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Abstract
Of all of the neuropathological changes observed in Alzheimer’s disease (AD), the loss of synapses correlates most strongly 
with cognitive decline. The precise mechanisms of synapse degeneration in AD remain unclear, although strong evidence 
indicates that pathological forms of both amyloid beta and tau contribute to synaptic dysfunction and loss. Synaptic mito-
chondria play a potentially important role in synapse degeneration in AD. Many studies in model systems indicate that 
amyloid beta and tau both impair mitochondrial function and impair transport of mitochondria to synapses. To date, much 
less is known about whether synaptic mitochondria are affected in human AD brain. Here, we used transmission electron 
microscopy to examine synapses and synaptic mitochondria in two cortical regions (BA41/42 and BA46) from eight AD and 
nine control cases. In this study, we observed 3000 synapses and find region-specific differences in synaptic mitochondria in 
AD cases compared to controls. In BA41/42, we observe a fourfold reduction in the proportion of presynaptic terminals that 
contain multiple mitochondria profiles in AD. We also observe ultrastructural changes including abnormal mitochondrial 
morphology, the presence of multivesicular bodies in synapses, and reduced synapse apposition length near plaques in AD. 
Together, our data show region-specific changes in synaptic mitochondria in AD and support the idea that the transport of 
mitochondria to presynaptic terminals or synaptic mitochondrial dynamics may be altered in AD.
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Introduction

Alzheimer’s disease (AD) is the most common cause of 
dementia affecting around 30 million people worldwide. 
There are currently no disease-modifying treatments for 
AD, making understanding the underlying mechanisms of 
neurodegeneration a high research priority. Pathologically, 
the disease is defined by brain atrophy and the accumulation 

of amyloid beta in extracellular plaques and tau in neurofi-
brillary tangles [54]. The brain atrophy comprises loss of 
neurons, white matter and synapses.

Synapse loss correlates strongly with cognitive decline 
in AD when measured by counting synaptic profiles with 
electron microscopy (EM) or by measuring synaptic protein 
levels [10, 11, 60]. Both Aβ and tau contribute to synapse 
dysfunction and degeneration in AD model systems and are 
observed in synapses in human AD brain [31, 40, 46, 47, 
55, 63]. However, the causes of synapse dysfunction and 
degeneration in the human brain remain largely unknown. 
Synaptic mitochondria are potentially important players 
in synapse degeneration in AD brain. Damage to synaptic 
mitochondria or failure to transport enough mitochondria 
to synapses could both impair function and lead to synapse 
collapse.

The role of mitochondria in metabolism is crucial for pro-
viding the necessary energy required for neurotransmitter 
release at the presynapse [62]. ATP generation is mediated 
through the electron transport chain (ETC), consisting of 
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five protein complexes undergoing sequential redox reac-
tions, which culminate in the production of ATP. Impor-
tantly, recent work shows that synaptic mitochondria have 
distinct morphologies and proteomic profiles compared to 
non-synaptic mitochondria, which may make synapses par-
ticularly vulnerable to degeneration [20]. In AD models, 
Aβ preferentially blocks complex IV of the ETC [22, 30], 
whereas tau impairs complex I [8]. By targeting different 
components of the same system, Aβ and tau amplify one 
another’s toxic effects [27, 51].

Since the synapse is a site of high-energy demand, it is 
necessary for mitochondria to be trafficked to this location. 
Tau plays a crucial role in binding and stabilising microtu-
bules required for this anterograde transport of mitochondria 
[15]. It has been suggested that pathological tau may inter-
fere with this trafficking process resulting in impaired anter-
ograde transport of cargo [28, 33]. Both in vitro and in vivo 
models have shown that the overexpression of tau inhibits 
anterograde mitochondrial transport and disrupts mito-
chondrial distribution in neurites, resulting in perinuclear 
clumping in the soma [32, 57]. In addition to tau-associated 
transport deficits, oligomeric Aβ has also been implicated in 
the impairment of mitochondrial movements in hippocampal 
cultures [5, 9, 52, 53]. Considering that both tau and Aβ 
have been implicated in disrupted anterograde mitochondrial 
transport, depletion of mitochondria at the synapse may be a 
synergistic mechanism contributing to synaptotoxicity. Data 
from human AD brain demonstrate that mitochondria accu-
mulate in dystrophic neurites [56], which implies that they 
may be stuck in dystrophies and prevented from reaching 
synaptic terminals. To formally test the hypothesis that the 
presence of mitochondria in synaptic terminals is altered in 
AD, we used transmission EM to quantify synaptic mito-
chondria in two cortical regions—BA46 and BA41/42. Fur-
thermore, we examined ultrastructural features of synapses 
in these brain regions. We find a reduction in the percentage 
of presynaptic terminals containing multiple mitochondria 
in BA41/42 of AD patients compared to control subjects, 
and we observe abnormal mitochondrial morphology in 
synapses in AD but not control cases. Our results indicate 
that synaptic mitochondria are affected in a region-specific 
manner in Alzheimer’s disease, which may impair synaptic 
function and cognition.

