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Abstract:  In  this  work,  molecular  dynamics  simulation  has  been  applied  to  investigate  the

influence of external electric field on the evaporation of the aqueous nano-film. The evaporation of

the aqueous nano-film with 2240 water molecules and 50 NaCl on a gold (100) surface is analyzed

at the electric fields with various intensities (0, 0.05, 0.1, 0.2 and 0.3 V nm-1)  and directions. The

predictions show that the evaporation of aqueous film is remarkably enhanced when the electric

field Ex=0.2 or 0.3 V nm-1 is parallel to the aqueous film surface. It is also noted that free ions in the

aqueous film are accelerated under the action of the higher Ex and water molecules in the hydration

shell move together with the ions due to the hydration effect. As a result, the interaction between

water molecules decreases, which is responsible for increasing the evaporation of the aqueous film

under the action of the higher Ex. While applying the electric field Ey=  0.3 V nm-1 perpendicular

to the aqueous film,  ions cannot be in accelerated motion  due to the  existence of a solid-liquid

interface and a liquid-gas surface in  y-direction. Therefore,  the evaporation enhancement is much

lower than that of the aqueous film under the action of the Ex. 
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Nomenclature
r distance Pe average potential energy
q electric charge Nf number of degrees of freedom 
t time nneighbor neighbor molecule number
k Boltzmann constant σ characteristic diameter
v velocity ε0 vacuum permittivity
m evaporation rate ε well depth of LJ potential
T temperature Subscripts
E electric intensity i, j ith and jth particle
Ke average kinetic energy x, y x and y-direction
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1. Introduction

Various  microelectronic  and  nano-optoelectronic  technologies  have  adopted  an  external

electric field as a driving procedure, such as electrostatic painting and spraying [1], inkjet printing

[2], nano-manufacturing [3], electrospinning [4] and others. The liquid evaporation under external

electric  fields  is  key  fundamental  process  and  higher  evaporation  rate  is  critical  for  many

application  fields.  For instance,  the rapid evaporation  of the solvent  during the electrospinning

process is essential  to the forming of quite  fine fibers with nanometer-scale  diameters.  But the

reason for fast evaporation during electric field application is not yet understood well. Until now,

the influence of external electric fields on the liquid film evaporation has generated much research

interest  towards  developing  a  better  understanding  of  the  evaporation  and localized  interaction

between liquid molecules under the action of the electric field.

Water is one of the most common working mediums, and water has dipolar molecules and its

behavior  can be affected by the electric  field.  Therefore,  many researchers examined the liquid

water  evaporation  under  the  action  of  the  electric  field  by  practical  experience  [5],  theoretical

analysis [6] and molecular dynamics (MD) simulation [7-10]. The MD simulation has an excellent

track record of following molecule motions and localized interactions between molecules through

the basic laws of classical mechanics, which is a powerful tool for microscopic analysis of water

evaporation  behaviors.  Vaitheeswaran  et  al.  [7]  adopted  the  MD simulation  to  study  of  water

behaviors between the plates at narrow separation in the presence of an electric field in an open

system and they found that the evaporation of water was enhanced by applying high electric fields.

The simulation suggested that the free energy barrier for water evaporation was reduced by the

applied electric field. Okuno et al. [10] carried out a water nano-film evaporation simulation in the

presence of electric fields with the value of 1 V nm-1 in three directions. The MD results disclosed

that  the  electric  field  in  the  direction  perpendicular  to  the  film  surface  enhanced  the  water

evaporation, while the electric field in the direction parallel to the water surface impeded the water

evaporation. This can be made plausible by noting the fact that the water dipolar alignments under

the action of electric fields in various directions are different.

In  practical  terms,  the  water  film generally  dissolved the  free  ions  (aqueous  film).  When

applying an electric field to the aqueous film, not only the water molecules but also the free ions
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with  charges  were  under  the  action  of  the  electric  force,  which  might  be  the  reason  that  the

evaporation  of  the  aqueous  film  differed  from  the  water  film.  Peng  et  al  [11]  adopted  MD

simulations to study the rupture and evaporation of aqueous nano-films with dissolved NaCl salt in

the presence of external electric field. The electric fields in the direction perpendicular to the film

surface were examined with the field intensity ranging from 0.1 to 10 V nm -1. They found that the

