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Two-kind boson mixture honeycomb Hamiltonian of Bloch exciton-polaritons
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The electronic band structure of a solid is a collection of allowed bands separated by forbidden bands,
revealing the geometric symmetry of the crystal structures. Comprehensive knowledge of the band structure
with band parameters explains intrinsic physical, chemical, and mechanical properties of the solid. Here we
report the artificial polaritonic band structures of two-dimensional honeycomb lattices for microcavity exciton-
polaritons using GaAs semiconductors in the wide-range detuning values, from cavity photonlike (red-detuned)
to excitonlike (blue-detuned) regimes. In order to understand the experimental band structures and their band
parameters, such as gap energies, bandwidths, hopping integrals, and density of states, we originally establish
a polariton band theory within an augmented plane wave method with two-kind bosons, cavity photons trapped
at the lattice sites, and freely moving excitons. In particular, this two-kind band theory is absolutely essential
to elucidate the exciton effect in the band structures of blue-detuned exciton-polaritons, where the flattened
excitonlike dispersion appears at larger in-plane momentum values captured in our experimental access window.
We reach an excellent agreement between theory and experiments in all detuning values.
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I. INTRODUCTION

When identical particles are brought in a perfectly periodic
lattice potential, their degenerate energy states are reorganized
into allowed energy bands separated by forbidden energy
gaps due to the spatial orbital wave function overlap [1].
An orbital overlap between neighboring particles is quanti-
fied by a hopping integral, which determines the bandwidth
of the allowed energy bands, and the spectral energy gap
appears proportional to the potential strength. These parti-
cles are beautifully represented by Bloch waves, solutions
to a Hamiltonian with an effective single-particle periodic
potential. In order to resemble electrons in natural crystals,
artificial periodic lattices are designed and created to engi-
neer the strengths of the particles’ orbital overlap and their
interaction governed by lattice geometries. In particular, a
honeycomb crystal structure appears ubiquitously in solids
such as graphite [2], graphene [3], carbon nanotubes [4],
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two-dimensional (2D) transition metal dichalcogenide [5],
and theoretical lattice models [6]. Recently, tunable honey-
comb lattices are synthesized to investigate massless Dirac en-
ergy dispersion and topological phases [7]. Exciton-polariton
honeycomb lattices have been also created by etching meth-
ods, where band structures are measured and edge states are
identified [8—12]. However, their work is limited to polaritons
in a far-red-detuned regime, where an approximated photon
description is sufficient. In this study we realize the full
band structures of Bloch exciton-polaritons in an artificial 2D
honeycomb lattice at not only red-detuning (A < 0) but also
zero- and blue-detuning (A > 0) values, resulting in different
ratios of exciton and photon contributions. A is defined as
the energy detuning between cavity photon and quantum-well
exciton. This quantity controls the potential strength of Bloch
exciton-polaritons, consequently, the band parameters such as
band gap energies, bandwidths, energy density of states, and
their hopping integrals.

Microcavity exciton-polaritons are dual quasiparticles of
photon-dressed excitons as a manifestation of strong light-
matter coupling in a monolithic quantum-well microcavity
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structure [13,14]. As composite bosons in a low-density limit,
obeying Bose-Einstein statistics, exciton-polaritons exhibit
macroscopic coherence above quantum degeneracy thresh-
old via stimulated scattering process originating from ex-
change interactions [15-18]. There are several methods to
produce a lateral confinement for trapping exciton-polaritons
by modulating spatially either photons or excitons. A thin-
metal film deposition [19], an etching for a pillar [20], and
a partial etching and overgrowth [21] are implemented to
pattern photonic lattices. These methods extend to produce
2D exciton-polariton lattices [22] with limited tuning param-
eters to observe high-orbital condensation [23-25], spin-orbit
coupling in the Lieb lattice [26], Dirac cones [8], condensa-
tion in an energy gap [27], and to explore magnetic orders
[28,29]. Theoretically, the exciton-polariton Hamiltonian in
the artificial lattices can be mapped to that of the Hubbard
model, with which Mott transition can be explored in exciton-
polariton lattices [30]. In order to construct such a Hubbard
Hamiltonian, a first step is to engineer its energy terms: an
on-site interaction energy and a kinetic energy associated with
a hopping integral [31]. Quantifying these terms is directly
linked to the band structures and their parameters. Here
we alter the design parameters to vary the lattice potential
strength, from which we quantify values of band parameters
experimentally. We achieve the complete understanding of
the engineered polaritonic band structures by developing our
two-kind boson mixture polariton band theory. The two-kind
boson band theory explicitly describes free quantum-well
excitons and bound cavity photons in artificial honeycomb
periodic potentials as well as the strong dipole interaction
between excitons and photons. The calculated band structures
from our two-kind boson band theory are in an excellent
agreement with the experimental ones at all detuning values.
Especially, the two-kind boson band theory is correct to
explain the band structures of the blue detuned devices.