Materials and methods

Post‑mortem analysis

Tissue from eight clinically and pathologically diagnosed 
Alzheimer’s disease donors and nine control donors were 
used for this study (details in Online Resource 1). Use of 
human tissue for post-mortem studies has been reviewed and 

approved by the Edinburgh Brain Bank ethics committee and 
the ACCORD medical research ethics committee (approval 
HV-15-016; ACCORD is the Academic and Clinical Central 
Office for Research and Development, a joint office of the 
University of Edinburgh and NHS Lothian). The Edinburgh 
Brain Bank is a Medical Research Council funded facility 
with research ethics committee (REC) approval 16/ES/0084.

Tissue preparation

At post-mortem, the brain was removed and cut into coronal 
slices. Regions of interest were then dissected from each 
coronal slice. Samples from one hemisphere were dissected 
into smaller segments and processed for electron microscopy 
as described previously [29]. Fresh post-mortem samples 
from BA46 (dorsolateral prefrontal cortex) and BA41/42 
(anterior/posterior transverse temporal cortex) were trimmed 
into small cortical blocks containing the six cortical lay-
ers and fixed in 4% paraformaldehyde and 2.5% glutaralde-
hyde in 0.1 M phosphate buffer (PB) for 48 h. Fixed tissue 
blocks were washed twice in 0.1 M PB and were exposed to 
osmium tetroxide (1% in 0.1 M PB) for 30 min (protected 
from light). Samples were washed twice for 15  min in 
0.1 M PB and three times in previously boiled  ddH2O. Tis-
sue blocks were then dehydrated for 15 min in 50% ethanol 
followed by exposure to 1% uranyl acetate in 70% ethanol 
for 40 min in the dark. Samples were further dehydrated 
in an ascending series of ethanol (95%, 100%, 100%) and 
propylene oxide before storage in Durcupan resin overnight 
at room temperature. Samples were embedded in Durcupan 
resin and allowed to polymerise for 48 h at 60 °C.

Tissue sectioning and imaging

Resin-embedded tissue blocks were cut into 70-nm-thick 
sections using an ultracut microtome (Leica) equipped with 
a Jumbo Histo Diamond Knife (Diatome, Hatfield, PA, USA) 
and collected onto copper formvar-coated grids. Grids were 
stained with lead citrate in a  CO2-free environment for 2 min 
before imaging on a JEOL JEM-1400 Plus transmission 
electron microscope (TEM). For synapse analysis, an aver-
age of 50 images per case was taken at 6000× magnification 
in a systematic, random fashion from BA46 and BA41/42 
(Fig. 1). Exclusion criteria for sampling images included the 
presence of a nucleus in the entire field of view, no synapses 
present in the field of view or the presence of an Aβ plaque 
or NFT in the entire field of view. TEM images were coded 
for blind analysis. Synapses were defined by a presynaptic 
terminal containing at least three synaptic vesicles adja-
cent to an electron-dense post-synaptic density. Mitochon-
dria were defined by the presence of internal cristae and a 
defined outer membrane. 100 synapses per case for each 
brain region (where available, please see Online Resource 
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1) were analysed for a total of 3000 synapses analysed for 
the presence of mitochondria (individual or multiple) in the 
pre- or post-synapse and any unusual features in the syn-
apse noted (abnormal mitochondrial morphology, presence 
of multivesicular bodies, or presence of fibrils). The length 
of the post-synaptic density opposing the presynaptic ter-
minal was also measured (apposition length). Extra blocks 
from temporal, occipital, and frontal cortex were examined 
for plaques in three AD cases and all plaque-associated syn-
apses pooled for apposition length measurements (80 syn-
apses near plaques analysed). Single sections were imaged 
as opposed to reconstructing three-dimensional reconstruc-
tions of serial sections to allow imaging of large numbers 
of synapses. We have previously demonstrated that 2D EM 
quantification techniques performed on synapses, such as 
those used in our present study, generate near identical find-
ings to parallel 3D quantification studies [19].

