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Abstract 
 

Additive manufacturing has transformed from a technology primarily focused on the creation of 

small-scale prototypes and models to a process for the manufacture of end-use components. 

Additive manufacturing has a number of inherent advantages over traditional manufacturing 

processes. These include the ability to fabricate complex geometries at no extra production cost, 

creating mass customised parts without additional tooling and the ability to consolidate 

assemblies into single parts. However, additive manufacturing is not without limitations. There 

are a number of geometric constraints that limit design freedom when designing parts, for 

example the maximum unsupported angle that material can be printed. There are also limitations 

in current CAD software, which prevent designers from maximising the quality of additively 

manufactured parts.  

Design for additive manufacturing seeks to improve the design methods or tools to help improve 

the functional performance, reliability, manufacturability or cost of parts produced using additive 

manufacturing technologies. Generative design is an emerging form of computational design in 

which the user provides goals and constraints to a system and generative synthesis algorithms 

produce a series of optimised solutions based on the input criteria. There are many limitations 

with current generative design systems preventing the mass adoption of the technology. These 

include, the lack of integration between topology optimisation synthesis algorithms and the part 

build orientation and, additionally, the ability to design for goals, such as part cost or build time. 

To overcome these challenges, this research applies two generative design methods to design an 

additively-manufactured cantilever beam. The optimised beams are created by integrating a 

ground-structure topology optimisation with manufacturing constraints and build orientation 

angle information. Design performance metrics of varying degrees of abstraction are then derived 

from the mesh file data. These represent two common additive manufacturing business scenarios; 

maximum part performance and high production quantity. A data-driven generative design 

approach is then used to locate the top performing solutions within a solution space. This space is 

searched using a parametric grid-search that alters the build orientation and the overhang angle 

constraint. Component performance is related to the abstracted design objectives using a TOPSIS 

multi-criteria decision analysis.  

There is an ongoing challenge associated with running many model evaluations on large mesh 

files. This can make generative design prohibitive in terms of computational resource. To 

overcome this challenge, a goal-driven generative design method is developed to solve the 

inverse problem of finding the optimal input parameters to the cantilever beam problem by using 

a Bayesian optimisation surrogate model. The data-driven and goal-driven generative design 

approaches are then compared for their efficiency and ability to locate optimal design solutions. 

The contributions to knowledge, borne from this research are a data-driven generative design 

method demonstrated to be suitable for locating high-performing solutions in complex multi-

dimensional solution spaces providing the number of design space dimensions is small. The novel 

use of Bayesian optimisation is shown to be to be 17 times more efficient than a conventional grid 

search for locating the top performing build orientations of two additively manufactured test 

parts. Finally, goal-driven generative design methods are demonstrated to locate the optimised 

build orientation and manufacturing constraints for the cantilever beam within 20 optimisation 

iterations. These outcomes demonstrate potential for future generative design CAD systems. 
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Chapter 1 - Introduction 

1.1. Research Background 
The American Society for Testing and Materials (ASTM) define additive manufacturing (AM) as “a 

process of joining materials to make objects from 3D model data, usually layer upon layer, as 

opposed to subtractive manufacturing methodologies” (ASTM 2012). Traditional subtractive 

technologies, as defined by Nassehi et al. (2012), are processes where material is removed from a 

single workpiece, such that the mass of the processed workpiece is less than the original. 

Examples include milling, turning, electro-discharge machining and water jet cutting. 

The recent proliferation of AM within industry is notable. The Wohlers Associates report (Wohlers 

et al. 2018) highlights a 21% growth on sales revenue from AM specific parts, machines, services 

and materials during 2016-2017 with a total industry value of $7.3 billion. The report also details a 

considerable 80% increase in the sales of metal AM machines, highlighting that industry is now 

adopting AM as an accepted means of production for high-value end-use components. Examples 

of AM being used in commercial production can be found in the medical (Wang et al. 2016), 

footwear/fashion (Griffiths 2017), aerospace (Kellner 2015) and automotive industries (BMW 

Group 2018). 

AM processes can be categorised by the type of material processed, the deposition technique or 

the way the material is fused, as shown in Table 1-1. The AM processes are placed into seven 

categories, namely: material extrusion, powder bed fusion, vat photopolymerization, material 

jetting, binder jetting, sheet lamination and directed energy deposition. Since the establishment 

of these categories in 2012, there has been a vast amount of development increasing the 

performance of AM hardware. Recent trends have focused on advancing the speed and quality of 

part production to ready the process for commercial implementation. Consequently, AM is now 

competing with casting in terms of production cost for part quantities between 50,000-100,000 

parts (HP 2018; Desktop Metal 2018). To achieve this, companies have either developed new 

processes based on existing technology from the metal injection moulding industry (Markforged 

2018), integrated parallelised processing techniques such as adding multiple lasers to machines 

(Renishaw plc. 2018), or incorporated the part build process, heat treatment and post-processing 

into the same machine (Additive Industries 2017). 
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Table 1-1:  ASTM International classification of additive manufacturing processes (ASTM 2012). 

 

During the past 30 years, AM technology has transformed from a technology primarily focused on 

the creation of prototypes and models, to instead being used for the production of end-use 

functional parts (Campbell et al. 2012). Due to inherent limitations of layered manufacturing 

processes, not all parts are feasible or cost-effective when produced using AM. To ensure 

successful integration of AM into standard industrial practice, a better understanding of the 

design freedoms and limitations of the process is required. 

The layer-wise material deposition of AM printing parts provides several inherent benefits over 

other traditional manufacturing methods. These include: 

a) The ability to create complex part geometries that could not be produced using 

conventional manufacturing methods. Gibson et al. (Gibson et al. 2014) define four design 

complexities that can be exploited by AM. Firstly, shape complexity gives designers 

greater flexibility in determining the final geometry of a part. As tool-access is no longer 

an issue, designers have greater freedom in material placement as draft angles and 

undercuts no longer present difficulties. Additionally, adding extra features to AM parts 

has less impact on the final cost of the product compared to traditional manufacturing 

methods such as computer numerically controlled (CNC) machining. Secondly, hierarchical 
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complexity allows for multi-scale design freedom enabling the possibility of shape 

optimisation techniques to allocate material distribution throughout a part according to 

loading conditions, and lattice structures to be placed within designs. Thirdly, material 

complexity offers the freedom to design continuous material transitions and different 

materials within a single part. Finally, functional complexity allows for part consolidation 

or the embedding of foreign products within the final part. 

b) An advantage of AM when competing with batch production casting methods is that there 

is no startup tooling required for production (Hopkinson et al. 2006). It is possible to 

create mass-customised parts across a batch as the cost of the final part is independent of 

tooling costs. Additionally, this lack of tooling means that AM can be used to produce on-

demand, and on-site products, which reduces costs associated with inventory, supply 

chain and delivery. 

c) Producing less waste material when compared with processes such as CNC milling, as 

there is no longer a requirement to machine from a large billet of material. Near net 

shaped fabrication processes such as directed energy deposition methods, can produce 

parts that are close to the final geometry. A subtractive process is then used to finish the 

part to the required tolerance (Ding et al. 2014). It is also possible to repair damaged 

parts using a combination of reverse engineering, AM and subtractive manufacturing 

(Teibrich et al. 2015).  

d) Reducing assembly costs by part consolidation. Part count reduction has been shown to 

be one of the most effective ways to reduce process time and cost by reducing the 

number of assembly operations (Yang et al. 2015). Numerous case studies are available 

showing the advantages AM can have when consolidating assemblies both industrially 

(Autodesk 2018b) and in academia (Yang et al. 2015; Prakash et al. 2014; Sossou et al. 

2018).  

This list represents some of the advantages that AM provides. However, due to the nature of the 

AM process, there are many reasons why there may be a discrepancy between the computer-

aided design (CAD) model and the final printed product. Errors can arise as a result of the 

discretisation of the part geometry to triangulated mesh representation, such as in a .STL file 

(Figure 1-1, left). Another error may be ascribed to the layered manufacturing process itself. All 

layered manufacturing processes require the digital model to be divided into slices before the 

part can be manufactured. These slices then form the basis of a material deposition plan for the 

part. Slices can contribute to several errors that occur when comparing the original CAD model to 
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the printed object. One example, termed the stair stepping effect, occurs when the discretised 

contours of the 2.5D layers are printed, as shown in Figure 1-1 (right). This phenomenon can 

significantly reduce the surface quality of the design. Furthermore, layered manufacturing can 

also lead to anisotropy in the mechanical properties of the part due to possible delamination of 

layers during loading (Stanković et al. 2017). 

 

Figure 1-1: (left) Error associated with triangulating a sphere during the creation of STL files and (right) error associated 
with the stair-stepping effect attributed to the layerwise manufacturing process (images courtesy of 3D Hubs (2017)). 

Alternatively, failures may occur during the build itself. The physical phase change from liquid to 

solid during the processing can lead to many potential failure modes. Warping and cracking can 

occur when there is a build-up of residual stress caused by temperature differences between 

prebuilt and newly heated layers. Different AM processes are more susceptible to certain failure 

modes. For example, directed energy deposition (DED) processes are particularly prevalent to 

residual stress failures, whereas powder bed fusion (PBF) processes are more susceptible to 

failures associated with incorrect powder recoating or impact from the recoater blade.  

Print failures may dramatically increase the cost of the AM process and therefore a 

comprehensive understanding of the process limitations is extremely important when mitigating 

against print failures. Modifying the print processing parameters can dramatically change the 

quality of the output part. However, there is a vast amount of parameters (>100 options in Cura, a 

common material extrusion build preparation software) that can be modified and understanding 

the effect of changing a parameter, or combination of parameters, on the final part is hugely 

challenging. 

Correct consideration of AM design heuristics can mitigate against many of the disadvantages 

associated with AM. To leverage the advantages of AM, it is vital to design specifically for the 

technology. Design for manufacturing and assembly (DfMA) has been pivotal in improving the 

quality of designs as the methodology has educated many designers about the importance of 

understanding manufacturing constraints within the design process. Boothroyd and Dewhurst 

(Boothroyd et al. 2011) created the seminal book on the topic, covering many traditional 

manufacturing methods. However, there is a need to extend DfMA to include AM processes. 
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Design for Additive Manufacturing (DfAM) has emerged as a critical field of research investigating 

design tools, guidelines and constraints on the AM process that require consideration to maximise 

the likelihood of achieving additively manufactured, functional, first time right parts (Thompson et 

al. 2016). 

DfAM has been defined as “types of design methods or tools whereby functional performance 

and/or other key product life-cycle considerations such as, manufacturability, reliability, and cost 

can be optimised subject to the capability of AM technologies (Tang and Zhao 2016)”. General 

guidelines advising on best practices for AM part design have continually been refined over the 

last fifteen years (Hague et al. 2003). Exploiting these guidelines is pivotal to the economic 

viability of the process (Atzeni and Salmi 2012) as correct implementations of DfAM can improve 

the functional performance of parts without increasing cost. 

One of the fundamental challenges in DfAM is managing the complexity of the design 

opportunities and limitations. The role of the designer is to translate the part design specification 

into a feasible digital CAD model that can then be processed using AM. In non-trivial design 

problems, there are many solutions that may lead to a satisfactory result. Therefore challenges 

arise in optimising designs for specific attributes whilst reducing the time and cost required to 

develop feasible solutions. Exploiting the interaction between AM processes, machines, materials 

and process parameters, as well as, the many design options that arise due to the flexibility of the 

process is a demanding task due to the combinatorial explosion of potential options available to 

the designer. 

CAD tools traditionally provide designers with a facility to document, simulate and visualise 

designs. However, synthesising geometry based on underlying design requirements remains 

challenging due to the multi-objective nature of most non-trivial design problems. Advances in 

computer hardware have meant that design simulation and computational synthesis methods 

have become widely accessible. The combined advantages of modern CAD systems and AM 

technologies has triggered a widespread rethink about the role of designers and the software 

tools that will support them in this increasingly complex setting. 

Generative design provides a different approach to the traditional CAD process. It aims to extend 

CAD systems by automatically synthesising geometries based on a series of goals and constraints 

set by the designer. Typically, generative design systems create multiple solution variants to a 

given input problem. The user can then explore the generated alternatives and select the best 

options for further refinement. Throughout this thesis, designer and user will be used 

interchangeably to refer to the person using the generative design tool or method. 
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This research aims to overcome the challenges associated with designing parts for AM by guiding 

the development of future generative design CAD tools that assist designers in producing high 

quality AM parts based on a series of pre-defined goals and constraints. To achieve this, a 

manufacturability-constrained structural optimisation method will be combined with build 

orientation angle information to generate an AM aware constrained optimisation. This, in turn, 

will inform the development of two design exploration approaches, namely, data-driven and goal-

driven generative design for AM. The data-driven method uses multi-criteria decision analysis 

(MCDA) to locate the highest performing solutions within a pre-generated solution space, derived 

from a parametric grid search. Goal-driven approaches optimise the input parameters to a 

parametric optimisation to synthesise high-performing solutions using a Bayesian optimisation 

surrogate model. A design solution’s performance will be defined by a multi-objective weighting 

of high-level abstractions of low-level multi-dimensional evaluation criteria that will be outlined in 

the research methodology. 

1.2. Thesis Outline 
Chapter 1 introduces the topic of generative design and DfAM, as well as explaining the context of 

the research and its significance. Finally, a short introduction to the research aim is provided.  

