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Abstract 

This paper investigates the seismic performance of rooted granular slopes using dynamic finite element analysis, 

validated against recently published centrifuge test data. The importance of selecting suitable strength 

parameters to represent soil response within a strain hardening constitutive model was demonstrated and the 

simulations suggested that any boundary effects introduced through the use of the Equivalent Shear Beam 

container in the centrifuge are negligible and can be represented by a semi-infinite lateral boundary condition. 

Using the validated model, a parametric study investigated the effects of different rooted soil properties on the 

performance of slopes of different heights. Vegetation was effective in reducing deformations at the crest of 

modest height slopes, though the benefit reduced as slope height or soil apparent cohesion increased. The 

effectiveness was significantly affected by the extent of the root system, but only moderately sensitive to root 

cohesion, and insensitive to stiffness or damping of the rooted soil. Plant species possessing deep and extensive 

root systems are therefore recommended for seismic stabilisation rather than those with the strongest roots. For 

modelling purposes, it is sufficient to be able to quantify only the strength of the rooted soil and its area of 

influence. The magnitude of improvement from vegetation in terms of decreasing seismic permanent slip was 

also found to be insensitive to the construction method used (i.e. compacted/uncompacted embankment or 

cutting) for drained granular slopes. 

Keywords: Slope stability; Earthquakes; Numerical modelling; Centrifuge modelling; Vegetation; Sands 
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1 Introduction 

Numerical modelling using constitutive models of different levels of sophistication has been 

widely used for dynamic analysis of slope systems (e.g. Prevost et al., 1985; Woodward & 

Griffiths, 1996; Elia et al., 2011;  Pelecanos et al., 2013; 2015). These studies provided 

useful insights into ground motion propagation, topographical effects and hydrodynamic 

pressures within slopes through comparison with observations made from physical model 

tests and/or field measurements. However, most studies did not consider permanent slope 

deformation predominantly due to a lack of recorded deformation data. Al-Defae et al. (2013) 

and Knappett et al. (2015) suggested that the ability to capture soil permanent deformation 

accurately in numerical simulations is particularly important for considering the seismic 

performance of geotechnical systems over their design life, where behaviour in a future 

earthquake may be significantly affected by previous shaking. 

The soil bioengineering method using vegetation is an ecologically and economically 

beneficial sustainable alternative to traditional civil engineering reinforcement techniques 

that have been widely incorporated for slope stabilisation in practice (e.g. Norris et al., 2008; 

Wu, 2013; Stokes et al., 2009; 2014). Plant roots can improve slope stability mainly through 

direct mechanical reinforcement of soil (e.g. Wu, 1976; Pollen & Simon, 2005; Schwarz et 

al., 2010) and by modifying groundwater conditions by means of evapotranspiration (e.g. 

Smethurst et al., 2006; 2012; Leung & Ng, 2013; Boldrin et al., 2017). Some trials under 

laboratory conditions (e.g. Veylon et al., 2015) have been reported to directly quantify the 

relative magnitude of these two effects; however, such trials may over predict the 

hydrological effect as the detrimental consequences of vegetation in increasing soil 

infiltration was not considered (Simon & Collison, 2002; Leung et al., 2018). Sidle & 

Bogaard (2016) reviewed previous studies and indicated that the magnitude of the two effects 

varied by region and by the type of landslide. In temperate regions where storms that trigger 

shallow landslides occur during winter rainy seasons, soils are typically near field capacity 

and transpiration is minimal. The situation may differ in the tropics where transpiration 

modifies soil moisture year round. For shallow landslides, root reinforcement is a dominant 

stabilising agent while evaporation and transpiration play a minor role in landslide initiation. 

Conversely, evaporation and transpiration effects of evolving vegetation directly affect the 

movement of deep-seated landslides, with root reinforcement having only a minor influence. 

Numerical simulation of the beneficial effects of roots on slopes has mainly focused on 

static or pseudo-static events, such as seasonal rainfall and establishment or clearance of 

vegetation. In terms of the mechanical effect, numerical simulations were generally 

conducted in one of two ways: (i) simulating the rooted zone as a zone of smeared properties, 

principally involving an additional cohesion cr (measured in the field) added to the soil 

strength properties (e.g. Frydman & Operstein, 2001; Mao et al., 2014a; Temgoua et al., 

2016), or (ii) treating roots as discrete beam or tensile anchor elements embedded into a soil 

continuum of finite elements (e.g. Lin et al., 2010; Bourrier et al., 2013; Mao et al., 2014b). 

The latter approach can be particularly computationally expensive, given the size of 

individual roots compared to the size of the slope. For the first approach, the root cohesion 

has generally been considered to be uniformly distributed along the slope surface. This may 

not be the case in the field, especially for tree- or shrub-rooted slopes at wider spacing. The 

main structure of a tree root system is typically concentrated within the ZRT (zone of rapid 

taper). Beyond this zone, roots may still extend to several metres, but the density will be 

relatively low and the reinforcing effect negligible (Gilman 1989; Schenk & Jackson 2002; 

Göttlicher et al. 2008). In terms of the hydrological effect of plants on slope stability, 
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numerical simulations have generally followed a two-stage process (e.g. Blatz et al., 2004; 

Leung & Ng, 2013; Ng et al., 2016): (i) the variation of pore water pressure (PWP) due to 

vegetation is calculated through a root water uptake model (e.g. Nyambayo & Potts, 2010; 

Jarvis, 2011) or prescribed according to field records; (ii) the calculated or prescribed PWP is 

then set as an input parameter for independent slope stability analysis. Precipitation and 

evapotranspiration rates have also been prescribed as boundary conditions (e.g. Tsiampousi et 

al., 2017). 

