a bulk solvent radial distribution functions. More
conveniently, χαγ can be calculated from a separate 1D-RISM calculation[3, 31].

The above equation is coupled with a separate closure relation that provides another
connection between hγ(r) and cα(r). In this work we used standard, computationally
robust (KH) closure [32]:

hγ(r) + 1 =

 exp [−βuγ(r) + hγ(r) − cγ(r)] , if h(r) ≤ 0;

1 − βuγ(r) + hγ(r) − cγ(r), if h(r) > 0;

where β = 1/(kT ) and uγ(r) is a potential energy between the solvent site γ and the
solute molecule. Together the above systems of equations are usually iteratively solved
until both hγ(r) and cα(r) achieve a predefined convergence criteria.

2.2. Bioconcentration factor

In this work, we built a model for predicting the BCF (more specifically, we predicted
its decimal logarithm log10BCF). This factor is the ratio between the concentration of
an organic compound in biota and in water:[33]

BCF =
Cbiota(compound)

Cwater(compound)
, (1)

where C represents concentration. It should be noted that BCF is regarded as a
consolidated property of a chemical compound, due to this reason the definition involves
some common concepts like “biota” and “stationary concentration in vivo”. However,
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3D matters! 3D-RISM and 3D CNN for accurate BCF prediction 4

there is OECD 305 guideline[34] which provides the basic requirements for the methods
that should be used for bioconcentration factor estimation to obtain high quality
and comparable data. The typical way to estimate BCF is a measurement of the
concentration of a compound in fishes and in the water after reach of stationarity
of concentrations, usually by exposing the chemical during the pre-defined long time
period. Strictly speaking, there are many types of BCF which definitions depends on the
concentrations of compounds, species of animals, times of expositions, and other factors
of the experiments, but due to the generality of BCF nature, the merging of BCF values
of different experiments (even for different fish species) is possible. This factor is an
important parameter for estimating the potential danger of an organic compound. It is
one of the parameters that determine the labeling of the compound under Registration,
Evaluation, Authorisation and Restriction of Chemicals (REACH) program. The ability
of a compound to penetrate and remain in an organism may influence the toxicity and
mutagenicity, and so may reveal potential environmental risks. Generally, if a chemical
has BCF value of more than 5000 (or log10 BCF > 3.67), it is regarded as potentially
dangerous. There are several methods to measure and estimate the confidence of the
BCF data, described in details in ref. 35. It should be emphasized that determining of
BCF in in-vivo experiments is a very expensive procedure.

Over the years, several models for the BCF prediction have been published. Arnot
and Gobas have proposed a linear model that predicted BCF as a function of the uptake
and elimination of an organic compound by an aquatic organism. Since BCF is related
to logP and water solubility[35], some authors proposed models that utilised these
descriptors [36]. These linear models work satisfactory only for moderately hydrophobic
compounds, but fail to address strongly hydrophobic chemicals[37]. Additionally, LogP
and solubility must be measured separately and this may be problematic. Another
notable model has been produced by Zhao et al.[38] using a hybrid of a number of
machine learning methods. Their model managed to produce an impressive accuracy
(R2 = 0.8,RMSE = 0.59), albeit on a somewhat curated dataset.

To conclude the above, modeling of the bioconcentration factor is an important
research area due to the difficulties associated with its experimental evaluation and
importance of such models for regulatory purposes.

