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Abstract 

A reciprocal replication system is constructed from four building blocks, A, B, C, and D, 

which react in a pairwise manner through either a 1,3-dipolar cycloaddition or the 

condensation reaction between an amine and an aldehyde to create two templates, trans-TAB 

and TCD. These templates are equipped with complementary recognition sites—two 

carboxylic acids (trans-TAB) or two 4,6-dimethylamidopyridines (TCD)—that enable each 

template to direct the formation of its complementary partner through two mutually-

reinforcing crosscatalytic pathways, in which the templates trans-TAB or TCD preorganize the 

appropriate building blocks within two catalytically-active ternary complexes: 

[C•D•trans-TAB] and [A•B•TCD]. The template-directed processes within these complexes 

generate a heteroduplex [trans-TAB•TCD], which is shown to possess significant stability 

through kinetic simulation and fitting. As a consequence, the individual crosscatalytic 

pathways perform more efficiently in template-directed experiments when the 

concentration of the template being formed is below that of the template added as 

instruction. Comprehensive analysis of the system when A, B, C, and D are mixed together 

directly, using a series of 1H NMR spectroscopic kinetic experiments, demonstrates that the 

behavior of the reciprocal system is more than the simple sum of its parts—as part of the 

interconnected network, the product of each reaction clearly directs the fabrication of its 

reciprocal partner, facilitating both higher rates of formation for both templates and 

improved diastereoselectivity for trans-TAB. A simple change in experimental conditions 

(from dry to ‘wet’ CDCl3) demonstrates the sensitivity of the replication pathways within 

the network to the reaction environment, which leads to a >10-fold increase in the 

contribution of a new minimal self-replicator, trans-TAB*, to the replication network. 
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Introduction 

Networks constructed from individual components that interact and react with each 

other in pre-defined ways are a common feature at almost every length scale in the world 

around us—from the human immune system to patterns of weather in the atmosphere. The 

functions and behaviors expressed by these networks at a whole system level are derived 

from the interconnections1 between their individual components. In the last 20 years, there 

has been significant growth in many disciplines1,2 in the study of complexity and complex 

systems,3 and the properties4 that can emerge through the interactions of their constituent 

components. In chemistry, the nascent field5 of systems chemistry has started to create 

synthetic chemical entities that can be assembled into complex networks that exhibit 

system-level behaviors4a,b,g,5b,6 and functions by exploiting a bottom-up approach. Central to 

these strategies are the processes7 that surround molecular replication. The auto- and 

crosscatalytic properties of synthetic replicators, coupled with their highly specific self- and 

mutual recognition properties, make them ideal building blocks from which to construct 

complex networks. Proponents of the systems chemistry approach have to date produced 

an array of replicating systems based on oligonucleotides,8 peptides,9 and small synthetic 

molecules.10 These studies demonstrate clearly that replication is not the sole preserve of 

nucleic acids augmented by extensive enzymatic machinery. These replicators have been 

embedded within systems that can exhibit error-correction,11 stereospecific replication,12 

Boolean logic,13 as well as the capacity to respond to the reaction environment.9g,h,j,10c,13d,14 The 

vast majority of synthetic replicators described to date rely on self-complementary 

templates, especially those based on simple organic compounds. In these so-called minimal 

replicating systems, a template that is complementary to itself directs its own formation 

through an autocatalytic cycle. It is, however, possible to construct a replicating system from 

two mutually complementary templates in which the catalytic effects are reciprocal. In such 

systems, each of the two non-identical, but mutually-complementary, templates directs the 

formation of its partner through two interlinked crosscatalytic cycles. The processes 

involved in reciprocal replication are encapsulated schematically in Figure 1. 

The prototypical reciprocal replicating system (Figure 1) can be constructed from two 

sets of reagents, each bearing complementary recognition and reactive sites. In the system 
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shown in Figure 1, component A can react only with B and component C can react only with 

D. The bimolecular reactions of these two pairs of reagents create two templates, TAB and 

TCD (Figure 1). These templates do not have the necessary self-complementary recognition 

sites required for self-replication. Instead, the reciprocal nature of the non-covalent 

interactions between the two templates allows the TCD template to crosscatalyze the 

formation of TAB through the assembly of the catalytically-active ternary complex 

[A•B•TCD]. In the same manner, template TAB is able to crosscatalyze the formation of TCD 

through the assembly of the catalytically-active ternary complex [C•D•TAB]. 

 

 
 

Figure 1 Two templates, TAB and TCD, containing complementary recognition sites (light and dark gray) are 
formed initially through the bimolecular reactions between A and B (blue) and between C and D (red). Once 
formed, these templates can participate in two template-directed crosscatalytic cycles, where TAB catalyzes the 
formation of TCD through the assembly of C and D in a catalytically-active ternary complex [C•D•TAB], and 
vice versa. However, neither template TAB nor TCD possess the recognition sites required for self-replication. 
Taken together, these two crosscatalytic cycles (TAB → TCD and TCD → TAB) represent a formal reciprocal 
replication cycle. 