Despite the attention paid to the study of rooted slopes under static conditions, a 

numerical investigation into the seismic response of rooted slopes subject to earthquake 

loading is relatively rare. Liang et al. (2015) developed a two-stage numerical model to 

quantify the performance of vegetated slopes subject to seismic motions: in the first stage, 

root soil interaction is quantified using a computationally-efficient macro-element by 

employing a beam-on-non-linear-Winkler-foundation (BNWF) approach using existing p–y 

formulations from piling engineering (Reese & Van Impe, 2011); the second stage defined 

equivalent continuum properties (e.g. additional representative cohesion) of a smeared zone 

representing the zone of rooted soil in a Finite Element analysis to simulate the global 

seismic response of the slope. This approach has been validated against idealised root groups 

of straight vertical rods. This may be a reasonable representation of a plate/heart root system 

where vertical or horizontal lateral roots grown from the main horizontal lateral roots or the 

base of the tree stem. For tap root systems, however, lateral roots are interlocked by the main 

tap roots. It should be noted here that Liang et al. (2015) isolated only the mechanical root 

reinforcement effects during earthquake events. This may be considered reasonable for 

coarse-grained soils as (i) the slip surface is generally shallow, such that evaporation and 

transpiration play a minor role in landslide initiation as mentioned above (after Sidle & 

Bogaard, 2016); (ii) root transpiration during an earthquake will be negligible due to the short 

duration of the event; and (iii) any beneficial effects on stability of lowering of the water 

table due to evapotranspiration can be negated by heavy rain prior to an earthquake; 

therefore, to ensure performance the hydraulic reinforcement effect cannot be relied upon, 

while the mechanical reinforcement will always be present. For a granular soil that is non-

liquefiable (e.g. gravelly sand or sand with significant non-plastic fines content) the drained 

soil response will, therefore, be the critical case. 

The aim of this paper is to use this numerical modelling technique for application to 

slopes reinforced by deep taproot systems representative of realistic 3-D root architectures 

when subject to seismic ground motion. The numerical model will be validated against the 

database of centrifuge tests reported by Liang & Knappett (2017b), as summarised in Table 1. 

These tests involved the use of an Equivalent Shear Beam (ESB) container at modest model 

scaling factors (based mainly on root size considerations) such that the slope toe and crest 

were relatively close to the container boundaries. These boundary conditions will be 

modelled in detail and compared to an extended soil boundary condition for application to 

field cases that has been conventionally adopted when back-analysing dynamic centrifuge 

tests (e.g. Al-Defae et al., 2013). After validation of the approach, a parametric study will 

investigate the influences of different potential continuum properties of rooted soil on the 

overall seismic performance (slip and crest acceleration) of rooted slopes of different heights, 

soil parameters, slope angles and construction techniques. 

2 Finite element modelling 

Two–dimensional plane-strain numerical simulations were conducted using the commercial 

finite element program PLAXIS 2D 2015. Typical numerical models of rooted slopes (1:30 
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scale slope) are shown in Fig. 1(a). Two different approaches to modelling the boundary 

conditions were considered: (i) extension of both the left and right boundaries to represent a 

semi-infinite soil condition with an absorbent boundary (as indicated in Fig. 1(a)); and (ii) 

modelling the ESB container explicitly (Fig. 2). In the first case, absorbent boundary 

conditions (Lysmer & Kuhlemeyer, 1969) were applied on both sides. Such a boundary can 

be described by two series of dashpots oriented normal and tangential to the boundary of the 

FE mesh. One of the concerns with using such viscous boundaries is that for low frequency 

excitations in multiple directions it may lead to permanent displacements even in an elastic 

system (e.g. Kellezi, 2000；Kontoe et al., 2009). However, only absorption of body waves in 

the x-direction was considered in this study. Modelling the mechanical behaviour of the ESB 

container for the latter case will be described in detail in the following section. 

After the slope geometry was configured (including assigning appropriate constitutive 

properties to different zones), the initial stress state was generated by turning the gravity 

loading on, with the lateral earth pressure coefficient input as a model parameter, where K0 = 

1 sin . Earthquake ground motion was input in the time domain along the bottom 

boundary of each model (as indicated by the arrows in Figs. 1 and 2). The waveform used in 

each case was a displacement time history a time step of 0.016 s obtained from integrating 

the acceleration record measured at the bottom of the centrifuge model slopes, with 

appropriate high pass filtering between integration stages. Each model was subjected to eight 

successive earthquake motions, comprising three different historical records with distinct 

peak ground acceleration (PGA), duration and frequency content, as shown in Fig. 3. The 

first motion (EQ1) was recorded during the 1995 Aegion earthquake (Ms 6.2). This was 

followed by three nominally identical stronger motions (EQ2 – EQ4) recorded from the 1994 

Northridge earthquake (Ms 6.8), three (EQ5 – EQ7) from the 2009 L’Aquila earthquake (Ms 

6.3), and finally, a repeat of the Aegion motion (EQ8). The Newmark implicit scheme was 

employed to perform time integration within the simulations. Two coefficients α and β, which 

control the accuracy of the numerical time integration were set to be 0.25 and 0.5 in this 

study, respectively, to maintain a stable solution. 

2.1 Modelling the behaviour of the ESB container 

2.1.1 General consideration 

The numerical model adopted to discretely model the behaviour of the ESB container is 

shown in Fig. 2 (fallow soil condition shown). Here, the dimensions of the slope were 

established based on the actual prototype size of the centrifuge model. The soil model was 

simulated using 15-node triangular elements. Such elements provide fourth-order integration 

for displacements and the numerical integration involves twelve Gauss points. A very fine 

mesh (500-1500 elements, the exact number depending on the slope geometry and local 

refinement in the rooted zone) was defined. All soil materials were simulated using the 

Hardening Soil constitutive model with small-strain stiffness (Schanz et al., 1999). Parameter 

selection for this material will be discussed later. The ESB container was simulated using 5-

noded plate elements mimicking the layered structure of the ESB container which consisted 

of 6 aluminium frames and 5 rubber inter-layers. The behaviour of the plate elements follows 

Mindlin’s theory (Bathe & Saunders, 1984), which allows for plate deflections due to 

shearing and bending. Rotational fixity was applied to the bottom of each plate to fix the 

rotational degree of freedom and thereby account for the thickness of the container walls in 

minimising rotation. Node-to-node anchors, which did not interact within the soil were used 

to connect the plate elements at a given elevation on either side of the container to represent 

the solid aluminium rings by constraining the horizontal deformations of the two end walls to 
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be identical.  Interface elements were assigned between the soil and the ESB container walls 

to simulate the frictional condition between them. The interface was set to be fully rough to 

ensure that the end walls had the same stress distribution as the adjacent soil (as in the ESB -  

see Zeng & Schofield, 1996). 

2.1.2 Material properties 

Both the aluminium and rubber plate elements were modelled as isotropic elastic materials 

with six input parameters: axial stiffness EA; bending stiffness EI; specific weight w; 

Poisson’s ratio ν; and two viscous (Rayleigh) damping ratio parameters cm and ck. All plate 

parameters used are summarised in Table 2 and Table 3. The rubber layers were simulated as 

an isotropic elastic material with an absorbent boundary applied to the end walls. 