The paper is organized as follows: Section II describes our
device and experimental setup and presents measured band
structures with varying experimental parameters. In Sec. III
we introduce a complete two-kind mixture Hamiltonian to
compute theoretical band structures by taking into account
experimental parameters. We further discuss the comparison
of theory and experiments and quantify band parameters in
Sec. IV.

II. EXPERIMENT

In this study we used a wafer which is composed of two
stacks of four 7-nm-thick GaAs quantum wells embedded in
a A/2-AlAs cavity structure sandwiched by 32-pair top and
37-pair bottom distributed Bragg reflectors, alternating AlAs
and Aly,GaggAs layers. The spatial cavity length variations
over the wafer vary detuning values A from —18.2 to 7.1 meV
in our sample. Detuning values are computed from A =
E.(ky =0) — Ex(k; = 0), where E. and Ey are independent
photon and exciton energy. An individual block has a pattern
of a honeycomb array of circular disks by etching the top
cavity layer, whose topology is consecutively translated to
subsequent upper layers during overgrowth [21,27].

Each circular disk of the honeycomb lattice has a fixed di-
ameter to be 2 um, and its etching depth is set to be 5 nm. The
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FIG. 1. (a) An illustration of prepared honeycomb lattices pat-
terned by the etching-overgrowth method. Each site is addressed as
a circular disk, whose lithographic diameter is 2 um and etching
height is approximately 5 nm. (b) A real-space honeycomb lattice is
sketched by two unit vectors a; and a,, where two sublattices are
colored green and orange. The site-to-site distance is denoted as d.
(c) The first four Brillouin zones (BZs) in an associated reciprocal
space are built upon the reciprocal unit vectors b, = (0, ‘;—Z) and
b, = (}_731’ —é—’;) with high symmetry points I, K, K’, and M. (d) A
folded representation of multiple BZs taken from experimental data
(A = —18.2 meV) along the high-symmetry points denoted in (c).
The theoretical folded BZs are overlaid on top of the experimental
data in white straight lines. Note that the momentums are projected
to the k, direction. (e) A representative measured band structure of
the d = 3 um device at A = —18.2 meV along higher BZ regions,
the vertical K-K line labeled as line 2 in (c), where the Dirac cones
are seen in the lowest energy bands. (f) Another cross-sectional band
structure is drawn along line 3 in (c). Two distinct forbidden energy
gaps are defined: V»3 and Vzg, the energy gap between the second
and third bands and the seventh and eighth bands, respectively. The
bandwidth of the lowest band A Ej is specified. The computed energy
band structures are shown in the straight white line in a repeated zone
scheme, and yellow and blue in the color scale bar indicate high and
low intensity data, respectively, in (d), (e), and (f).

cavity-layer thickness variations modulate the photonic ener-
gies in space to create a periodic potential whose amplitude
ranges 1-5 meV. The resulting sample schematic is sketched
in Fig. 1(a). The site-to-site distance d of the neighboring
sites has values of 3 and 4 um, and each block for a specific
d has the size of a 150 um by 150 um. A unit cell in the

045302-2



TWO-KIND BOSON MIXTURE HONEYCOMB HAMILTONIAN ...

PHYSICAL REVIEW B 99, 045302 (2019)

(a) 1592

1590
1588 1588
1586 1586

1584

1584

1582
1580
1578
1576

1574

6s5(€)'%%°
1595

1594
1593
1592
1591
1590
1589
1588
1587

1586

5(h)1 5951

(@159
1590 18
% 158
16
. 1586
1584 14
2 1582
12
o 1580
1578 a‘ ‘ -
8 1576
8
g o V‘ THY

16
15
14
13
12
1590 1

1589 10
1588

1587

1586

MORES
5. 17
1594 17 1594 16
P 15
1593 1593 14
45 1 o
1592 . 1592
12
1591 13 1501 1
12
35 1590 s
1590
1" 9
10 1589 8

271' 2 : B o9

d3 y/d3

FIG. 2. Direct comparison of experimental band structures [left column, (a), (d), (g)] with calculated band structures by two different
methods, the approximated H, [middle column, (b), (e), (h)] and the complete Hamiltonian H [right column, (c), (f), (i)] at three different
detuning values: a red-detuned device with A = —18.2 meV (a), a zero-detuned device with A = —0.3 meV (d), and a blue-detuned device
with A = 7.1 meV (g). These data are taken along line 1 marked in Fig. 1(c). The vertical dotted lines in the experimental band structures

indicate the zone boundaries.