 

Ultimately, these processes afford the template heteroduplex [TAB•TCD] that can 

dissociate to return one molecule each of TAB and TCD back to the start of the respective 

catalytic cycles. These two interlinked cross-catalytic cycles represent a formal reciprocal 

replication cycle. It is important to note that the complexity of this system can increase 

dramatically depending on the nature of the chemical reactions employed to create the two 

templates from their constituents. In the case where the reaction between A and B and the 

reaction between C and D are chemically orthogonal, only the reciprocal replication cycle 

discussed above is present. However, if the system loses this chemical orthogonality and 
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reaction between, for example, A and C becomes possible, then additional minimal 

replication cycles can emerge through the formation of self-complementary templates. 

Although several replicating networks involving oligonucleotides and peptides that 

participate in crosscatalytic interactions have been described previously,8b,c,f,9a,d,h,11,14a 

examples that are based on small, synthetic organic molecules are somewhat rare. Both the 

Rebek15 laboratory and our own16 have reported examples of systems that exhibit reciprocal 

template effects based on small organic molecules. However, in both these cases, a lack of 

orthogonality between the chemical ligation reactions used to construct the templates 

allowed the systems15a,16a to create selfish, autocatalytic templates and their presence 

diminished the overall importance of reciprocal replication in these systems. In order to 

create a purely reciprocal replicating system, unwanted reactivity between replicator 

components must be eliminated. In order to achieve this goal, we developed an orthogonal 

reactivity strategy for the creation of the two complementary templates shown in Figure 2.  

Critical elements in replicator design are the recognition elements that drive the 

catalytic processes within the replication cycle. We have demonstrated 

previously10a-c,e,f,13c,16,17 that hydrogen bonding between an amidopyridine and a carboxylic 

acid can be applied to direct autocatalytic processes. Accordingly, maleimide A and nitrone 

B are equipped with carboxylic acid recognition sites. Amine C and aldehyde D are 

equipped with complementary amidopyridine recognition sites, ensuring that templates 

TAB and TCD are mutually complementary. The association constant (Ka) for these 

recognition partners, determined18 by 1H NMR spectroscopic titration, is 3470 ± 300 M−1 in 

CDCl3 at 283 K. 

A key design element in our strategy is the use of the 1,3-dipolar cycloaddition 

between maleimide and nitrone (Figure 2). This reaction has been applied successfully in 

our laboratory10a–c,e,13c,16,17a,b to create several minimal replicating systems. Previously, we 

have also shown19 that imine formation between an aniline and an aromatic aldehyde can 

proceed through a recognition-mediated pathway under conditions similar to those 

required for the 1,3-dipolar cycloaddition reaction. We therefore designed the system 

shown in Figure 2, in which we expected the reaction between maleimide A and nitrone B, 
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which forms TAB, to be chemically orthogonal to the reaction between amine C and aldehyde 

D, which forms imine TCD. 

 

 
 

Figure 2 Four building blocks, A, B, C, and D, react in a pairwise manner to give two templates, trans-TAB and 
TCD, which are equipped with mutually complementary recognition sites (carboxylic acid and 4,6-
dimethylamidopyridien) that enable these templates to participate in two crosscatalytic pathways mediated 
by the formation of two catalytically active complexes: [C•D•trans-TAB] and [A•B•TCD]. Calculated structures 
of (a) the transition state (‡) accessed by [A•B•TCD] and (b) the hemiaminal intermediate on the pathway to 
the corresponding template heteroduplex [trans-TAB•TCD]. Calculations performed at the ωB97X/def2-SVP 
level of theory using the polarized continuum solvation model for chloroform. Hydrogen bonds are 
represented using dashed blacked lines. Carbon atoms are colored gray, nitrogen atoms blue, oxygen atoms 
red, and hydrogen atoms white. Most hydrogen atoms are omitted for clarity. 
 

The 1,3-dipolar cycloaddition reaction between A and B creates two 

diastereoisomeric products, trans-TAB and cis-TAB. In order to understand the influence that 

template TCD might have on this process, we conducted a series of DFT calculations at the 

ωB97X/def2-SVP level of theory using a continuum solvation model for CHCl3. These 

calculations reveal (Figure 2) that TCD is highly complementary to trans-TAB. Further, the 

transition state leading to trans-TAB (Figure 2a) is accommodated on template TCD without 

significant distortion, suggesting that imine TCD should be capable of catalyzing the 
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formation of trans-TAB. By contrast, cis-TAB possesses a folded structure that is not at all 

complementary with TCD. This observation suggests that TCD would be incapable of 

catalyzing the formation of cis-TAB and that the overall formation of TAB should proceed 

diastereoselectively in the presence of TCD. Calculations also demonstrate that trans-TAB is 

capable of accommodating the hemiaminal intermediate (Figure 2b), associated with the 

formation of imine TCD without significant distortion, suggesting that trans-TAB may also be 

capable of catalyzing the formation of imine TCD. Taken together, these results suggest that 

a reciprocal replication cycle can be established using trans-TAB and TCD. 

