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Abstract
The decline in cognitive function is one of the most feared aspects of ageing. We are
yet to fully understand why some people age with relatively intact cognition, while
others experience a subtle cognitive decline or even dementia. The Lothian Birth Co-
hort 1936 (LBC1936) was established to investigate lifetime cognitive changes, with data
collected at 11 years of age and again at 70 years old, onwards. The individuals have
been extensively characterised in terms of genetics, cognitive function, and biomedical,
psychological, and lifestyle factors. This pilot study characterises and quantifies mor-
phological and pathological features of the first nine donated brains from this cohort.
Specifically, we have analysed amyloid-beta (Aβ), phosphorylated tau, microglia and
astrocyte levels in five brain regions from nine non-demented LBC1936 participants’
post-mortem brain tissue to determine how these factors vary between brain regions.
Amyloid-β (Aβ) and phosphorylated tau tangles are hallmarks of Alzheimer’s disease,
the most prevalent form of dementia, although these have also been described in the
brains of some non-demented aged individuals. In both ageing and dementia, immune-
related changes are common, including microglia and astrocyte dysfunction. We found
that tau tangles and glial cell coverage were highest in the hippocampus, in contrast to
Aβ which was more abundant in the neocortex. We anticipate that this cohort will pro-
vide invaluable information about brain changes during normal ageing, and act as an
age-matched control group for studies investigating neurodegenerative disorders with
significant cognitive impairment, such as Alzheimer’s disease.

Introduction
A common and devastating aspect of growing older is age-related cognitive loss [1].
Ageing is also the biggest risk factor for developing dementia, an umbrella term encom-
passing disorders characterised by severe cognitive impairments in the elderly, such as
Alzheimer’s disease (AD) [2] [3] [4]. The unmet need for ameliorating age-related cogni-
tive loss [5], as well as the lack of understanding as to what constitutes normal cognitive
ageing can be addressed through well characterised cohorts, such as the Lothian Birth
Cohort 1936 (LBC1936).
Participants of the LBC1936 originate from the Lothian region of Scotland, UK, and are
part of a longitudinal study aiming to understand the aetiologies and mechanisms of
people’s differences in cognitive ageing [6]. These individuals were first tested at 11
years of age in 1947 using a general intelligence test and since the age of 70 have been
cognitively re-evaluated every 3 years. In addition to this longitudinal data on cogni-
tion, the LBC1936 study has accumulated an extensive database on genetics, biomed-
ical, social and lifestyle factors, and longitudinal brain imaging, resulting in a highly
characterised cohort [6] [7] [8] [9]. Post-mortem brains have been donated by 9 non-
demented individuals, and to date, there is pre-mortem authorisation for brain donation
from 173 individuals. A pilot characterisation of the first brain donor demonstrated re-
markable preservation of synaptic integrity in the LBC1936 participant compared to an
Alzheimer’s patient [10].
Neurodegenerative diseases are often characterised by the accumulation of misfolded
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proteins. In Alzheimer’s disease, amyloid-β (Aβ) forms extracellular protein aggregates,
or Aβ plaques, and the synaptotoxic oligomeric form is now shown to be a key driver of
dementia-associated cognitive impairments [11] [12] [13]. In addition, the microtubule
stabilising protein tau can form neurofibrillary tangles (NFTs) when hyperphosphory-
lated. The combination of Aβ plaques and extensive NFTs are the hallmark of AD and are
strongly implicated in cognitive decline and synapse degeneration [12]. These patholo-
gies also often accumulate in healthy, non-demented individuals in an age-related fash-
ion, but it is not yet clear whether they contribute to a mild cognitive decline in the
absence of frank dementia [14]. Cognitive ageing and post-mortem pathology have
been previously correlated in the Rush Religious Orders Study and the Rush Memory
and Aging Project, where Aβ and tau were negatively associated with cognitive func-
tion [15] [16]. The LBC1936 neuropathology assessment aims to extend the character-
isation from pre-mortem cognitive performance to post-mortem neuropathology in an
attempt to discover underlying pathological changes that may explain the clinical phe-
notype. We have broadened the extent of post-mortem pathology investigated from
well-established amyloid and tau analysis to the quantification of glial cell numbers.
Specifically, microglia and astrocytes are immune cells essential for maintaining neu-
ronal health through a range mechanisms, including synaptic pruning [17] [18], phago-
cytosis [19], and myelin regeneration [20]. During ageing, however, microglia and as-
trocytes become over-activated [21] [22] resulting in neuroinflammation and neurode-
generation [23] [24] [25]. The combination of these protein accumulations and cellular
changes in the ageing brain likely contribute to the cortical thinning observed in the
elderly, and the devastating atrophy observed in individuals with dementia [26].
For this study, we have used immunohistochemistry to study five brain regions from
the nine LBC1936 brain donors. Four of the regions chosen are implicated in cognitive
change during ageing and neurodegenerative diseases: Brodmann area (BA) 41/42 -
superior temporal gyrus, BA44/45 - inferior frontal gyrus, BA46 - dorsolateral prefrontal
cortex, and hippocampus. BA17, the primary visual cortex, was chosen as it is one of
the cortical areas that is relatively spared during Alzheimer’s disease [3] [27].
We found a regional variability in both pathological protein accumulation and gliosis
in our nine brains. On average, the hippocampus appeared to have the highest level of
NFTs and glial coverage, yet contained the lowest burden of amyloid. This study shows
that regional variability in brain changes is likely a common feature in aged brains and
that the LBC1936 cohort is an excellent group to study the changes associated with
cognitive changes during ageing. Ultimately this will lead to a greater understanding
of the cellular and molecular changes both in healthy ageing and in the early stages of
neurodegeneration leading to dementia, such as mild cognitive impairment (MCI).