salts ions enhanced the rupture of water films at the absence of electric field and the rupture and

water  evaporation  were  accelerated  with  the  increase  of  the  electric  field.  The  surface  tension

exhibited a decreasing trend with the increase of field strength. However, the effect of electric fields

parallel to the aqueous nano-film surface on the evaporation was not discussed in their work. The

aqueous nano-film had the liquid-gas or liquid-solid interface in direction perpendicular to the film

surface,  which differed from the one in the direction parallel  to the film. As a result,  applying

electric fields in various directions  might cause the difference of evaporation.  According to our

literature  search,  there  is  no  study  focusing  on  the  effect  of  electric  field  direction  on  the

evaporation of aqueous film and the effect of salts ions on the evaporation rate evolution under the

action of the electric field, which has been considered worthy of the detailed analysis.

The objective  of this  work is  to understand and reveal  the difference  of the aqueous film

evaporation at homogeneous electric fields in three directions and to analyze the effect of ions on

the evaporation rate of the aqueous films. Evaporation of an aqueous nano-film with dissolved 25,

50, or 100 NaCl was simulated at the lower electric fields (0, 0.05, 0.1, 0.2 and 0.3 V nm-1), and the

results show that the effect of the electric fields on the evaporation enhancement of the aqueous

films  with  dissolved  25,  50,  and 100 NaCl  are  similar.  Thus,  the  evaporation  behavior  of  the

aqueous nano-film with dissolved 50 NaCl was analyzed in this paper. Water nano-film was also

simulated for the comparative analysis. To reveal the evaporation difference, the motions of ions

and water molecules as well as the interaction of water molecules were described in details. In

addition, the evaporation of two thicker aqueous nano-films were built and simulated to prove the

influence of electric field on the aqueous nano-film evaporation. The qualitative analysis of the MD

trajectories provides molecular motion details, which is potentially useful for electric field design in

order to enhance the evaporation of aqueous films in the actual application.
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2. Model and Simulation

2.1 Model

The initial configuration of the system is shown in Fig. 1. The simulation box was cuboid with

dimensions of 10.03.63.6 nm3. The box was divided into three regions, namely solid, liquid and

vapor regions. A gold (100) plate with 1.2 nm thickness and 972 gold atoms was modeled by the

face-centered cubic (FCC) unit with a lattice constant of 0.408 nm. The gold plate consisted of six

layers, the bottom layer was fixed to prevent the plate deformation [12] and other five layers were

modeled as thermostat. An aqueous nano-film with 5.7 nm thickness was placed on the plate, and

the  nano-film consisted  of  2240 water  molecules  and 50 Na+ ions  and 50 Cl- ions.  Periodical

boundary conditions were applied to x- and z-direction of the box, while a fixed boundary condition

was assumed in the y-direction. During the nano-film evaporation, the pressure of simulation box

gradually increased which reduced the evaporation rate. To eliminate the effects of the pressure on

the evaporation, the vapor region with 1.0 nm thickness at the top of the box was defined, and the

gas water molecules were eliminated out the simulation box when the water molecules arrived at

this region.

2.2 Potential function

The embedded atom model (EAM) [13] was adopted for simulating the interaction between

gold  atoms.  The  extended  simple  point  charge  (SPC/E)  water  model  was  chosen  because  it

adequately captured the properties of liquid water in MD simulations [14]. The O-H bond length of

0.1 nm and the H-O-H angle of 109.47 were fixed with the method of the SHAKE algorithm [15].

Na+ and Cl- ions were modeled as charged Lennard-Jones particles  [16,  17].  The interaction of

water  molecules  and ions  consisted  of  the  Lennard-Jones  12-6 and Coulombic  potentials  were

expressed as, 
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(1)

where  Uij and  rij are the potential energy and distance between particles  i and  j,  qi is the electric

charge associated with site i, ε0 is the vacuum permittivity, εij is the well depth of the LJ potential,

and σij  is the characteristic diameter. The interaction between the gold and other molecules (water,
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Na+ and Cl-) was modeled by the Lennard-Jones 12-6 potentials. The values of parameters for the

interactions  are  shown  in  Table  1.  The  potential  parameters  between  different  particles  were

described by the mixing rules, i.e., σij = (σi +σj)/2, and εij = (εi+εj)1/2. A spherical truncated distance for

short-range forces was taken as 10 Å. The long-range electrostatic interaction was solved by PPPM

(particle-particle particle-mesh) method [18] with a relative error of 10-4.