 

Results and discussion 

In order to identify the presence of the crosscatalytic pathways and to assess their 

efficiencies, the pairwise reactions of maleimide A with nitrone B and aniline C with 

aldehyde D were examined first in isolation (e.g., A and B were reacted in solution in the 

absence of either C and D or preformed template). Subsequently, the reactions of the two 

pairs of reagents were analyzed in the presence of the relevant reciprocal template (e.g., 

reaction of A with B was examined in the presence of TCD and vice versa). In each kinetic 

experiment, an equimolar solution of the required reagents (10 mM) was prepared in CDCl3 

and the appearance of products was monitored at regular intervals at 10 °C over 15 h by 500 

MHz 1H NMR spectroscopy. The concentrations of the products were determined by 

deconvolution of the resonances arising either from protons in the bicyclic ring system 

present in TAB in the range δ 4.5 to 6.0 or the resonance arising from the imine proton in TCD 

around δ 8.2 in comparison to appropriate resonances arising from the starting materials. 

 In isolation, the reaction between maleimide A and nitrone B (Figure 3a, filled circles) 

proceeds slowly and with limited diastereoselectivity, reaching an overall conversion of 

23% after 15 h, with the concentrations of trans-TAB and cis-TAB reaching 1.74 mM and 

0.58 mM, respectively ([trans-TAB]:[cis-TAB] = 3:1). Likewise, the reaction between aniline C 

and aldehyde D (Figure 3b, filled circles) afforded imine TCD, which reached a concentration 

of 0.68 mM after 15 h at 10 °C (7% conversion). Imine formation is a reversible process, and 

imine condensation is therefore expected to reach equilibrium after a certain time. After 14 

days, the condensation between aniline C with aldehyde D had reached equilibrium at ca. 
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35% conversion to imine TCD. These results confirm that, in the absence of an appropriate 

reciprocal template, both trans-TAB and TCD are formed slowly, and, in the case of trans-TAB, 

with low diastereoselectivity. 

 

 
Figure 3 (a) Maleimide A reacts with nitrone B to give two diastereoisomeric products, trans-TAB (blue) and 
cis-TAB (black) in the absence of template (filled circles) and in the presence of 20 mol% (open circles) and 46 
mol% (open squares) of preformed TCD. (b) Aniline C reacts with aldehyde D to give TCD (red) in the absence 
of template (filled circles) and in the presence of 20 mol% of preformed trans-TAB (open circles). The full lines 
represent the best fits of the appropriate kinetic models to the experimental data (see Supporting Information). 
Reaction conditions: [A] = [B] or [C] = [D] = 10 mM, 10 °C, CDCl3. The reaction profiles were determined by 
deconvolution of 500 MHz 1H NMR spectroscopic data; all concentrations have been corrected for the amount 
of template added.  
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In order to examine the capacity of imine TCD to function as a template for the 

formation of trans-TAB, the reaction between maleimide A and nitrone B was repeated in the 

presence of 20 mol% of preformed TCD added at t = 0 h. The concentration vs. time profile 

for this reaction (Figure 3a, open circles) is strikingly different to that for the uninstructed 

process. The production of trans-TAB (open blue circles) is enhanced significantly. At t = 2 h, 

trans-TAB reaches a concentration of 2.52 mM, i.e., a value that exceeds the amount of trans-

TAB produced after 15 h in the absence of instruction by TCD. After 15 h, the concentrations 

of trans-TAB and cis-TAB had reached 4.72 mM and 0.75 mM, respectively, an overall 

conversion to both diastereoisomers of 55% ([trans-TAB]:[cis-TAB] = 6.3:1).  

The reaction between maleimide A and nitrone B was also examined in the presence 

of 46 mol% of preformed TCD added at t = 0 h. Again, the concentration vs. time profile for 

this reaction (Figure 3a, open squares) displays a significant enhancement in the formation 

of trans-TAB when compared to the uninstructed process. The production of trans-TAB (open 

blue squares) is enhanced significantly. At t = 2 h, trans-TAB reaches a concentration of 5.19 

mM, a value that exceeds the amount of trans-TAB produced after 15 h in the presence of 20 

mol% of TCD. After 15 h, the concentrations of trans-TAB and cis-TAB had reached 7.08 mM 

and 0.35 mM, respectively, an overall conversion to both diastereoisomers of 74% ([trans-

TAB]:[cis-TAB] = 20.3:1). These results mirror the prediction from our DFT calculations, which 

suggested that TCD should be an effective template for the formation of trans-TAB, resulting 

in an increase in the rate and diastereoselectivity for this reaction. By contrast, the 

conversion to cis-TAB exhibited no significant change in the presence of TCD. Taken together, 

these observations verify our hypothesis that the imine TCD can direct the formation of trans-

TAB, but not cis-TAB. 