3. Methods and Materials

Database We used the dataset collected by USA Environmental Protection Agency for
their T.E.S.T. QSAR platform for risk estimation[39]. US EPA collected the database
from several sources[38, 40, 41]. This dataset contains BCF measured values for several
fish species: european carp and salmonids. As it has been discussed above combination
of BCF values from cross-species experiments is allowable. We did not do any changes
(modifications, additions, filtration) in the dataset. This dataset has been split into
training and test subsets in the same manner as it was done by US EPA, and statistical
values on the test set are published. We used them as a baseline for our model. There

Page 4 of 14AUTHOR SUBMITTED MANUSCRIPT - JPCM-111976.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



3D matters! 3D-RISM and 3D CNN for accurate BCF prediction 5

are 541 molecules in the training set and 135 molecules in the test set.
We used RDKit[42], an open-source cheminformatics toolkit, to perform basic

molecular routines and to estimate the geometries of molecules.
Conformers Generations For deep neural networks, high amount of diverse data is

a key factor to success. Our approach to conformer generation and selection is similar
to the method from the article [43] and is briefly described below.

At the first stage of the algorithm, we generate a number of conformers by rotating
the bonds of a molecule in stochastic manner. This is followed by an energy minimization
step, consisting of 5000 iterations and performed using the universal force field (UFF)
[44]. Subsequently, the set was pruned such that only conformers with mutual RMSD
(computed on the heavy atoms) more than 0.5Å have been kept. If the number
of conformers exceeds the pre-defined limit, then the post-processing procedure from
paper [43] is performed (we discuss this procedure in more details in the Supporting
Information). We note that the prediction output for every molecule is an average over
the whole ensemble of corresponding conformers. We believe that this procedure can
also mitigate potential issues related with rotations of molecules.

3D-RISM Calculations We used AmberTools16[45] package to calculate the partial
charges of each molecule using AM1-BCC[46] semi-empirical model. At this stage,
for some molecules the calculations have not converged, and these molecules were
eliminated. These partial charges were used for further 3D-RISM calculations. All
3D-RISM computations were performed using rism3d.snglpnt program[23, 24, 26, 27]
from AmberTools16[45] package. Site-site susceptibility functions of bulk water χαγ(r)

were calculated using DRISM method by drism program from the same package. The
water temperature was set to 298 K. For 3D-RISM we used a 35Å× 35Å× 35Å grid
with 0.5Å step size. The resulting oxygen and hydrogen density distributions were saved
as HDF5[47] binary files. We ran a separate 3D-RISM calculation for each conformer. If
more than 50% of 3D-RISM calculations did not converge, such molecule was eliminated
from the dataset.

3D Convolutional Neural Networks Modeling Procedure We used framework
chainer[48] to build networks for processing 3D data. The architecture of the network is
schematically presented in figure 2 (a more standard representation is provided in table
S1 in the Supporting Information). This architecture was optimal in terms of speed and
the quality of the training models. This model has been called ActivNet4, with four
indicating the number of convolutional layers used. A pooling layer is introduced in the
structure of the CNNs which reduces to a minimum the potential effects of translation,
rotation and shifting of molecules on the final output of the algorithm.

We trained this network using both oxygen and hydrogen density distributions,
obtained from 3D-RISM calculations.

Parametric Rectified Linear Units[50] were used as activation functions for the
model since they showed small improvement in the prediction quality, although, it
is possible to replace them with the commonly used relu activation function without
a noticeable lack of performance. To train ActivNet4, we experimented with several
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3D matters! 3D-RISM and 3D CNN for accurate BCF prediction 6

Figure 1: An example of the visualization of the scalar fields for a molecule as 2D
slices taken by the principal axis (Left – a visualization of hydrogens density. Right –
a visualization of oxygen density. Light yellow color – lower values, pale green color –
bulk values, blue color – higher values))

optimizers: Stochastic gradient descent with momentum, Adam[51], RMSprop[52], and
SMORMS3 [53]. The best and the most stable convergence has been provided by
SMORMS3 method. RMSprop and Adam have a good convergence ability, but the
training process was less stable. Stochastic gradient descent has converged noticeably
more slowly for the network. The parameters of the optimisers can be found in the
Supporting Information.