Statistical analysis

Images were analysed by an experimenter blind to diagnosis. 
For each variable, a single value was calculated per region 
per case. Statistics were calculated in SPSS and GraphPad 
Prism. Normality of the data was tested with a Shapiro–Wilk 
test. Normally, distributed data (apposition length, and per-
centages of pre- and post-synapses containing a single mito-
chondrion) were analysed by two-way ANOVA and Tukey’s 
post hoc tests and are shown as mean and standard errors. 
Non-normally distributed data (percentages of pre- and 

post-synapses containing more than one mitochondria and 
percentage of post-synapses containing multivesicular bod-
ies) were analysed with non-parametric Kruskal–Wallis tests 
and are shown as median and interquartile ranges.

Results

Presynaptic terminals in AD superior temporal gyrus 
have fewer mitochondria than controls

To test the hypothesis that mitochondrial localisation in 
synapses is affected in AD, synapses were analysed from 
AD and control brain samples using transmission electron 
microscopy (Fig. 1). Raw EM images are freely available 
from the University of Edinburgh Data Repository Data-
Share at https ://doi.org/10.7488/ds/2417.

We systematically sampled cortex to analyse synaptic 
mitochondria in asymmetric synapses in two brain regions, 
superior temporal gyrus (BA41/42) and dorsolateral prefron-
tal cortex (BA46). These brain regions play an important 
role in memory encoding and recognition (BA46) and audi-
tory working memory (BA41/42), which are disrupted in 
AD [2, 58], and by the end stages of disease, both of these 
regions have substantial plaque and tangle pathology [54]. 
We observed mitochondria in a subset of pre- and post-syn-
apses in both regions of AD and control brains (Fig. 2). Two- 
to threefold more presynaptic terminals contained mitochon-
dria (ranging from 14 to 37% in AD cases and 22–45% in 

Fig. 1  EM Sampling. TEM images were taken throughout the neuro-
pil in a systematic fashion to ensure sampling from the entire tissue 
block face without repeated sampling or bias (a). Images were taken 
at ×6000 magnification (b). Individual synapses (inset in b, c) were 
identified by the presence of at least three presynaptic vesicles (red 

arrow) and a clearly identifiable, electron-dense post-synaptic density 
(blue arrow). The presence of mitochondria (m) in the pre- (shaded 
cyan) or post-(shaded magenta) synaptic terminals was recorded and 
the length of the PSD opposed to the presynaptic active zone was 
measured (green line). Scale bars represent 1 μm (b), 500 nm (c)

https://doi.org/10.7488/ds/2417
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controls) than post-synaptic terminals (ranging from 8 to 
23% in AD cases and 5–17% in controls). In both AD and 
control cases, the higher percentage in pre-synapses than 
in post-synapses was significant (two-way ANOVA effect 
of pre vs. post in AD F(1, 26) = 68.84, p < 0.001; in control 
F(1, 26) = 105.3, p < 0.001). Interestingly, there was a trend 
towards a region effect in the difference between pre- and 
post-synaptic mitochondria only in AD (two-way ANOVA 
effect of region in AD F(1, 26) = 7.91, p = 0.093; control 
F(1, 26) = 0.57, p = 0.46). The presence of mitochondria in 
presynaptic terminals was lower in BA41/42 than in BA46 
(Fig. 3a), whereas the percentage of post-synaptic profiles 

containing mitochondria did not differ by region or with 
disease (Fig. 3b). A small fraction (0–8%) of synaptic ter-
minals contained more than one mitochondrial profile. In 
BA41/42, AD cases had over fourfold fewer presynaptic 
terminals with multiple mitochondrial profiles than control 
synapses from the same region (Figs. 3c, 4a). The percent-
age of pre-synapses containing multiple mitochondria was 
not different between AD and control in BA46, indicating 
that transport of mitochondria to presynaptic terminals may 
be impaired in a region-specific manner.