In order to examine the efficiency of the second crosscatalytic pathway, the 

condensation reaction between aniline C and aldehyde D was performed in the presence of 

20 mol% of preformed trans-TAB. The concentration–time profile for this reaction (Figure 3b, 

open circles) displayed an enhancement in the rate of formation of TCD. After 2 h, the 

concentration of imine TCD reached 1.36 mM. Even at this early reaction time, the 

concentration of TCD formed in this reaction exceeded that created in the absence of 

reciprocal template. After the initial period of ca. 3 h, the formation of TCD proceeded at a 
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slower rate, reaching a concentration of 3.47 mM after 15 h, which represents an overall 

conversion of 35%. Clearly, the marked changes observed in the rate and extent of formation 

of imine TCD in the presence of trans-TAB confirm the efficiency of the second crosscatalytic 

pathway required for the establishment of the fully operational reciprocal system. Whilst it 

would be desirable to explore the effect of different concentrations of TAB on the formation 

of TCD more fully, unfortunately, the limited solubility of trans-TAB in CDCl3, arising from 

the presence of two carboxylic acids, precluded the examination of this crosscatalytic 

pathway at higher loadings of trans-TAB template. 

In order to quantify the changes observed in the two crosscatalytic pathways 

following the introduction of the reciprocal templates, we fitted the experimental data 

shown in Figure 3 to the appropriate kinetic models (for details, see the Supporting 

Information, Section S5). The data gave excellent fits (Figure 3, solid lines) to these models 

and allowed us to extract the key kinetic and thermodynamic parameters for the two control 

(uninstructed) and two template-directed pathways. Specifically, employing models that 

describe the key interactions and reactions leading to the formation of trans-TAB and TCD, we 

were able to determine the bimolecular rate constants (kbi) for the formation of trans-TAB and 

cis-TAB, the unimolecular rate constant (kcat) for the formation of trans-TAB on TCD template 

(via the ternary complex [A•B•TCD]) and the heteroduplex association constant (KaHeteroduplex) 

(Table 1). In addition, were able to determine the rates of the forward20 reaction to give TCD, 

both in the absence and presence of trans-TAB as instruction (Table 1). These parameters were 

used subsequently to calculate (Table 1) the kinetic21,22 and thermodynamic23 effective 

molarities (EMkinetic and EMthermo, respectively) for the two template-directed crosscatalytic 

pathways. 
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Table 1 Overview of rate constants determined for the bimolecular and template-directed cycloaddition 
reaction and imine formation to give trans-TAB and TCD, respectively. The heteroduplex association constant 
(KaHeteroduplex) was estimated to be 3.35 × 107 M–1. The kbi for the formation of cis-TAB was determined to be 
1.40 × 10–4 M–1 s–1. 
 

 Cycloaddition Reaction k EMkinetic / M 

Bimolecular kbi / 10–4 M–1 s–1 A + B → trans-TAB 4.20 ± 0.01 — 

Template-directed kcat / 10–4 s–1 [A•B•TCD] → [trans-TAB•TCD] 21.1 ± 0.02 5.02 

    

 Imine Formation k EMkinetic / M 

Bimolecular kbi / 10–4 M–1 s–1 C + D → TCD 1.61 ± 0.00 — 

Template-directed kcat / 10–4 s–1 [C•D•trans-TAB] → [trans-
TAB•TCD] 5.55 ± 0.002 3.44 

 

Examination of the parameters summarized in Table 1 reveals that, in the presence 

TCD, the formation of trans-TAB is associated with an EMkinetic of 5.02 M, whereas, the 

formation of TCD (via the key catalytically-active complex [C•D•trans-TAB]) is associated 

with an EMkinetic of 3.44 M. These results demonstrate that the mutually complementary 

templates trans-TAB and TCD are capable of accelerating the formation of each other 

efficiently via the two crosscatalytic template-directed pathways. 

A key element in this system is the heteroduplex [trans-TAB•TCD] (Figure 2)—the 

stability of this duplex controls the availability of the catalytically-active templates in 

solution. This duplex is expected to be very stable and an assessment of its stability was not 

possible directly24 using 1H NMR spectroscopic methods. From our kinetic simulation and 

fitting, we were able to confirm that the [trans-TAB•TCD] complex is, indeed, very stable, 

having an association constant (KaHeteroduplex) that is in excess 107 M−1. This association constant 

corresponds to a connection EM25 (EMthermo) of 2.8 M indicating that there is a high level of 

complementarity between these two templates. The direct consequence of the stable [trans-

TAB•TCD] complex is the apparent biphasic character of the kinetic profiles for the template-

directed experiments shown in Figure 3 (blue and red open symbols). For example, when 

the formation of trans-TAB is being instructed by TCD, as long as the concentration of trans-