The shear modulus of the rubber layer (Grubber; in kPa) used in this study was taken as: 

vrubber
G  6.141374  (1) 

after Bertalot (2013), where the normal stress on the rubber σv represents that induced by the 

weight of the aluminium frame(s), and therefore varies with working g level in the centrifuge 

and with an elevation of each layer within the container. The Young’s Modulus of the rubber 

(Erubber; in kPa) was then derived from the following elastic relationship:  

)1(2
rubberrubberrubber

GE   (2) 

where νrubber of the rubber was set to be 0.5. For the plane-strain model, the value of EA 

(kN/m) relates to stiffness per unit width in the out-of-plane direction, calculated by 

mdEAE
eqrubberrubber

1 (3) 

where deq is the equivalent width of the rubber sheet over the whole layer (0.375m at the 

prototype in this study). The bending stiffness EI (kN m
2
/m) was estimated as a function of 

EA and deq: 

AE

IE
d

rubber

rubber

eq
12  (4) 

The weight of the rubber was considered to be negligibly small compared to the weight of the 

aluminium layers and was therefore taken to be zero. The viscous damping of rubber was 

approximated as 5% according to Vince & Askenazi (1999). This value was applied as the 

Rayleigh damping at the input frequency range. Details on the determination of appropriate 

damping coefficients (cm and ck) can be found in Section 3.1. 

The Young’s Modulus EAl and Poisson’s ratio νAl of the aluminium were taken from 

Eurocode 9 (BSI, 2007). The corresponding stiffness properties were then determined in the 

same way as for the rubber (see Eq (2) and Eq (3)). For the node-to-node anchors that 

connect the two end walls at each layer, the axial stiffness was set to match the axial stiffness 

of the long edges of the aluminium frames, as measured from compression tests of the 

aluminium rings in an Instron load frame (Bertalot, 2013). The weight wAl of the aluminium 

frame elements were set to represent the actual measured weight of an individual frame as 

reported by Bertalot (2013). The viscous damping of the aluminium frame was taken to be 

0.04% after Vince & Askenazi (1999). 

2.1.3 Boundary conditions 

A modified absorbent boundary was applied to the inner surface of the end walls to 

approximate the hysteretic energy dissipation in the rubber due to the hyperelasticity of the 

material response that cannot be captured implicitly by the linear elastic idealisation used. 
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The normal and shear stress components absorbed in the x-direction may be expressed as 

(Lysmer & Kuhlemeyer, 1969): 

XPn
vVC 

1
  (5) 

yS
vVC 

2
  (6) 

where   is the density of the soil, 
X

v  and y
v are the velocities of a volume; P

V  and S
V  are 

the pressure wave velocity and shear wave velocity, respectively, and can be determined by 


oed

P

E
V   (7) 


0G

VS   (8) 

where 
1

C  and 
2

C are relaxation coefficients which control the amount of energy absorption. 

A perfectly absorbent boundary is achieved if 1
21
 CC , which represents the case for the 

semi-infinite soil boundary condition (Fig. 1). As indicated by Zeng & Schofield (1996), the 

ESB design philosophy prioritises avoiding S-wave reflection by tuning of the container 

dynamic properties. Additionally, it was assumed that any missing rubber damping would 

manifest as unwanted P wave reflection, so C2 was initially set to be 0. After several 

attempts, using 4.0
1
C  and 2.0

1
C  was able to match the dynamic acceleration response 

within the soil body as measured in the centrifuge for the 1:10 scale model and 1:30 scale 

models, respectively. 

2.2 Constitutive modelling of soil 

The dry HST95 silica sand was simulated using the Hardening Soil constitutive model with 

small-strain stiffness (‘HS Small’, Schanz et al. 1999). The stress- and strain-dependent 

elastic part of the model was derived from the strain-dependent stiffness model proposed by 

Santos & Correia (2001): 

7.0

0
385.01

1







G

G
 (9) 

where 0.7 is the shear strain at which the secant shear modulus G has reduced to 70% of its 

initial value (G0). 

Plastic behaviour of the soil is represented using a cap-type yield surface for 

volumetric hardening combined with a non-associative Mohr-Coulomb failure criterion for 

deviatoric hardening. Strain softening behaviour was not modelled. Al-Defae et al. (2013) 

suggested using the critical-state friction angle (' = 'crit) in unreinforced cases with large 

shear deformations that accrue rapidly in granular slopes during strong earthquake shaking. 

Given that the reinforced slopes considered here may not displace as far, ignoring any soil 

dilation influence on strength might result in a significant over-prediction of deformations 

(Bolton & Take, 2011). In order to address this issue, three different sets of shear strength 

properties were considered in the initial validation: case (a) critical-state friction angle 'crit 

and zero dilation; case (b) peak friction angle 'pk and the corresponding dilation angle; case 

(c) an equivalent friction angle 'eq that falls between the peak and critical state values and 

the corresponding dilation angle. The value of 'pk was determined as a linear function of 

relative density ID, over the stress range considered (after Al-Defae et al., 2013): 
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2920 
Dpk

I  (10) 

The dilation angle (') was calculated using the following equation (Roy & Campanella, 

1996), 

sin sin
sin

1 sin sin

crit

crit

 


 

 
 

 
 (11) 

The equivalent friction angle 'eq was given by 

( )eq crit pk critk          (12) 

where k is a reduction factor; k = 0 implies critical state strength; k = 1 implies peak strength; 

otherwise, 0 < k < 1. Based on a series of isotropically consolidated drained triaxial tests of 

fully saturated samples sheared at different effective confining pressures at an initial relative 

density of 50%, the value of k was calibrated to be 0.5. After extensive shearing, the soil was 

expected to arrive at a critical-state void ratio (ecrit), where dilation ceases. For HST95 silica 

sand, ecrit was taken to be 0.717 over a range of effective confining stress from 1 to 100 kPa 

(based on data from Lauder, 2010). 

The parameters used are summarised in Table 4. Damping will be discussed further 

during validation against the centrifuge test data for the fallow slopes (below). 

2.3 Modelling of root-soil mechanical interaction 

A simplified modelling method was adopted to capture the mechanical root-soil interaction. 

In each numerical model, rooted soil zones were defined (see Fig. 1), which were assumed to 

have the same mechanical properties as the surrounding soil, but with an additional smeared 

‘root cohesion’ added to the HST95 soil properties, for the purposes of validation. The 

additional shear strength with depth within the centrifuge models was determined by 

considering different potential slip depths and performing a series of tests within a large 

direct shear apparatus (DSA) on the 3-D printed root models in HST95 sand of the same 

density and with confining effective stresses applied to be representative of that in the 

centrifuge model at the shear plane location (see Fig. 4(a)). It should be noted that these tests 

are only indicative of the rooted soil shear strength at different depths within the centrifuge 

models as the trend of increasing confining stress with depth in the centrifuge tests could not 

truly be simulated within the DSA, as demonstrated in Fig. 4(a). 