To ensure the significant decrease in presynaptic termi-
nals containing multiple mitochondria was not an artefact 

Fig. 2  Examples of synapses and synaptic mitochondria. Mitochondria were observed both in presynaptic terminals (asterisks) and post-synaptic 
terminals (crosses) in control and AD subjects in BA41/42 (a, b) and BA46 (c, d). Scale bar 500 nm
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of post-mortem degradation, we ran correlation analyses 
to confirm that there is not an association of PMI or brain 
pH with this outcome measure. None of the measures of 
mitochondria in synapses correlated with pH or PMI in 
either AD or control groups. When considering all cases 
(AD and controls) together, there is a strong correlation 
(r = − 0.76, p < 0.001) with disease status and % presynap-
tic terminals containing multiple mitochondria in BA41/42 
as would be expected from our significant difference found 
with ANOVA.

Multiple mitochondrial profiles in a single presynap-
tic bouton in the single-section images that we analysed 
for the 3000 synapses in the study could correspond to 
multiple mitochondria or to different parts of the same 
mitochondrion that has curved out of the plane of view. 
Three-dimensional reconstructions of two pre-synapses 
with multiple mitochondria show separate mitochondria 

in presynaptic terminals (Online Resource 2, Online 
Resource 3).

Along with the localisation of mitochondria to synapses, 
we examined the ultrastructure of synapses and synaptic 
mitochondria. We noted occasional abnormal mitochon-
drial morphology in AD cases (Fig. 4b) which may indicate 
mitochondrial dysfunction. Further, we observed accumula-
tion of multivesicular bodies in post-synaptic terminals in 
BA41/42 of AD cases which was rare but exhibited a trend 
towards significance (Fig. 4c, d). Apposition length was not 
changed by region or diagnosis (Fig. 4e). Previous data using 
array tomography indicated synapse shrinkage near plaques 
[31]. We did not find enough plaques in the BA41/42 and 
BA46 samples examined in the systematic random fashion 
for the main study to compare synapses near and far from 
plaques. However, we screened blocks for plaques from tem-
poral, frontal, and occipital cortices from three of the AD 

Fig. 3  Region-specific depletion of presynaptic mitochondria in AD. 
The percentage of presynaptic mitochondria is lower in BA41/42 than 
in BA46 (a, asterisk: two-way ANOVA effect of F (1, 26) = 5.965, 
p = 0.022). There were no differences in region or disease condition 
in the percentage of post-synaptic terminals containing mitochon-
dria (b). Presynaptic terminals containing more than one mitochon-

dria were over four times less common in presynaptic terminals of 
AD BA41/42 (c, asterisk: independent samples Kruskal–Wallis test, 
p = 0.004). Each data point shows the percentage for an individual 
case. Data are represented as mean and standard errors in a, b and 
medians with interquartile ranges (c, d)
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cases to find more plaques to allow investigation of apposi-
tion length of synapses near plaques. A total of 80 synapses 
near plaques and 219 synapses far from plaques in the same 
blocks were observed across the three AD cases examined. 
The average apposition length for each case near and far 
from plaques was calculated and found to be 23% smaller 
near plaques than far from plaques (Fig. 4f, g).

It is also worth noting that of the 3000 synapses systemat-
ically sampled in BA41/42 and BA46 and in the 80 synapses 
near plaques from all regions, we did not find any pre- or 
post-synaptic terminals containing fibrils, despite the clear 
appearance of plaque and tangle fibrils in AD cases (Fig. 5). 
In our previous studies, we detect a substantial proportion 
of synapses near plaques that are positive for oligomeric Aβ 
using array tomography [31]. The current ultrastructural data 
indicate that these oligomers are not yet fibrillar.

Discussion

Proper synaptic function requires the recruitment of mito-
chondria to these specialised regions, where energy is in 
high demand, and elevated levels of calcium are generated in 
response to synaptic activity. To meet these needs, neuronal 
synaptic terminals contain a greater number of mitochondria 
than other cellular regions [3, 36]. Both docked and motile 
mitochondria are present at presynaptic sites to provide ATP 
and influence synaptic vesicle release [59]. Mitochondrial 
disruption at the synapse has been well documented in mul-
tiple models of neurodegenerative diseases and commonly 
appears to be a consequence of increased cellular stress [35]. 
In the case of Alzheimer’s disease, numerous in vitro and 
in vivo studies have now reported disruption to the traffick-
ing, dynamics and proteome of these organelles [7, 18, 24, 
32, 57].