TAB is below that of TCD added initially, there must always be unbound TCD available to 

accelerate the formation of trans-TAB. This situation arises as a result of the maximum 

concentration of the tightly bound complex [trans-TAB•TCD] being determined by the 

concentration of trans-TAB formed. However, once the concentration of trans-TAB exceeds 
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that of TCD, the efficiency of the system is reduced dramatically as the stability of the [trans-

TAB•TCD] heteroduplex now controls the availability of free TCD in solution. This effect can 

be seen clearly in the data shown in Figure 3a—the change in reaction rate occurs at [trans-

TAB] = 2 mM when 20 mol% of TCD is added and at about 4.5 mM when 46 mol% of TCD is 

added. An identical argument can be constructed for the reverse catalytic situation where 

TCD is constructed on trans-TAB. 

Having characterized the individual pathways present in the reciprocal system, we 

next set out to combine the four starting materials within a single experiment. In this 

situation, we envisaged that the in situ formation of trans-TAB would catalyze the formation 

of imine TCD and vice versa, allowing the formation of a reciprocal, mutually reinforcing 

replicating system. To this end, an equimolar mixture (10 mM) of A, B, C, and D was 

prepared in CDCl3 and the formation of TAB and TCD (Figure 4a) was monitored at 10 °C 

over 40 h using 500 MHz 1H NMR spectroscopy. 

Examination of the concentration-time profiles of the products formed from the four-

component system (Figure 4a) reveals that the major products are the two reciprocal 

templates trans-TAB and TCD. The data reveals the presence of a small initial lag period for 

the formation of trans-TAB and a more pronounced initial lag period in the formation of TCD. 

The presence of the sigmoidal concentration-time profiles for both templates is directly 

related to the processes and reactions inherent (Figure 1) in mutually crosscatalytic 

reciprocal replication. Specifically, at the start of the reaction, the reciprocal templates can 

only be formed through the uncatalyzed bimolecular pathways. The rates at which trans-

TAB and TCD are formed start to increase once the template-mediated processes begin to 

operate efficiently, i.e., when the concentration of each template exceeds the value of Kd for 

the binding of the building blocks, A, B, C, and D, to the appropriate template, forming the 

catalytically-active ternary complexes. Finally, the depletion of the starting materials 

eventually leads to a decrease in the rates at which the two reciprocal templates are 

produced. 
 



 13 

 
Figure 4 A reciprocal replication network is constructed by the reaction of maleimide A, nitrone B, aniline C, 
and aldehyde D to give two diastereoisomeric products, trans-TAB (blue) and cis-TAB (black), and imine TCD 
(red) (a) in the absence of any added template as instruction, and in the presence of (b) 30 mol% of preformed 
trans-TAB, or (c) 30 mol% of preformed TCD. The impact of the added template on the formation of trans-TAB 
and TCD is demonstrated by comparison of the concentration ratios calculated at t = 5 h and 40 h, and the ratios 
of initial rates for the formation of the templates. Reaction conditions: [A] = [B] = [C] = [D] = 10 mM, 10 °C, 
CDCl3. The reaction profiles were determined by deconvolution of 500 MHz 1H NMR spectroscopic data; all 
concentrations have been corrected for the amount of template added. A description of the error analysis is 
provided in the Supporting Information. 

 

Comparison of this experiment with the uninstructed formation of trans-TAB or TCD 
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case of trans-TAB, the overall conversion to this product in the four-component system after 

5 h (Figure 4a) was 20%, with the diastereoselectivity being 6.3:1 in favor of trans-TAB. These 

values can be compared with those from the data in Figure 3a at t = 5 h— conversion = 7% 

and a diastereoselectivity of only 3:1 in favor of trans-TAB. Similarly, the condensation of C 

and D to form imine TCD was also enhanced within the four-component system—the 

conversion of C and D to TCD reached 11% after 5 h (Figure 4a) in comparison to <3% in the 

data shown in Figure 3b after the same time. These results demonstrate the mutually-
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environment and these template-directed replication processes enhance both the rates of 

formation of trans-TAB and TCD and the diastereoselectivity for the formation of trans-TAB. 

This situation is in direct contrast to the conditions used to acquire the data presented in 

Figure 3. In these experiments, the concentration of the instructing template remains 

constant throughout the entire duration of the experiment, since only two out of the four 

possible building blocks are present at a time. By contrast, the data in Figure 4 relates to 

experiments where all four building blocks are present and, consequently, the 

concentrations of the instructing templates are variable across the time course of the 

experiments. Thus, the comparison between the data shown in Figure 3 and Figure 4 must 

be limited to a qualitative assessment evidencing the nature of the mutually reinforcing 

nature of the reciprocal relationship between replicators TAB and TCD. 