Root clusters were uniformly distributed by a spacing S of 1.4 m in the longitudinal 

direction of the 3-D slope in the centrifuge, so that the equivalent (smeared) area, As, of shear 

plane per metre length of the slope over which the additional root strength acts in the 2-D 

plane strain FE models is given by 

SrA
s

  (13) 

where r is the radius of the 3-D root cluster, following Liang et al. (2015). The values of root 

cohesion measured in the field are around several kPa and seldom higher than 20 kPa (see 

database collected by Schmidt et al., 2001; Wu, 2013; Liang et al. 2017a). Hence, the root 

cohesion values used in this study (see Fig. 4(b)) are representative of field measured values. 

3. Validation of numerical model 

3.1 Determination of appropriate damping parameters 

Recent previous validations of FE models against centrifuge test data for this centrifuge, soil 

and container have used the semi-infinite lateral boundary approach, and have indicated that 
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there is a small amount of additional viscous damping required to correctly model the 

measured hysteretic behaviour of the sand in terms of its stress-strain and damping response 

(see Amorosi et al., 2010, Al-Defae et al., 2013, Knappett et al., 2015 and Liang et al., 2015). 

This is principally to remove unwanted oscillations outside the range of the input frequency. 

In order to perform a similar soil property calibration here that can be compared to these 

previous studies the amount of additional viscous damping required was determined using the 

model geometry shown in Fig. 1. Rayleigh damping, which allows additional mass and 

stiffness-proportional damping to be modelled, was added to the soil material, as given by: 

1
( )

4
add m k n

n

c c f
f

 


 
  

 
 (14) 

where add
  is the additional equivalent viscous damping ratio, fn is the natural frequency of 

modes within the soil, and cm and ck are the mass and stiffness proportional damping 

constants, respectively. The additional damping values required to achieve a good match 

between the numerical simulations and the centrifuge results (in terms of inferred shear 

modulus and overall damping inferred from individual stress-strain loops, accelerations and 

crest deformation) are listed in Table 5. The additional damping was applied as a range 

bounded by max desired    and max desired  within the input motion frequency 

range (fmin to fmax), as shown in Fig. 5. Full details about the determination of the values of 

damping ratio bounds can be found in Hall (2006). 

It was found that for slopes subject to similar earthquake motions (i.e. same lower cut-

off frequency), a slightly higher additional viscous damping was required for the taller slope 

(2.5%, 7.2m height for test TL 08) compared to the shorter slope (1.5%, 2.4 m height for test 

TL 04). For the same given 7.2 m height slope subject to motions with different frequency 

content, a higher additional viscous damping was required for the case with greater low 

frequency content (3%, 1.33-10Hz for test TL05) compared to the reduced frequency case 

(2.5%, 4-10 Hz for test TL 08). The same damping ratio was used for both the rooted and 

fallow zones of soil within the validation simulations (it will be demonstrated later in the 

parametric study that changing the amount of damping in the rooted zones compared to the 

surrounding soil has a negligible effect on the response). 
A comparison of the measured and simulated accelerations at the crest of the slope for test 

TL 05 in and the frequency domains is shown in Fig. 6. The accelerations (in terms of the 

envelope of the peak values for the FEM simulations) without applying any additional damping 

were significantly over-predicted in places, but those with additional viscous damping of 3% (in 

this case) showed a much improved match with the centrifuge measurements. 

3.2 Determination of appropriate shear strength parameters 

The effects of using the different sets of soil shear strength parameters on the permanent 

slope crest settlement for simulating the 7.2 m fallow slopes (TL 04, TL 05 and TL08) across 

the eight earthquakes are shown in Fig. 7. As expected, the use of peak strength parameters 

(case (b)) under-predicted the measured crest settlement in all cases. A significant over-

prediction was found when using the critical-state strength parameters (case (a)), for the 7.2 

m slope both under large motions (TL 05) and small motions (TL 08), while the use of 

equivalent shear strength parameters (case (c)) resulted in a good match with the centrifuge 

measurements. Corresponding shear stress-strain loops at mid depth between centrifuge tests 

and numerical simulation is shown in Fig. 8. Here the data points were determined from 

second-order estimates using the accelerometer array at the crest of the slope following the 
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method proposed by Brennan et al. (2005). As shown in Fig. 8, FEM provided a quite 

reasonable representation of soil dynamic response in terms of stress-strain response and the 

implicit stiffness. 

Since case (c) gave the best match with the centrifuge observations, this set of 

strength parameters were used in the corresponding rooted slope cases to evaluate the 

effectiveness of the modelling of the mechanical soil-root interaction using the “smeared”-

zone approach with only additional ‘root cohesion’. Fig. 9 shows a comparison of the 

measured and simulated time histories of permanent crest settlement in the 1:30 rooted 

slopes. This demonstrates that simulating the rooted zone with this highly simplified 

approximation is effective. 

3.3 ESB container boundary effect 

Fig. 10 shows a comparison of the acceleration response (acceleration response spectrum 

near the crest for EQ2) and the permanent slope crest settlement for the FE simulations of the 

ESB container and semi-infinite lateral boundary cases for the 1:30 fallow slope (TL 05). 

Case (c) strength parameters were used as identified in the previous section. It can be seen 

that any boundary effect of the container end walls on the dynamic response of the soil was 

small (Fig. 10(a)). Simulations with the ESB modelled explicitly resulted in slightly larger 

permanent deformations (by approximately 10%) than those modelled by using a semi-

infinite soil boundary condition, mainly resulting from a difference during the first 

earthquake. This is mainly attributed to the relative stiffness between the ESB container and 

the soil layer as suggested by Zeng & Schofield (1996). At smaller strains (EQ1), the shear 

stiffness of the soil layer will be higher than that of the container walls (which were tuned 

during design for a lower soil stiffness). As a result, the deformation of the walls will be 

slightly larger than that of the soil, such that the model container would drive the soil to 

deform slightly further, hence leading to a slightly higher crest settlement. During the 

subsequent motions, with the accumulation of shear strain, the shear stiffness of the soil drops 

to a value that is closer to that of the end walls, so this difference does not generally grow 

larger in the subsequent stronger motions as the deformations of the container walls and soil 

are more consistent. There is, however, some over-prediction of both simulations later in the 

sequence which may be due to soil densification introduced by the previous shaking in the 

centrifuge soil, which was not considered via a phased change of input properties between 

earthquakes during the FE modelling. 

