
                                                                    

University of Dundee

Peri-operative opioid analgesia - when is enough too much? A review of opioid-
induced tolerance and hyperalgesia
Colvin, Lesley; Bull, Fiona; Hales, Tim

Published in:
Lancet

DOI:
10.1016/S0140-6736(19)30430-1

Publication date:
2019

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Colvin, L., Bull, F., & Hales, T. (2019). Peri-operative opioid analgesia - when is enough too much? A review of
opioid-induced tolerance and hyperalgesia. Lancet, 393(10180), 1558-1568. https://doi.org/10.1016/S0140-
6736(19)30430-1

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Nov. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/199213736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/S0140-6736(19)30430-1
https://discovery.dundee.ac.uk/en/publications/3caf9413-0bb6-4873-bdbf-2a9ed310a86b
https://doi.org/10.1016/S0140-6736(19)30430-1
https://doi.org/10.1016/S0140-6736(19)30430-1


Postoperative pain management 3 

Peri-operative opioid analgesia - when is enough too much?  A review 

of opioid-induced tolerance and hyperalgesia 

Lesley A Colvin FRCA1*, Fiona Bull FRCA2, Tim Hales PhD2 

*Correspondence to:

Prof Lesley A Colvin 
1Division of Population Health Science and Genomics 
University of Dundee 
Mackenzie Building 
Kirsty Semple Way 
Ninewells Hospital and Medical School 
Dundee DD2 4RB 
UK 
Email: l.a.colvin@dundee.ac.uk 

2Institute for Academic Anaesthesia, Division of Systems Medicine, School of Medicine, Ninewells 
Hospital, University of Dundee. Dundee DD1 9SY. 

Manuscript word count (excluding references): 3866 

References: 100 

1

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/



Summary 
Opioids are a mainstay of acute pain management but can have many adverse effects, including 

problematic long term use. Opioid tolerance (increased dose needed for analgesia) and opioid-

induced hyperalgesia (paradoxical increase in pain with opioid administration) can both contribute 

to poorly controlled pain and dose-escalation. Hyperalgesia is particularly problematic as further 

opioid prescribing is largely futile. The mechanisms of opioid tolerance and hyperalgesia are 

complex, involving mu opioid receptor signalling pathways that offer opportunities for novel 

analgesic alternatives. The intracellular scaffold protein, beta-arrestin 2, is implicated in tolerance, 

hyperalgesia and other opioid side effects. Recent development of agonists biased against 

recruitment of beta-arrestin 2 could provide analgesic efficacy with fewer side effects. Alternative 

approaches include inhibition of peripheral mu opioid receptors and blockade of downstream 

signalling mechanisms, such as the non-receptor tyrosine kinase, Src, or N-methyl-D-aspartate 

receptors. In light of their detrimental effects, it is prudent to use multimodal analgesic regimens to 

reduce reliance on opioids during the perioperative period. This review focusses on clinical and 

mechanism-based understanding of tolerance and OIH, and discusses current and future strategies 

for pain management. Word count: 181 
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The evolution of opioid analgesia 

Humans have used opioid alkaloids in resin harvested from the poppy, Papaver somniferum, for 

thousands of years to suppress pain and for their hedonic effects. Merck began extracting morphine 

in the 1930’s and the first synthetic opioid analgesics appeared soon after. Despite having disparate 

structures, all these opioids bind to mu opioid receptors. Mu receptors are class A (rhodopsin family) 

G protein coupled receptors (GPCRs). They are essential for the analgesic actions of opioids, being 

expressed at key locations within the pain pathway (1). Their activation suppresses both the 

reflexive and affective components of pain. However, the respiratory centres in the brain stem, the 

gut and the chemotrigger zone, also contain mu receptors, activation of which gives rise to 

respiratory depression, constipation and nausea (2) . Opioid analgesics have additional detrimental 

effects including tolerance (increasing doses are required to maintain analgesia), dependence 

(physical and/ or psychological), hyperalgesia (a paradoxical increased sensitivity to pain) (figure 1) 

and addiction (inability to control continued use, despite harm or negative consequences) (1, 3). 

Repeated or prolonged administration of opioids increases the likelihood of these detrimental 

effects and leads to withdrawal when treatment stops. At the cellular level, the adaptive changes 

participating in opioid tolerance lead to dependence and withdrawal upon cessation of opioid 

exposure (4). By contrast, at the systems level, there are distinct processes required for the 

acquisition of analgesic tolerance and dependence (as evidence by antagonist precipitated 

withdrawal), despite overlap in the mechanisms required for their expression (5). 