real-space honeycomb lattice potential is defined by primitive
unit vectors a; and a,, where the nearest-neighbor distance
is d denoted in Fig. 1(b). Their reciprocal lattice vectors b;
and b, construct 2D hexagonal Brillouin zones (BZ) with
rotational symmetry points I', K, K’, and M [Fig. 1(c)]. We
make eight blocks with d =3 um in the range of detuning
A € (—18.2,7.1) meV, whose corresponding photonic frac-
tion values |C(kj = 0)|? lie between 0.92 and 0.24, where C
is the Hopfield coefficient and & is the in-plane momentum.
(We will also use k to denote kj if no potential confusion will
occur in the following text.)

The sample containing many blocks is cooled down to
4-6 K, and is excited by a continuous-wave laser at the fixed
wavelength 1.616 eV (767.205 nm) at the angle of 60 deg. Our
detection is not polarization selective. We keep the laser power
to be 0.1-1 mW, which is much lower than the threshold
pump power values 40-60 mW at various detuning positions.
The laser spot is oval shaped due to the finite-angle pumping
scheme with a size of about 120 um by 60 um.

The standard angle-resolved photoluminescence spec-
troscopy allows us to map the band structures of the
honeycomb lattice in the extended zone scheme, and its

folded-zone representation is presented in Fig. 1(d) along the
three high-symmetry points (I', K, M) drawn in Fig. 1(c). We
plot representative experimental band structures taken at two
distinct lines, line 2 [Fig. 1(e)] and line 3 [Fig. 1(f)] defined in
Fig. 1(c). The full massless Dirac dispersions of the s bands
are captured in the second BZ cutting through K or K’ in
Fig. 1(e), while only the lowest Dirac band is seen in the first
BZ along I'-K (or K') [Fig. 1(f)].

Figure 2 presents representative experimental polaritonic
band structures (d =3 pm) taken along line 1 in Fig. 1(c)
at three different detuning values A = —18.2 meV (a),
—0.3 meV (d), and 7.1 meV (g), where the strong A depen-
dence is observed. As A becomes positive, higher exciton
fraction reduces the energy window from ~17 [Fig. 2(a)] to
~5 meV [Fig. 2(g)]. Consequently, the number of accessible
bands within the energy window decreases as A is more
positive. Noticeably, the flattened bands at the large mo-
mentum values are more visible within our detected angular
regions. All of these behaviors are associated with the heavier
effective mass of the resulting exciton-polaritons arising from
the higher fraction of excitons as A increases. In addition, the
spectral linewidths of individual bands become much broader
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in the blue-detuned devices [Fig. 2(g)], resulting in the smaller
forbidden energy band regions, which blur sharp separation of
different bands.

III. THEORETICAL MODEL

In order to explain experimental exciton-polariton band
structures, we develop theoretical models by solving a Hamil-
tonian within an augmented plane-wave method. We first
apply an approximated Hamiltonian with the effective mass
of exciton-polaritons, which has been working well for pho-
tonlike exciton-polaritons in previous works [8,23,24]. The
theoretically computed band structures obtained from the
approximated Hamiltonian are displayed in Figs. 2(b), 2(e)
and 2(h). When we calculate the best fitted theoretical plots
matching to experimental data, we have only three fitting
parameters: the effective polariton potential strength Vg as
a function of A, effective mass of exciton-polaritons m*, and
site-to-site distance d. Our theoretical band structures plots
also take into account experimental linewidths in energy and
momentum. The intensity of each state at a particular momen-
tum k is computed by projecting the Bloch wave function onto
a free-moving photon and integrating over the first BZ. We
also take into account the spectral and momentum linewidth
information from experimental band structures.

Most features of allowed energy bands and gaps within
the first BZ are reproduced very well in all three detun-
ing regimes. In the red-detuned device, experimental data
[Fig. 2(a)] and theoretical plots by this method [Fig. 2(b)] are
in excellent agreement within the region of |k,| < 3(3£3). A
slight difference between two is visible in a region of very
large k, values [>3(27”§)] within our optical access window
determined by the numerical aperture (NA = 0.55) of our
objective lens. However, this approximated Hamiltonian fails
to explain the band structures in two other devices, where
the discrepancy between experiments and theory becomes
dramatically noticeable in devices [Figs. 2(d) and 2(g), A =
—0.3 and 7.1 meV, respectively]. The flattened nature of
the lower-polariton (LP) higher bands at larger k, values
originates from the bare exciton dispersion. The composition
of exciton and photon fractions in the strongly coupled LP
dispersions depends on not only the A values, which is here
defined at k = O but also the nonzero k| values. Near k| =
0, the photonic component is stronger, while the excitonic
component is stronger near large k| values. Therefore, the LP
dispersion is photonlike near smaller k; values, while the LP
dispersion is excitonlike at larger k; values. The crossover k;
value between two excitonlike and photonlike regimes within
the LP dispersion is determined by A. For the blue detuned
device, this crossover k value is smaller so that it appears
within our observation range determined by the objective
numerical aperture, whereas this crossover k| value is near the
edge of or beyond our observation access for the red detuned
devices so that the dispersion looks parabolic.