Considering the negligible difference for the overall deformation between the two 

approaches to modelling the boundary conditions, the semi-infinite lateral boundary method 

was used in the subsequent parametric study so as to highly reduce the computational time 

and physical memory required for the computations. 

4. Parametric study 

Using the validated numerical model, a parametric study was conducted to provide further 

insights into the selection of smeared zone properties for representing the rooted soil zones, 

and the effectiveness of roots as a performance-improving remedial technique for slopes of 

different heights and gradients, different construction technique, both in cohesionless (ID = 

57%) and c-ϕ soil. The rooted zone parameters varied included: (a) reduction of root 

cohesion to simulate the earthquake sequence striking when the slope has a weaker/younger 

root system or root ageing/decay; (b) the effect of reduced or increased damping of the soil-

root matrix compared to that of the surrounding soil; (c) the effect of reduced or increased 

stiffness (shear modulus) of the soil-root matrix compared to that of the surrounding soil; and 
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(d) the width of the zone over which the root cohesion acts (i.e. the effect of root lateral 

spread/extent). In each analysis, different slope heights (ranging from 2.4 to 12 m, covering a 

wide range of common heights for infrastructure embankments/cutting slopes) but having the 

same root depth of 1.5 m were considered and were subject to identical motions taken from 

test TL 06 (which have the fullest frequency content). Rooting depth of 1.5 m was selected 

because it is the prototype value of the root cluster used in all the centrifuge tests used for 

validation in this study. In the field, although most species can have roots up to/longer than 2 

m, more than 90% of root biomass is typically found in the top 1.5 m of soil (e.g. Jackson et 

al., 1996; Canadell et al., 1996; Schenk & Jackson, 2002). Higher viscous Rayleigh damping 

ratios were applied for taller slopes (see Fig. 11) to approximately capture this apparent effect 

which was observed during validation. To quantify any changes to slope performance due to 

these various parameter changes, the ratios of the displacement and peak ground acceleration 

(PGA) at the crest of the rooted slope to those of the fallow slope were defined in each case. 

The lower these ratios, the greater effect the roots will have in reducing seismic slope 

deformation and topographic amplification. 

4.1 Effect of rooted soil strength 

The effect of lower root cohesion at the time of the earthquakes is shown in Figs. 12(a) and 

13(a). In this part of the parametric study, the magnitude of root cohesion at all depths in Fig. 

4(b) was reduced proportionally by the reduction factor shown on the x-axis of these figures. 

Normalised cohesion of 1.0 means that root resistance is equivalent to that tested in the 

centrifuge (values as shown in Fig. 4). It is immediately apparent that in terms of permanent 

deformation, the roots are much more effective in shorter slopes. In all cases, there is a 

negligible increase in settlement even with a reduction in root cohesion by 50% (for shorter 

slopes, the settlement reducing effect is largely maintained even for 75% reduction, i.e., up to 

approximately 4~5 kPa of root cohesion at mid depth within the rooted zone and 2-3 kPa 

below 1 m depth). This suggests that root systems considerably weaker than the one 

considered during the centrifuge testing will also be effective in reducing seismic 

deformation and is consistent with a previously proposed mechanism of the performance 

improvement resulting from the zone of intense shear being deviated deeper, beneath the 

rooted zones (Liang & Knappett, 2017a), and that a relatively modest amount of root 

cohesion is required to achieve this. For taller slopes, the rooted zone is smaller in depth 

relative to the slope height, so the zone of intense shear is deviated proportionally less 

compared to the position in the corresponding fallow slope, resulting in a reduced 

proportional reduction in settlement. These results are also important in terms of the long-

term management of vegetated slopes because root strength decays gradually, rather than 

abruptly, as plants die (Preti, 2013; Vergani et al., 2014). The PGA at the crest is not 

sensitive to reduced root cohesion within the rooted zones (see Fig. 13(a)), regardless of the 

size of the slope being considered. This is thought to be because vertically propagating shear 

waves can effectively bypass the rooted zones. 

4.2 Validity of neglecting stiffness and damping changes within rooted soil 

In modelling the rooted soil zones in the earlier validation exercise, the underlying stiffness 

properties and damping were unaltered in rooted zones compared to the surrounding fallow 

soil. Figs. 12(b) and 13(b) show the influence of reducing or increasing the damping in the 

rooted soil zone only (where ζr/ζs = 1 implies rooted and fallow soil have the same damping 

properties, as assumed during validation). It can be seen that the slope crest settlement is not 

sensitive to the damping within the rooted zones, regardless of the height of the slope being 
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considered. This is consistent with the ground motion amplitude also not being affected by 

rooted zone damping (Fig. 13(b)). 

Figs. 12(c) and 13(c) show the influence of reducing or increasing the stiffness 

properties in the rooted soil zone only (where Gr/Gs = 1 implies rooted and fallow soil have 

the same stiffness properties, as assumed during validation). All stiffness properties (G
ref

, 

Eoed
ref

, E50
ref

 and Eur
ref

) within the constitutive model were reduced or increased 

proportionally. It would be expected generally that the addition of roots would increase the 

stiffness of the rooted zone (Liang et al., 2015; Wood et al., 2016); however this is shown to 

have a negligible effect on the crest settlements and accelerations for all slope heights. The 

repeated growth and death of roots in soil has the potential to break up the soil in the rooted 

zone, lowering its density and stiffness. If this was to occur, then the maximum possible 

reduction from a soil at ID = 100% to ID = 0% around the roots would only be of the order 

Gr/Gs ≈ 0.5 (see relationships in Table 4). From Fig. 12(c) and 13(c), this would imply that in 

shorter slopes, even such an extreme alteration to soil density due to root action would have a 

negligible effect on settlement reduction and ground motion amplitude at the crest. However, 

the effect does increase in significance for taller slopes in terms of permanent deformation 

(the small 15% reduction for a 12 m high slope would be approximately halved, Fig. 12(c)). 

In combination, it appears that it is valid to model the effect of roots by a change 

(increase) in shear strength only and to use the stiffness and damping of fallow soil for the 

rooted case. 