Given the adverse effects associated with opioid use it is logical to look for alternative approaches to 

treat severe pain. While there are other targets within the pain pathway for the future development 

of drugs, including the delta and kappa opioid receptors (6), mu agonists are a tough act to follow. 

Despite considerable investment, no new drugs have usurped them as the preeminent analgesics for 

treating severe pain, particularly in the acute setting. This is perhaps not surprising considering the 

strategic location of mu receptors and the role of the endogenous opioid system in regulating pain 

sensitivity (1). 
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Opioid analgesia in the 21st century 

Chronic pain, including persistent post-surgical pain (as reviewed in Glare et al Lancet 1(7)),  affects 

at least 20% and perhaps up to 50% of the population, (8). It is a major public health problem, being 

the leading cause of global disability (9). As a long term condition it needs to be properly managed to 

maximise function and quality of life. A focus on supported self-management and increase in activity 

levels may be a more useful approach for patients and healthcare professionals. Despite this, many 

patients with chronic pain are prescribed an opioid. Opioids are now one of the most commonly 

prescribed medications in the US, with similar, although less marked, trends in other countries 

including the UK (10) (11). While pain reduction by pharmacological means may be advantageous, 

there is limited evidence for long term benefit of opioids, with evidence of harm, particularly at 

higher doses (12). 

 

There have been unintended consequences of a liberal prescribing policy, particularly in the US, 

where long term harms from prescription opioids have become much more apparent, including 

addiction, misuse and increased mortality (13). (14).” While opioid use in chronic pain may appear to 

be distinct from the perioperative setting, prolonged opioid exposure creates additional challenges 

when trying to manage acute pain (15, 16) (17). Furthermore, we need to consider what role surgery 

and postoperative opioid prescribing play in initiating long term opioid use (table 2)(18), as covered 

in detail elsewhere in this series(19). 

The use of synthetic (e.g. fentanyl, remifentanil) or natural (e.g. morphine) opioids during the 

perioperative period provides a component of balanced anaesthesia and analgesia. Timely opioid 

administration during surgery reduces the dose of general anaesthetic needed, enabling faster 

recovery (20), while on-demand patient-controlled postoperative opioid analgesia improves comfort 

and patient satisfaction (21). However, the use of perioperative opioids may predispose to long term 

opioid use. In the USA, opioid prescribing for minor surgery, has increased: up to 75% of patients are 
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prescribed opioids at hospital discharge, with the risk of misuse increasing by 44% for each week and 

repeat prescription after discharge (16, 22). Cooperation between surgeons and anaesthetists 

working with primary care physicians is needed to reduce postoperative opioid use, and ensure early 

identification and management of adverse effects or problematic use(15) (23).  However, linkage of 

perioperative anaesthesia and analgesia to long term outcomes such as opioid prescribing, using 

routinely collected heath care data, is currently limited.  

This review will focus on the use of opioids in the perioperative setting, particularly on clinical and 

mechanism-based understanding of tolerance and OIH. By improving understanding of the 

underlying mechanisms, it may be possible to develop strategies to identify and better manage 

postoperative and post-injury pain in order to improve efficacy and safety of opioid use, and to 

minimise long term harms.  

The opioid signalling system 

Before exploring mechanisms of tolerance and OIH, it is important to consider the intricacies of 

opioid signalling. Components of the system can be found in ancient species, including jawless fish, 

evidence that this endogenous pain control mechanism has evolved over hundreds of millions of 

years (24). Three genes encode endogenous opioid peptides (25), most of which have some activity 

at each of the three main opioid receptor subtypes (mu, kappa and delta) with some subtype 

preferences. 

Opioid analgesics activate mu receptors leading to inhibition of adenylyl cyclase and high threshold 

voltage activated Ca2+ channels (VACCs) and activation of inwardly rectifying K+ channels (1). 

Inhibition occurs through G-proteins, which upon activation dissociate into component Gαi/o and βɣ 

subunits (figure 2).(26). The result is decreased neuronal excitability, with reduced excitatory 

neurotransmitter release in pain pathways (27, 28). By contrast, activation of mu receptors in the 

brain’s reward circuitry, , inhibits inhibitory neurotransmission in the ventral tegmental area, 

reducing the frequency of GABAergic inhibitory postsynaptic events, thereby disinhibiting 
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dopaminergic neurones and increasing dopamine release into the striatum and prefrontal cortex 

(table 1) (29, 30). Enhanced dopamine release causes D2 receptor-dependent reinforcement (31). 