Chapter 2 reviews the literature associated with designing parts with AM. It will explore recent 

work governing the design of functional end-use parts and introduce the notion of the DfAM 

pipeline. Secondly, it  examines the extent to which current CAD tools are capable of aiding 

designers wishing to exploit the full potential of AM. Finally, the literature review analyses state-

of-the-art research in optimising geometry to fulfil user-specified functions, before a critique is 

presented that informs the research aims and objectives that govern this thesis.  

Chapter 3 provides a generalised framework for CAD tools supporting generative design for AM. 

The principles for the future development of generative design systems are described, advising 

future researchers and generative design practitioners of their critical features. 

Chapter 4 explains the research hypothesis and aim, alongside the measurable objectives and 

scope of the research. 

Chapter 5 presents the overarching research methodology and the key methods used to achieve 

the research objectives. 

Chapter 6 uses data-driven design methods for generative design to explore the trade-offs that 

occur in the AM design process. Data-driven methods search a pre-computed solution space of 

design solutions to find the best solution according to a series of design objectives. The solution 
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space is generated using a grid search approach, and then is subsequently explored a posteriori 

using a MCDA.  

Chapter 7 evaluates the strategies for exploring the AM design space when the objective function 

is costly to evaluate. Through the comparison of exploration methods, namely grid search, 

random search and Bayesian optimisation using Gaussian processes, the optimal orientation of 

two AM-specific test parts will be located. 

Chapter 8 examines the efficacy of goal-driven generative design methods. These methods use 

techniques including random search and Bayesian optimisation to efficiently explore the AM 

solution space by locating high-performing solutions evaluated against high-level abstracted 

design goals. The computational efficiency of determining these solutions  is then examined based 

on the number of structural optimisation evaluations required. The results  are then 

quantitatively compared to the data-driven approach  and used to critique the two generative 

design implementations objectively.  

A critical discussion of the research is given in Chapter 9. Finally, Chapter 10 concludes the 

research, provides the contributions to knowledge and outlines future research avenues. 
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Chapter 2 – Literature Review 

2.1. Introduction 
This chapter introduces the literature that has influenced the field of DfAM. Firstly, the limitations 

of AM processes outlined in design guidelines are introduced. Secondly, research outlining past 

work in the DfAM pipeline will be reviewed. Thirdly, generative synthesis techniques that have 

been developed to optimise AM parts to achieve specific functionality will be reviewed. Next, an 

overview of the issues surrounding traditional CAD programs in designing parts for the additive 

manufacturing process is provided. Finally, a critique of the literature and the influence of the 

research gaps on the development of work in this thesis will be outlined. For clarity, a 

diagrammatic representation of the review is shown in Figure 2-1. 

  

Figure 2-1: Diagrammatic representation of literature review topics. 

2.2. Additive Manufacturing Guidelines 
Before designing parts for AM, it is first necessary to understand any limitations that will constrain 

the design process. Geometric limitations in AM are affected by the process, material and the 

machine selected. It is essential that the designer understands these constraints in order to 

generate an optimal design for a particular AM combination.  

In order to qualify the capabilities of AM machines, researchers have developed test parts in 

order to assess the geometric limitations of the machine-process-material combination. Rebaioli 

and Fassi (2017) provided a comprehensive review of seventy-nine geometric test parts that aim 

to provide a comparison between AM technologies and to quantify the limitations of AM 

processes. These test parts can be used to measure the geometrical accuracy, repeatability and 

minimum feature sizes for each of the AM machines. It is highly important to understand the 
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geometric capabilities of the process/material combination as this will allow the designer to 

decide which AM process is most suitable for a given part based on its geometric features. 

By utilising these test parts to find geometric limitations, it is possible to generate design 

guidelines for each of the AM processes. Guidelines have been produced by many industrial AM 

vendors (Materialise NV 2018; Formlabs 2015) and also from academic research covering a wide 

range of processes including: direct metal laser sintering (DMLS) (3D Hubs 2018; Kranz et al. 2015; 

Thomas 2009) wire and arc additive manufacturing (WAAM) (Lockett et al. 2017; Mehnen et al. 

2014), stereolithography (SLA) (Formlabs 2015), fused deposition modelling (FDM) (Teitelbaum et 

al. 2009) and electron beam melting (EBM) (Vayre et al. 2013). 

Accurate implementation of design guidelines is fundamental to reducing print failures in AM. 

Failures can have a significant impact on the overall cost of the AM process, with companies 

having to incorporate the probability of print failure as a multiplier on the final cost of the 

individual part  to cover overhead costs (Baumers et al. 2016). However, it is often challenging to 

incorporate the resulting design guidelines easily in the part development process as the discrete 

geometric shape guidelines are difficult to translate into the complex freeform geometries that 

exploit the benefits of AM. Furthermore, it is challenging to understand which of the design 

guidelines has the most significant impact on part performance. This is important if geometric 

constraints prevent the unilateral implementation of all guidelines. 

2.3. The Design for Additive Manufacturing Pipeline 
Having accrued an understanding of AM process constraints, a designer can embark on the 

process of creating a functional AM part. Most AM parts start as a 3D digital computer-aided 

design (CAD) file. This CAD file then follows an established AM process pipeline, including both 

digital and physical elements (Figure 2-2) until the manufactured part is completed. Whilst the 

designer no longer has a direct influence on the part after the print process begins, it is necessary 

to ensure post-processing in taken into account within the design stage. This ensures parts can be 

finished appropriately, ensuring the part design specification criteria are met. This section will 

discuss the role of DfAM within the AM design pipeline. 
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Figure 2-2: Design for additive manufacturing pipeline. 

2.3.1. Design 

A fundamental concept in DfAM is that of functional surfaces and volumes; these are geometrical 

elements that fulfil a particular functional requirement. For a structural part, a functional surface 

may restrict a degree of freedom, interface with another part in an assembly or act as a load 

bearing surface (Tang et al. 2015). The functional volume is the part volume required to connect 

each of the functional surfaces. 

Vayre et al. (2012) proposed a design approach for AM. Initially, the part specification must be 

known in order to define the desired in-service behaviour. Secondly, the part is decomposed into 

a set of functional surfaces. A set of free parameters is then defined that can be optimised to find 

the best design for the part. Ponche et al. (2012) also used the notion of functional volumes to 

combine parts into a single assembly suitable for AM. 

Salonitis (2016) applied the techniques of axiomatic design to DfAM. Axiomatic design involves 

mapping customer needs onto functions that the part is expected to perform. It then maps these 

functions onto design parameters indicating how the object will perform. Finally, these design 

parameters are mapped onto process variables indicating the AM method and process 

parameters that will be used to manufacture the part. This method has the advantage of ensuring 

that all functional requirements are captured by the geometry. However, there is no information 

about how to design the geometry to achieve the design goals. 

The use of an AM feature database was explored by Bin Maidin et al. (2012). This database 

included 106 AM-specific design features that were identified to be uneconomical to produce 

using conventional manufacturing processes. The results showed that novice users of AM found 
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the feature database to be useful when creating novel design concepts. However, its usefulness to 

design professionals was less evident. 

Booth et al. (2017) created a DfAM worksheet that aimed to help novice AM users improve their 

part designs. The sheet consists of various guidelines incorporated into eight categories. The user 

then assesses their design against the number of design guidelines that their part does not meet. 

The results show that a simple worksheet reduced the number of failed prints by 81%. However, 

the generalisation of the worksheet to all design processes and machines suggests that the design 

guidelines are quite conservative. 

Kumke et al. (2016) developed a framework for DfAM derived from the VDI2221 design 

methodology (VDI Guideline 1993), which consists of a series of modules aimed to guide the user 

through the AM part development process. Whilst the framework is a useful tool for the designer, 

it is difficult to exploit the framework without direction integration with CAD tools. 

2.3.2. Tessellation 
Digital part representation is an often overlooked, highly important feature of DfAM. The .STL file 

format has become the de-facto standard for 3D-printing technologies. This format approximates 

the surfaces of the CAD model with triangles. With simple part geometries, the .STL file is typically 

exported in an error-free model that is suitable for AM. However, if the geometric complexity 

increases then occasionally the .STL file will require further processing (fixing) before the design 

can be printed (Oropallo and Piegl 2015). 

STL files exhibit a number of potential issues including missing, degenerate and overlapping facets 

and non-manifold topology conditions (Leong et al. 1996). An essential requirement of DfAM 

tools, therefore, must be to repair the mesh before providing further insights into the overall 

manufacturability of the design. A further disadvantage of the STL file format is that no 

information is stored about the part features or print data. To overcome some of the 

disadvantages of the STL file, researchers have developed the AMF (additive manufacturing 

format) file, which extends the STL format to include colour, materials, textures and curved facets 

and also the 3MF (3D manufacturing format) file type which extends the XML (extensible markup 

language) file format for the description of 3D objects. 

Another disadvantage of the .STL file format is that it is computationally inefficient to generate 

files with large numbers of facets, which is potentially challenging for complex part geometry. In 

order to combat this, researchers have developed alternative, meshless geometry representations 

to enable more efficient computation (Zhao et al. 2017; Pasko et al. 2011; Fryazinov et al. 2013). 
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However, challenges remain in slicing and generating toolpaths for direct AM of these 

representations. 

2.3.3. Part Orientation 
A well-chosen build orientation can reduce the time required to manufacture an AM part, reduce 

the total volume of the support structure required and alter the strength of the final part. 

However, as AM components become more complex, the ability to search all possible part 

orientations becomes computationally intractable. Therefore, there is a requirement to find more 

efficient methods for locating optimal part orientations. Researchers have seen the importance of 

optimising build orientation for AM components since the mid-1990s (Allen and Dutta 1994; Frank 

and Fadel 1995; Hur and Lee 1998; Lan et al. 1997; Cheng et al. 1995). After this initial surge in 

research activity, there was a quiet period until post-2010. At this point, there was a renewed 

interest in this challenge, quite possibly driven by the increased industrial interest in AM and, in 

particular, the proliferation of metal AM (Wohlers et al. 2018).  

Morgan et al. (2016) used a gradient-based optimisation to find the optimum build orientation, 

where the objective function was the total support volume. Their results outperformed solutions 

given by commercial software; however, the authors highlighted the fact that an experienced 

engineer could improve upon the optimisation further. Furthermore, gradient-based approaches 

are subject to finding local minima and require a relatively large number of iterations. This 

effectively limits the practicality of this method in the presence of large mesh sizes.  

Das et al. (2015) sought to exploit quadtree decomposition to improve the calculation efficiency 

within the optimisation scheme. Their solution optimised build orientation to minimise the volume 

of support structure, while also meeting specified geometric dimensioning and tolerancing (GD&T) 

requirements. 

Al-Amari and Khan (2018) also optimised the part orientation with respect to a number of GD&T 

criteria, including heuristics such as maximising the number of holes that are perpendicular to the 

build direction. This was combined with a metric for build time comprising of the time taken to 

build the geometry. In this case, time was estimated by dividing the part volume by the build rate 

of the machine and the total support structure given by the commercial software, Magics. The 

orientation quality metric was only calculated for four orientations (+y,-y,+x,-x), limiting the ability 

to find the global optimal build orientation. 

Brika et al. (2017) used a genetic algorithm to perform a multi-objective optimisation of the 

mechanical properties of the part, heat treatment, surface roughness, support length, build time 

and build cost. One of the disadvantages of using genetic algorithms is the requirement for a large 
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number of iterations, which can be a limiting factor if the the mesh size is large and support 

calculation is time-consuming.  

Increasing the speed of determining optimal build orientation can be achieved by using specialist 

hardware such as graphics processing units (GPU’s). Khardekar and McMains (2006) computed the 

volume of support material by using an OpenGL representation for projected pixel areas. Their 

results showed that using GPU’s can offer speed increases of up to two orders of magnitude, which 

is advantageous within the setting of this optimisation problem. 

A different focus was introduced in the work of Zhang et al. (2015), who used optimisation to 

minimise the aesthetic impact of removing support structure from visible surfaces on a component. 

Here, the authors trained a neural network using human preference data to determine the best 

orientations with respect to the volume of support in contact with visually important regions. 

Zwier and Witts (2016) used the convex hull to combine the triangles from the STL file to identify 

suitable candidates for the lowest downward facing surface. Based on this, the amount of support 

structure per potential build surface was calculated. This method also had the advantage of placing 

the largest build surface directly onto the build plate, thereby increasing the stability of the build. 

Furthermore, it did not rely on testing multiple candidate build orientations. However, it must be 

noted that using convex hulls may not be appropriate for certain part geometries. Those geometries 

containing round or spherical surfaces will not be suitable, as the majority of the external surfaces 

will lie on the convex hull. 

Surrogate optimisations are commonly used in engineering design when each objective function 

evaluation involves costly simulations. In these methods, the objective function is approximated 

with a proxy response surface. Ulu et al. (2015) used this approach to find the optimal build 

orientation to enhance the structural performance of parts. By using a cubic radial-basis function 

as a surrogate optimisation model, the authors were able to reduce the number of finite element 

simulations that were required to find the optimal structural geometry.  

Previous research has used custom test parts to locate optimised build orientations, which may not 

be representative of the number of faces typically seen in engineering components produced using 

AM. It is therefore beneficial to use existing open-access parts that are representative of AM 

components to validate any algorithm. As different metrics for the total support requirement 

require different levels of computational complexity, the effect of simplifying these metrics on the 

final orientation results must be examined. Previous research has shown the hardware 

implementation such as GPUs can provide significant speed improvements when used effectively. 
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The attractiveness of hardware-based acceleration makes it essential to ensure that the methods 

developed within this research are compatible for extension with GPU accelerated computing.  