2.3 Evaporation simulation

Before the onset of evaporation, the aqueous nano-film and the gold plate were simulated in an

NVT  ensemble  at  T=298  K  to  reach  the  equilibrium  state  using  LAMMPS (large-scale

atomic/molecular  massively parallel  simulator)  [19].  A run of 1000 ps was made to ensure the

equilibrium of the simulation system, and the electric field strength, E, was set to 0 V nm-1 during

the equilibrium run.  After the preparation of equilibrium system, the value of the homogeneous

electric field was set to 0, 0.05, 0.1, 0.2 or 0.3 V nm-1 at x- and y-directions to investigate the effect

of the electric field on the aqueous film evaporation. To trigger the evaporation, the temperature of

gold atoms in the heat source rose rapidly up to 500 K by a Nose-Hoover thermostat [20, 21]. In the

simulations, the particles motion was solved by the velocity-Verlet algorithm [22] with a time step

of 1 fs, the  positions and velocities of the particles were stored every 2 ps  to analyze the results.

Water molecules were considered to be in the liquid film if their neighbor molecule number within

a distance of 4.34 Å, nneighbor≥4, and in the vapor phase if nneighbor<4 [8].

The  snapshots  of  the  aqueous  film  evaporation  at  different  instants  for  E=0  V nm-1 are

presented in Fig. 2. When the gold plate temperature was suddenly increased from 298 to 500 K at

t=0 ps, the nano-film was heated. An obvious thermal expansion of the aqueous film was observed

at t< 320 ps. The thickness of the water film decreased with the aqueous film evaporation at t>320

ps.  Finally,  only  a  few  water  molecules  absorbed  the  gold  plate  and  the  evaporation  nearly

completed  at  t=6000 ps,  and the  Na+ and  Cl- ions  were  located  on  the  gold  surface  with  the

morphology of crystal-like NaCl.

3. Results and discussions

Figure 3(a) shows the temporal evolution of number of evaporated water molecules and Figure
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3(b) shows the evaporation rate (m) of aqueous film at the electric fields Ex=0, 0.05, 0.1, 0.2 and 0.3

V nm-1. Here, the evaporation rate was equal to the quality of evaporated water molecules in each

picosecond. Aqueous film was heated by the gold plate with high temperature of 500 K at t>0 ps,

several water molecules evaporated in the initial stage as shown in Fig. 3(a). After that, more and

more water  molecules  evaporated,  and the number of evaporated water  molecules  was 2000 at

t=5788 ps for the aqueous film at absence of the electric field. However, for aqueous film at the

Ex=0.05, 0.1, 0.2 and 0.3 V nm-1, evaporation of 2000 water molecules occurred at  t=5576, 5076,

3128 and 1924 ps, respectively. The results indicated that evaporation of the aqueous film increased

with the increase in electric field Ex.

As shown in Fig. 3(b), the evaporation rate increased at first and got maintained an average

value of 1.1010-26 kg ps-1 for the aqueous film at Ex= 0 V nm-1. The evaporation rate increased to

average values of 1.1310-26 kg ps-1 and 1.1910-26 kg ps-1 for the aqueous film at Ex=0.05 and 0.1

V nm-1, respectively, which was slightly larger than the aqueous film at Ex= 0 V nm-1. However, the

evaporation rate remarkably increased at t<800 ps and t<580 ps for the aqueous film at Ex=0.2 and

0.3 V nm-1, and decreased at t>800 ps and t>580 ps, respectively. The peak values were 3.1510-26

kg ps-1 and 6.2910-26 kg ps-1, and the maximum of evaporation rate increased 2.83 and 5.67 times

compared with the aqueous film at Ex= 0 V nm-1.

For  comparing  and analyzing effect  of  electric  field on the  aqueous film evaporation,  the

evaporation behaviors of pure water nano-film at the electric fields Ex=0, 0.05, 0.1, 0.2 and 0.3 V

nm-1 were simulated, and the number of evaporated water molecules versus time is presented in Fig.