However, morphine also has reinforcing effects in mice engineered to lack dopamine, an observation 

that implicates alternative mechanisms(32).      

Consequences of prolonged opioid exposure 

The mu receptor has several serine, tyrosine and threonine sites of phosphorylation, mostly in its C-

terminus, which interfaces with the G protein (1, 26). 

Opioid receptor activation can lead to phosphorylation by GPCR kinases (GRKs), MAPK, JNK, PKA, 

PKC, Src and Ca2+/calmodulin dependent kinase II (CAMKII) (Zhang et al., 2017). Furthermore, 

inhibition of several of these kinases reduces tolerance and/or hyperalgesia (see Panel) (1, 33-36). 

Mu receptor phosphorylation by GRKs, of which there are seven forms, leads to β-arrestin2 

recruitment, receptor endocytosis and additional kinase-driven signalling events (figure 2). After 

endocytosis receptors are either degraded or recycled back to the cell membrane. Decreased mu 

receptor expression at the cell membrane may contribute to tolerance. Indeed, mice lacking 50% of 

their mu receptors exhibit more rapid and profound morphine tolerance than wild type mice (30). In 

humans, the endogenous opioid system contributes to pain sensitivity (37) and a loss of mu 

receptors, caused by prolonged exposure to opioid analgesics, might also heighten sensitivity to pain 

leading to OIH. Indeed, tolerance caused by endogenous opioids has been implicated in the 

hypersensitivity of patients with fibromyalgia (38). However, morphine, which causes tolerance and 

OIH, has little effect on mu receptor endocytosis even with prolonged exposure (39). By contrast, 

the selective peptide agonist DAMGO, produces marked receptor endocytosis with little tolerance 

and therefore the relationship between endocytosis and tolerance is complex. Endocytosis may in 

fact be required to reverse desensitisation, a rapid form of tolerance observed at the cellular level 

(40). 
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Opioid Tolerance 

Tolerance to the effects of opioids occurs, with an increased dose required for the same amount of 

analgesia (figure 1), but this can vary dependent on both pharmacokinetic and pharmacodynamic 

factors (41).  Furthermore, the extents and rates of the development of tolerance differ for different 

opioid effects. Differences in tolerance to respiratory depression and analgesia may be explained by 

their differing molecular mechanisms (42). Tolerance to the analgesic effect is problematic, whereas 

tolerance to unwanted side effects, such as respiratory depression and sedation, can be useful to 

enable dose increases when required, to improve analgesia. This may be unpredictable, with a 

narrow therapeutic window between desired effects (usually analgesia) and undesirable respiratory 

or gastrointestinal effects (43). Acute tolerance may be hard to distinguish from other opioid related 

effects, such as OIH (table 3). Key features to assess include the response to additional opioid: with 

tolerance, an increased opioid dose should be effective, although very high doses may be required 

(figure 1); similarly, a reduction in opioid dose would be expected to produce increased pain (but not 

hyperalgesia). Additionally, in patients with tolerance, but lacking OIH, apart from around the 

immediate injury site, there should be no signs of reduced pain thresholds/hyperalgesia (44). 

How does chronic opioid use affect pain sensitivity 

Patients presenting for surgery, who are on long term opioids, are likely to have aberrant 

somatosensory responses to painful stimuli. In a large population-based study, opioid use was 

associated with increased pain sensitivity compared to patients taking non-opioid analgesics. This 

may reflect OIH (figure 1), or a pre-existing reduction in endogenous pain inhibition, increasing the 

likelihood of long term opioid use (45). Non-opioid perioperative analgesia may be most beneficial in 

these patients.   

In patients receiving long term opioids, dose-reduction or cessation can reduce pain sensitivity, with 

many patients reporting improvements in pain, and few experiencing worsening of their pain (46, 

47). A recent clinical trial of opioid use for chronic musculoskeletal pain found that patients on long 
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term opioids had no improvement in function, worse pain, and more adverse events than those 

receiving non-opioid analgesics (48). The risk of developing chronic post-surgical pain, in addition to 

OIH and tolerance, must also be considered, with a role for transitional pain clinics to ensure correct 

opioid management (see Glare et al (7)) 

Interestingly, in some chronic pain states there is evidence that dysfunction in the endogenous 

opioid systems may lead to development of hyperalgesia, with a potential site for this within the 

brainstem (38, 49). The implications for acute management of patients on chronic opioid therapy is 

that, regardless of whether increases in pain sensitivity are due to a pre-existing vulnerability, or a 

consequence of opioid therapy, care must be taken in managing these patients to avoid further 

opioid-related complications such as OIH.  