2.3.4. Support Structures  
Support structures are required in AM to ensure the successful build of parts with overhanging 

features. In AM, newly deposited material must be adequately supported by previously processed 

material. This means that some geometry features will require additional support material. These 

support structures are typically sacrificial and must be removed, post-build, incurring additional 

time and cost penalties. Furthermore, by definition, their presence consumes extra material, 

increases production time and decrease the surface quality of the final part. These drawbacks are 

particularly prevalent in metal AM, where it is estimated that between 40-70% of a component’s 

cost may be attributed to the removal of support structure (Liu et al. 2018). An AM machine and 

process combination will have a critical overhang angle, 𝜃𝑐𝑟𝑖𝑡 (Figure 2-3). Any face or facet whose 

normal vector exists outside the cone of critical overhang is likely to require additional support 

structure.  

 

Figure 2-3: A single triangular facet, showing its outward facing normal vector. The normal vector exists beyond the 
limits of the critical overhang cone, declaring this facet as an overhang. 

When printing metallic parts, support structures are also required to ensure that part distortion 

caused by residual stress build up during manufacture is limited. Support structure design is a 

complex process in CAD, and studies have shown that commercial software packages often 

overestimate the required amount of support for complex geometries (Jhabvala et al. 2012). 

There have been many attempts to optimise the support structure layout to minimise material 

usage. Vanek et al. (2014) utilised tree-like support structure, Dumas et al (2014) developed 

bridge-type supports, Huang et al. (2009) used a sloping wall structure and, most recently, 



15 
  

Mezzadri et al. (2018) and Kuo et al. (2018) used topology optimisation to minimise support 

volume. A full review on support structure design for AM can be found in a recent review (Jiang et 

al. 2018). 

Research has also been targeted to improve the removal of support material. For polymer 

printing, it is possible to generate soluble supports by printing with a separate material 

(Priedeman Jr and Brosch 2004). For metallic materials, Hildreth et al. (2016) developed a method 

to dissolve carbon steel supports from a stainless steel DED print using electrochemical etching. 

Lefky et al. (2017) extended this research to powder bed fusion of stainless steels. Jhablava et al. 

(2012)  used a pulsed laser when generating the support structures to aid with the ease of 

removal. Finally, Desktop Metal (Gibson et al. 2017) designed a ceramic interface layer between 

the support and final part that can be easily removed after sintering. 

2.3.5. Additive Manufacturing Toolpath 
The AM toolpath can have a significant impact on both the print times and the functional 

performance of the final additive part. There are advantages and disadvantages to different 

toolpaths, with the majority of research dedicated to optimising the tool path to reduce build 

time. A key issue with tool path generation in AM is the dissipation of heat. Tammas-Williams and 

Todd (2017) considered the future potential of AM with site-specific properties that can be 

generated by altering the melt strategy. Changing the laser scan strategy in powder bed processes 

can reduce residual stress accumulation and has been shown to make manufacturing high-

temperature alloys feasible (Catchpole-Smith et al. 2017) and generate improved microstructural 

properties (Simonelli et al. 2014). Simulations have also been generated that can model the 

thermal effects of different tool paths to allow users to improve the structural properties of their 

parts (Parry et al. 2016) as well as to ensure that the build-up of residual stress does not lead to 

print failures.  

The thermodynamic interactions that occur during the build can lead to residual stresses and 

warping within the final part. To overcome this, researchers have developed strategies to 

simulate and predict this deformation. The digital model can then be pre-deformed to ensure the 

final part meets geometric specifications (Chowdhury and Anand 2016; Schmutzler et al. 2016; Xu 

et al. 2017). 

Ghouse et al. (2017; 2018) analysed the effect of changing laser parameters and scanning 

strategies on the mechanical performance of stochastic porous structures. The results 

demonstrated that optimisation of laser parameters can yield a 7% improvement of fatigue 
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strength while toolpath strategy can provide fatigue strength improvements of 8% and increase 

build speeds by up to 100%.  

2.3.6. Post Processing 
One of the primary disadvantages of AM, when compared to subtractive manufacturing, is poor 

quality surface finish and tolerances (Flynn et al. 2015). Due to the inherent characteristics of AM, 

there is often a requirement for part post-processing. This may include removal of the part from 

the build plate, removal of support structures, heat treatment and surface modification strategies 

for improved surface finish (Gordon et al. 2016). To ensure timely and cost efficient post-

processing, engineers must have a full understanding of the finishing requirements for a part 

before it can be manufactured. 

The finishing of AM parts by CNC machining is a popular method to achieve tighter dimensional 

and surface tolerances. Typically, additional material is added in carefully selected locations on 

the AM part to compensate for the material removed (Srinivasan et al. 2015). Fixturing for 

machining of AM parts can be challenging due to the complex part geometries that can be created 

using the AM process. Collision-detection algorithms can be used that determine tool access to 

faces that require machining (Inui et al. 2018). Frank et al. (2004) also addressed this challenge by 

adding sacrificial locating features in the part design. Alternatively, the Boolean difference 

between the AM component and a solid vice jaw can result in a conforming fixture design.  

2.4. Generative Design in Additive Manufacturing 
The use of computers to automatically synthesise designs is not a new idea. Herb Simon’s (Simon 

1996) seminal paper “The Science of Design” provided the starting point for the academic pursuit 

of automated engineering synthesis methods. Schon (1992) extended this work by proposing the 

use of artificial intelligence to assist in the design process in the early 1990’s. The research 

questioned whether computers are better suited to being ‘phenomenologically equivalent’ to 

designers, reproducing the thoughts and methods in which designers create parts, or instead if 

they have the potential to be more useful when acting as design assistants.  

Many researchers have since reasoned about the suitability of computational design synthesis for 

different areas of the design process. Computational design synthesis (CDS) is a research area 

focused on approaches to automate design synthesis activities (Campbell and Shea 2014). Early in 

the design process, CDS deals with the issue of representing design functions and predicting 

design performance when various parameters are undefined (Chakrabarti et al. 2011). Towards 

the later stages of the design process, meaningful results are achieved by interfacing fields such as 

design theory, artificial intelligence, computational geometry and design optimisation to analyse 
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the behaviour of designs. CDS differs from traditional optimisation in that the goal of synthesis is 

to more broadly capture, and/or utilise design decisions made by human designers. Ideally, its use 

is more beneficial in situations where the human designer does not have clarity of the design 

avenues that they may pursue (Cagan et al. 2005). 

Design optimisation is typically used for later-stage design when many decisions have already 

been made and exploration is formulated into narrow bounds to improve specific performance 

aspects (Krish 2011; Snider et al. 2013). Despite a substantial research effort, commercial CAD 

realisations for early-stage design are limited (Kazi et al. 2017). One of the primary challenges in 

adopting CAD in early-stage design problems is due to iterative and chaotic way in which designs 

evolve. According to Dorst and Cross (2001), design is not a matter of first formulating a problem 

and searching for a satisfactory design concept. Rather, it is about refining both the formulation of 

a problem and solution ideas concurrently. It is this co-evolution of design and solution spaces 

that make the problem of creating a phenomenological equivalence between human designer and 

a machine extremely difficult. 

Practical solutions have, however, been developed as computational design assistants to aid 

designers in finding satisfactory solutions to ill-defined problems. Optimisation has been shown to 

not only find high-performing solutions but also to give designers a better understanding of the 

relationship between geometric features and design performance (Chen et al. 2015a). In addition, 

in a survey of design practitioners, Bradner et al. (2014) found that professionals use design 

optimisation to gain understanding about the design space, and not only to generate the highest 

performing solution. They further stated that the computed optimum was used as the starting 

point for design exploration, and not the end product. 

Cagan et al. (2005) provided a framework for the automatic synthesis of design components. The 

framework contained four major activities that must be present in all synthesis systems, namely, 

representation, generation, evaluation and guidance. The representation stage defines the level 

of detail and focus of the computational search process as well as dictating the range of 

candidates that can be created. Generation methods are used to synthesise the geometry. 

Numerous classifications of generation methods can be found in Chakrabati et al. (2011). 

Evaluation is used to measure the worth or potential success of a design candidate and guidance 

is used to provide feedback to the system that can be used to generate improved solutions. In the 

field of AM, a design assistant that can synthesise a large range of design possibilities, before 

manual exploration and assessment by a human designer, is termed ‘generative design’. 
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CDS and generative design have similar definitions in literature. Shea et al. (2005) defines 

generative design as systems that create new design processes that produce spatially novel, yet 

efficient and buildable designs through exploitation of current computing and manufacturing 

capabilities. An alternative definition, provided by Wortmann (2018), defines generative design as 

a process in which computers derive a design by searching a parametrically-defined design space 

with an optimisation algorithm according to an objective function evaluated via simulations.  

An alternative definition provided by Singh and Gu (2012) states that generative design systems 

are generally identified as systems aiming to support human designers or automate parts of the 

design process through computational means. Often, generative design is linked with a 

performance measure that drives the design generation (Oxman 2006). 

Based on the above definitions, within this thesis, generative design is defined as computational 

systems that extend traditional CAD by automatically synthesising geometries based on a series of 

goals and constraints set by the designer. 

Two common terms used within generative design are the ‘design space’ and the ‘solution space’. 

The design space (also known as the problem space or sample space) is a finite set that 

mathematically defines the design (Bradner et al. 2014). It includes the design variables, 

constraints, and any other bounding criteria that can either be continuous or discrete. The 

solution space is a subset of the design space, described as the set of all solutions computed by 

the design synthesis (optimisation) algorithm. This is described diagrammatically in Figure 2-4. 

The rectangles in the design space represent the design information required to synthesise 

potential design solutions, and the solution space is represented by the evaluated design 

instances for a given design scenario. 
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Figure 2-4: A diagrammatic representation of the design and solution spaces in generative design. Input parameter sets 
form the design space, and the solution space is created through a synthesis method, resulting in embodied design 

instances that are a subset of the design space.  

One of the difficulties with generative design is the computational challenges that occur with the 

requirement of generating large numbers of functionally optimised parts. To improve 

computation times, generative design systems typically run on high performance computing (HPC) 

hardware, either as a cloud-based service (Kazi et al. 2017; Wu et al. 2017; Aage et al. 2017) or by 

using accelerated computing with GPUs (Wu et al. 2016). However, there are other methods 

including pre-computing various points by adaptively sampling the parametric design space and 

interpolating the mesh between these points (Schulz et al. 2017). In computationally-expensive 

problems, it is common to make use of surrogate models. These are approximated models of the 

objective function based on previously evaluated solutions (Forrester and Keane 2009). 

Nourbaksh et al. (Nourbakhsh et al. 2018) use a surrogate model to approximate stress in 3D 

trusses, and Tang et al. (Tang et al. 2017) use a Gaussian process surrogate to predict the stress 

within struts of different lattice unit cells. 

It is possible to algorithmically generate a design space from a user-defined expression of the 

problem that they are trying to solve (Chien and Flemming 2002). This computationally generated 

design space can be traversed, and, at each location of this high-dimensional design space, an 

instance in the parametric design space can be evaluated and represented by a part geometry 
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within the solution space. The number of solutions generated depends on the sampling frequency 

of the design space, which is often limited to computational resource availability. One challenge 

with generative design is selecting the correct sampling frequency. This broadly poses the same 

challenges as other multi-objective optimisation strategies due to the curse of dimensionality 

(Bellman 2015). Synthesis methods, especially when reliant on simulation, can be very 

computationally expensive and so it is necessary to optimise the search strategy where possible. 

There are two perspectives when it comes to overcoming the computational challenges of 

generating large numbers of functionally optimised solutions that trade-off between time and 

financial cost. Generative design tools provide the option to compute locally or on the cloud. Local 

computation generates fewer solutions in a given time, but is less financially costly per solution. 

Alternatively, a designer may decide to utilise expensive computing resources, for example, 

multiple cloud servers to generate a larger numbers of solutions. Although cloud resources can be 

efficiently utilised, they do not come without cost. Excessive use of computation, especially when 

generating infeasible solutions is both costly to the end user, and the environment, with data 

centres creating 17% of the world’s carbon footprint (Dayarathna et al. 2016). There is, therefore, 

a push toward the efficient use of computation resources when utilising generative design 

strategies. Furthermore, if many poor performing solutions are generated, it lowers the sensitivity 

of the solution space leading to greater challenges in finding the highest performing solution 

within said space. In addition, research by Fricke (1999) has shown that designers who excessively 

generate solutions spend more time organising solutions and losing their overview of the design 

problem. This can lead to a failure to generate further good solutions. 

Generative design does not automate the design process. Instead it aims to remove much of the 

cognitive burden from the user and place it in the computational realm (Shea et al. 2005; 

Campbell and Shea 2014). This is achievable as computers can perform certain tasks much better 

than humans. Research has shown that humans struggle to comprehend more than four variables 

at once (Halford et al. 2005), whereas computers can store substantial amounts of data and 

compute billions of calculations per second. The ability to synthesise optimal geometries based on 

simulation and create high-dimensional representations of design solutions is only practical on 

computers. However, as yet, computers lack the intuition and experience of human designers. 