In order to demonstrate the importance of template effects in this reciprocal 

replication system, two template-instructed experiments were performed. Firstly, the four 

reagents A to D were reacted at starting concentrations of 10 mM in CDCl3 at 10 °C in the 

presence of 30 mol% of preformed trans-TAB added at t = 0 h. These data (Figure 4b) show a 

rapid increase in the concentration of imine TCD, the initial rate of formation of TCD is 

1.01 mM h–1 (compared to 0.20 mM h–1 in the absence of template), with the concentration 

of TCD reaching 4.48 mM after 5 h. After this point, the rate of formation of TCD slows 

significantly and the concentration of TCD only increases a further 1.76 mM to 6.24 mM at 

the end of the experiment after 40 h. In order to make comparisons with the uninstructed 

data, we calculated the ratios of template concentrations (at 5 h and 40 h) and initial rates, 

as shown in Figure 4. These ratios will take values that are >1 when enhancement occurs in 

the template-instructed experiment and values <1 when reduction in a given parameter is 

observed. Comparing the data in Figure 4b with that obtained under the same conditions in 

the absence of added trans-TAB (Figure 4a) reveals some significant differences. The initial 

rate ratio for the formation of TCD in the presence of trans-TAB is 5.18, and the concentration 

ratio for TCD after 5 h is 4.14. By contrast, at 40 h, the concentration ratio for TCD is 0.92. These 

observations indicate that the most significant effects arising from the addition of template 

are present at early reaction times. This result is entirely consistent with the behavior 

observed in the experiments where TCD is formed in isolation (data in Figure 3b). Once the 
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concentration of TCD becomes comparable to that of the instructing template, product 

inhibition resulting from the extremely stable [trans-TAB•TCD] duplex becomes 

progressively dominant in the system. As trans-TAB does not catalyze directly its own 

formation, it may seem counterintuitive to expect that the addition of trans-TAB to the system 

will affect the rate and extent of formation of itself. Nevertheless, this experiment reveals 

that the addition of trans-TAB does indeed have an effect on the rate of its own formation as 

a result of the reciprocal nature of the entire system. The initial rate of formation of trans-

TAB = 0.71 mM h–1 (compared to 0.40 mM h–1 in the absence of template), with the 

concentration of trans-TAB reaching 3.25 mM after 5 h. Once again after this point, the rate 

of formation of trans-TAB slows and the concentration of trans-TAB increases a further 4.20 

mM to 7.45 mM at the end of the experiment after 40 h. Despite the fact that trans-TAB does 

not template its own formation, the increase in the rate of production of TCD, engendered by 

the addition of trans-TAB as an instruction, results in an initial rate ratio for the formation of 

trans-TAB of 1.76 by virtue of its crosscatalytic connection to TCD. This enhancement in the 

rate of formation of trans-TAB also results in a dramatic increase in the diastereoselectivity 

for the formation of trans-TAB after 5 h to 19.3:1. The enhancement in the formation of TAB in 

the presence of TCD was also evidenced by the significant changes in the concentration vs. 

time profile of TAB observed in the presence of preformed TAB (Figure 4b) when compared 

to the uninstructed scenario (Figure 4a). These changes arise as a result of the efficient 

crosscatalytic formation of TAB on TCD—our kinetic analyses demonstrate that TCD is a much 

better catalyst for the formation of TAB (kcat = 21.1 × 10–4 s–1) than TAB is for the formation of 

TCD (kcat = 5.55 × 10–4 s–1).  

Secondly, the four reagents A to D were reacted at starting concentrations of 10 mM 

in CDCl3 at 10 °C in the presence of 30 mol% of preformed TCD added at t = 0 h. These data 

(Figure 4c) show a rapid increase in the concentration of trans-TAB, and the initial rate of 

formation of trans-TAB is 1.02 mM h–1, with the concentration of trans-TAB reaching 4.91 mM 

after 5 h. After this point, the rate of formation of trans-TAB slows and the concentration of 

this template increases a further 4.50 mM to 9.41 mM at the end of the experiment after 40 

h. Comparing the data in Figure 4c with that obtained under the same conditions in the 

absence of any preformed template (Figure 4a) once again reveals some significant 
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differences. The ratio of initial rates for the formation of trans-TAB is 2.56 and the 

concentration ratio calculated for trans-TAB is 2.45 after 5 h. Once again, this enhancement 

in the rate of formation of trans-TAB also manifests in a dramatic increase in the 

diastereoselectivity for the formation of trans-TAB after 5 h to 29:1. By contrast, at 40 h, the 

concentration ratio for trans-TAB has a value of 1.10, although the diastereoselectivity for the 

formation of trans-TAB remains high, at 32:1. These observations once again indicate that the 

most significant effects arising from the addition of the preformed template are most 

significant at early reaction times. This result is again consistent with the behavior observed 

in the experiments where trans-TAB is formed in isolation (data in Figure 3a)—once the 

concentration of trans-TAB becomes comparable to that of the instructing template added 

initially, product inhibition arising from the extremely stable [trans-TAB•TCD] duplex 

becomes progressively dominant in the system. In contrast to the previous experiment, TCD 