Identifying Hyperalgesia in Patients 

While there is extensive preclinical evidence of OIH, with changes in the underlying neurobiology 

leading to a pro-nociceptive state (table 1), as well as human volunteer studies, there is still debate 

about the clinical manifestations of OIH. This may be at least partly due to some studies failing to 

make an adequate distinction between increased pain severity and hyperalgesia. Many studies have 

used only pain scores and postoperative opioid consumption as surrogate markers of OIH, which do 

not take into account other potential causes such as inadequate analgesia, changing underlying 

disease pathology, or acute tolerance. To make a clinical diagnosis of OIH, a distinction needs to be 

made between high pain scores, and altered sensory processing with allodynia and/ or hyperalgesia 

(50). There may be some merit in the use of techniques such as quantitative sensory testing (QST), to 

assess patient responses to defined physical stimuli (thermal, mechanical), aiming to move towards 

a more consistent approach to diagnosing OIH (44). Even with QST, the demonstration of 

hyperalgesia around the surgical site is not necessarily diagnostic of OIH, as the tissue response to 

surgical trauma, with release of inflammatory mediators can cause peripheral and central 

sensitization may be manifested as hyperalgesia. If there is more widespread hyperalgesia, then 
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there is an increased likelihood of OIH (51). Another potential differentiating feature is if pain 

worsens with further opioid dosing, rather than displaying the expected dose–response relationship 

for analgesia (figure 1). Clinical criteria for diagnosing OIH using these features have been suggested 

(52). The lack of a specific test adds to diagnostic uncertainty, coupled with some overlap in 

symptoms between OIH, tolerance, acute opioid withdrawal and acute neuropathic pain, all of which 

may occur in the perioperative setting (table 3). This uncertainty is compounded by the observation 

that neuropathic pain often responds poorly to opioids(53). 

Clinical evidence for OIH 

Identification and management of OIH is important, as untreated, it may increase the risk of 

developing persistent post-surgical pain (7) . As outlined in table 3, care is needed to ensure that OIH 

is recognised and appropriately treated. There is however continued debate as to whether OIH is a 

significant clinical entity (54). 

Outside the acute surgical setting, a systematic review identified 8 studies with evidence of OIH, but 

the approach to diagnosis was inconsistent and with limited assessment of impact (55). Small studies 

using QST in a range of chronic pain conditions indicate that opioid use does contribute to 

hyperalgesia, although this may be enhanced by other factors such as low mood. Sex differences 

may also occur, with opioid prescribed males showing increased hyperalgesia with fentanyl 

compared to females, and both showing reduced pressure pain thresholds, compared to healthy 

controls (56-58). Increased thermal sensitivity has also been shown in patients on long term opioids, 

even after adjusting for a variety of other factors (59). This action may be a consequence of 

recruitment and sequestration of beta-arrestin 2 following mu receptor activation, which has been 

shown in mice to sensitise TRPV1 channels to thermal activation (60). 

A more recent comprehensive systematic review of OIH after surgery identified 27 studies with 

~1500 patients. Higher doses of intraoperative opioid were associated with an increase in 

postoperative pain scores, and higher 24 hour morphine consumption. This association was seen 
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mainly with remifentanil (61). There were similar findings in a subsequent systematic review of acute 

OIH and tolerance (62). A large study using the PAIN OUT database (see http://pain-out.med.uni-

jena.de/) found an association between worse pain-related outcomes and intraoperative use of 

remifentanil (63). More recent studies have strengthened this finding, with younger patients 

seeming to be at higher risk (64). The cause of the apparent higher risk of OIH with remifentanil 

compared to other opioids is unclear, but may be related to the fast onset/ offset of its action.   

Can we prevent OIH? 

Following the premise that prevention is better than cure, strategies to minimise perioperative 

opioids and utilise alternative analgesia should be considered, aiming for opioid-free or low dosing 

regimens, as outlined in see table 4 and figure 3) (65). Anaesthetic technique should be considered:  

intravenous anaesthesia with propofol may have a lower risk of OIH when compared to anaesthesia 

with a volatile agent. Addition of (51, 66) nitrous oxide may reduce the incidence of hyperalgesia 

(67, 68). (69)  

If intravenous opioid infusion is being considered as part of the anaesthetic regimen, then avoiding 

higher infusion rates of remifentanil may reduce risk of OIH. Dose rates of more than 0.2 µg/kg/min 

may increase risk of OIH, and for doses of more than 0.25 µg/kg/min, acute tolerance may be 

problematic (70). Consideration of a gradual tapering of remifentanil at the end of surgery may also 

reduce OIH, possibly by reducing withdrawal induced long term potentiation at the first central 

synapse in the spinal cord(71, 72) (73). Other suggested strategies to reduce this problem include 

limiting the dose of remifentanil, or specifically targeting putative mechanisms using novel 

approaches (74). 