Therefore, a collaborative generative design system involving human-computer interaction is 

preferable. By reducing the number of tasks the designer has to perform, they can spend their 

cognitive capacity guiding the computer to areas of the solution space in which they are most 

interested (Wortmann 2017; Goguelin et al. 2017).  
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Generative design has gained a considerable interest from industry, with many products 

appearing in recent years. However, industry use of the term generative design is less specific 

than the definition applied within this thesis. Many commercial products conflate the terms 

topology optimisation and generative design. With this in mind, Figure 2-5 depicts a range of 

commercial applications of generative design that utilise different geometry generation 

algorithms (Chakrabarti et al. 2011), including nature-inspired algorithms (Von Buelow 2012), and 

numerous multi-scale optimisation methods. Autodesk have produced a number of generative 

design solutions for multiple manufacturing platforms. These include an archery bow designed to 

be compatible with 3-axis CNC machining (Ayres 2015), an aircraft seat that was designed for 

investment casting (Schwab 2017) and an aircraft partition wall that was generatively designed for 

the AM process (Airbus Group 2016). nTopology (2018) produced a generative design tool to 

develop tailored cellular structures. Nervous System has worked closely with a sports shoe 

manufacturer to generate a data-driven sole customised to the individual athlete’s running profile 

(Koslow 2015). Frustum (2018) have developed a generative design tool for topology optimisation 

using high performance cloud computing and a proprietary implicit modelling kernel. Users are 

able to set up multiple instances of a test part and compare the results after the computations 

have completed. 

 

Figure 2-5: Commercial Generatively Design Components.  
Shown left-to-right, (top) Archery bow (Ayres 2015), aircraft seat (Schwab 2017), aircraft partition door (Airbus Group 

2016), (Bottom) Cellular component (nTopology 2018), aircraft bracket (Frustum 2018), training shoe soles (Koslow 
2015). 

2.4.1. Generative Part Synthesis for Additive Manufacturing 
Stouffs and Rafiq (2015) assert that optimisation is rarely intended to yield an optimal solution, 

and can instead, assist a designer in gaining an insight into the solution space. Exploration and 
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optimisation together can lead to a better understanding of the complexities of design and help 

designers in their decision-making process. 

Goal-driven design is formulated as a parametric optimisation problem. Typically, these problems 

consist of maximising or minimising a function by systematically choosing the input values from 

within an allowed set and computing the value of the function. The function that is to be 

minimised or maximised is termed the objective function. It is the designer's task to satisfy a set 

of functional requirements by transforming them into a description of a proposed artefact 

comprising of its form, material composition and dimensions (Kroll and Koskela 2016). 

Researchers have targeted the creation of geometry synthesis algorithms that can optimise part 

geometry to achieve a series of specific functional objectives. 

Optimisation algorithms for many objective functions have been developed, including, stiffness 

(Zheng et al. 2014), thermal conductivity (Pizzolato et al. 2017), thermal expansion (Sigmund and 

Torquato 1997), fluid permeability (Challis et al. 2012), impact resistance (Schaedler et al. 2014), 

Poisson’s ratio, acoustics (Li et al. 2016; Umetani et al. 2016), centre of gravity (Prévost et al. 

2013; Christiansen et al. 2015), rotational stability (Bächer et al. 2014), energy harvesting 

(Zhakeyev et al. 2017), aerodynamics (Martin et al. 2015) and buoyancy (Wang and Whiting 

2016). 

In the field of mechanical engineering, much of the research exists in the domain of structural 

optimisation. In this setting, the primary objectives is to reduce the overall mass or maximise the 

stiffness of the final manufactured part. This is desirable as the reduction in material usage during 

the manufacture of the part can lead to cost savings and performance gains during their 

operational life. When optimising an AM design, it is possible to modify the geometry on a 

number of different scale lengths (Tang and Zhao 2016), the macroscale is typically concerned 

with geometries greater than 10mm, the mesoscale between 1mm and 10mm and microscale 

geometries being produced at sub-millimetre scale. There are several review papers that give an 

overview of research for goal driven design on the macro- (Rozvany 2009; Sigmund and Maute 

2013; Liu et al. 2018), meso- (Schaedler and Carter 2016; Osanov and Guest 2016; Dong et al. 

2017) and micro- scales (Cadman et al. 2013). 

2.4.2. Topology Optimisation in Additive Manufacturing 
Macro-scale optimisation is typically divided into three groups: size optimisation, shape 

optimisation and topology optimisation. Topology optimisation is a structural optimisation 

method used to find the optimal material distribution within a given design domain for a given set 

of loads and boundary conditions (Bendsøe and Sigmund 2003). 
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Topology optimisation has the ability to remove the most material from the initial design volume, 

and as such, this method has gained much attraction from the automotive and aerospace sectors 

(Rozvany 2009). Topology optimisation gives answers to the fundamental engineering problem: 

how to place material within a prescribed design domain in order to obtain the best structural 

performance (Sigmund and Maute 2013). There has been a rapid development in topology 

optimisation research in recent years, which is partially attributed to the rise of industrial AM 

giving users the ability to fabricate the synthesised geometries. A number of recent industrial 

studies show that AM adoption is likely to increase when parts are designed specifically for AM 

(Eggenberger et al. 2018; Khorram Niaki and Nonino 2017). 

Several optimisation methods have been developed to optimise a parts topology. These include: 

 Ground Structure (Bendsøe et al. 1994; Dorn et al. 1964),  

 Solid Isotropic Material with Penalisation (SIMP) (Zhou and Rozvany 1991; Rozvany et al. 

1992),  

 Level set (Allaire et al. 2002; Wang et al. 2003),  

 Homogenisation (Bendsøe and Kikuchi 1988),  

 Evolutionary Structural Optimisation  (ESO) (Xie and Steven 1993) and subsequently 

Bidirectional Evolutionary Structural Ooptimisation (BESO) (Querin et al. 1998) 

 Genetic algorithms (Rajan 1995; Ohsaki 1995)  

For a detailed comparison of the methods, readers are referred to the review by Sigmund and 

Maute (2013). Table 2-1 describes the advantages and disadvantages of these topology 

optimisation methods as described by Tang and Zhao (2016). 
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Table 2-1: Advantages and disadvantages of different topology optimisation methods. (Adapted from (Tang and Zhao 
2016)) 

Method Name Advantages Disadvantages 

Ground Structure  Easy to implement; 

 Suitable for low volume 
truss structures 

 The initial ground structure has a 
significant impact on the final result 

SIMP  Easy to implement; 
 Requires less storage space 

and computational effort 

 Only effective as long as the final 
goal is to obtain a black and white 
design 

 Result largely depends on the 
penalisation parameter 

 Easy to generate check-like 
structure 

Level set  The optimised result has a 
continuous boundary 

 Solutions are different for different 
starting points; 

 It is sensitive to a number of 
algorithmic parameters 

Homogenisation  The concept of element with 
intermediate density is clear; 

 It can be applied to optimise 
the structure with an 
intermediate density 

 Large storage space and 
computational effort 

Evolution  It does not require 
calculating the derivative of 
the objective function 

 It is sensitive to a number of 
algorithmic parameters 

Genetic Algorithm  It does require calculating 
the derivative of the 
objective function 

 Large computation load is needed 
even for simple problems; 

 It is more likely to converge to a 
local optima 

 

The listed topology optimisation approaches fit within the continuum optimisation category with 

the exception of the ground structure method (Deaton and Grandhi 2014) and truss-based 

genetic algorithms. Continuum-based approaches have been the predominant structural 

optimisation techniques to date, with SIMP being used in a number of commercial software 

packages, e.g. Optistruct and Ansys (Rozvany 2009). In addition to the disadvantages provided in 

Table 2-1, the output results from continuum based optimisation solutions require significant 

manual post-processing to provide a viable solution suitable for manufacturing. 

Ground structure optimisation generates truss-like macrostructures by resizing or removing 

potential truss elements with the aim of maximising a particular design objective (typically 

compliance). Ground structure optimisation has been used in many applications including in the 

design of an unmanned aerial vehicle (Maheshwaraa Namasivayam and Conner Seepersad 2011), 

and an air bracket for a supersonic car (Smith et al. 2016). In the latter case, the optimised result 

provided a 69% weight saving compared to the original bracket. A further advantage of the 
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ground structure method is the ability to use beam finite elements that are faster to store and 

compute. Moreover, truss-based methods have been shown to be extremely efficient when the 

final solution occupies a small percentage of the original design volume (Smith et al. 2016). 

Commercial implementations of ground structure topology optimisation can also be found 

(Limitstate LTD 2018). Furthermore, ground-structure based structural optimisation can be 

constrained to have no overhanging features by removing all potential struts greater than the 

maximum overhanging angle from the initial ground structure (Mass and Amir 2016). 

Sigmund (2011) states that gradient-based methods are far more efficient that non-gradient 

based optimisation approaches. As such, it is preferable to formulate the structural optimisation 

in such a way that gradient-based methods can be used to solve them. Evolution based methods 

may, however, be useful if the problem definition is unclear or unknown. 

Historically, there have been two approaches incorporating AM constraints into topology 

optimisation processes. The first of these aims to post-process optimised solutions to ready them 

for additive manufacture. In the second approach, the optimisation algorithms are modified to 

create topology optimisation algorithms that intrinsically produce manufacturable geometries. 

For the most part, these constraints include prevention of excessively overhanging structures. An 

overview of the research is shown in Table 2-2. 

Table 2-2: Classification of manufacturing constrained topology optimisation research 

Approach 1: Post process topology 

optimisation result 

Approach 2: Integrate manufacturing 

constraints into topology optimisation 

algorithm 

References: (Brackett et al. 2011; Leary et al. 

2014) 

References: (Gaynor and Guest 2016; 

Carstensen and Guest 2018; Mass and Amir 

2016; Mirzendehdel and Suresh 2016; 

Essink et al. 2017; Dhokia et al. 2017; 

Langelaar 2016; Langelaar 2017; Langelaar 

2018) 

Schematic: 

 

Schematic: 
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Brackett et al. (2011) were early adopters of Approach 1 (Table 2-2). They used a filtering process 

to identify downward facing edges that extend beyond a defined ‘manufacturable’ length. Once 

identified, the authors introduce self-supporting lattice structures of differing densities to support 

these faces. Leary et al (2014) attempted to eliminate the support requirement by automatically 

identifying areas that fall outside the maximum overhang constraint. Their algorithm iteratively 

subdivides non-manufacturable segments until the geometry becomes manufacturable. 

Importantly, the authors show that manufacturing constraints inevitably increase the overall 

volume of the geometry for a given level of structural performance. A potential limitation of 

Approach 1 is that any post-processing of the as-optimised geometry may result in a 

contravention of the manufacturing constraints, or a reduction in the part’s structural 

performance.  

Approach 2 offers an alternative method that directly integrates manufacturing constraints into 

the optimisation process. Guest and Gaynor (2016) incorporated maximum overhang and length 

constraints into the optimisation process by using Heaviside projection. This process ensures that 

material can only be placed if it has supporting material beneath it, thus preventing the creation 

of ‘unmanufacturable’ geometries. Recently, this work has been extended into 3D to eliminate 

support structures for a given overhang angle constraint (Johnson and Gaynor 2018). 

Mass and Amir (2016) used a truss-based topology optimisation, combined with a 

manufacturability filter, to generate an optimised, yet manufacturable, continuum structure. 

Their ‘printability index’ shows that as printability increases the performance of the part 

decreases. Mirzendehdel and Suresh (2016) also showed that performance decreases when a 

manufacturability criterion is applied to the design space.  

Researchers at the University of Bath (Essink et al. 2017; Dhokia et al. 2017) proposed a bio-

inspired algorithm based on termite nest building. A voxel-based approach is used to 

simultaneously design, optimise and appraise the structural performance and manufacturability 

of the part. Results show the ability to converge onto a structurally optimal and inherently 

manufacturable part without the requirement for an initial CAD geometry.  

Langelaar (Langelaar 2016; Langelaar 2017) used an AM filter in order to generate 

manufacturable results by simulating the build process. The research focuses solely on 

constraining the design for overhang requirements. The results showed that the extra 

computational cost in applying a manufacturability filter is negligible compared to the 

optimisation time.  



27 
  

More recently, Langelaar (2018) integrated build orientation into the topology optimisation 

routine in order to minimise support structure. This work provides the first step in incorporating 

build orientation into the manufacturability constrained topology optimisation process, and 

results show that significant reductions in support structure can be made by including build 

orientation. However, as with other studies, this comes at the expense of part performance. 

Studies that adopt Approach 2 constrain the topology optimisation using geometric 

manufacturing constraints. Until very recently, manufacturability constrained topology 

optimisation has focused on integrating overhang constraints into the optimisation, with only a 

single study including the effect of build orientation on the optimisation result. The initial positive 

results suggest it would be beneficial to examine this further by including further evaluation 

criteria and extending the method to 3D.   

2.5. CAD Support in Design for Additive Manufacturing 
Design is a complex process that often requires the ability to deal with ill-defined, ‘wicked’ 

problems (Buchanan 1992). Wicked problems cannot be definitively described because of the 

conflicting and ambiguous problem definition. Additionally, wicked problems do not deliver a way 

to state objectively when the design process is complete (ibid.). There are also many cases in 

which CAD can be detrimental to the design process. The arguments for these will be explored in 

the following sections.  

2.5.1. Cognitive Biases in the Design Process 
By nature, human beings have a tendency toward biased decision making (Haselton et al. 2015). 