4. The evaporation was not significantly different for the water film at Ex=0, 0.05, 0.1, 0.2 and 0.3 V

nm-1. The number of evaporated water molecules was 2113 and 2047 at t=6000 ps for the water film

at Ex=0, 0.3 V nm-1, respectively, which indicated that the evaporation rate decreased slightly for the

pure water film at the stronger electric field Ex= 0.3 V nm-1. These results agreed with the earlier

studies  of Okuno et  al.  [10],  in  which they found that  the evaporation  of thin pure water film

decreased by applying  Ex=1 V nm-1.  Consequently,  it  can be inferred that the increasing of the

aqueous film evaporation rate by applying  Ex should be attributed to the existence of ions in the

nano-film.

To reveal the mechanisms behind the enhancement of aqueous film evaporation caused by

applying the electric field  Ex,  average kinetic energy (Kewater) of a liquid water molecule in nano-
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film at different evaporation instants are shown in Figs. 5(a) (water film) and 5(b) (aqueous film).

The film was heated by the gold surface, as the results that Kewater was increasing for liquid water

molecules in the water film or the aqueous film at the initial stage. While the  Kewater was kept a

constant of 0.123 eV at t>420 ps, and the corresponding water temperature was 458.18 K calculated

by the total kinetic energy of liquid water molecules as based on Eq. (2).

2
f

1 1
=

2 2 i iN kT m v (2)

Where Nf is the total number of degrees of freedom of water molecules, k is Boltzmann constant.

1/2mivi
2 is the kinetic energy of the ith water molecule, which contains the translation and rotational

kinetic energy of water molecule. The results showed that the thermal energy does not increase the

kinetic  energy of liquid water  molecule during  t>420 ps and was only used to drive the water

evaporation. In addition, it is shown in Fig. 5(a) that the value of Kewater was not distinctly different

with each other for the water films at Ex=0, 0.05, 0.1, 0.2 and 0.3 V nm-1. However, the Kewater has a

remarkable increase at  t<800 ps and t<580 ps for the aqueous film at Ex=0.2 and 0.3 V nm-1, and

decreased at t>800 ps and t>580 ps, respectively. There were peak values of 0.14 eV and 0.15 eV

which were remarkably larger than the ones at Ex=0 V nm-1.

To illustrate  the reason of  larger Kewater for the aqueous film caused by application of the

electric field Ex=0.2 and 0.3 V nm-1, average kinetic energies (KeNa
+ and KeCl

-) of ions in aqueous

film versus time are counted and shown in Figs. 6(a) and 6(b). When applying the electric field, Na+

and Cl- ions were accelerated and moved towards the direction of electric field, hence, the KeNa
+ and

KeCl
-  increased at t<800 ps and t<580 ps for Ex=0.2 and 0.3 V nm-1, respectively. When NaCl was

dissolved in the water film, some water molecules were bound by Na+ and Cl- ions due to the

hydration effect [23]. Water molecules in the solvation shell moved together with the Na+ and Cl-

ions leading to the increased Kewater  [9], which was responsible for the larger Kewater when applying

the higher electric field Ex=0.2 and 0.3 V nm-1 to the aqueous film.

In addition, ion pair formation for Na+ and Cl- ions existed in the aqueous film due to the

Coulomb attractive force between opposite charges. Since the ion pair is intrinsically electroneutral,

the electric field had a very small effect on the movement of the ion pair for Na+ and Cl-. A concept

of critical distance between Na+ and Cl- is a benchmark to evaluate whether the ion pair is formed or

not [24]. During the process of the evaporation, the  volume of aqueous film decreased and the
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concentration of Na+ and Cl- ions in the aqueous film increased, and more ion pairs were formed for

Na+ and Cl- ions [25], which lead to the number of free ions reduction. Thus, the KeNa
+ and KeCl

- as

well as Kewater reduced gradually at final stage (t>800 ps and t>580 ps) for Ex=0.2 and 0.3 V nm-1 as

shown in Fig.5(b) and Fig.6.

The average potential  energy of liquid water molecules (Pewater)  was calculated by average

interaction between each water molecule and other molecules in the liquid film (include Na+ and Cl-

ions for aqueous film) and the results are shown in Fig. 7. The negative value of Pewater denoted an

attractive interaction, which was stronger for a larger absolute value. The value of Pewater was 0.43

eV at  t=0 ps. The  Pewater decreased during the thermal expansion of the liquid film in the initial

heating stage, and the Pewater decreased to an average constant of 0.37 eV at t>780 ps. The values of

Pewater were not remarkably different for the water film at  Ex=0, 0.05, 0.1, 0.2 and 0.3 V nm-1 as

shown in Fig. 7(a). 