Current options for treating tolerance and OIH  

Acute tolerance makes postoperative pain control challenging. Poor pain control and high opioid 

requirements after surgery are associated with persistent postsurgical pain (7). If OIH is suspected in 
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the immediate postoperative period it is important to address this as soon as possible. Untreated 

OIH makes perioperative management more difficult, with potential delay in hospital discharge.  

Early assessment and diagnosis is important in order to effectively direct treatment. While there is 

significant overlap in the approach to tolerance and OIH, one of the key differences is that OIH may 

require opioid dose reduction. A reasonable first step therefore is to assess the response to an 

increased opioid dose: if analgesia improves, then tolerance is more likely; if analgesia worsens, then 

OIH should be suspected, and other features sought.  

Use of multimodal analgesia with low or no opioid component: Current strategies have not been 

extensively explored with clinical studies, regarding the impact on OIH and tolerance, but include the 

use of many of the agents outlined in table 4. These include simple analgesics such as paracetamol 

and NSAIDs, dexmedetomidine, NMDA receptor antagonists (e.g. ketamine), and opioid dose 

reduction (74-77).  Opioid free multimodal analgesia may be a laudable aim, but the number of 

patients presenting for surgery who are not opioid naïve will pose a challenge. A small RCT has 

shown it is possible to significantly reduce opioid consumption in such patients by using intravenous 

ketamine (78). Furthermore a Cochrane review found that ketamine may reduce the risk of 

persistent post-surgical pain, although the majority of studies were small, with possible 

overestimation of treatment effect (79). Use of more than one type of non-opioid analgesic may 

have most impact on opioid consumption, although there are a limited number of studies assessing 

combination analgesia. Use of at least two non-opioid approaches may reduce adverse effects, such 

as respiratory depression, gastrointestinal dysfunction, as well as reducing opioid requirements (80, 

81). 

Consideration of non-pharmacological strategies: whilst not the focus of this review, there is some 

evidence that use of psychosocial techniques, such as relaxation, behavioural instruction and patient 

education can be beneficial in reducing post-operative pain(82, 83). The development of Enhanced 

Recovery After Surgery (ERAS) protocols using a multimodal approach to minimize impact of the 
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surgical episode does incorporate optimising analgesia, but also uses early mobilization and other 

techniques which may indirectly improve pain outcomes (84). 

Future approaches to managing OIH and tolerance 

There are several overlapping pathways implicated in the opioid induced tolerance and hyperalgesia 

(Panel), many of which have recently been extensively reviewed (1, 33-35). These pathways have 

been implicated in enhanced pronociceptive systems (e.g. TRPV1, NMDA receptors and microglia) 

and diminish antinociceptive systems (e.g. beta-arrestin 2). Any of these pathways may provide 

targets for adjunct agents that improve opioid analgesia or their recruitment may be avoidable by 

agonists biased against their activation. We will focus here on recently emerging targets affecting 

the endogenous opioid system, which may offer opportunities for developing new approaches to 

improved analgesia.    

Arrestins, opioid side effects, tolerance and OIH 

There are four arrestins, two acting on rhodopsin within the visual system and two preferentially 

interacting with other GPCRs including beta-adrenergic and opioid receptors, (arrestins 2 and 3); 

commonly referred to as beta-arrestin1 and 2 (85). Receptor phosphorylation via GRK enables 

recruitment of beta-arrestin2, an event that precedes endocytosis and blocks G protein interactions 

(figure 2) (1). Mice lacking beta-arrestin 2 exhibit hypoalgesia and a striking resistance to morphine 

tolerance, respiratory depression and constipation (30, 86-88). Intrathecal beta-arrestin 2 reduction 

also attenuates morphine tolerance in rats, indicating that this effect is not a consequence of 

compensatory mechanisms in arrestin-deficient mice (89). This approach also reduced withdrawal 

symptoms in rats chronically administered morphine. This suggests that morphine analgesic 

tolerance and dependence involves beta-arrestin 2. In addition, beta-arrestin 2 also facilitates the 

development of pain sensitivity in mice by facilitating TRPV1 activation (60). 
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Biased agonism 

There is increasing evidence that some “biased” GPCR agonists preferentially activate either G 

protein-mediated signalling or recruitment of beta-arrestins (67, 68). (87, 90). 