There is a tendency to misinterpret statistical data; make decisions according to insufficient 

evidence; interpret information in a way that confirms preconceptions and become fixated on 

information retrieved from memory (Hammond et al. 1998). 

Hallihan and Shu (2013) researched the effect of confirmation bias in design. Confirmation bias is 

the innate human tendency to seek to validate beliefs instead of critiquing them. Confirmation 

bias can be problematic in the design process as it leads designers to over-rely on information 

that supports the notion that their designs are error-free rather than objectively assessing design 

information (Silverman and Mezher 1992). 

Ownership bias can occur when a designer forms an association with a design that has required a 

considerable amount of effort and time to produce. Studies have shown a clear preference for a 

self-generated concepts in concept evaluation (Nikander et al. 2014). Computers have no such 

biases and, as such, can be used as decision support tools to augment the human designer’s 
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ability to produce design solutions. Furthermore, simulation methods can give designers an 

understanding of the behaviour of the parts rather than solely the aesthetics. 

2.5.2. Current CAD Usage within Additive Manufacturing 
Design intent is a particularly important term when describing the design process. At the heart of 

design tools is the ability to communicate and represent a designer's ideas. Design representation 

may be thought of as a process of externalising design intent into physical forms (Atilola et al. 

2015). This may include sketching, CAD models or physical prototypes. 

The use of CAD has been criticised for its inability to form creative design representations in early 

stage design, causing designers to focus on details rather than underlying principles (Utterback et 

al. 2006). Based on this evidence, researchers (Lawson 2002; Veisz et al. 2012) have argued that 

the inexact nature of hand sketching is more advantageous than CAD modelling for early-stage 

design. 

Current CAD tools also inhibit designers achieving optimal designs in other ways. Robertson and 

Radcliffe (2009) documented a number of disadvantages to using CAD systems in early design 

including circumscribed thinking and premature fixation. Circumscribed thinking describes the 

phenomenon in which the complexity of a design produced by a designer is proportional to their 

proficiency with the design tool. This has tremendous implications on DfAM, as the shape 

complexity, and part consolidation required for optimal AM parts require an expert level of CAD 

knowledge. Designers will have to accrue substantial experience on a CAD system before they can 

exploit the true potential of AM (Despeisse and Minshall 2017).   

Functional fixedness is a cognitive bias defined by Duncker and Lees (1945) as being a “mental 

block against using an object in a new way that is required to solve a problem.” This is an issue 

when traditional CAD tools are required to create new types of geometry that designers are not 

used to developing with such tools. This is compounded in AM, as designers often lack the 

required skills to deal with AM-specific software (Despeisse and Minshall 2017). 

Building on the notion of functional fixedness, Jansson and Smith (1991) describe design fixation 

as designers tending to move toward a premature commitment to a particular problem solution 

without exploring the solution space any further.  An integral part of DfAM is avoiding fixating on 

designs that are specific to traditional manufacturing methods. Crilly (2015) reviews design 

fixation and suggests factors that discourage design fixation. These include collaborative design, 

specific design tools including morphological analysis, and prototyping. Whilst these factors may 

increase the number of design concepts, novel conceptual design for AM can only be created 

when the designer fully understands the design requirements for their particular part and the 
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complete capabilities of AM. However, it also suggests that multiple ideation methods should be 

used when creating a diverse range of design concepts. 

Abdelall et al. (2018) investigated design fixation in AM. The results showed that designers 

focused on non-producible features in traditional manufacturing methods rather than focusing on 

performance benefits. Furthermore, the designs for AM violated more design guidelines than 

traditional manufacturing methods, indicating that users misunderstand the notion of design 

freedom. In a study of 26 participants, 83% of participants stated that their modelling skills 

affected their ability to transfer their sketches into CAD and 36% failed to translate their designs 

fully into CAD (note that this was not a complex CAD modelling task). Results showed that once 

participants have designed for AM, it is harder to modify the design to conventional 

manufacturing techniques. This highlights the importance of designing specifically for a given 

manufacturing process. The results also document that people confuse AM manufacturing 

freedom capabilities with the design constraints of the actual task. 

With premature fixation, the designer feels less incentive to make significant design changes as 

the object becomes more complex and the designer invests more time. In conceptual design there 

is co-evolution of the problem space and the solution space (Maher and Poon 1996; Dorst and 

Cross 2001). Therefore, there is a requirement to change designs based on new knowledge. 

Complex shapes can be difficult to manipulate in traditional CAD software. Therefore, the use of 

traditional CAD for optimised AM parts can be challenging. 

Overcoming the aforementioned issues with CAD systems may be possible by creating generative 

design systems that both automate the synthesis of optimised geometry and explore trade-offs 

that occur within complex design spaces by evaluating designs based against multi-dimensional 

criteria. 

2.6. Critique and Research Gaps 
From the literature presented in this chapter, several DfAM research gaps have been identified 

and are detailed in the following paragraphs. 

Firstly, to exploit the advantages of AM, it is necessary to design parts that can be fabricated 

without build failures. Many design guidelines have been created to inform designers about the 

physical limitations of the process. However, it is often challenging to translate these design 

guidelines into complex freeform geometry (Pradel, Zhu, et al. 2018). It would be more beneficial 

to integrate design constraints into generative geometry synthesis algorithms to ensure 

manufacturable designs are automatically produced by the CAD tools. 
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Automatically synthesising geometry has the further advantage of overcoming many of the 

challenges that users face with current CAD tools. By creating design tools that incorporate the 

ability to explore multiple design solutions, much greater spans of the problem space can be 

explored. Using generative synthesis techniques, such as topology optimisation, can reduce the 

time between the intention of a particular CAD geometry and the act of creating it. This gives 

more choice to the designer when selecting from design concepts, whilst also avoiding many 

issues associated with cognitive biases from the designer. 

Researchers have developed geometry synthesis algorithms for many functions. However, these 

are typically low-level functions. For example, the mass or compliance of a part. Topology 

optimisation alone is not sufficient to design functional parts. This is because design is a complex 

and often an ill-defined process (Simon 1973). Understanding the mass or compliance of a part, 

while sufficient, is not enough to determine the quality of a design. Even by integrating design 

constraints into the optimisation it is still possible that the generative synthesis methods provide 

designs that will be expensive to produce. In the real world, the field of product and part 

development involves many compromises between high quality, low cost and high development 

and production speed. Originally referred to as the ‘Iron triangle (Atkinson 1999),’ or triple 

constraint, and shown in Figure 2-6, designers have been searching for ways to easily explore the 

trade-offs between these three criteria for many years. Future design tools should be developed 

that can abstract from low-level evaluation criteria to include these higher-level business goals to 

allow users to easily explore designs based on factors in which they are interested.  

 

Figure 2-6: The 'Iron Triangle' of product development. 
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Commercial topology optimisation solutions currently lack knowledge of the design context in 

which they are optimised. In order to improve this, topology optimisation should be run with 

context of the proposed build orientation in which the part is to be manufactured. Furthermore, 

due to the detrimental effects of excessive support requirements, options should be included to 

ensure that the output solutions can be manufactured without the requirement for support 

structures. The time required to perform structural optimisation can limit the number of design 

solutions that can be generated. Therefore research should be directed towards developing 

efficient search methods that can find high-performing regions of the solution space without 

requiring large numbers of iterations. 

2.7. Summary 
In this chapter, a comprehensive critique of the literature outlining the development of DfAM 

methods and CAD tools have been outlined and the research gaps driving future research have 

been described. The research gaps highlight many potential avenues for future research guiding 

the development of future CAD tools to improve and support the way in which designers will 

develop and manufacture end-use parts for AM that will truly exploit the benefits of the 

technology. Three main research gaps were identified that will guide the development of the 

work research within thesis, these are: 

 Incorporating of build orientation and manufacturability constraints into generative 

synthesis algorithms such as topology optimisation. 

 Extending the range of synthesis algorithms to include high-level criteria such as business 

criteria and different AM production scenarios. 

 Overcoming the limitations of CAD support in DfAM by creating simple and efficient 

methods to navigate parametric AM design spaces. These may include the use of data 

visualisation techniques, MCDA decision support tools, and surrogate design optimisation 

models. 

Based on the critique of the literature, the author’s view of the future perspectives for the 

important features of generative design systems will be formulated into a generalised framework 

that aims to aid researchers and generative design practitioners in the formulation of generative 

design enabled CAD tools. This will be realised in Chapter 3. 
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Chapter 3 – A Framework for 
Generative Design CAD Systems 

3.1. Introduction 
The literature review in the Chapter 2 outlined the research gaps in the field of computer-aided 

DfAM. In the interest of providing an overarching view on the development of next generation 

generative design tools, a three-stage CAD framework is established. This has been defined based 

on the gaps identified in the literature critique and, in the context of this thesis, acts as an anchor 

point from which new CAD tools can be developed. This framework has the potential to enable 

the creation of these new tools that are capable of overcoming current state-of-the-art CAD 

limitations.  

3.2. A Framework for Generative Design CAD Systems 
This section details a framework that consists of three interlinked stages, namely, 1) defining the 

design space, 2) solution development and 3) solution output. Figure 3-3 depicts the complete 3 

stage framework. The figure is intended to be read from top to bottom with the central column 

representing actions that must occur in generative CAD systems. The left and right hand columns 

represent the inputs and outputs from the framework respectively. 

The primary stage describes the defining the design space. The proposed generative framework 

incorporates a series of databases of criteria that may be specific to the part. The databases 

include numerous design considerations extracted from part design specifications, for example, 

those shown in Table 3-1. Additionally, it could also contain company-specific parameters to 

ensure design continuity throughout an enterprise.  

Table 3-1: Example of quantitative requirement inputs for generative design CAD framework. 

Specification Criteria 

Quantity Required Maximum Mass 

Maximum Cost Maximum Overall Dimensions 

Thermal Conductivity Dimensional Tolerances 

Surface Roughness Product Lifetime 

Volume Maximum Deflection 

Surface Area Minimum Stiffness 

 

Further information regarding the processes must also be defined. For example: machines, 

materials and in turn the relevant process parameters, as outlined by the tree structure diagram 
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in Figure 3-1. In this diagram, the processes correspond to the different AM classifications as 

outlined in Table 1-1.The term ‘machines’ denotes the choice of the many available AM 

machinery available to the user. This might be selected from availability within a factory, 

laboratory, or an AM hub. Next, the available materials that can be processed on each machine 

must be defined, alongside their properties. This allows context of the manufacturing process to 

be integrated into the generative design process. 

 

Figure 3-1: Tree structure definition of input requirements in the primary stage of the CAD framework for generative 
design. 

Finally, the process parameters that can be altered must also be defined; examples of these can 

be seen in Table 3-2. It is important to ensure that all of the evaluation metrics can be defined by 

the information derived from the process, material and geometric information. In addition, as 

described within the DfAM pipeline, the importance of post-processing must not be understated. 

Therefore, it is prudent to include the post-processing machine availability and limitations 

including inspection tools in order to fully define the capability to produce end-use, production 

ready AM parts. 

Table 3-2: Example of machine parameter inputs to generative design CAD framework. 

Machine Parameters 

Layer Thickness Recoater Time 

Hatching Strategy Deposition Rate 

Laser Diameter Scan Speed 

Hatch Spacing Build Platform Area 

Argon Usage Energy Usage 

Nozzle Diameter Bed Temperature 

 

The designer is then required to extract the relevant design parameters from the databases. At 

this stage it is important that the trade-offs within the technology have been captured. Consider a 



34 
  

design that is optimised for weight reduction and, as such, a lattice structure is employed in the 

design. Whilst this is appealing and solves the mass issue, the part becomes challenging to inspect 

and cannot therefore be certified for use as a functional component. In this case, the designer will 

have to create a hierarchical structure of weighted priorities for the design. 

The constraints on the design problem must also be defined. The constraints define the overall 

shape of the design space. Constraints can either be hard or soft. Hard constraints limit the 

envelope of the design spaces, therefore eliminating these solutions from ever being generated. 

On the other hand, soft constraints work by penalising certain solutions. This could either be in 

the objective function or can be used within the evaluation stage to eliminate certain design 

instances from the solution space. 

A series of material void spaces (MVS) must also be defined that outline areas in which material 

cannot be placed by the algorithm. In addition, a design solution volume (DSV) is defined as the 

volume to which the generative synthesis method can apply the material; this could be user-

defined or taken as the bounding box of the MVS features. This is shown in the example in Figure 

3-2. This might include additional hardware components for attachment or for assembly tool 

access. From this information, a generative algorithm can be used in conjunction with 

optimisation techniques to deposit material within this solution volume.  

 

Figure 3-2:  Design solution volume (centre) and material void space (right) definitions, taken from initial CAD geometry 
(left) used in topology optimisation and generative design definitions. 

The second stage of the framework is termed solution development. Here, solutions are 

optimized for the trade-offs selected from the hierarchy stated in the previous stage. At stage 2 in 

the concept generation, it is solely the quantitative parameters that will be considered. By taking 

advantage of multi-objective synthesis algorithms, the designer can program many inputs into the 

system. The design adapts within the solution space, converging as close as possible to objective 

function defined by the designer. In order to generate a series of solutions, sequences of open 

parametric design space variables must be selected that can be optimised during the synthesis 

methods. This automated synthesis of part geometries can improve the premature fixation that 

designers face when designing complex geometries, as well as other cognitive flaws, including 

ownership bias. Based on the literature gaps, the synthesis algorithms should have the facility to 
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incorporate the build orientation and any manufacturability constraints derived from the 

selected/available AM processes.  