For differently behaving two-kind entities, the confined
cavity photons trapped by the engineered potential and the
free excitons, we originally introduce the complete Hamil-
tonian H, which is divided into three terms: the exciton
Hamiltonian H x, the cavity-photon Hamiltonian H ., and the

exciton-photon coupling Hamiltonian Hx ., i.e.,
H=HX+H0+HX—C~ (1)
In momentum space, H . is expressed as

Rk + Gy )?

H, = c
(8 + 2m,

+V (Gh,h’ )> c]t.t,.Gh_h, Ck+Gy >
(2

where ¢, is the cavity-photon energy offset, the effective mass

of cavity photon is m,, and cjc and ¢y are the cavity-photon
creation and annihilation operators at momentum k. Gy, j is
the general reciprocal lattice vectors, expanded by b, and b,,
such that G,y = hb; + h'b,. The coefficients of &, i are the
indices of 2D Fourier transformation. Note that V(Gy, ;) is
the Fourier transformation of the honeycomb lattice in real
space, formed by the honeycomb arrays of V (r) at each site,

V(r)=—-Vob(IR —rl), 3

where V| is the maximum potential strength for the 100%
cavity photon, approximately 5 meV, R is the radius of the
circular potential well, and 6 (x) is the Heaviside step function.
On the other hand, Hx has only the kinetic energy term,
reading

R (k + Gh,h’)2> i

Hy = (SX + 4G, , UG,y (4

2mx

where ex is the exciton energy offset, myx is the effective

mass of an exciton, and a,t and ay are the exciton creation

and annihilation operators at momentum k. H y_. indicates the
energy interchange of exciton and cavity photon,

_ T T
Hyx. = go(tlk+(;,hh, Ck+G,,, + Ck+GM,ak+Gh,,,), ©)

where go = 5.75 meV is the strength of exciton-photon cou-
pling.

The theoretical band structures by the complete H are
presented in Figs. 2(c), 2(h) and 2(i). In comparison to the
experimental band structures as well as the approximated
Hamiltonian calculation, we conclude that, only for extremely
photonlike exciton-polaritons, the preliminary plane-wave ba-
sis method can be still valid since the photon fractions are
higher at almost all accessible momentum values. However,
for more excitonlike exciton-polaritons, the complete Hamil-
tonian is required because the effect of free excitons are no
longer negligible. We can also show the mathematical details
of the relation between the approximated and the complete
Hamiltonians in Appendix A.

Since the signals in photoluminescence experiments in
Fig. 2 are the intensity of LPs, we consider the population
of LPs in theoretical plots. We assume that LPs trapped in
the periodic lattice potential have been entirely converted to
photons in the cavity. Therefore, we define the expected leak-
age LP emission intensity to be proportional to the projection
from the Bloch wave function v, x, to a free-moving photon

¢, = €'*1”, namely, intensity [19]

p(n, ky) o< (i, 1 ¥ni )7 (©6)

where k| is the in-plane lattice momentum.
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FIG. 3. (a) The Lorentzian model fits our experimental data
in the energy axis. The experimental data are taken at TI'.
The fitting parameters of this particular plot read (e, y,b) —
(1581.23,0.18,35.44) in unit of (meV, meV, meV?). (b) The
Gaussian model fits our experimental data in the momentum
axis. The experimental data are taken at where E = 1591.3 meV.
The fitting parameters of this particular plot read (c, ko, yx) —
(390.51, 4.02, 0.15), where kq and y; have a unit of 1/um.