The demonstration in rodents of a role for beta-arrestin 2 in the side effects and other complications 

of opioids led to a search for biased mu receptor agonists. The first, herkinorin, activates G proteins 

with negligible recruitment of β-arrestin 2. It is analgesic with markedly decreased tolerance 

compared to morphine (91). Herkinorin also exhibits less constipation and respiratory depression 

(92). Two more biased agonists, TRV130 and PZM21 (93) also appear to cause less respiratory 

depression and constipation than morphine; however, respiratory effects and tolerance were 

observed for PZM21 in a recent study (Hill et al., BJP 2018). TRV130 causes less tolerance than 

morphine when administered repeatedly to rodents and was analgesic when administered 

intravenously to treat acute pain, in a phase 2 clinical studies (91). However, there have been no 

studies in chronic pain, which would be helpful for identifying beneficial properties relating to 

tolerance and OIH.  

Targeted modulation of signals that trigger hyperalgesia and tolerance 

An alternative to developing agonists biased against beta-arrestin 2 is to inhibit signalling 

components to minimise the side effects, tolerance and OIH of available opioids (figure 2). However, 

beta-arrestin 2 provides a scaffolding role and is not a signalling molecule in its own right and is 

unlikely to be a fruitful pharmacological target. Instead, molecules upstream or downstream of beta-

arrestin 2 recruitment may prove more suitable targets.  

The use of naloxone, to antagonise the mu receptor, provides  prolonged oxycodone analgesia and 

reduces constipation, effects that appear to be mediated through inhibition of peripheral mu 

receptors (94) (95). There may be value in exploring the use of naloxone or methylnaltrexone, a 

peripherally restricted mu receptor antagonist, in combination with opioid agonists to reduce 

tolerance and hyperalgesia (figure 1). Methylnaltrexone inhibits morphine tolerance and OIH in mice 
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by antagonising mu receptors specifically on TRPV1 expressing primary afferent nociceptive 

neurones (95). It remains to be seen whether naloxone or methylnaltrexone will be effective in 

clinical studies of morphine tolerance and hyperalgesia.  

Although most evidence suggests not, antagonism of peripheral mu receptors may compromise 

opioid analgesia (95). An alternative is to inhibit downstream targets such as c-Src, a member of the 

Src family of non-receptor tyrosine kinases (SFKs). SFKs participate in cell proliferation and 

differentiation and are widely expressed throughout the nervous system, where they regulate 

sensory function (96). SFKs can be activated by GPCRs, via Gα and Gβγ subunits (97) and are involved 

in activation of intracellular signalling processes through formation of complexes with β-arrestin 2 

(figure 1). Src participates in opioid receptor phosphorylation, endocytosis, tolerance, and 

withdrawal (36) (30, 98, 99).  

Dasatinib, a Src inhibitor used clinically to treat leukaemia (100), not only attenuates tolerance in 

mice, but, when administered before morphine, also rapidly restores analgesia diminished during 

the preceding days (30). Unlike deletion of β-arrestin2, which enhances morphine reinforcement in 

mice, Src inhibitors appear to have no such effect. However, similar to the reduced expression of 

beta-arrestin 2, Src inhibition diminishes opioid withdrawal in rats (36) (Zhang et al., 2017). 

Additional work is needed to establish whether Src participates in other opioid side effects such as 

constipation and respiratory depression. Src has also recently been implicated in the role of 

microglia in morphine analgesic tolerance (see Panel)(101). 

While Src inhibitors are not anti-nociceptive in acute pain (30), they reduce hyperalgesia in rodent 

models of OIH, neuropathic, inflammatory and bone cancer pain (102-104). Hyperalgesia is 

associated with Src-mediated phosphorylation and up-regulation of NMDA receptors, which leads to 

enhanced excitatory transmission in spinal neurones (105). Several parallels can be drawn between 

hyperalgesia and morphine tolerance (see Panel), including a common requirement for Src and 

NMDA receptor activity (106) (figure 2). The ability of Src inhibitors to reduce hyperalgesia and 
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reverse tolerance, thereby restoring analgesia, makes them promising candidates as adjuncts to 

opioid analgesics. Future clinical studies will be required to establish whether Src inhibitors mitigate 

the detrimental effects of prolonged opioid exposure. 

Inhibitors of the mammalian target of rapamycin (mTOR) are additional examples of anticancer 

medications that show preclinical promise as adjuncts to reduce tolerance and OIH (figure 2)(107). 

mTOR, which governs most protein translation, becomes activated in rat spinal dorsal horn neurones 

after repeated intrathecal morphine injections. Its inhibition reduces morphine tolerance and the 

associated OIH.  