In recent years, it has been recognised that pathological 
forms of both Aβ and tau may play a role in these disruptions 
[34, 50]. In the present study, using post-mortem human 
brain tissue from individuals with AD pathology and con-
trol tissue, a region-specific depletion in the proportion of 
presynaptic terminals containing multiple mitochondria was 
observed in the diseased state. This reduction was detected 
in BA41/42 tissue from individuals with Alzheimer’s dis-
ease, whilst BA46 appeared resistant to this loss. The current 
study suggests a selective vulnerability of BA41/42 synapses 
to mitochondrial depletion. Temporal cortex has previously 
been reported to be particularly vulnerable to deficits in 
complex IV of the mitochondrial respiratory chain in com-
parison with frontal cortex in individuals with Alzheimer’s 
disease [39].

A possible explanation for this reduction in mitochondria 
may be a result of disrupted anterograde transport. Axonal 
transport defects have been widely reported in culture mod-
els of AD, with several studies indicating that the pathologi-
cal forms of Aβ, APP, PS1 and tau can all affect fast axonal 
transport [13, 25, 26, 48]. For example, application of Aβ 
fragments and oligomers in cultured hippocampal neurons 
have been shown to reduce the proportion of mitochondria 
capable of moving towards the synapse in an NMDA recep-
tor-dependent mechanism [9, 25]. However, such studies uti-
lise non-physiological, higher levels of amyloid beta, which 
may contribute to the reported deficits. Pathological forms of 
tau have also been proposed to inhibit anterograde transport 
via different mechanisms [13, 16, 57]. However, it has been 
suggested that the reported tau-mediated disruptions may 
be a consequence of tau overexpression and that tau may 
only interfere with trafficking when it is present at high lev-
els. Therefore, in the present study we analysed the number 
of presynaptic mitochondria present in human brain tissue 
with AD pathology in the absence of exogenous overexpres-
sion systems. Taken together, deficits in the recruitment and 
redistribution of mitochondria to presynaptic terminals in 
AD may be responsible for the reduced mitochondrial accu-
mulation observed in BA41/42 pre-synapses. Similar altera-
tions in mitochondrial localisation have also been reported in 
human AD neurons that contain aggregates of misfolded tau, 
suggesting that soluble forms of tau may have negative con-
sequences on the cellular distribution of mitochondria [32].

An alternative explanation for the observed decrease in 
the percentage of pre-synapses with multiple mitochondria 
in BA41/42 could be due to alterations in mitochondrial 
morphology. Previous studies have reported alterations 
in the ultrastructure of mitochondria under pathological 
conditions including swelling of these organelles [6, 43]. 
In the presence of Aβ, an exacerbation in the opening of 
the mitochondrial permeability transition pore (mPTP) 
has been reported [42, 43]. The resulting increase in the 
permeability of the inner mitochondrial membrane leads 

Fig. 4  Changes in synaptic morphology in AD. In control cases, 
multiple mitochondrial profiles in individual pre-synapses were 
observed (a, crosses), while in AD cases, mitochondria with irregu-
lar profiles were observed in synapses (b, asterisks). Multivesicular 
bodies (MVB, arrows, c) were observed in a subset of post-synapses, 
and occasional dark degenerating spines (§, c) were observed in AD 
cortex. MVB appeared most often in AD BA41/42 synapses where 
there was a trend to increase compared to control (d, Kruskal–Wal-
lis, p = 0.06). Apposition length was unchanged in AD vs. controls in 
BA41/42 or BA46 (e). When more blocks were examined from tem-
poral, frontal and occipital regions to find synapses near plaques (f, g) 
and the data combined, we observe significantly decreased apposition 
length in synapses near plaques compared to those far from plaques 
(f, asterisk: unpaired t test with Welch correction, t = 4.28, p = 0.01). 
g An example of a small synapse near a plaque. h More detail around 
a plaque including a synapses (with pre- and post-synaptic terminals 
labelled, the post-synapse contains a MVB), a dystrophic neurite, and 
a degenerating axon. Data are shown as median with interquartile 
range. Scale bars represent 500 nm (a–c, inset g, h); 1000 nm (large 
panel g)

◂
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to the influx of fluid and an increase in mitochondrial 
size which has previously been reported in response to 
Aβ [45]. The presence of larger mitochondria may occupy 
space within presynaptic sites preventing further dock-
ing of mitochondria at this location. Altered fission or 
fusion of mitochondria in AD could also contribute to our 
observed change in presynaptic terminals containing mul-
tiple mitochondria. There is evidence supporting altered 
mitochondrial dynamics in many neurodegenerative dis-
eases including AD [4]. A further explanation for a reduc-
tion in mitochondria present at presynaptic sites could be 
accounted for by an increase in mitochondrial turnover 
by mitophagy. Previous studies in AD patient brains have 
reported autophagic accumulation of mitochondria sugges-
tive of enhanced mitophagy induction [23, 44].