4.3 Influence of lateral extent of rooted zone 

For different plants of the same species, the lateral extent of the root system may vary when 

the plant grows e.g. the roots may spread over a reduced distance laterally but go deeper in 

search of water. Starting from the lateral extent of the rooted zones shown in Fig. 1, the width 

of the zone was reduced, reducing the area of the shear plane within the rooted zone, while 

the cohesion was kept the same, thereby representing the same root area ratio (RAR) and 

distribution of strong and weak roots within this zone. Fig. 12(d) indicates that as the rooted 

zone becomes narrower, the settlement reduction effect by roots becomes smaller 

(‘Normalised root area’ represents the multiplication factor on the width of the rooted zone 

used in the validation). In combination with the effects noted for lower root cohesion (Fig. 

12(a)), this suggests that it may be advisable to select plant species for their propensity for 

lateral spread and deep rooting, rather than species with the strongest possible roots, to 

maximise the settlement reducing effects of the vegetation.  This also has important 

implication for field measurement of rooted soil properties, as it would appear to be desirable 

to use rapid tests that measure only strength properties, but which can do this in many 

locations in a short period of time, rather than a smaller number of highly detailed tests (e.g. 

in-situ direct shear tests).  Such devices are currently under development (e.g. Meijer et al., 

2016; 2018). As for the other parameters described previously, changes in the lateral extent of 

the rooted zone have a negligible effect on ground accelerations at the crest (Fig. 13(d)). 

4.4 Effect of slope construction technique on effectiveness of root reinforcement 

Previous studies (e.g. Potts et al., 1990; 1997) have shown that the soil stress state after 

construction can be different between embankments and cuttings due to the different soil 

loading paths followed, even where these slopes are formed by the same type of soil material. 

By using the validated FE model, further parametric study was conducted to evaluate whether 

the construction-induced initial soil stress state would alter the effectiveness of the root 

reinforcement, as compared to the “gravity turn-on” case experienced in the centrifuge. 
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Additional simulations were undertaken on slopes using the same rooted zone properties as 

the centrifuge tests (i.e. 100% normalised root cohesion cases; see Section 4.1) but modelling 

different pre-earthquake construction techniques. 

Two types of embankment were considered, namely, a compacted embankment and 

an end-tipped (uncompacted) embankment (Skempton, 1996). For the compacted 

embankment cases, after establishing the initial stress field in the level ground (Part A, see 

Fig. 1(b)), construction was subsequently modelled by activating an additional soil layer 

above and applying a uniform vertical pressure, followed by its removal. The magnitude of 

compaction pressure selected was 150kPa, based on in-situ compaction test data on gravelly 

sand (Mooney & Rinehart, 2009). This process of activation-loading-unloading was 

continued, layer-wise, until the embankment was complete. The thickness of each layer was 

1.2 m, which was determined as a compromise between computational efficiency and 

approximating field methodologies (where lift thickness between 0.1-0.8m may typically be 

used, depending on the compaction method and compaction plant selected (Highways 

Agency, 2016)). The discrete ‘steps’ resulting from this process were subsequently removed 

by deactivating a triangular wedge in each case to leave the final finished slope surface (Part 

C in Fig. 1(b)). The rooted zones were then changed from soil properties to those of rooted 

soil, before the earthquake sequence was finally simulated. 

For the end-tipped (uncompacted) embankment and cutting cases, after establishing 

the initial stress field in the level ground, construction or excavation was simulated by 

activating the soil mass layer by layer (see Fig. 1(c)), or deactivating the excavated zone in 

several stages (see Fig. 1(d)), respectively, until the shape of the slope was established. The 

rooted zones were then changed from soil properties to those of rooted soil, before the 

earthquake sequence was simulated. The thickness of each soil layer for these cases was also 

taken as 1.2 m. 

Comparison of the initial vertical and horizontal stress contours after construction but 

before earthquake excitation among the four cases is shown in Fig. 14, all for 1:2, 4.8 m high 

slopes. The main differences in the stress field are associated with the horizontal effective 

stresses, particularly for the compacted embankment case. Fig. 15 shows the variation of 

horizontal stress with soil depth at different positions within the slope (markers indicate the 

position of instrumentation within centrifuge tests), with limiting lateral earth pressures 

marked for reference. For the compacted embankment case, the lateral earth pressures are 

much higher than the other three cases, which are similar, and evidence of the mobilised 

lateral earth pressure coefficient reducing at depth is also observed, (as measured in field and 

laboratory compaction, e.g. Ingold, 1979;  Duncan & Seed, 1986;  Chen et al., 2008). 

From Fig. 16, the influence of roots on the seismic slope performance (in terms of 

permanent deformation of the slope crest and crest peak acceleration) appears to be 

insensitive to the variation of initial stress associated with the different construction 

techniques, at least for the ground conditions considered herein. It should be noted that the 

absolute permanent deformations of the fallow slopes were significantly different in 

magnitude between the different construction methods. However, a similar effect was also 

observed for the rooted cases, resulting in improvement factors which are of similar 

magnitude in all cases (Fig. 16) 

4.5 Effect of soil cohesion on root influence 

Some apparent soil cohesion may be observed in granular soil materials forming slopes as a 

result of a significant fines content (e.g. some silt) or cementation (Coop & Atkinson, 1993). 

A cutting case was considered in this section, in which the soil cohesion was increased to 5 
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kPa from the nominal value in Table 4. The input cohesion values for the rooted soil at all 

depths were the sum of this apparent soil cohesion and the root cohesion from Fig. 4. Two 

cases were considered here: (i) 1:2 slopes of varying heights (as before), resulting in 

increased static factor of safety (FOS) and dependence of this on slope height; and (ii) 

keeping the static FOS the same as in the cohesionless 1:2 slopes under fallow conditions by 

varying the slope angle (1:0.65, 1:1.07, 1:1.29, 1:1.41 and 1:1.49 for the 2.4 m, 4.8m, 7.2m, 

9.6m and 12 m slope, respectively). In both cases, the rooted zones were arranged at a 

constant horizontal centre-to-centre spacing of 2.4 m (in plane, between toe and crest) with 

the centreline of the first rooted zone 1.2 m away from the crest of the slope in the horizontal 

direction (see Fig. 1(a)). As a result of this, there was insufficient space for the 1:0.65 (β = 

57°), 2.4 m slope to fit one entire root system and hence no simulations for this situation were 

conducted. Static FOS values are shown in Fig. 17(a) and these were calculated using the 

shear strength reduction method (Griffiths & Lane, 1999). 