The theoretical band structures presented in Fig. 2 of the
main text contain the spectral and momentum linewidth in-
formation from experimental band structures. Figure 3 shows
representative data of linewidth extractions in energy and
momentum from a d = 3 pum device at A = —9.6 meV. The
energy plot fits well with the Lorentzian equation [Fig. 3(a)],
whereas the momentum cross-sectional plot works well with
the Gaussian-shape fit [Fig. 3(b)]. Therefore the overall emis-
sion intensity in Eq. (6) is modulated by another Lorentzian
term along energy and Gaussian term along momentum.
Namely, the overall intensity of the plot in the whole range
at the momentum k and the energy E is given by

kf(k0+h-b))2

. eXp_(
k) = AL i
I(E. k) Z;%W e mmrs

with the energy and momentum relaxation rates y, yg, re-
spectively for the ith energy state. aﬁl indicates component
of eigenstate which corresponds G in the ith energy state,
where h = (hy, h;) is the Fourier expansion order, /2 and 5,

SO

varying from (—n, —n + 1, ..., n — 1, n). b is the reciprocal
unit vector, given as b = (by, by) = ((0, &), (%, —2)). ko

are the reference points taken from the experimental energy-
dispersion relations, which are uniformly distributed in the
first BZ. We typically take 25 points in each BZ in order to
prevent the coarse granularities. Note that in Fig. 2 we plot the
intensity actually in log scale log[/ (E, k)] in order to show the
contrast between high and low intensity clearly.

IV. DISCUSSION

Now we examine A-dependent band structure parameters:
the gap energy values and energy density of states (DOS) in
Fig. 4. V3 and V73 are explicitly indicated in Fig. 1(f), which
separate between the highest s band and the lowest p band
at zone boundaries and between the lowest d band and the
second lowest d band, respectively. The reason we look at
these two energy gaps is that the gaps exist at all momentum
values, while Vg7 between the lowest p band and the lowest d
band disappears at certain momentum values. Theoretical gap
energy values are extracted from the Hamiltonian solutions
denoted as filled circles in Figs. 4(a) and 4(b). Experimentally,
owing to the spectral linewidths of bands, we take these values
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FIG. 4. A-dependent gap energies V3 (a) and V75 (b) between
the second and the third states and between the seventh and the eighth
states, which are defined in Fig. 1(f). The photonic fraction values
|C|? are drawn against different A values. The filled circles present
theoretical values from the Hamiltonian calculations, whereas ex-
perimentally, the gap energy values are taken from two methods
shown in open circles. The lower bounds are taken from min(E; ;) —
max(E;), whereas the upper bounds are from min(E;; — E;), where
min and max are functions to take the minimum and maximum
values. Note that we cannot extract the lower and upper bound of gap
energies from experiments in blue-detuned devices due to the finite
resolution and small energy windows. Normalized energy density of
states are drawn from experimental (red) and theoretical (blue) band
structures at A = —18.2 meV (c¢) and A = 7.1 meV (d).

with two methods: One value is determined by projecting
only peak values at a given wave number to the energy axis
and finding the gapped regions, which are on the lower side,
while other values are obtained by projecting all intensities
to the energy axis and finding the distance between the peaks
of the allowed bands, which often are higher values. These
two values are drawn in open circles as a function of A in
Figs. 4(a) and 4(b). Since the gap energy values are propor-
tional to the effective potential strength, at different device lo-
cations, the trapping potential strength linearly increases with
|C|. In other words, the more photonlike exciton-polaritons
encounter the stronger trapping potential, leading to wider gap
openings at the zone boundaries. The V,3-A and V7g-A trends
follow very well with the |C|>-A relation, where |C|? is the
photonic fraction at the global minimum k; = 0.

We also plot the energy DOS by integrating the inten-
sities over momentum values at two extreme A values in
Figs. 4(c) and 4(d) with both experimental and theoretical
band structures. In solid-state systems, the DOS is a useful
quantity to explain particle motions and compute various
physical parameters such as particle numbers combining with
appropriate particle distribution functions. The DOS of the
red-detuned device exhibits a series of peaks and the bounded
lowest band is isolated by the gapped regions clearly visible
in Fig. 4(c). However, the DOS of the blue-detuned device
consists of two broad regions with occupied energy states.

045302-5



HAINING PAN et al.

PHYSICAL REVIEW B 99, 045302 (2019)

(a) o (b) P
10009 08 0604 02 009 08 0604 02,
i ¥ ° ium
i Hm
_ 80 LI : 5 T ;
3 69 S ] :
< (0]
= - 8 I [ 0
— 40 ~ -6
= ¢ S
20 4 -8 -1
° ium
0 KM o
-0 -0 0 10 1% 70 ) 16°

Detuning A (meV) Detuning A (meV)

4"
0.9 0. 06 04 02

1.2 5.0
]
< 1.0 [ —~ 45 >
3 3
4.0 -
£ o8 . £
- . 35/ }

0.6 s (13 = NN
ﬁ S230r N\ NN

0.4 \ | —3um

e 3um 2.5 \ 4 um
0.2 4 Hm 2.0Lobs o9 obs de ovs
-20 -10 0 10 -20 -10 0 10

Detuning A (meV) Detuning A (meV)