Under stress conditions such as hypoxia-reoxygenation, 
mitochondrial uncoupling and complex inhibition, addi-
tional morphologies such as donut, cup and blob have been 
reported in cells, mice, primates and humans [1, 21, 37, 
61]. One study in aged Rhesus monkeys suggested that 
these morphological changes also appear to accompany 
functional changes; working memory in these monkeys 
appeared to correlate positively with straight mitochondria 
and inversely with donut mitochondria in the presynap-
tic boutons of dorsal lateral prefrontal cortex (dlPFC). It 
has been suggested that donut mitochondria are markers 
of early cellular stress [1, 38]; however, these O-shaped 
and cup-shaped (‘C’ and ‘U’ shaped) organelles have been 
observed not only in pathological tissue [12] but in healthy 
tissue also [17]. Whether these forms are present in the 

Fig. 5  Fibrils in amyloid plaques and neurofibrillary tangles are 
observed in tissue from Alzheimer’s disease cases with TEM. Aβ 
plaques (P) surrounded by dystrophic neurites (D) and neuropil 
threads (NT) are detected in the neuropil from tissue derived from 

AD cases (a, b). NFT are observed around the soma of neurons from 
AD tissue (labeled T in c, d). Scale bar represents 2 μm in a, c, and d; 
1 μm in b, inset 500 nm × 500 nm in b, 1000 × 1000 nm in d 
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Alzheimer’s diseased brain has yet to be ascertained. In 
this study, we did not perform 3D reconstructions of all 
of the synapses studied, so we cannot draw firm conclu-
sions about mitochondrial morphology, but we did observe 
mitochondrial profiles in single sections that had abnormal 
morphology.

The maintenance of a pool of mitochondria at AD syn-
apses from BA46 may reflect the resistance of mitochon-
dria from this brain region to the toxic effects of Aβ and 
tau. Growing evidence suggests that prefrontal synapses 
remain relatively intact until later stages of the disease as 
a result of trophic effects that partially compensate for the 
early phases of degeneration [41]. Whether this support 
applies to the maintenance of synaptic mitochondria is 
not known, but may account for a maintained population 
in this brain region. However, in the present study, late-
stage AD brains were examined; therefore, this compen-
satory protection from synaptic loss maybe ineffective by 
this stage of disease. It must also be recognised that the 
synapses sampled consist of those that remain at the end 
stages of the disease process. Consequently, these syn-
apses may themselves be more resilient to pathological 
changes. It could be possible that mitochondrial changes 
at the synapse may be more visible in moderate stages 
of the disease where synapses remain prior to extensive 
degeneration and loss.

Our previous data indicate synapse shrinkage in the 
immediate vicinity of plaques in BA41/42, and the accu-
mulation of oligomeric Aβ and phosphorylated tau within 
synapses [31]. Here, we did not observe any change in the 
length of the PSD opposed to the presynaptic terminal; how-
ever, there were not enough plaques in the small EM samples 
to perform the analogous study to our previous work using 
the higher throughput array tomography technique. The lack 
of synapse shrinkage when looking both near and far from 
plaques is in agreement with a recent study using three-
dimensional EM which revealed that many morphological 
features of remaining synapses in AD transentorhinal cor-
tex remain unchanged despite global loss of synapses [14]. 
The absence of fibrils in pre- and post-synaptic terminals 
supports previous work strongly implicating soluble but not 
fibrillar forms of Aβ and tau in synapse toxicity [47, 55]. In 
addition to occasional mitochondria with abnormal pathol-
ogy, we observed multivesicular bodies in a small subset of 
post-synaptic terminals, which is interesting in light of the 
role they play in the secretion of Aβ [49].

Together, these data indicate that synaptic mitochondria 
are reduced in presynaptic terminals in AD in a region-spe-
cific manner. The more pronounced effect in presynaptic 
terminals and a lack of change in the presence of mitochon-
dria in post-synapses support the notion that axonal transport 
of mitochondria at long distances to synaptic terminals is 
impaired in vulnerable brain regions in AD.
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