does not benefit from either an enhancement in initial rate or, indeed, extent of its formation 

in the same manner as trans-TAB when it was used as the instructing template. The 

concentration ratios calculated for TCD at both 5 h and 40 h are close to one (1.02 and 0.86, 

respectively). The same trend is observed for the initial rate ratio for TCD, which is found to 

be 0.96. This observation can be rationalized by the fact that formation of TCD is a dynamic 

process and the total concentration of TCD that can be achieved is subject to a global 

equilibrium condition for the system. As we have added TCD to this reaction at an initial 

concentration of 3 mM, the reaction starts at a point that is inherently closer to this global 

equilibrium position for the formation of TCD. As a consequence, we would expect the 

formation of TCD to behave differently in this situation compared to the other two 

experiments in which the initial concentration of TCD is zero.  

It is clear from these results that the behavior of the reciprocal system is more than 

the simple sum of its parts. In the absence of a reciprocal template, each of the reactions 

proceeds slowly, and in the case of the cycloaddition, also with poor diastereoselectivity. As 

part of an interconnected network, however, the product of each reaction is clearly capable 

of facilitating the fabrication of its reciprocal partner, facilitating both higher reaction rates 

and diastereoselectivity. 
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The effect of reaction environment on the reciprocal replicators 

The kinetic experiments described thus far confirm conclusively that the two 

reciprocal templates, trans-TAB and TCD, are the dominant products that emerge from a 

reagent pool that contains A, B, C and D. However, under appropriate conditions, nitrone 

B, which is used in the creation of trans-TAB, is susceptible to hydrolysis. Under hydrolytic 

conditions, this nitrone affords aldehyde 1 and hydroxylamine 2 (Figure 5a) and, in this 

situation, hydroxylamine 2 can react with aldehyde D to afford a new nitrone B*, which is 

equipped with an amidopyridine recognition site. Nitrone B* can then react in a 1,3-dipolar 

cycloaddition reaction with maleimide A to form cycloadduct trans-TAB*. However, in 

contrast to trans-TAB, which can, by virtue of its two identical recognition sites, act only as a 

catalyst for the formation of TCD, trans-TAB* possesses recognition sites that render this 

template self-complementary. As a consequence, trans-TAB* is capable26 of directing its own 

formation through an autocatalytic template-directed pathway (Figure 5b). This possibility 

gives rise to an interesting scenario in which the environment in which the replicators 

derived from A, B, C, and D operate can promote either the reciprocal replication cycle 

mediated by trans-TAB and TCD, or, alternatively, a minimal replication pathway mediated 

by trans-TAB*, or, indeed, a mixture of both of these pathways. Thus far, the environmental 

conditions were selected specifically to avoid hydrolysis and thereby ensure that the 

reciprocal replication cycle is dominant.  

Under these conditions, the ratio of the reciprocal template trans-TAB to the minimal 

replicator template trans-TAB* was 49:1. If the rate of hydrolysis of nitrone B is enhanced in 

the four-component reaction, we would expect to observe an increase in the concentration 

of the amidopyridine-bearing nitrone B*. In turn, the contribution of minimal replication, 

mediated by the template trans-TAB*, should also increase relative to the reciprocal 

replication cycle involving trans-TAB and TCD. 

 



 18 

 
Figure 5 (a) In wet CDCl3, nitrone B can hydrolyze to afford aldehyde 1 and hydroxylamine 2. When these 
conditions are employed for the reaction of A, B, C, and D, hydroxylamine 2 can react with aldehyde D to 
afford nitrone B*, bearing the 4,6-dimethylamidopyridine recognition site. (b) Reaction of nitrone B* with 
maleimide A produces trans-TAB* (magenta), which is capable of directing its own formation by the assembly 
of A and B* into a catalytically-active ternary complex [A•B*•trans-TAB*]. (c) Under dry conditions, reagents 
A to D react to produce the reciprocal replicator trans-TAB and minimal self-replicator trans-TAB* in a ratio of 
49:1. Under wet conditions, the ratio of [trans-TAB]:[ trans-TAB*] decreases markedly to 5:1, and the addition of 
preformed trans-TAB* decreases this ratio even further to 3:1. All concentrations have been corrected for the 
amount of template added. A description of the error analysis is provided in the Supporting Information. 

 

In order to create the environmental conditions necessary to promote nitrone 

hydrolysis, we saturated CDCl3 with water27 to create conditions that were suitably ‘wet’. 

Specifically, CDCl3 was stirred for 20 min with D2O before the aqueous and the organic 

layers were allowed to separate. Recovery of the organic layer afforded a sample of CDCl3 

in which the concentration of D2O was >1500 ppm, as determined by Karl–Fisher titration. 