Objective
To quantify Aβ plaques, NFTs, gliosis, and cortical thickness in the nine post-mortem
brains of nine LBC1936 non-demented aged individuals.
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Figure Legend
Figure 1. Quantifying Aβ, NFTs, gliosis, and cortical thickness in LBC1936 par-
ticipants’ post-mortem brain tissue.
Measurements in each of the five brain regions and representative images of each stain:
A,H amyloid-β, B,I phosphorylated tau/ neurofibrillary tau tangles (NFTs), C,J Iba1,
D,K CD68, E ratio of CD68 to Iba1 microglia, F,L GFAP, and G cortical thickness.
Each data point represents one individual (n=9). Data are mean ± standard error of the
mean (SEM). For statistical analysis, Friedman test withDunn’s post-hoc, where *p=0.05,
**p=0.01, and ***p=0.001. Scale bar: 150 μm.

Results & Discussion
Amyloid-β and Tau
Aβ burdens were significantly variable between the 5 brain regions from the 9 indi-
viduals (Friedman test, p=0.0018). Specifically, we found that the hippocampus had the
lowest amount of Aβ plaques compared to BA41/42 (p=0.0061), BA44/45 (p=0.0175), and
BA46 (p=0.0365) but not BA17 (Dunn’s post-hoc test) (Figure 1A and H). The deposition
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patterns between individuals varied considerably, with some showing very low Aβ bur-
dens (SD017/16) and some showing extensive Aβ deposits throughout the grey matter
(SD031/16). Strikingly, the participant with the highest Aβ burden (SD031/16) had an
apolipoprotein (APOE) ε4 allele, a strong late-onset AD risk factor, and a Thal score 5,
resembling AD-like pathology (Supplementary tables 1 and 2). Moreover, cerebral amy-
loid angiopathy (CAA) with Aβ deposits around blood vessels was observed in some
cases but was not always associated with Aβ plaques in the cortex (data not shown).
Therefore, Aβ depositions are heterogeneous both between and within individuals.
As expected from the early Braak stages of the individuals, BA17 and BA46 showed al-
most no phosphorylated tau species, whereas BA41/42 and BA44/45 showed low NFT
densities (Figure 1B and I). In contrast to our Aβ data, the hippocampus most commonly
exhibited tau pathology, and significantly higher levels of tau pathology than BA17
(p=0.0026) and BA46 (p=0.0224) (Dunn’s post-hoc test). The only individual (SD031/16)
with tau spread in all five brain regions also had the highest NFT density across all re-
gions. This was also the case with the highest amyloid burdens and an Apo ε4 allele.
Again, these preliminary data show evidence of p-tau heterogeneity not only between
brain areas but also between individuals.
Microglia and astrocytes
Microglia and astrocytes, similar to tau, were found at highest levels in the hippocam-
pus. Iba1-positive microglia, representing total microglia numbers, showed a signifi-
cant difference in burdens between brain areas (p=0.0017), with the hippocampus hav-
ing a higher burden than BA17 (p=0.0006) (Dunn’s post-hoc test) (figure 1C and J).
CD68-positive microglia, a marker of phagocytic activity, showed no significant differ-
ences between the five brain areas (p=0.135) (figure 1D and K). By exploiting the fact that
Iba1 stains most microglia and CD68 only stains phagocytic microglia, we generated a
ratio of phagocytic versus total microglia in all five regions. No statistical differences of
activation status were observed between brains areas (p=0.216) (figure 1E).
Astrocyte burdens were significantly elevated in the hippocampus compared to both
BA17 (p=0.0061) and BA41/42 (p=0.0287), but no further significant differences in bur-
dens were found between other brain areas (Dunn’s post-hoc test) (figure 1F and L).
Altogether, the hippocampus has statistically higher levels of glial cells than other brain
areas, particularly BA17.
Cortical thickness
A significant difference in cortical thickness between cortical regions was observed
(p=0.0133), with BA17 showing a significantly thinner cortex than BA41/42 (p=0.037)
and BA46 (p=0.0209), but not BA44/45 (Dunn’s post-hoc test) (figure 1G). These data
show BA17 has a thinner cortex compared to more anterior areas. This observation is
most likely explained by natural rostro-caudal differences in cortical thickness, rather
than ageing-induced neuron loss [28].
Discussion
In this study, we have measured Aβ, phosphorylated tau (NFT), microglia, and astro-
cyte levels in five brain regions and have demonstrated both regional and individual
variability in nine non-demented LBC1936 participants.
Our observed heterogeneity in tau and Aβ burdens heterogeneity reflects previous find-
ings in the literature. Specifically, AD brains have higher levels of tau pathology in the
hippocampus compared to cortical regions [11] [29]. Conversely, Aβ deposits are high-
est in the neocortex and moderately distributed in the hippocampus, until later stages of
the disease [11] [29]. The greatest genetic risk factor for developing AD in non-familial
cases is the possession of an APOE ε4 allele, whereas the ε2 allele appears to be pro-