Where are we now? 

While opioids are good analgesics, there are risks associated with their use. In the acute setting the 

challenges include: 

1. Postoperative pain management of patients who are on chronic opioids. Issues to be 

addressed include opioid tolerance, increased risk of acute withdrawal, and OIH.  

2. Minimising the risk of the acute surgical episode leading to prolonged opioid use, due to 

tolerance, OIH and/ or prolonged prescribing for other reasons.  

The approach to both of these may be similar, aiming for optimal perioperative analgesia, using 

techniques and agents to minimise opioid use (see figure 3). The optimum combination is likely to 

vary depending on the type of surgery, and a range of patient factors (co-morbidities, pre-existing 

pain/ analgesics; genetics, psychosocial issues). It is also important to ensure that there are systems 

in place after discharge, so that any increase in opioid use for acute pain management has a clear 

tapering plan.  Modification of discharge analgesic prescribing should be considered with the 

minimum effective dose of opioid, for the shortest possible duration. Patient education around the 

risks of prolonged opioid use would be prudent. Early identification of any problematic or prolonged 

use, with access to appropriate support in opioid reduction when needed, should always be 

considered.  
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Agenda for the future 

It is clear that there are a number of research gaps that must be addressed in order to improve the 

current situation. This may improve not only peri-operative patient management, but also 

contribute to addressing the wider societal problems with chronic opioid use. We have highlighted a 

number of specific research gaps that relate to the focus of this review: 

1. Develop novel analgesic targets: Improved mechanistic understanding of OIH/ tolerance to 

direct development of novel analgesics using the endogenous opioid systems. There is some 

progress in this area in the preclinical field, as outlined earlier in this review, but translation 

to the clinical setting is required.  

2. Understanding the impact of peri-operative analgesia (and anaesthesia) on long term health 

(and social care) outcomes, such as persistent opioid use (and persistent pain): Analysis of 

large population based data may be required. Options include the use of routinely collected 

health and social care data (at national and potentially international level), to link acute 

hospital and community based care episodes and advance our understanding of the impact 

of perioperative management on long term health outcomes. Approaches to ensure that 

these data are robust and accurate need to be considered. Other alternatives include 

developing research resources by national and international collaboration (such as the UK 

Biobank project).  Both of these approaches are likely to require collaboration between 

policy makers, clinicians and academics.  

3. Understanding (and modifying) risk factors to opioid use at an individual level: Use of a 

precision medicine approach to identify high risk individuals and evaluate targeted, 

individualised strategies. This may involve testing the use of complex interventions, rather 

than a single approach.  

Nevertheless, for managing pain in the acute setting, opioids are often the best currently available 

analgesics. This is perhaps not surprising, given the key role that endogenous opioids play in pain 
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processing at all levels. Better understanding of the impact of opioids, at neurobiological, clinical and 

societal levels is required to improve future patient care.  

 

Table 1: Opioid effects with acute and chronic exposure. Some key processes contributing to 

analgesia and the detrimental effects of opioids (1, 33). 

Opioid paradigm Behavioural effect Possible mechanisms 

Acute administration Analgesia 
Nausea 
Respiratory depression 
Constipation 
Reward  
Rapid tolerance & OIH 

↓Excitatory transmission in pain pathway 
Chemoreceptor trigger zones 
Brain stem nuclei 
Inhibition of myenteric neurons with ↓ACh 
↓Inhibitory transmission in VTA and ↑DA 
See Panel 

Chronic administration Tolerance, dependence & OIH 
Constipation 

See Panel 
Inhibition of myenteric neurons with ↓ACh 

End of treatment Withdrawal ↑Glutamate, ↑NA, ↑CRF, ↓DA, ↓5-HT 

OIH, opioid-induced hyperalgesia,  ACh, acetylcholine, VTA, ventral tegmental area, DA dopamine, 

GRK, G protein receptor kinase, β-arr2, beta-arrestin 2, cAMP, cyclic adenosine monophosphate, 

CREB, cAMP response element binding protein, NMDAR, N-methyl-D-aspartate receptor, NA, nor 

adrenaline, CRF, corticotrophin-releasing factor, 5-HT, 5-hydroxytryptamine  
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Table 2: Opioid use in the acute setting 

Clinical issues Factors to consider 

Acute presentation of patient on regular 
opioid prescription: i.e. not opioid naïve 