FIG. 5. The tight-binding Hamiltonian fitting results of the
nearest-neighbor hopping integral (a) and the next-nearest-neighbor
hopping integral (b) from the d =3 and 4 pum devices directly.
(c) The energy bandwidth of the lowest s-band AEg defined in
Fig. 1(f). The error bars are the standard deviation of the full-width at
half-maximum (FWHM). (d) The A and V. effect of delocalization.
The contour plot of the spatial wave function FWHMs (um) is
computed for the d = 3 (blue straight line) and 4 (green dotted line)
pm devices. The contour values start from 0.9 (0.95) in the upper
right corner for d = 3 (4) um and end as 0.6 in the lower left corder
for both d = 3 and 4 (green dotted line) pum.

For the bounded isotropic s bands, we apply the tight-
binding approximation with two fitting parameters, the
nearest-neighbor hopping integrals ¢ and the next-nearest-
neighbor hopping integrals ¢’ (see Appendix B). The energy
dispersion is simply written in terms of the f function with
the three neighbor sites, and the fitting results of ¢ and ¢’
from d = 3 um (blue circle) and d = 4 um (green square) are
collected in Figs. 5(a) and 5(b). The ¢ values for the d = 3 um
devices monotonically decrease in the positive A sides, but the
t values for the d = 4 um devices are about 5-6 times smaller
than those for the d = 3 um devices, and the A dependence
is weak. In addition, the amplitudes of ¢ are 10-20 times
smaller than those of 7, indicating the weak overlaps between
the next-nearest-neighbor sites.

The monotonic decrease of the 7-A relation in the d =
3 um devices is qualitatively similar to the A Es-A plot of the
d = 3 pum devices in Fig. 5(c). The bandwidth of the lowest
s-band AFEs, reflects the strength of the overlap integral
between neighboring sites. The greater the overlap is, the
stronger curvature emerges, thus the wider band. In the posi-
tive A values, since exciton-polaritons are much heavier, they
tend to be likely localized, reducing the overlap integral. In or-
der to quantify the delocalization degree of exciton-polaritons,
we compute how the s-band wave functions spatially spread
from the center of the trap in Fig. 5(d) as a function of A
and V. These 2D plots teach that the photonlike exciton-
polaritons tend to delocalize in a weaker trapping potential,
whereas the excitonlike exciton-polaritons are localized in a
trap. The difference between d =3 um and d =4 um is

bigger in the negative A and shallower V. This is partly
because the more distant the traps are, the more isolated. Thus,
we conclude that, when d = 3 um, the s bands reveal the
strong overlap integral between the wave functions, while for
d =4 pm, AEjg is limited by exciton-polariton lifetimes.

V. CONCLUSION

We successfully engineer artificial band structures of
exciton-polaritons in a variability of exciton and photon frac-
tions at different detuning values. The experimental band
structures are completely understood by the two-kind boson
Hamiltonian, which requires us to explicitly address both
confined photons and free excitons. Our two-kind exciton-
polariton lattice system is suitable to investigate a physical
system, where both itinerant and localized particles coexist.
Furthermore, the higher-orbital bands are accessible, which
enables us to systematically examine various orbital physics in
the photonlike and excitonlike regimes when they are placed
at zone boundaries or near the Dirac cones in the honeycomb
lattice. In addition, we may incorporate density and polariza-
tion engineering to prepare for Bloch exciton-polaritons that
reveals spin order in the nonlinear regime at exotic lattice
geometries for studying the interplay of topology, spin, and
interaction.
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APPENDIX A: APPROXIMATION OF COMPLETE
HAMILTONIAN

We have shown in the main text the difference of the
complete Hamiltonian and the approximated Hamiltonian.
They differ much in the blue-detuned case, however, in the
red-detuned limit (A < 0), the complete Hamiltonian pre-
sented above can be further approximated to a simpler single-
component exciton-polariton Hamiltonian [Figs. 6(a)—6(h)].

We first define an effective potential strength V¢, which
exhibits the spatial variations at different A values,

Verr = |C* V. (A1)

In the extreme red-detuned case, where we have |C |2 ~1,
the complete Hamiltonian can be approximated to the new
Hamiltonian H,

Rk + Gy

H,
2meff

+ Veir(Gpp) + €, (A2)
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FIG. 6. (a), (c), (e), and (g): Cross-sectional energy dispersions along the dashed line 1 in Fig. 1(b) of the main text, passing through
I'-M-TI". Experimental data for d = 3 and 4 um devices are presented in a log scale of the intensity in (a) and (c). Corresponding theoretical
band structures are computed and presented in a log scale in (b) and (d). White vertical lines are drawn at M = (0, :I:é—’;) in the first BZ and
the I' = (0, :I:‘;—’(;) of the second BZ. Experimental (e) and (g) and theoretical (f) and (h) plots show detuning-value dependent band structures
of honeycomb lattices. Theoretical band structures in (b) and (d) are computed by an approximated Hamiltonian, whereas those of (f) and (h)
are from the complete Hamiltonian calculation with two individual components of cavity photons and quantum-well excitons.