The training and test procedures slightly differed. At the training stage, each
conformer of the molecule has been regarded independently from the other conformers.
At the test stage, the prediction value for each conformer of the molecule has been
calculated and the final result was the mean value for all conformers of the molecule.
The performance of the model was estimated on the same test set that has been used
in the original work to compare our model with the baseline. Additionally, we used
a 5-fold cross-validation (CV) technique for the whole dataset to measure the quality
of the model in a more reliable way. The Neural networks have been trained using
Nvidia K80 graphics cards and Nvidia GTX 1080 cards. Training of one model requires
approximately 5 hours on Nvidia GTX 1080 and up to 4 times longer on Nvidia K80
graphics cards.

Extreme Gradient Boosting modeling (3D Fields) To compare our 3D convolutional
network with other machine learning approaches we built a model using Extreme
Gradient Boosting (XGBoost implementation[54]) algorithm. This method has been
proposed for use in cheminformatics[55] and can process very large datasets. In this
experiment, initially, we had to decrease the volume of each 3D cube from 70x70x70 to
17x17x17 by performing the average pooling operation with a kernel (4,4,4). Then, both
oxygen and hydrogen channels have been flattened and stacked forming a vector of 9826
values. These vectors served as the inputs for XGBoost algorithm. The application of
the method to the test set has been performed in the same manner as in the neural
network experiment. We used the maximal number of trees = 100 and maximal depth
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3D matters! 3D-RISM and 3D CNN for accurate BCF prediction 7

70×70×70×2 68×68×68×32

34×34×34×32
32×32×32×6416×16×16×64

14×14×14×128
7×7×7×128

5×5×5×256

3×3×3×256

1024×1

conv
3×3×3 

pool
2×2×2 

conv
3×3×3 

pool
2×2×2 

conv
3×3×3 

pool
2×2×2 

conv
3×3×3 

pool
2×2×2 

connected

BCF 
prediction

Figure 2: A schematic representation of ActivNet4 architecture with visualized 2D slices
of feature maps on a trained network. Feature maps are colored using the same color
scheme as in figure 1. Blue arrows labeled conv N × N × N denote a 3D convolution
layer, green arrows labeled pool N × N × N denote 3D max-pulling layer, and red arrow
labeled "connected" denotes a fully-connected layer. The figure is based on figure 4
from Ref. 49
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3D matters! 3D-RISM and 3D CNN for accurate BCF prediction 8

of each tree = 6 to train the models, the other parameters have been set to default.
Graph Convolution modeling It was shown recently that in some cases graph

convolution methods can overperform traditional QSAR/QSPR approaches which are
based on the molecular descriptors[56, 57]. We used DeepChem[58] framework included
in Online Chemical Modeling Environment[59] to build graph convolutions models. For
graph convolution model we used the hyperparamethers: epochs 100, learning rate 0.001,
dropout rate 0.25, dense layer size 128 neurons, the size of convolution layers was (64,64)
the other parameters have been set to default.

Linear model Finally, we also built a linear model for BCF prediction using the
following relation:

log10 BCF = a1∆G+ a2V̄ + a3, (2)

where ∆G is molecule’s hydration free energy, obtained with 3D-RISM PC+ method
[13, 60], V̄ is partial molar volume, and ai are parameters adjusted in the process of
regression. The optimal results were obtained with a1 = 0.10634 mol

kkal
, a2 = 0.003 57Å−3,

and a3 = 1.64677.

4. Results and Discussion

Our main goal was to evaluate whether it is possible to predict biological property using
a combination of solvation structure and machine learning. For this, we took EPA
database which has 676 molecules with known BCF. 670 molecules were successfully
processed, while 6 molecules failed at the partial charges calculations stage or at the
3D RISM stage. The database were split into a training (537 molecules) and test (133
molecules) sets. For each molecule we then generated a diverse set of conformers, using a
procedure described earlier. The distribution of a number of conformers for both training
and test sets is shown in figure 3. As one can see, about a quarter of the molecules in the
training and test sets have less than 10 conformers (quite inflexible), while the remaining
molecules are highly flexible with 90-100 conformers. The distribution of the conformers
is similar in both sets.