At this point that the designer has the option to impart some of the qualitative knowledge they 

possess. Examples include, part aesthetics and human interaction with the part. The designer will 

also have the opportunity to vary input parameters from the databases in the primary stage. 

Qualitative design information is particularly challenging to capture, as users can rarely articulate 

why they like a particular aspect of a design. Therefore, it is only at the comparison stage in which 

users can express this tacit knowledge due to the ability to compare designs within a set.  

The CAD tool will then use the best solution(s) as selected by the designer from the first 

generative stage as a new input(s). This is achieved by generating more appropriate designs based 

on the modified input parameters and defined qualitative information improving the capture of 

the designer’s initial intent. This approach is then repeated, within a user feedback loop, until a 

satisfactory design can be delivered by the system. The ability and speed of regenerating further 

design solutions are integral to the system. The overall quality of the design solution is dependent 

on giving the designer the ability to redefine the problem space as more knowledge is gained 

about the design direction. 

The final stage of the framework is labelled solution output. For the design tool to be useful, the 

design would require exporting in different print files types currently used in AM, e.g. STL, AMF, 

or 3MF however, this should also be suitable for printing with meshless representations directly 

from machine code. In conjunction with the AM file formats, the tool should also give some 

indication of the manufacturing information including, for example, the correct build orientation 

and build strategy along with suitable post-processing techniques in order to finish with a 

functional part. 
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Figure 3-3: Generalised generative design CAD tool framework. 

3.3. Summary 
Two feasible instances of generative design methods derived from the framework, termed data-

driven and goal-driven, can be used as a basis to determine the effectiveness of generative design 

to efficiently create AM-specific parts.  

The manner in which the two approaches generate the solution space differs. Data-driven 

approaches generate the entire solution space before presenting the results back to the designer. 

These solutions can then be navigated a posteriori, using for example, a combination of data 

visualisations and decision support tools, to locate solutions according that meet the design 

specification. 

Alternatively, the goal-driven approach aims to efficiently generate high-performing designs by 

learning the underlying representation of the design space. This is achieved by modifying the 

parametric design parameters based on the previously synthesised parts until areas of the 

solution space providing high-performing designs are located.  

These two implementations aim to overcome a number of the research gaps, firstly, by creating 

geometries that are specifically designed with the manufacturing limitations of the machine. 

Secondly, by providing designs that can be optimised for high-level design objectives defined in 

stage one of the framework. The research aim, objectives and scope will now follow in Chapter 4. 
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Chapter 4 - Research Aim, Objectives 
and Scope 

4.1. Introduction 
A generalised CAD framework to support the creation of generative design tools to support DfAM 

is described in Chapter 3. Two implementations of the framework were created with the purpose 

of overcoming the gaps within the literature. The first of these is a data-driven generative design 

method that navigates a pre-generated solution space, a posteriori, to locate the highest 

performing solutions. The second implementation is a goal-driven generative design method that 

efficiently creates solutions by learning the underlying mathematical topography of the design 

space. 

This, along with the research gaps in Chapter 2, lead to the following research question:  

Is it preferential to use data-driven or goal-driven generative design methods when exploiting 

DfAM to optimise AM parts for multiple high-level design objectives? 

To answer this research question, the following aim, objectives and scope have been defined. 

4.2. Research Aim 
This aim of this research is to identify the effectiveness of both data-driven and goal-driven 

approaches to generative design in developing AM-specific parts that are optimised for high-level 

design objectives. 

The ensuing null hypothesis arising from this aim is that a goal-driven approach to generative 

design produces part designs with comparable performance using the same number or more 

model evaluations/iterations as the data-driven approach. 

4.3. Research Objectives 
To achieve the above aim, the following research objectives have been outlined: 

1. Based on the research gaps identified in the state-of-the-art literature review, develop a 

generalised CAD framework that will support the development of new design tools to 

support generative design for AM. 

2. Adapt an existing structural optimisation technique to be capable of incorporating 

manufacturing constraints and build orientation to give an interpretation of structural 

performance within an AM context. 
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3. Define the abstraction criteria that connect low-level evaluation criteria to high-level 

design objectives. Low-level evaluation criteria are closely associated with the metrics 

derived directly from synthesised mesh data. Alternatively, high-level design objectives 

are abstracted away from the part data and represent criteria such as part cost and build 

time. These objectives can then be used to form generative design goals that are 

representative of typical AM production scenarios. 

4. Describe a data-driven generative design method to locate designs within a solution space 

based on the aforementioned, abstracted design objectives and create a series of 

interactive data visualisations that can present this information back to the designer.  

5. Examine the efficacy of surrogate optimisation methods to efficiently explore build 

orientation angles with the aim of minimising the total amount of support structure 

required to manufacture a given mesh file. 

6. Based on the results from the surrogate optimisation tests, integrate this method into a 

goal-driven generative design method.  

7. Compare the results of data-driven and goal-driven generative part design approaches in 

order to identify the advantages and disadvantages of the methods in terms of their 

ability to explore and synthesise part geometries. 

4.4. Research Scope and Boundaries 
According to the aim and objectives of the research, the following areas of investigation are 

identified. Furthermore, due to the vastness of the DfAM research field, a series of research 

boundaries are defined to ensure that the research objectives can be completed.  These 

boundaries concern DfAM and topology optimisation constraints, in addition to the evaluation 

metrics used to define the user-selected design objectives. A schematic of the research scope is 

shown in Figure 4-1. The triangle represents the research boundaries. The blue circle encloses the 

features that will be included in this research. 



39 
  

 

Figure 4-1: Schematic of thesis research boundaries. 

4.4.1. Design for Additive Manufacturing Constraints 
The literature review in Chapter 2 outlined the guidelines that have been developed to guide 

designers through the process of developing first-time-right designs.  

These guidelines can be extensive and include information regarding the minimum thickness of 

supported and unsupported walls, tolerances for connected and moving parts and minimum hole 

and font sizes. Whilst, these are essential constraints for many designs, this research will focus 

primarily on two features, namely, minimum strut thickness and maximum unsupported overhang 

angle. This selection is attributed to the simplicity of integrating these constraints into the 

ground-structure topology optimisation method. Additionally, the impact that constraining the 

maximum overhang angle can have on reducing the volume of support structure, and in turn the 

final cost of the final part. 

4.4.2. Adapt Existing Structural Optimisation Methods to Incorporate Additive 

Manufacturing Constraints and Build Orientation 
Despite previous work that has begun to implement optimisation of mechanical assemblies 

(Zhang et al. 2017), this research will focus solely on single part design for additive manufacturing. 

These parts will be defined by the load and boundary conditions as well as the initial design space 

volume and material void spaces. Secondly, as the research aims to determine the effectiveness 



40 
  

of data-driven and goal-driven generative design, new topology optimisation methods will not be 

defined. Instead, a number of boundaries are placed on the topology optimisation. These include  

 Only single load cases  

 Only point loads will be applied 

 Only single materials will be used.  

 Only homogeneous materials will be used 

 Only single parts will be optimised 

 No buckling constraints will be added 

In order to fully understand the manufacturability of additive parts, multi-physics simulation 

methods should be integrated into the system. The success of AM builds, especially in metal AM, 

are dependent on thermal gradient build up in the part during the build; this is of particular 

importance when building parts with high aspect ratio. While ample research has been 

undertaken into developing thermal simulations for AM, this will be outside the scope of the 

research within this thesis. 

It is believed, that these boundaries will make for a more intuitive understanding of the results 

and that further integration of more advanced topology optimisation techniques can be 

implemented in future work as necessary. 

4.4.3. Developing High-Level Objectives from Low-Level Evaluation Criteria 
Depending on the stakeholders in a particular project, there may be a requirement to design parts 

based on different levels of abstraction. This research will only deal with design problems that can 

be formulated into an objective function. Therefore, for ‘wicked’ problems, the designer may 

have to perform initial work to reach this point in the design process.  Within this research, the 

use of low-level evaluation criteria, such as facet-data from the optimised part, will be abstracted 

to develop evaluation criteria that are representative of high-level business goals. For example, 

different AM production scenarios. 

One of the prominent concepts identified in the literature review with regards to generative 

design of AM parts is the ability to use computation to augment a designer’s ability to develop 

optimised parts for specific design goals. The metrics used to evaluate the design should be 

developed to produce results that can improve the understanding the designer has about a 

particular design problem. To achieve this, metrics that are calculated using techniques that 

cannot be inferred solely by visual inspection of the design are required. For example, those 

resulting from simulation methods. 



41 
  

One of the main challenges in design is that there are many criteria, such as beauty, style or 

individual preference that cannot be quantified. With the advancement of machine learning 

algorithms, there are methods that can be employed to assert individual preference on the final 

design of a part. Examples include, style transfer or recommendation systems. Furthermore, 

human data tracking has the power to record implicit thoughts that a user may have when 

analysing a particular design instance, giving the ability to track the tacit elements of a design 

problem. 

As qualitative aspects of design are paramount, reference to including qualitative quantities were 

integrated into the development of the generalised CAD framework in Chapter 3. However, 

throughout the implementation of data-driven and performance-driven generative design 

methods within this research, only quantitative elements of design will be assessed. This will be 

achieved using a combination of simulation techniques alongside measurements derived from 

mesh analysis techniques. 
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Chapter 5 - Research Methodology 

5.1. Introduction 
To achieve the aim and objectives set out Chapter 4, the following research methodology has 

been devised and implemented. The experimental approach to achieve the research aim will be 

explained alongside the algorithms and the software implementation used to perform this 

research. 

5.2. Research Methodology 
The purpose of this methodology is to answer the research question. To achieve this, it is 

necessary to outline the approaches for both data-driven and goal-driven generative methods and 

the approaches used to objectively compare them. The methodology follows a positivist stance. 

The selection of each research method has been made to follow a robust, quantitative approach 

to ensure the research question can be answered using inductive reasoning in an objective 

manner. Figure 5-1 shows the generative design methodology adopted within this research.  
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Figure 5-1: Schematic of the underlying research methodology used in this research. 

This methodology will provide the knowledge required to objectively answer the research 

question posed in Chapter 4. This is achieved by evaluating both data-driven and goal-driven 

generative design methods for their capability to automatically synthesis high-performing design 

solutions and also their computational efficiency. Direct comparison and critique of the two 

methods will provide an objective view on the suitability for each method to be utilised in next 

generation state-of-the-art generative design CAD tools to support DfAM. 

The research methodology consists of three stages. Initially, a design problem is developed that is 

representative of an AM design problem, consisting of a manufacturability constrained topology 

optimisation in conjunction with build angle. The two generative design methods will then be 

used to solve this design problem. The results of which will be compared in order to assess their 

suitability for solving generative design problems.  

Design Problem: The design problem used to test the two approaches consists of a cantilever 

beam that is to be optimised using a ground structure-based optimisation with manufacturability 
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constraints, namely minimum strut thickness and maximum overhang angle. The cantilever beam 

will have the freedom to rotate about the y-axis between angles of -90° and 90°. Further 

explanation of the methods underlying the design problem can be observed in Section 5.3. 

Research Methods: The use of two differing generative design methods will be explored within 

this thesis. Firstly, within Chapter 6, a data-driven generative design approach, where a MCDA will 

be used to filter the best performing solutions represented by high-level design goals.  

Secondly, the inverse problem, or goal-driven approach. This method seeks to find optimal 

parameter settings to maximise the performance of a given set of high-level goals. A pilot study 

examining the ability to locate optimal build orientations for two AM specific parts, with the aim 

to reduce support structure requirements will firstly be tested within Chapter 7. The problem of 

build orientation is selected as it is representative of a two-dimensional input problem without 

the requirement to run costly topology optimisations. 

Subject to the success of the pilot study, the goal-driven approach will be applied to the cantilever 

beam problem in Chapter 8. A series of objectives are combined to define user-specific AM goals 

which are then formed into objective functions. As the goal-driven approach described within this 

research is a stochastic process (attributed to the random initialisation process), it will be run for 

21 repeated tests for robustness, and the median output value taken. The research methods will 

be explained in Section 5.4. 

Comparison: The two methods will be analysed using statistical similarity metrics to determine 

their ability to effectively locate high-performing solutions within an AM solution space. The 

description of the comparison techniques can be viewed in Section 5.5. 

5.3. Design Problem 
As identified in the research gaps in the critique of the literature, a method of incorporating shape 

synthesis techniques such as topology optimisation with manufacturing constraints and build 

orientation is necessary to develop generative design systems capable of outputting 

manufacturable designs.  

The design space is a mathematical representation of the underlying design problem. One of the 

challenges in generative design is selecting a suitable design space that can be exploited by the 

interactive search between the human designer and the computer. As each parameter of the 

design space will have an impact on the design output, the challenge for the designer is to select a 

set of parameters that maximises the potential advantages of computational approaches.  
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As each design variable is a dimension in the design space, it is possible that many design 

problems will be high-dimensional. If the design space is too simplistic (Figure 5-2), it is not 

necessary to use computational design tools and the designer is unlikely to learn anything new 

about the design problem by using a generative design approach. On the other hand, if the design 

space is chaotic as in the right hand plot of Figure 5-2, it will be practically impossible to learn the 

underlying design landscape making goal-driven generative design approaches difficult. 

Therefore, the designer’s challenge is to create suitable design space landscapes that are complex 

enough to provide useful results whilst also being suitable for computational exploration. 