tective against AD [30]. Of note, the highest amyloid and tau pathology was observed
in the only individual with an ε4 allele and the lowest amyloid pathology in the only
individual with the ε2 allele (supplementary table 1). Nevertheless, these results have
to be interpreted with caution due to the extremely low numbers involved and that the
levels of Aβ and NFTs in this cohort are significantly lower than those found in AD
cases. Overall, despite the small sample size, the data from this study have surprisingly,
yet closely, depicted previously described features of the ageing brain.
It is currently unclear if or howAβ and tau interact in the ageing andAD brain. It is more
evident that the quantity and spread of NFTs correlates stronglywith, not only, cognitive
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decline but also synapse loss and gliosis [31] [32]. Indeed, in our study, glial cells were
predominantly found in the hippocampus in the LBC1936 individuals (similar to NFTs),
confirming preceding findings [33] [34]. The increased glial coverage and p-tau in the
hippocampusmay indicate a causative role in the early hippocampal neurodegeneration
during ageing and AD, and by extension it may explain the early memory impairments
observed in the elderly and demented. Interestingly, other studies have shown that
Iba1+ve microglia burdens are correlated with normal cognitive function, whereas acti-
vated (CD68) microglia are correlated with poorer cognitive function in dementia [35].
While this study is currently too small to assess these kinds of associations, as more
brains become available this cohort will provide an invaluable opportunity to discover
associations between post-mortem brain changes and detailed longitudinal cognitive
performance.
The hippocampus undergoes extensive spine remodelling [36] [37] and as a result, may
require greater glial surveillance to ensure efficient temporal and spatial synaptic prun-
ing. This could explain the higher numbers of glial cells we observe in the hippocampus
compared to cortical regions (figure 1C). Synaptic health is critical for normal brain
function, evidenced by the fact that synapse loss is the best correlate with cognitive im-
pairment in AD [38] [39]. Synapse loss is also thought to correlate with poorer cogni-
tive performance in normal ageing [40]. During ageing, synaptic degeneration has been
shown to impair electrophysiological properties of neurons by increasing the long-term
depression (LTD) and reducing the long-term potentiation (LTP) [41] [42]. Notably, Aβ
and p-tau co-localize in synapses in AD brains [29], while microglia and astrocytes in-
teract with synapses both in health and disease, marking synapses as critical points in
normal and pathological ageing [43]. Altogether, these age-related synaptic changes are
hypothesised to occur before the onset of cognitive loss and to be key drivers of MCI
and dementia [44]. It would, therefore, be important to quantify synaptic puncta in the
LBC1936 participants using high-resolution techniques such as array tomography to vi-
sualize how microglia, astrocytes, Aβ, and NFT’s interact with synapses. Furthermore,
the data presented here must be compared to a younger cohort to establish if these brain
area differences truly are age-associated phenomena, or region-specific throughout life.
In the future, a greater sample size will allow us to correlate longitudinal cognitive func-
tion scores to synapse integrity and tau pathology or gliosis, in order to understand
how these factors may mediate age-related cognitive impairments. Furthermore, by
following-up on these individuals’ cognitive function, we expect to detect MCI in some
individuals and through our detailed post-mortem analyses, begin to get an understand-
ing of its neuropathological origin. By doing so, prodromal phases of AD can be detected
early and described post-mortem to the single synapse level, which will greatly improve
our understanding of AD progression and thus provide better avenues for treatments.

Conclusions
To summarise, Aβ plaques, NFTs, microglia, and astrocytes were differentially dis-
tributed in the brains of the nine LBC1936 post-mortem cases, with NFTs and glial cells,
but not Aβ, being elevated in the hippocampus. These data extend the phenotyping of
this well-characterised cohort and form a building block for future studies of the neu-
robiological substrates of cognitive ageing.

Limitations
The greatest limitation of this study is the small sample size (n=9). At the moment, the
sample size is not large enough to make meaningful conclusions about the cellular and
protein differences between brain areas, nor provide a causative relationship between
the variables, and age-related impairments. However, as the post-mortem tissue avail-
ability increases, the studywill be powered enough for makingmore robust conclusions.

Additional Information

Methods and Supplementary Material
Please see https://sciencematters.io/articles/201708000003.
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