As noticed in Fig. 7(b),  the Pewater varied with each other for the aqueous film at Ex=0, 0.05,

0.1, 0.2 and 0.3 V nm-1.  The value of Pewater decreased to a lower value for the aqueous film by

applying the higher electric field Ex (eg. Ex= 0.2 or 0.3 V nm-1), which indicated that the interaction

between water molecules in the aqueous film decreased under the action of electric field Ex. Thus,

the water molecules escaped from the aqueous film more easily. The variation of Pewater versus time

was related to the kinetic energy of water molecules as shown in Fig. 5(b). In summary, ions were

accelerated by the higher electric field and the water molecules were forced to move together with

the  ions.  As  a  result  of  the  decrease  of  the  interaction  between  water  molecules,  which  was

responsible for the enhancement of the aqueous film evaporation by applying the higher electric

field Ex.

The aqueous film evaporation was remarkably improved by the application of stronger electric

fields parallel direction to the aqueous film surface, which was attributed to the  ions accelerated

motion along the direction of electric field. A solid-liquid interface and a liquid-gas surface existed

in  y-direction for the aqueous film as shown in Fig.1, which differed from the aqueous film at  x-

direction. Therefore, the evaporation of the aqueous film was discussed at the electric field in the

direction perpendicular to the aqueous film surface. The numbers of water molecules evaporated

versus time for aqueous film at E=0 V nm-1, Ex=0.3 V nm-1, Ey=+0.3 V nm-1and Ey=-0.3 V nm-1 are

shown in Fig.8. The evaporation of 2000 water molecules occurred at 5788, 1924, 5464 and 5516
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ps  for  aqueous  film  at  E=0.0  V  nm-1,  Ex=0.3  V  nm-1,  Ey=+0.3  V  nm-1and  Ey=-0.3  V  nm-1,

respectively. The results showed that the aqueous film evaporation rate increased slightly by the

application of electric field Ey=+0.3 V nm-1or Ey=-0.3 V nm-1, which was remarkably lower than the

evaporation rate of the aqueous film at Ex=0.3 V nm-1. Average kinetic energies (KeNa
+ and KeCl

-) of

ions in aqueous film versus the evaporation time are shown in Figure 9. The Na+ and Cl- ions were

not accelerated by applying Ey=0.3 V nm-1 due to the limitation of the solid-liquid interface and

the liquid-gas surface in the y-direction.

Two thicker aqueous nano-films were built in order to verify the effect of electric field on the

evaporation  of  aqueous film. One aqueous film had 2240 water  molecules  with dimensions  of

2.412.82.4 nm3, and 50 Na+ ions and 50 Cl- ions were dissolved in the aqueous film. Another

aqueous film had 3360 water molecules with dimensions of 2.419.22.4  nm3, and  75 Na+ ions

and 75 Cl- ions were dissolved in the aqueous film. The evaporation was also triggered by the heat

source with the high temperature of 500 K. The numbers of water molecules evaporated versus time

for aqueous film with 12.8 nm and 19.2 nm thicknesses at E=0.0 V nm-1, Ex=0.1 V nm-1, Ey=+0.1 V

nm-1and  Ey=-0.1 V nm-1 were shown in Fig. 10(a) and 10(b), respectively.  Evaporation of 2000

water molecules occurred at 24100, 13370, 22710 and 21200 ps for  aqueous film with 12.8 nm

thickness at E=0.0 V nm-1, Ex=0.1 V nm-1, Ey=+0.1 V nm-1and Ey=-0.1 V nm-1, respectively. While

evaporation of 3000 water molecules occurred at 46350, 15130, 42190 and 37110 ps for aqueous

film with  19.2  nm thickness,  respectively.  The  results  showed  that  the  thicker aqueous  films

evaporation  was  remarkably  enhanced by applying  Ex=0.1 V nm-1,  and  the  evaporation  rate  of

aqueous film at Ey=-0.1 V nm-1 was larger than the ones at Ey=+0.1 V nm-1, which were consistent

with the above mentioned conclusions. In addition, different growth evaporation rates for the three

aqueous films exist when applying Ex=0.1 V nm-1: The evaporation increased by 12.3 % {=(5788-

5076)/5788} for 5.7 nm aqueous film as shown in Fig. 3(b), while the evaporation rate increased by

44.5 % {=(24100-13370)/24100}  and 67.4  % {=(46350-15130)/46350} for 12.8 nm and 19.2 nm

aqueous film, respectively. The results showed that the evaporation enhancement is much higher for

the thicker aqueous nano-film when applying Ex=0.1 V nm-1.