 

Figure 5-2: Visual description of good and bad design space definitions shown in 3D space. 

As detailed in the literature review, there are many different topology optimisation techniques. 

This research will focus on the ground structure method, which has a number of advantages over 

other methods. Firstly, the ability to represent the stiffness matrix using simplified bar elements. 

Secondly, decreasing computation times and allowing generative design to be performed without 

the use of HPC. Finally, it is straightforward to constrain the overhang angle of the struts by 

pruning the ground structure before the optimisation begins. 

In truss topology optimisation, a problem can be formulated using a ground structure model. This 

ground structure is a highly-connected truss that connects all truss nodes to each other. The 

ground structure is placed within a design volume shown in Figure 5-3. The thickness of each strut 

is unknown before optimisation. The optimisation process then assigns thicknesses to each strut, 

resulting in each becoming a structural member with a set diameter or vanishing to zero 

thickness. The optimal truss contains a subset of the struts that exist within the ground structure. 

The aim of the optimisation is to minimise the compliance of the truss, i.e. 𝑭𝑇𝒖. Here, 𝒖 contains 

the displacements of the unconstrained nodes in the truss, and 𝑭 contains the external forces at 

these nodes.  
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The optimization problem is defined as follows: 

min
𝒙,𝒖

𝑭𝑇𝒖     subject to, 

𝑲(𝒙)𝒖 = 𝑭   and  

∑𝑙𝑗𝑥𝑗 ≤ 𝑉𝑚𝑎𝑥

𝑛

𝑗=1

  

𝒙 ∈  𝜒 = {𝒙 ∈  ℝ𝒏 ∶  𝑥𝑗
𝑚𝑖𝑛 ≤ 𝑥𝑗 ≤ 𝑥𝑗

𝑚𝑎𝑥, 𝑗 = 1,… , 𝑛}.  

(1) 

 

The parameter, 𝑛, is the number of struts, 𝑙𝑗 is the length of the 𝑗th strut, 𝑥𝑗 is the cross-sectional 

area of 𝑗th strut, and 𝑉𝑚𝑎𝑥 is the maximum permissible volume of the truss. The matrix 𝑲(𝒙) is the 

global stiffness matrix of the structure, and 𝑥𝑗
𝑚𝑖𝑛 and 𝑥𝑗

𝑚𝑎𝑥 are the lower and upper bounds on 

the design variables. This configuration creates a non-linear optimisation problem that is solved 

using the first-order gradient based Method of Moving Asymptotes (MMA) (Svanberg 1987) 

within the NLOpt Python module (Johnson 2017). For a complete mathematical derivation of the 

truss-based optimisation, readers can refer to Haftka and Gürdal (2012) or Christensen and 

Klarbring (2009). A load is placed in the centre of the y-axis length creating a design problem 

corresponding to a typical cantilever beam. 

 

 

Figure 5-3: Design volume setup for the cantilever beam design problem. 

This research will take structural compliance as an indication of the structural performance of the 

part. Whilst compliance is not equivalent to structural strength, Aage et al. (2017) show that 

compliance based topology optimisation generally results in geometric structures with a 

favourable strength response. 

5.3.1. Creating the Ground Structure 
The size of the initial ground structure is selected by the designer; there are a number of options 

when creating a ground structure. The ground structure is classified by the valence connectivity 
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between the beams. A fully connected ground-structure will connect each beam to all other 

beams, whereas a partially connected ground structure will only connect beams that are within a 

pre-defined number of nodes from the initial beam. This is shown in the 2D examples in Figure 

5-4. 

 

Figure 5-4: Fully (top) connected ground-structure where all nodes are connected, and partially (bottom) connected 
ground-structure where only the nearest nodes are connected. 

The size of the ground structure is defined by the number of potential connection nodes in the 

𝑥, 𝑦, 𝑧 directions such that a {3, 3, 3} grounds structure will have three nodes in each of the 

orthogonal axes. The size of the ground structure will have an impact on the final structural 

performance of the design, and should be selected based on the initial design space volume 

generated in the design problem to ensure a practical truss layout. Based on results from previous 

experiments (Smith 2016), it was decided that a {7, 3, 3} fully-connected ground structure was 

found to perform best for the given design problem. The length (x-axis) of the design space 

volume is defined to be 100mm with the y and z lengths defined to be 35mm respectively. 

5.3.1.1. Integration of Additive Manufacturing Constraints 
Whilst AM provides designers with increased geometric freedom, it does not provide complete 

design freedom, and thus it is necessary to adhere to certain manufacturing constraints (Kranz et 

al. 2015). Within this research, two key geometric design constraints, maximum overhang angle 

and minimum strut thickness are applied. 

Figure 5-5 (left) shows the ground-structure for the truss without the overhang constraint applied 

and (right) when the ground structure has been pruned with a user-specified overhang constraint. 
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Figure 5-5: Ground structure shown without (left) and (right) with a manufacturability constraint applied 

Maximum Overhang Constraint 

A manufacturable ground structure is obtained by removing struts that have overhang angles 

greater than the maximum overhang angle constraint. The overhang angle,  𝜃, is calculated for 

each strut by finding the angle between each strut, �⃗�  and the build plate normal vector, 𝑣  using 

(2). A filter is then applied to remove any struts that violate the conditions in (3). 

𝜃 =  arccos (
�⃗� ∙  𝑣 

‖�⃗� ‖ ‖𝑣 ‖
) (2) 

 

𝜃 ∈  ℝ𝑛 ∶  {
0 ≤  𝜃𝑗 ≤ 𝜃𝑚𝑎𝑥𝑜𝑣𝑒𝑟ℎ𝑎𝑛𝑔

180 − 𝜃𝑚𝑎𝑥𝑜𝑣𝑒𝑟ℎ𝑎𝑛𝑔 ≤ 𝜃𝑗 ≤ 180 
, 𝑗 = 1,… , 𝑛 (3) 

 

Minimum Strut Thickness Constraint 

The minimum strut thickness is determined as the minimum strut diameter that is printable, this 

constraint is added into the 𝑥𝑗
𝑚𝑖𝑛 feature in the topology optimisation formulation described in 

(1). A value of 0.5mm is defined based on the average suggested DMLS results from the design 

guidelines set out in Section 2.2. 

5.3.2. Build Setup  
A diagram showing the two-stage rotation process can be seen in Figure 5-6. To determine the 

orientation of the part, a two-step procedure is implemented, as shown in Figure 5-6. Firstly, the 

part is rotated by an angle, 𝜃, about the global y-axis. Then, the part height is readjusted by 

translating in z. The final translation in the z-direction is such that the lowest facet on the 

triangular mesh is aligned with the height of the build plate. In this study, 𝜃 belongs to the set, 

𝜃 ∈ ℤ: 𝜃 ∈ [−90, 90].  
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Figure 5-6: Two-stage process used to define the build orientation for the data-driven and goal-driven generative design 
approaches. 

5.3.3. Design Objectives 
Design abstraction can be described as a reductionist process of removing successive levels of 

detail from a design representation in order to capture only the essential features of the system. 

Many studies support the idea that abstraction can help designers think of problem solutions 

more clearly (Casakin 2007; Hayes 2013). Abstraction is important in design as it allows designers 

to manage the complexities associated with the multi-dimensional and multi-objective nature of 

the design process by purposefully obfuscating unimportant design details (Hoover et al. 1991).  

Research has shown that the designer’s ability to abstract to alternative representations is linked 

to their experience, with expert designers adapting and contextualising experiential knowledge 

and applying it to new design problems (Kokotovich and Dorst 2016). Within this research, low-

level geometric and process information will be combined to generate abstracted high-level 

evaluation criteria that can be used to aid designers in creating parts according to certain 

production objectives.  

Abstraction allows designers to overcome the challenges with current optimisation tools, where  

structurally optimised parts described solely by minimising mass or maximising stiffness can be 

translated into design representations that allow designers to question the relationship between 

their designs and the trade-offs that occur within the iron triangle (Figure 2-6). Additionally, 

evaluating designs at differing abstraction levels allows different stakeholders in the design 

process to understand design decisions at appropriate levels of detail.  Design abstraction runs 

the risk of oversimplifying the complexities and interactions between evaluation criteria in the 

design process. It is important that designers can move up and down abstraction levels to 

maximise the effectiveness of design abstraction in generative design, reducing the possibility of 

missing emergent design phenomena. 
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Figure 5-7 displays the abstracted evaluation criteria used in this research. Based on the 

synthesised geometry, a part can be evaluated against different criteria. The synthesis process 

converts the design space parameters to a shape that is represented by facet data. This facet data 

represents the lowest level data for the part, as shown in level 1. This facet data can then be used 

to describe further details about the part including compliance, support volume, part volume, 

build height and the build projection area. These can be combined with each other, to form 

further abstracted criteria of part structural performance, part cost, build time and build plate 

packing. Finally, these can be combined according to a series of user-defined weights to form the 

level 3 abstraction criteria of part performance and production quantity.  

 

Figure 5-7: Schematic of abstraction criteria used to define high-level design objectives from part evaluation criteria. 

The following evaluation criteria will be used to form the weighted model for the objective 

function. The evaluation criteria are dependent on the mesh data, the process used and the 

material selected. The evaluation criteria provide information for level 1, level 2 and level 3 

abstraction criteria. Figure 5-7 shows how the low-level abstraction criteria map onto the high-

level design objectives over multiple layers. 
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5.3.3.1. Abstraction Criteria – Design Space and Level 0 
Material 
As the material data is used to drive the structural optimisation process, it is integral to all further 

abstraction criteria. A Young’s modulus is required as an input criterion for the structural 

optimisation.  

Structural Loads 
The loading conditions are also required to define the structural optimisation. The structural loads 

impact on the part geometry and also directly affect the part compliance in the level 1 abstraction 

criteria. 

Build Orientation 
The build orientation is required to provide an AM-aware contextualised optimisation. When 

combined with the manufacturing constraints it is used in order to define the initial ground 

structure for the structural optimisation as defined in Section 5.3.1. The build orientation is 

defined as an open variable within the design space and will be altered to generate the solution 

space.  

Additive Manufacturing Process 
Based on the combination of AM process, the selected material and machine, the manufacturing 

constraints can be expressed. These are required to define the initial ground structure and also 

the conditions for the inequality constraints within the structural optimisation. The overhang 

constraint is defined as an open variable and will be changed to generate the solution spaces for 

the two generative design approaches. 

Facet Data 
The facet data stores properties associated with the location of the coordinates of all mesh 

vertices and mesh faces and face normals of the synthesised mesh geometries for each solution. 

5.3.3.2. Abstraction Criteria – Level 1 
 
Mesh Volume 
The mesh volume is calculated using the formula provided in Zhang and Chen (Zhang and Chen 

2001).  
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The total volume of a triangular mesh is given as:  

𝑉𝑡𝑜𝑡𝑎𝑙
′ = ∑𝑉𝑖

′

𝑖

 (4) 

 

where; 

 

𝑉𝑖
′ =

1

6
(−𝑥𝑖3𝑦𝑖2𝑧𝑖1 + 𝑥𝑖2𝑦𝑖3𝑧𝑖1 + 𝑥𝑖3𝑦𝑖1𝑧𝑖2 − 𝑥𝑖1𝑦𝑖3𝑧𝑖2 − 𝑥𝑖2𝑦𝑖1𝑧𝑖3 + 𝑥𝑖1𝑦𝑖2𝑧𝑖3) (5) 

 

Here, 𝑖 stands for the index of triangles and (𝑥𝑖1, 𝑦𝑖1, 𝑧𝑖1),(𝑥𝑖2, 𝑦𝑖2, 𝑧𝑖2), and (𝑥𝑖3, 𝑦𝑖3, 𝑧𝑖3) are 

coordinates of the vertices of each triangle 𝑖, which is derived from the facet data in level 0. 

As the triangle mesh is an approximation of the generalised shape, the mesh volume will depend 

on the resolution of the triangular mesh. Selecting a resolution for the triangular mesh is a 

compromise between the accuracy of representation and computation. Figure 5-8 shows the 

effect of changing the mesh resolution on the error caused when calculating the mesh volume for 

a sphere with radius 𝑟 = 20. The analytical solution, using 𝑉 =
4

3
𝜋𝑟3 = 33510, is represented 

with the horizontal red line. The default settings within Three.js, the computational framework 

used to generate 3D geometry, provide a sphere with 1984 faces, shown as a cross on the graph. 

This value represents a 0.88% error when compared to the analytical solution. Element 

resolutions will be selected throughout to ensure that the accuracy error for each primitive 

remains less than 1%. 

 

Figure 5-8: Effect of mesh volume error caused by the triangulation of geometry. 
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Build Height and Build Projection Area 
A projection area is obtained by finding the area of the bounding rectangle (sides 𝐵𝐵𝑜𝑥𝑥 and 

𝐵𝐵𝑜𝑥𝑦) that is created when the geometry is projected downwards onto the plane that 

represents the build plate. The build height corresponds to the z-height of the bounding box, 

termed 𝐵𝐵𝑜𝑥𝑧. These parameters are further illustrated in Figure 5-9. The bounding box is 

calculated using the .computeBoundingBox() method in the geometry class of the Three.js 

framework. 

 

 

Figure 5-9: Schematic depicting derivation of build projection area and build height. 