 Pain control difficult 

 Likely to have pre-existing tolerance: 
o  higher doses needed to achieve 

analgesia 

 may have OIH: 
o need for reduced opioid dose/ 

alternative strategies 

Opioid naïve patient treated with short 
acting perioperative opioid as part of the 
anaesthetic regimen 

 Acute tolerance 

 Development of OIH 

 If rapid cessation: Acute opioid withdrawal 

Opioids prescribed to allow early discharge   Increased prescribing of opioids for longer 
post-operative period leading to sustained 
use  

 Dependence (physical and/ or 
psychological) 

 Increased potential for drug diversion if 
opioids not used by patient for whom 
prescribed 
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Table 3: Differential diagnosis of inadequate post-operative pain control. COWS = clinical opioid 

withdrawal scale(108) 

Clinical 
Syndrome 

Clinical features Suggested management approach References 

OIH  Hyperalgesia in 
response to opioid 
administration, or 
increased opioid dose;  

 may not be at site of 
pre-existing pain/ injury; 

 descriptors used may be 
neuropathic in nature 

Reduce opioid dose; 
Use adjuvants targeting 
mechanisms (eg reduce NMDA 
receptor activity via agents such as 
ketamine); 
Mixed evidence for opioid rotation 
(mainly long term use) 

(54, 109, 
110) 
 
 
 

Tolerance  Increased opioid dose 
required to achieve the 
same level of analgesia; 

 Despite no change in 
underlying cause of 
pain;  

 Can occur in both acute 
and chronic settings 

Increase opioid dose; 
Rotate opioid;  
Use adjuvants targeting 
mechanisms 

(41) 

Acute 
Neuropathic 
pain 

 Signs and symptoms 
compatible with 
neuropathic pain; 

 Known injury/ damage 
to the peripheral or 
central nervous system; 

 Defined area affected 

Consider use of screening tools for 
non-specialists; Use specific anti-
neuropathic medication e.g. 
gabapentinoids, ketamine 
(although evidence is inconclusive 
for acute pain) 

(77, 79, 111) 

Acute Opioid 
Withdrawal 

 An increase in local and/ 
or widespread pain;  

 Often associated with 
anxiety and distress, 
gastro-intestinal upset; 
autonomic dysfunction  

Assess using COWS scale; Reduce 
rate or size of opioid reduction;  
Symptomatic relief of withdrawal 
symptoms 

(46, 108, 
112) 
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Table 4: Some suggested analgesic approaches for multimodal analgesia to reduce opioid use.  

Agents/ technique Postulated 
mechanisms of 
analgesia 

Comments; references 

Simple analgesics 

Paracetamol Possibly central 
inhibition of COX-
mediated prostaglandin 
production 

High quality evidence for 
analgesic benefit of intravenous 
paracetamol and limited opioid 
sparing effects  (21, 113) 

NSAIDs Inhibition of COX 
enzymes to reduce  
inflammatory 
cytokines/ chemokines 

Potential issues with renal 
dysfunction, GI irritation(114) 

Anti-neuropathic agents and nonstandard analgesics 

Gabapentin; pregabalin Inhibition of 
presynaptic Ca2+  

Unclear as to optimum dose and 
timing/ duration(115) 

Ketamine, Magnesium NMDAR inhibition Unlikely to be sufficient in 
isolation; (77, 116) 

Dexmedetomidine, clonidine α2 adrenergic agonist Sedative; postural hypotension 
(65) 

Steroids Reduce inflammatory 
response to surgery 

Consider impact on immune 
function; (117) 

Intravenous lidocaine Na+ channel blockade (118) Low to moderate quality 
evidence of reduced pain, but 
variable reports of effects on 
opioid use.  

Invasive techniques 

Nerve Blocks with local anaesthetic Blockade of action 
potentials: 
Na+ channel blockade 

Extent depends on type of LA 
used, dose, volume, route etc 
Single shot or catheter/ infusion 
based techniques/ PCEA. (119) 

NMDAR, N-methyl-D-aspartate receptor, COX, cyclooxygenase, LA, local anaesthetic, PCEA, patient-

controlled epidural analgesia. 
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Panel: Cellular mechanisms implicated in tolerance and hyperalgesia 

Mu opioid signalling  

 ↑cAMP / PKA 

 PKC 

 JNK  

 β-arr2* 

 Src* 

 

Transcriptional mechanisms 

 

 CREB 

 mTORC1 

 

Pronociceptive ion channels 

 

 NMDA receptors 

 TRPV1 

Microglia 

 TLR4 

 P2X4 / P2X7 

 Src 

 BDNF 
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