where ¢ is an energy offset value. The proof is as follows:
Note that the new Hamiltonian H | only includes the cavity-
photon contribution with the effective mass meg, namely it has
only the half-sized dimension of the complete Hamiltonian
H. Therefore, we need to extend the space to the same
dimension that

= |H; 0
H, = [ 0 ():|' (A3)
Here, if we expand the Fourier series of the potential
strength to nth order (—n, —n+1,...,n — 1,n), we have

H, with the 2n+ 1) x 2n + 1) dimension and H; with
2(2n + 1) x 2(2n + 1) dimensions. (0 in above equation
stands for the zero matrix.) Now the complete Hamiltonian
H and the new matrix H; have the same dimension. The
complete Hamiltonian H explicitly reads

H. g
H=|"¢ 0, A4
[go Hx] (A4
where
2 (k+G_p—n) ]
Ec + T V(G(—n,—n),(n,n))
H, = : : . (A5)
2 (k+Gun)?
V(G ), (=n,—n)) Eet =
2 2 =
Ex + —h (k-;z;"’in) e 0
Hy= : : . (A6)
12 (k+Gun)?
0 ... ex+ amy

and g, is the (2n 4+ 1) x (2n 4 1) diagonal matrix. Because
of the mass of exciton my >> m,, the mass of cavity photon,
the exciton kinetic term hardly contributes, consequently, this
term just vanishes. By introducing the detuning energy A(k),

we have A(kj = 0) = e. — ex. [In the latter content, for the
simplicity, we just use A to denote A(0).] Finally, Hy is
simplified to

Ex “e. 0
Hy=|:® .| (A7)
0 Ex
and H . reads
H,
5 2
£x _|_ A + W V(G(—n,—n),(n,n))
. : 2 2 ’
V(G(n,n)»(—n,—n)) ex + A+ - (k;'m(i"vn)
(A8)

where ¢, is now replaced with ¢x + A for all diagonal ele-
ments by definition. If we take the component ey out of the
diagonal elements of matrix, H becomes

H=ey+ [‘;"0 %0], (A9)
where
2 2
A+ W V(G (n—n).(nm)
H.= : :
2 2
V(G(n,n),(—n,—n)) A+ %
(A10)
Because of the relations of
1 Cc> |X)* |CP?
_ICP L IXP_ICP Al

Meeft ne mx nme
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FIG. 7. The fitting model (solid line) and experimental peaks (dots) of a red-detuned device d = 3 um, A = —14.6 meV (a) and a blue-
detuned device of d = 4 um, A = 8.7 meV (b). The x axis is momentum in the unit of xm~! and the y axis is energy in the unit of meV.
and

Vet = |C* Vo, (A12)

the complete Hamiltonian H is written as
H_€X+[go O}Jﬂa2 o 0
1 go 1
— ey — + A + — Al3
) |C|2 [A } T A

In the cavity-photon limit (A — —o00), which is the extreme red-detuned case, we have |C|> — 1 and & — 07, yielding that
the complete Hamiltonian can be further approximated to

H:[ex—e+A+H1 0i|

0 ol (Al4)

Therefore, if we set ¢ = ex + A, the complete Hamiltonian H is just the approximated H.

APPENDIX B: TIGHT-BINDING MODEL THEORY AND THE FITTING FOR ¢ AND ¢’

The standard tight-binding (TB) model is adopted from the energy band structure calculation of graphene to extract the
two dominant hopping integrals of Bloch exciton-polaritons in the honeycomb lattice potentials [16]. We consider the nearest-
neighbor hopping integral ¢ and next-nearest-neighbor hopping integral in the honeycomb. The corresponding tight-binding
Hamiltonian is