From Fig. 17(b) it appears that roots are also effective in slopes with a small amount of 

apparent soil cohesion, though less effective than in the cohesionless case. This is possible 

because the fallow zone of intense shear is deeper with increasing cohesion, resulting in a 

lower proportional change from the zone of intense shear being deviated below the rooted 

zone. However, by increasing the static FOS, the yield acceleration of the slopes with 

cohesion will be higher and so they will require stronger motions to cause slip. It should be 

noted that the pattern of increased effectiveness in shorter slopes appears to be similar. This is 

also true of the cases with variable slope angle, where it appears that by designing statically 

to a target FOS (1.5-1.6 in this case), the effectiveness of the roots will be similar to the 

cohesionless case (as the yield accelerations will likely be similar). The normalised PGA 

values at the crest are shown in Fig. 17(c) and are close to 1.0, which clearly suggest that the 

insensitivity of the response parameter to root presence also applies in slopes of different 

angle and soil properties. 

5 Conclusion 

In this paper, the ‘smeared property’ modelling approach for Finite Element simulation of 

rooted soil proposed initially by Liang et.al (2015), has been validated against a wider 

database of recently published centrifuge test data for vegetated coarse-grained non-

liquefiable slopes under earthquake shaking. This covers situations in which the root 

architecture is more representative and where slope height is a variable. The influence of 

selecting suitable mobilised strength parameters for a strain-hardening constitutive model was 

investigated, along with verification that the ESB container used in the centrifuge tests was 

closely representative of a semi-infinite lateral boundary condition. Following this detailed 

validation, an extensive parametric study was conducted to investigate the influence of 

different potential characteristics of rooted soil on the overall seismic performance of slopes 

of different heights geometry and construction, broadly representative of those used in 

infrastructure embankments/cuttings. The following principal conclusions can be drawn from 

this study: 

1) It was demonstrated that the effect of the roots within an FE model could be 

approximated by an increase in apparent cohesion in the rooted zone only; changes to 

the soil stiffness or damping in the rooted zones had a generally negligible effect on 

the slope performance (though if soil is reduced in density due to disturbance during 

root growth, a small reduction in the effectiveness of the roots may be observed). 

2) The presence of zones of rooted soil on the slope face were found to significantly 

reduce crest settlements in cohesionless sandy 1:2 slopes of shorter height (reductions 
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of the order of 80% for a 2.4 m high slope were observed), but were less effective as 

the slopes became taller (reduction of the order of 20% for a 9.6 m high slope). Roots 

were also found to be similarly effective in slopes with a small amount of apparent 

soil cohesion and with different slope angles. 

3) Roots appear to be less effective in slopes having a higher fallow static factor of 

safety, but as such slopes are more stable and will therefore have smaller 

deformations during earthquake shaking (higher yield accelerations), they are less 

likely to have to rely on the effects of roots to improve performance. 

4) The performance improvement due to the vegetation (in terms of permanent 

deformations) was found to be significantly influenced by the horizontal extension of 

the root system. Lower values of root cohesion, (e.g. species with weaker roots or due 

to root decay) resulted in a negligible change in the settlement reducing effect at all 

slope heights for root cohesion reductions down to 50% of the value tested in the 

centrifuge. This implies that slopes may gain the full benefit of the roots even when 

they are not yet fully developed, or when they have started to decay substantially, 

given typical values of root soil strength observed in previous field studies. 

5) The magnitude of improvement of crest permanent deformation due to the vegetation 

was found to be insensitive to the construction methods of the drained granular slopes 

considered. 

6) The findings outlined in point (3) suggest that selection of species to optimise root 

depth and spread is potentially more important than selecting for roots which are the 

strongest biomechanically. This suggests that the further development of new rapid 

in-situ rooted soil strength assessment techniques that can define the extent of the 

strengthened rooted zone is to be encouraged. 
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NOTATION 

A cross-sectional area  

As equivalent smeared area 

C1 relaxation coefficient for normal stress components 

C2 relaxation coefficient for shear stress components 

c' soil cohesion 

   stiffness proportional, Rayleigh damping coefficient 

   mass proportional, Rayleigh damping coefficient 

cr cohesion due to reinforcement 

deq thickness of the plate 

E Young’s modulus 
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EAl Young’s modulus the Aluminium 

Erubber Young’s modulus of the rubber 

e void ratio 

einit initial void ratio 

ecrit critical void ratio  

emax maximum void ratio 

emin minimum void ratio 

   
   

 
triaxial secant stiffness (at 50% of deviatoric failure stress in drained triaxial 

compression 

    
   

 oedometric tangent stiffness (in compression) 

   
   

 unloading-reloading stiffness 

flower lower frequency 

fupper upper frequency 

f0 natural frequency 

G secant shear modulus 

Grubber shear modulus of rubber layer 

Gr shear modulus of rooted soil 

Gs shear modulus of fallow soil 

G0 maximum shear modulus  

  
   

 small strain modulus 

g acceleration due to gravity(=9.81m/s2) 

I  second moment of area  

   relative density 

K0 Lateral earth pressure coefficient 

m' power –law index for stress-level 

Ms surface wave magnitude  

p reaction from soil due to the deflection of pile 

r radius  

   ratio of deviatoric failure stress to asymptotic limiting deviator stress  

S spacing of roots 

Sfallow crest settlement of fallow slope 

Srooted crest settlement of rooted slope 

v velocity 

VP pressure wave velocity 
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Vs shear wave velocity 

w unit weight of plate 

wAl weight of the aluminium frame plate 

y deflection 

α Newmark time integration coefficient  

β Newmark time integration coefficient 

       shear strain  

γ unit weight 

γr threshold shear strain  

γ soil unit weight 

' effective angle of dilation 

  slope angle 

u displacement 

  Poisson’s ratio 

νrubber Poisson’s ratio of rubber 

νAl Poisson’s ratio of Aluminium 

    Poisson’s ratio(unload-reload) 

  density of the soil 

Δ difference on damping ratio 

   normal stress 

   vertical confining stress 

' effective angle of friction 

'

crit  critical angle of friction 

eq  equivalent angle of friction 

'

pk  (secant ) peak angle of friction 

τ shear stress 

add  additional Rayleigh damping  ratio 

desired  target additional Rayleigh damping  ratio 

max  maximum additional Rayleigh damping  ratio 

min  minimum additional Rayleigh damping  ratio 

r  additional Rayleigh damping  ratio of rooted soil 

s  additional Rayleigh damping  ratio of fallow soil 
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Table 1. Summary of centrifuge models tested  

Test 

identification 

number 

Test 

scale 

Slope 

height 

(m) 

Root type Plant 

spacing  

(m)  

Motion 

frequency 

content (Hz) 

Soil 

relative 

density, 

ID (%) 

TL 04 1:10 

(10-g) 