 

4. Conclusions
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In summary, the effects of the electric field on evaporation of the aqueous nano-films with two

various thicknesses were investigated via molecular dynamics simulations. The predictions showed

that the evaporation of aqueous film was remarkably enhanced while applying a high electric field

parallel to the surface of aqueous film (Ex). It was inferred that water molecules in the  solvation

shell moved together with the ions under action of the higher electric field Ex, as a result that the

interaction  between  water  molecules  decreased,  which  was  responsible  for  increasing  the

evaporation of the aqueous film under the action of the electric field Ex. While applying an electric

field (Ey) perpendicular to the aqueous film, the evaporation enhancement was lower than that of the

aqueous film under the action of the  Ex, because  ions cannot be in accelerated motion  due to the

existence of a solid-liquid interface and a liquid-gas surface in the direction perpendicular to the

aqueous film surface.
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Table and Figure Captions

Table 1.Values of potential parameters.

Figure 1. Schematic of the simulation system.

Figure 2. Snapshots from the simulation during evaporation of aqueous nano-film at the absence of

the electric field.

Figure 3. (a)  Number of evaporated water  molecules  and (b)  Evaporation rate  versus  time for

aqueous film at various electric fields.

Figure 4. Number of evaporated water molecules versus time for pure water nano-film at various

electric fields.

Figure 5. Average kinetic energy of liquid water molecules versus time for (a) water film and (b)

aqueous film at the various electric fields.

Figure 6. Average kinetic energy of (a) Na+ and (b) Cl-  versus time for aqueous film at various

electric fields.

Figure 7. Time evolutions of average potential energy of liquid water molecules in (a) pure water

film and (b) aqueous film at the various electric fields.

Figure 8. Number of water molecules evaporated versus time for aqueous film at various directions

of electric field.

Figure 9. Average kinetic energy of (a) Na+ and (b) Cl- versus time for aqueous film at various

directions of electric fields.

Figure 10. (a) Schematic of the simulation system for the thicker aqueous nano-film. (b) Number of

water molecules evaporated versus time for aqueous film at various directions of electric field.
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Table 1.Values of potential parameters.

Particles i,j σi,j(Å) εi,j(eV) q (e)
Na+-Na+ 2.5830 0.0043 +1.0000
Cl--Cl- 4.4000 0.0043 -1.0000
O-O 3.1660 0.0067 -0.8476
H-H 0.0000 0.0000 +0.4238

Na+-Au 2.8745 0.0444 ——
Cl--Au 3.4845 0.0444 ——
O-Au 2.8675 0.0554 ——
H-Au 0.0000 0.0000 ——
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Figure 1. Schematic of the simulation system.
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Figure 2. Snapshots from the simulation during evaporation of aqueous nano-film at the absence of

the electric field.
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Figure 3. (a) Number of evaporated water molecules and (b) Evaporation rate versus time for

aqueous film at various electric fields.
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Figure 4. Number of evaporated water molecules versus time for pure water nano-film at various

electric fields.

19



Figure 5. Average kinetic energy of liquid water molecules versus time for (a) water film and (b)

aqueous film at the various electric fields.
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Figure 6. Average kinetic energy of (a) Na+ and (b) Cl- versus time for aqueous film at various

electric fields.
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Figure 7. Time evolutions of average potential energy of liquid water molecules in (a) pure water

film and (b) aqueous film at the various electric fields.

22



Figure 8. Number of water molecules evaporated versus time for aqueous film at various directions

of electric field.
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Figure 9. Average kinetic energy of (a) Na+ and (b) Cl- versus time for aqueous film at various

directions of electric fields.
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Figure 10. Number of water molecules evaporated versus time for the aqueous film with (a) 12.8

nm and (b) 19.2 nm thickness at various directions of electric field.
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