The main result of the paper is presented in Table 1. ActivNet4 model has been
capable of achieving accuracy comparable to the “consensus” model provided by the
US EPA[39]. This result is noteworthy due to the fact that our model was based only
on the 3D distribution of water molecules while the EPA’s models used a large set of
descriptors of varying nature. The comparison of the two models demonstrates that
the analysis of the solvent density distribution using neural networks may be useful for
predicting biological properties. Surprisingly, graph convolution model showed notably
worse result than baseline model, this effect can be related with relatively small dataset.

One of the problems in our approach is related to the complexity of its set up. To
validate the necessity of using 3D convolutional neural networks we created Extreme
Gradient Boosting (XGBoost) and linear models on the basis of 3D-RISM results. Both
alternatives demonstrated poorer accuracy compared to the original, indicating that
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3D matters! 3D-RISM and 3D CNN for accurate BCF prediction 9

Figure 3: The distributions of the number of conformers for each molecule in the training
and test sets

Table 1: Accuracies of log10 BCF predictions by different models. RMSE stands for
root mean square error, MAE stands for mean absolute error and R denotes Pearson’s
correlation coefficient. For cross-validadated models the standard deviations have been
calculated.

Model RMSE MAE R2

US EPA (baseline)
consensus model 0.66 0.51 0.76
single model 0.68 0.64 0.74

ActivNet4 (3D data)
training/test 0.66 0.48 0.77
5-fold CV 0.65 ±0.04 0.48 ±0.01 0.77 ±0.03

XGBoost (3D data)
training/test 0.85 0.70 0.61
5-fold CV 0.91 ±0.02 0.72 ±0.02 0.54 ±0.04

Graph Convolution
training/test 0.85 0.67 0.61
5-fold CV 0.84 ±0.03 0.66 ±0.02 0.62 ±0.02

Linear Regression (∆G and V̄ ) training/test 1.11 0.92 0.32

Figure 4: Correlation between observed and predicted values of log10 BCF. The size of
the marker depends on the number of conformers of the molecule.
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3D matters! 3D-RISM and 3D CNN for accurate BCF prediction 10

deep learning is necessary to achieve accurate results. To address the difficulty of the
set up we created a convenient script to simplify the procedure[61].

Another bottleneck of the proposed techniques is the size of the 3D fields. For
a 70 × 70 × 70 point 3D grid one has to spend a minimum of 4 B · 703 = 1 372 000 B

(1.31 MB) to store it. In the case of an n-site model of the solvent coupled with an m
conformer representation of the solute we arrive to 4 B · 703 ·m · n bytes necessary for
each molecule.

5. Conclusions

The aim of the paper was to demonstrate that average solvent distribution in the
neighbourhood of solutes can be combined with machine learning algorithms to predict
properties that do not necessarily follow from the theory alone. In order to achieve it we
decided to focus on predicting the bioaccumulation factor using an approximate solvent
density obtained using 3D-RISM method of integral equation theories. After training,
the ActivNet4 (4-layer convolutional neural network) managed to predict log10BCF from
water density distribution with RMSE=0.66. Although the model used relatively simple
3D descriptors, it is capable achieve prediction accuracies that are comparable to the
state of the art models.

Despite the successful first results, the presented method requires a number of
further developments. The first task that authors are working on right now is the
application of the method to other molecular properties that are difficult to measure.
Additionally, it is useful to explore possibilities of integrating solvation shell calculations
and training steps to avoid storage limitations. Finally, given a clear physical meaning of
the descriptors used in this study, it would be useful to explore precisely which molecular
features significantly affect BCF. We hope to answer these and other questions in a
follow-up article.

The source code for the 3D fields generation is located on Zenodo doi:
10.5281/zenodo.835526 and GitHub https://github.com/sergsb/clever. It is distributed
under Apache License 2.0.
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