This sample of CDCl3 was used to prepare a four-component experiment in which A, B, C, 

and D (each at a starting concentration of 10 mM) were allowed to react with each other for 

40 h at 10 °C. Analysis of this experiment after this time by 500 MHz 1H NMR spectroscopy 

revealed that the concentration of trans-TAB had decreased from 8.6 mM to 6.2 mM, while 

the concentration of trans-TAB* had increased from <200 µM to 1.3 mM (Figure 5c). Under 

these ‘wet’ conditions, therefore, the reciprocal and minimal templates trans-TAB and trans-

TAB* were present in a ratio of 5:1—representing a 10-fold increase in the contribution of the 

minimal replicator to replication in this system, a dramatic change induced by a simple 
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change in the environmental conditions. It is well established that minimal replication 

pathways can be promoted by the addition of an autocatalytic template at the start of the 

reaction. Accordingly, we performed an experiment in which 20 mol% of preformed trans-

TAB* was added to a mixture of the four building blocks, A to D, at 10 mM in ‘wet’ CDCl3. 

The presence of trans-TAB* in this experiment engendered a further enhancement in the 

quantity of the minimal self-replicator formed and trans-TAB* reached a concentration of 2.1 

mM after 40 h—representing a 3:1 ratio of the reciprocal template trans-TAB to the minimal 

template trans-TAB*. 

Although the reciprocal template trans-TAB remained as the dominant species in the 

system, even in the presence of added preformed trans-TAB*, the marked increase in the 

contribution of the minimal self-replication pathway demonstrates the considerable power 

of both template instruction and environmental conditions in determining the outcome of 

replication processes. It can be envisaged that a similar reciprocal system constructed from 

building blocks that are more susceptible to hydrolysis would permit the construction of a 

replication system in which a change in the reaction environment could be used to steer the 

system towards either reciprocal or minimal replication pathways with increased 

selectivity. Such changes can be further complemented by changes in other environmental 

parameters such light, temperature, or pH, which can alter9g,h,j,13d,14b the efficiencies of the 

replication pathways and even turn them on28 and off. 

 

Conclusions 
In conclusion, we have designed and implemented a reciprocal replication network that is 

constructed from a pair of mutually-complementary templates that are based on simple, 

synthetic organic molecules. The formation of this pair of complementary templates is 

driven by orthogonal 1,3-dipolar cycloaddition and imine condensation reactions. The 

formation of each template is accelerated markedly in the presence of its reciprocal partner. 

The fully functional replicating network can be established and maintained simply by 

mixing the four reagents required to synthesize the two templates in a single flask. In this 

situation, the mutually reinforcing nature of the exclusively reciprocal replicating system 

enhances the formation of both templates well above the levels observed when these 
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templates are examined in isolation. The reciprocal replication network also responds to the 

introduction of instructional templates. When either of the two templates are added to the 

reaction mixture containing all four reagents, the network responds to this instruction by 

enhancing the formation of both its reciprocal partner and the instructional template itself 

by virtue of the symbiotic nature of the reciprocal catalytic relationships within the network. 

The creation of this reciprocal replicating system opens the way for the implementation of 

the complex functions29 provided by networks constructed from oligonucleotides and 

peptides using simple, synthetic organic molecules. Critical to the success of the reciprocal 

replicating system reported here is the orthogonality of the reactions that form the two 

templates. We envisage applying this technology to the creation of responsive networks in 

which the replication pathways can be controlled by template inputs as well as 

environmental factors, such as pH or water content. 
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1 M, is 1.2 × 107 M–1. In order to determine the stability constant of this duplex 
experimentally using NMR, we would have to operate at concentrations centered the 
putative Kd, which in this case is around 100 nM. Working accurately and 
reproducibly at concentrations is very challenging and is complicated by the fact that 
dynamic processes on the NMR chemical shift timescale may start to become 
important at Ka values of this magnitude. Specifically, the off rate for the complex 
may be coincidentally similar to the frequency separation of the bound and unbound 
resonances. In these circumstances, the spectrum will become exchange-broadened, 
making analysis impossible. The compounds have no chromophores that exhibit 
meaningful changes on binding, thereby precluding the use of UV-vis spectroscopy. 
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(26) The molecular framework that is at the core of replicator trans-TAB* has been 
investigated extensively by the Philp Laboratory. This autocatalytic framework 
shows an attenuated response to added template at levels above 20 mol% as a result 
of product inhibition and saturation of the catalytically-active ternary complex. See 
Ref. 10b for an extensive discussion. 

(27) There are siginificant experimental difficulties associated with controlling the 
amount of water present in chlroform in a reproducible manner. Whilst it would be 
desirable to study the effect of the concentration of water on the rates of exchange 
between nitrones B and B*, in practice, it was only possible to obtain reproducible 
results when saturating the chloroform with D2O as described in the main text. In 
addition, the relative stabilities of nitrones B and B* are such that exchange occurs 
more readily in the direction exploited here—nitrone B* is considerably more stable 
in a hydrolytic sense than B, making experiments that drive the network in the 
opposite direction challenging. 
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