2.4 Fallow N/A 4-30 57 

TL 05 1:30 

(30-g) 

7.2 Fallow N/A 1.33-10 55 

TL 06 1:30 

(30-g) 

7.2 1:30 root 

cluster 

1.4 × 2.4 1.33-10 60 

TL 07 1:10 

(10-g) 

2.4 1:10 root 

cluster 

1.4 × 2.4 4-30 60 

TL 08 1:30 

(30-g) 

7.2 Fallow N/A 4-10 57 

TL 09 1:30 

(30-g) 

7.2 1:30 root 

cluster 

1.4 × 2.4 4-10 59 
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Table 2. Key parameters and properties of ESB container wall elements 

 Paramete

r 

Unit

s 

Botto

m 

rubber 

layer  

2
nd

 

rubbe

r layer  

3
rd

 

rubber 

layer 

4
th

 

rubber 

layer 

Top 

rubbe

r layer 

Aluminiu

m frame  

1:10 

scale 

mode

l 

EA  kN/

m 

2268 2124 1979 1835 1690 25.88  10
6
 

EI kN 

m
2
/m 

26.58 24.89 23.19 21.50 19.81 0.303  10
6
 

GA kN/

m 630 590 

549.722

2 

509.722

2 469.4 8.08  10
6
 

1:30 

scale 

mode

l 

EA  kN/

m 

11130 9838 8538 7237 5937 77.63  10
6
 

EI  kN 

m
2
/m 

1175 1038 900.5 763.3 626.2 8.187  10
6
 

GA kN/

m 3092 2733 2372 2010 1649 24.25  10
6
 

Table 3. Key parameters and properties of ESB container wall elements 

Parameter Units 1:10 scale model 1:30 scale model 

Rubber 

layer 

Aluminium 

frame 

Rubber layer Aluminium 

frame 

w  kN /m/m 0 19.23 0 57.69 

ν - 0.5 0.334 0.5 0.334 

ζadd   % 5 0.04 5 0.04 

cm  - 2.698 0.0216 0.8975 7.180 × 10
-3

 

ck - 0.5695 × 10
-

3
 

4.559 × 10
-6

 1.709 × 10
-3

 0.01368 × 10
-3

 

Table 4. Constitutive parameters for HST95 sand (after Al-Defae et al. 2013) 

Parameter Al-Defae et al. (2013) Units 

γ 3ID+14.5 kN/m
3
 

   
   

 1.25    
   

 MPa 

    
   

 25ID+20.22 MPa 

   
   

 3    
   

 MPa 

νur 0.2 - 

  
   

 50ID+88.80 MPa 

m' 0.6-0.1ID - 

εs,0.7 1.7ID+0.67(×10
-4

) - 

Rf 0.9 - 

c' 0.3 kPa 
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Table 5. Calibrated additional Rayleigh damping parameters for soil 

Model 

ID 

Additional 

equivalent 

viscous 

damping ratio 

Motion 

frequency 

content (Hz) 

Maximum 

additional viscous 

damping ratio ζmax 

(see Fig. 6) 

cm ck 

TL 04 1.5% 4-30 1.83% 0.8116 0.1713 × 

10
-3

 

TL 05 3% 1.33-10 3.65% 0.5384 1.025 × 

10
-3

 

TL 06 3% 1.33-10 3.65% 0.5384 1.025 × 

10
-3

 

TL07 1.5% 4-30 1.83% 0.8116 0.1713 × 

10
-3

 

TL 08 2.5% 4-10 2.63% 0.9443 0.5980 × 

10
-3

 

TL 09 2.5% 4-10 2.63% 0.9443 0.5980 × 

10
-3

 

 

Figure captions 

Fig. 1 Finite Element mesh for semi-infinite lateral boundary conditions for 1:30 scale model: 

(a) centrifuge case; (b) compacted embankment case; (c) end-tipped embankment case 

(d) cutting case. 

Fig. 2 Finite Element mesh of ESB container boundary model. 

Fig. 3 Input motions in the time domain. 

Fig. 4 Apparent root cohesion for 1:10 and 1:30 scale root cluster: (a) variation of confining 

stress; (b) measured and input root ‘cohesion’. Depths shown at prototype scale. 

Fig. 5 Modelling of additional Rayleigh damping in the Finite Element simulations. 

Fig. 6 Effect of additional damping on measured and predicted crest accelerations in the 

frequency domain. 

Fig. 7 Comparison of Finite Element and centrifuge permanent crest settlement for different 

input soil strength parameters: (a) 1:30 scale fallow slope at full frequency content; 

(b) 1:30 scale model at reduced frequency content. 

Fig. 8 Comparison of Finite Element and centrifuge shear stress-strain loops at midpoint of 

1:30 scale fallow slopes at full frequency during EQ2. 
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Fig. 9 Comparison of Finite Element and centrifuge permanent crest settlement for rooted and 

fallow models: (a) 1:30 scale model at full frequency content; (b) 1:30 scale model at 

reduced frequency content. 

Fig. 10 Comparison of seismic slope performance (at slope crest) between semi-infinite 

lateral soil boundaries and ESB container boundaries for 1:30 scale fallow slope: (a) 

acceleration; (b) permanent settlement. 

Fig. 11 Input additional Rayleigh damping ratio for parametric study. 

Fig. 12 Influence of rooted soil zone parameters on permanent deformation response at the 

crest: (a) root cohesion; (b) rooted zone damping; (c) rooted zone stiffness; (d) width 

of rooted zone. 

Fig. 13 Influence of rooted soil zone parameters on peak ground acceleration (PGA) response 

at the crest: (a) root cohesion; (b) rooted zone damping; (c) rooted zone stiffness; (d) 

width of rooted zone. 

Fig. 14 Comparison of pre-earthquake stress-strain state (in terms of vertical and horizontal 

effective stress) in a 4.8 m high slope: (a) centrifuge case; (b) compacted embankment 

case; (c) end-tipped embankment case; (d) cutting case. 

Fig. 15 Distribution of horizontal stress with depth at different positions within a 4.8 m high 

slope: (a) beneath slope crest; (b) middle of the slope surface. 

Fig. 16 Influence of construction technique on seismic performance of vegetated slopes: (a) 

permanent deformation response at the crest; (b) peak ground acceleration (PGA) 

response at the crest. 

Fig. 17 Influence of apparent soil cohesion and slope angle on the effectiveness of roots as a 

performance-improving remedial technique for cutting case: (a) static factor of safety 

(FOS); (b) permanent deformation response; (c) PGA response. 
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