H :Z t Z C;iCAj—FH.C.—I-l‘/ Z CLiCAj—I-l‘/ Z CLiCBj+Eoc}L-Cj , B1)
j li—jl=d li—jl=/3d li—jl=/3d

where the i in the first term denotes the nearest-neighbor site to j and i in the third and fourth term denote the next-nearest-
neighbor site to j, Ey indicates the on-site energy. The Fourier transformation of cy4; is

c ._/eﬂ'knc _dk_ (B2)
A_] - o Ak (277:)25

where w is the area of Brillouin zone. Similarly, we can write down the same expression for cp; and substitute them into the
tight-binding Hamiltonian:

dk dk'
H Z / Z ik’ (rj+AB) zkr,C kICAk+HC + Z (E0+t/ ik’ (rj+AA) krj)(c k!CAk+C kICBk) 2_2.
li—jl=d i jl=/3d 2m)* (27)
(B3)
ote that ¥, e ® ~0)7; — (27 — k'), therefore, the tight-binding Hamiltonian is simplified to
Note th ]'U‘ brri = (27)*8(k — k'), therefore, the tight-binding Hamil plified
/ ik-AA; ik-AB;
— et ey Eo+1'3 0 ji—ae 1Y i ji=v3d € (CAk> (B4)
— \Cuk Bk _ik-AB: , ik-BB, ’
tZ\i—j|=J§d6 k-AB; Eo+1 Z|i7j|=dekBB CBk

045302-8



TWO-KIND BOSON MIXTURE HONEYCOMB HAMILTONIAN ...

PHYSICAL REVIEW B 99, 045302 (2019)

TABLE 1. A red-detuned device of d = 3 um, A = —14.6 meV.

TABLE II. A blue-detuned device of d = 4 um, A = 8.7 meV.

Best Standard Error Error

Best Standard Error Error

fit deviation P-value bar (min) bar (max) fit deviation  P-value  bar (min) bar (max)
Ey/meV 1577.14 0.003528 243E—923 1577.14 1577.15 Ey/meV 1582 0.000507 1.48E—556 1582 1582
t/pueV —92.57 1.321 3.39E—145 -95.18 —89.97 t/nevV —9.41 0.197 345E-71 —-9.8 -9.02
t'/ueV  7.84319 1.01 3.89E—13 -9.84 5.85 t'/ueV  0.730674  0.141 1.18E—6 0.45 1.011
d/pm 2.88884 0.020997 6.58E—204 2.84744 2.93024 d/pm 3.72502 0.043485 4.056E—96 3.63876 3.81128
Substituting  the  nearest-neighbor  vector AB; =

0, —d), (‘/;d, —%) and  next-nearest-
neighbor  vector A_/)ll- = ﬁ; = (\/gd, 0), (—\/gd, 0),
(Ld, 3d), (—Ld, ), (Ld,-3d), (—Bd, —3d) and
summing them up, we obtain the energies (without loss of
generality, we assume ¢ positive)

(Ld, b,

E=Eg£1/3+ fk)—1'f(k), (BS)
where
f (k) = 2cos(v/3k.d) + 4 cos <“/7§kxd> cos (%kyd).
(B6)

In experimental data analysis, we first obtain the energy
values at all k, from the intensity peaks by aforementioned
Lorentzian fitting. For the d = 3 um devices, we use a model
with two Lorentzian shapes overlapped to find the peaks from
the experimental linewidth plots, which inscribes the energy
of two states in the s band. For the d = 4 um devices, we only
use one Lorentzian shape to find the s band because the lower
state is mostly populated in the first BZ, while the higher state
is populated in the second BZ such that they can barely be
seen in the first BZ.

After the Lorentzian fitting to find the peak, the TB model
is applied to fit the four parameters: the offset energy E, site-
to-site distance d, nearest-neighbor hopping integral ¢, and

next-nearest-neighbor hopping integral #. In addition to the
best fitting parameters, we also present (1) standard deviation,
which is the average deviation between the experimental point
and that fitted point among all momentum k,; (2) P-value,
which can be understood to nullify the hypothesis if P-value
20.05, otherwise we can reject the null hypothesis if P-value
«0.05. We want the small P-value to accept hypothesis such
that the fitting model is convincing; and (3) error bar, which is
set to 95% confidence intervals. The boundary of confidence
intervals delimits the error range.

We present the examples of the fitting results for the d =
3 um and d = 4 um devices in Figs. 7(a) and 7(b). The fitting
parameters for specific data from the d =3 um and d =4
pum devices are collected in Tables I and II, respectively.
Two lowest bands of Eq. (BS) along line 1, I'-M specified
in Fig. 1(c) are drawn in straight line, where the dots are
taken from the maximum intensity peaks in the measured
experimental band structures. Due to our spectral linewidth,
we are not able to identify small gaps between the first and
the second bands along line 1, I'-M unlike the theoretical
plots; however, the curvature of the bands directly quantifies
the hopping integrals ¢ and ¢’. Note that the gap between two
bands closes at K and K’ points, forming the famous linear
gapless Dirac dispersions, while the curvature of two bands
remains as same. Therefore, our TB dispersion fitting to the
experimental data along the I'-M line is still valid to extract
the values of # and ¢’.
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