Support Structure Quantity 
Three evaluation criteria are considered, namely the number of overhanging facets, the total 

length of support arising from each overhanging facet and the total volume of support structure 

required to cater for each overhanging facet. In the following paragraphs, each criterion is 

introduced, and the known limitations of each are discussed. 

Once the geometry of a given component is represented by a triangular mesh (STL file), 

identifying facets that overhang beyond a critical angle is trivial. The critical overhanging angle is 

set at 45° as this is a common guideline for all AM manufacturing processes.  It is therefore 

tempting to use the number of overhanging facets as a metric to measure the optimality of a 

particular build orientation, which can be calculated using (2). 

However, the number of overhanging facets can be misleading in terms of the total volume of 

support material. The example given in Figure 5-10 shows two faceted surfaces of similar surface 

area. The triangulation of the square and octagonal surfaces clearly results in a different number 

of facets, determined by the shape (curvature) of the outer boundary. In reality, both surfaces 

would require a similar amount of support structure. This two-dimensional example extends into 
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three-dimensions with both the shape of the boundary, curvature of the surface and the 

topology.  

 

Figure 5-10: Two polygons of approximately equal area resulting in a differing number of facets after meshing 

A second argument against using the number of overhanging faces is the limitation of support 

structure length. Figure 5-11 displays an example of support structure length dominating the 

eventual support structure material volume with the leftmost orientation having almost double 

the support volume as a result of few but very long support columns. 

 

Figure 5-11: An example of the support structure length becoming dominant with respect to the number of overhanging 
faces 

To counteract the length limitation, the cumulative length of the entire support structure network 

can be used as an evaluation criterion. The geometric centre, vc, of a triangular facet is identified, 

and a ray is cast downwards with respect to the build orientation. The length of the support is 

defined as the length of the ray at the point it makes its first collisions, regardless of whether it 

intersects another portion of the mesh or the build plate. Summing all such lengths for each 

overhanging facet gives an estimate of the quantity of support structure (6) 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐿𝑒𝑛𝑔𝑡ℎ =  ∑ 𝑑1

𝑁

𝑛=0

 (6) 

Although this is an improvement upon the number of overhanging facets, it is still susceptible to 

inaccuracies brought about facets area (Figure 5-12). Large facets tend to underestimate the 

support requirement, and smaller facets overestimate. 
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Figure 5-12: A triangular facet with rays cast downwards with respect to the build orientation. Rays originate at the 
vertices and centroid of the facet and each collides with a surface below. 

It is possible to extend the complexity of the evaluation metric further to consider the volume of 

the support structure. Although this is a more accurate approach, it is not completely without 

challenges, and can dramatically increase the level of computation required to acquire a measure 

of orientation optimality.  The calculation of support volume is almost certainly going to require 

the downward projection of the overhanging facet with respect to the build direction. Herein lies 

the first complication. Taking the example given in Figure 5-13, it can be seen that the downward 

projection of a single overhanging facet may collide with multiple surfaces (and multiple facets on 

each). This introduces an ambiguity in where to place the foundation of the support column, as it 

could reasonably originate from the build plate or from a lower region of the component 

geometry. Its origin would be determined by the degree of overlap between the projection and 

each surface. The interaction of the projection and multiple surfaces also significantly increases 

the complexity of the calculation of the support volume as the otherwise straightforward 

polyhedron (of projection) is interrupted.    
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Figure 5-13: A single triangular facet, projected downwards with respect to the build direction. The projection collides 
partially on another region of the mesh (circular region), and the rest reaches the build plate. 

A scheme has been implemented to balance the computational overhead and accuracy of 

approximation associated with the support volume acquisition function. Considering Figure 5-12 

and Figure 5-13, a ray is cast downwards from each vertex of the triangular facet, resulting in 

lengths d1, d2 and d3. These lengths are set according to the first collision of the ray (mesh or build 

plate). The area of the triangular facet, A, is also calculated from the vertices. An estimate of the 

support volume for the part is given by (7). In essence, this is a multiplication of the facet area by 

the average lengths of the rays. 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑉𝑜𝑙𝑢𝑚𝑒 = ∑
(𝑑1 + 𝑑2 + 𝑑3)𝐴

3

𝑁

𝑛=0

 (7) 

 

It may seem counterintuitive to use the facet area rather than the area of the facet projection 

onto the xy-plane. However, the errors arising from this simplification are typically small and have 

the benefit of avoiding the complexities of calculating the true volume, for example, the case in 

Figure 5-13. 

To test the assertion, above, a large number of triangles were randomly generated using the 

scheme depicted in Figure 5-14. The first and lowest vertex of the triangle is fixed at the origin in a 

Cartesian coordinate system. Two further facets are then generated on a unit square, spanning 

𝑥 ∈ ℝ :−0.5 ≤ 𝑥 ≤ 0.5 and 𝑦 ∈ ℝ : 0 ≤ 𝑦 ≤ 1. These two facets are then rotated about the x-

axis by the angle, 𝛼, which is drawn from a uniform random distribution between the limits of 0 

and 𝜋/4 (the critical overhang angle). This process is repeated for 108 randomly generated 

triangles. The percentage error between the area of each triangle’s projection onto the xy-plane 
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and the area of the original triangle is captured along with the aspect ratio of each triangle and its 

original area.  

 

Figure 5-14: The proposed scheme to randomly generate large numbers of triangles on a variety of overhanging planes, 
as defined by the angle, α. One vertex of the triangle is always anchored to the origin of the coordinate space.  

Figure 5-15 shows the histogram of the percentage errors between the projected and original 

triangles. The histogram has been normalised according to the relative probability of each bin. 

Errors less than 5% are dominant, thereby defending the use of the original area of the triangle in 

the evaluation metric as a comparison between meshes and orientations. 

 

Figure 5-15: Histogram showing the distribution of percentage error between the area of a triangular facet and its 
projection onto the build plate. The frequency has been scaled according to the probability of each bin. 
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5.3.3.3. Abstraction Criteria – Level 2 
Build Plate Packing and Structural Performance 
The build plate packing and structural performance metrics only take in a single factor from the 

level below. However, the metrics of build plate packing and structural performance are easier to 

comprehend than build projection area and compliance. In order to refactor these metrics, the 

build projection area is converted from cost criteria to benefit criteria in build plate packing. This 

is acceptable as minimising a positive is mathematically equivalent to maximising a negative. 

Furthermore, this refactoring allows for greater model generalisation as future implementations 

may integrate further evaluation metrics into the abstraction criteria. Such examples include 

structural performance containing additional metrics such as Von-mises stress and maximum 

deflection. 

Build Time 
The total build time is defined by Baumers et al. (2012) to be a combination of the fixed time 

consumption for the operation of the machine, termed 𝑇𝑗𝑜𝑏. This includes machine atmosphere 

generation and machine warm up, and a print time, 𝑇𝑝𝑟𝑖𝑛𝑡 which is comprised of the layer 

dependent time consumption, related to the part height, in conjunction with the time required to 

print the required volume.  

Individual AM processes will have different methods for calculating 𝑇𝑝𝑟𝑖𝑛𝑡 based on the 

deposition methods. Within this thesis the model for laser-PBF processes will be used. The model 

developed by Brika et al. (2017) is used and shown in (8) and (9). 

𝑇𝑝𝑟𝑖𝑛𝑡 =
𝑍𝑝𝑎𝑟𝑡

𝐿𝑡ℎ𝑖𝑐𝑘
× 𝑇𝑟𝑒𝑐𝑜𝑎𝑡 + (

𝑉𝑝𝑎𝑟𝑡

𝐿𝑡ℎ𝑖𝑐𝑘
× 𝐷𝑝𝑎𝑟𝑡) + (

𝑉𝑠𝑢𝑝𝑝

𝐿𝑡ℎ𝑖𝑐𝑘
× 𝐷𝑠𝑢𝑝𝑝) (8) 

 

Where  

𝐷 = 𝑆𝑆 (∅𝑙𝑎𝑠𝑒𝑟 −
𝐻𝑆

2
) (9) 

 

In the above equations, 𝑍𝑝𝑎𝑟𝑡 is the build height, 𝐿𝑡ℎ𝑖𝑐𝑘 is the layer thickness, 𝑇𝑟𝑒𝑐𝑜𝑎𝑡 is the 

recoater time, 𝑉𝑝𝑎𝑟𝑡 is the part volume, 𝑉𝑠𝑢𝑝𝑝 is the support amount, 𝑆𝑆 is the scan spacing, 

∅𝑙𝑎𝑠𝑒𝑟 is the laser spot size, and 𝐻𝑆 is the hatch spacing. 
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Build Cost 
According to Baumers et al. (2012) the cost for an AM build comprises of direct costs associated 

with the material processing during the build, the energy costs of the build and indirect costs. This 

indirect costs for a given include, production labour, equipment costs and maintenance (Ruffo et 

al. 2006). The following cost model (10) is proposed as an estimate of the cost per build: 

𝐶𝑏𝑢𝑖𝑙𝑑 = 𝐶𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 × 𝑇𝑝𝑟𝑖𝑛𝑡 + 𝑀𝑏𝑢𝑖𝑙𝑑 × 𝑃𝑟𝑖𝑐𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + 𝐸𝑏𝑢𝑖𝑙𝑑 × 𝑃𝑟𝑖𝑐𝑒𝑒𝑛𝑒𝑟𝑔𝑦 (10) 

 

Where 𝐶𝑏𝑢𝑖𝑙𝑑 is the build cost, 𝐶𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 is the indirect cost, 𝑇𝑝𝑟𝑖𝑛𝑡 is the build time, 𝑀𝑏𝑢𝑖𝑙𝑑 is the 

build mass and 𝐸𝑏𝑢𝑖𝑙𝑑  is the build energy. 

The mass of the part is comprised of the product of part volume, 𝑉𝑝𝑎𝑟𝑡, and the density, 𝜌, of the 

material being processed as shown in (11). 

𝑀𝑝𝑎𝑟𝑡 = 𝜌𝑉𝑝𝑎𝑟𝑡 (11) 

 

This can be extended to the build mass with the inclusion of the mass of the support structure 

using a similar method. 

𝑀𝑠𝑢𝑝𝑝 = 𝜌𝑉𝑠𝑢𝑝𝑝 (12) 

 

The material cost is given by the product of the build mass and the cost per kg of the material.  

5.3.3.4. Abstraction Criteria – Level 3 
Exploring high-level abstractions as goals is imperative in delivering a generative design solution, 

as they tend to be easily comprehensible, desirable objectives that designers seek to optimise. 

Three alternative theoretical production scenarios will be explored by combining four different 

level 2 abstraction metrics applied with differing weightings. 

Table 5-1 shows three different production personas. Each persona represents a 

designer/production engineer from an example industry. Each of these industries have different 

production requirements.  
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Table 5-1: AM design personas representing industries with differing production requirements. 

 

   

Persona A B C 

Design 

Objective 

High Volume Part 

Production 

High Performance Part 

Production 

Maximum Overall 

Performance 

Example 

Industry 

Consumer goods; 

Consumer Automotive; 

Medical/Dentistry 

 

Sporting Applications; 

High-Value Automotive 

AM Design Consultant; 

Aerospace; 

Weightings Structural Performance= 0 

Build Plate Packing = 80 

Part Build Speed = 0 

Part Build Cost = 20 

Structural Performance= 80 

Build Plate Packing = 0 

Part Build Speed = 20 

Part Build Cost = 0 

Structural Performance = 25 

Build Plate Packing = 25 

Part Build Speed = 25 

Part Build Cost = 25 

 

Persona A: The first production scenario is a high production quantity scenario. Here the part cost 

is reduced, and the packing ratio is maximised. With recent advances in AM hardware improving 

the quality, speed and cost of the process, it is now possible to use AM within a production 

scenario. Figure 5-16 shows that unit costs of metal parts remain below that of casting up to a 

production quantity of 100,000 (Desktop Metal 2018), as shown in Figure 5-16. The successful 

implementation of AM as a production method, in many industries (such as automotive and 

consumer goods) is dependent on the efficiency of the design process. Highly optimised nesting of 

parts, as well as minimising the support structure requirement will reduce the overall cost of 

material use and the post-processing time required before shipping the final part. A typical 

industry might include medical/dentistry, where it is common for industries to densely pack build 

plates with customised parts such as dental crowns (Renishaw plc. 2017). This level of 

personalisation is only commercially viable using a combination of AM processing and 

maximisation of build plate packing. Based on this, the weightings are selected to be 80% part 

throughput, which is defined to be a benefit function that is to be maximised and 20% part cost 

that is a cost function and should be minimised. The expected output from this user weighting 

preference is likely to be a low build projection area and low support requirement, with the 

relaxed objective within the iron triangle being a lower structural performance. 
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Figure 5-16: Cost versus production quantity trends for Desktop Metal production additive manufacturing process 
compared with casting and laser powder bed fusion technologies (Adapted from Desktop Metal 2018). 

Persona B aims to design the overall highest performing part that is achieved when the part build 

speed and structural performance are prioritised. The design flexibility provided by multi-scale 

design methods specific to AM processes, coupled with the ability to process high-performing 

materials (e.g. Ti-6Al-4V and Inconel 718) has meant that AM has quickly evolved into a 

technology that is capable of producing parts with the same structural performance as other 

manufacturing processes with a much lower mass. In some cases as much as 80% lower (Carter et 

al. 2014). Many industries can benefit from this advantage and can justify compromising on cost 

in order to maximise the structural performance of the part. Examples include high-performance 

sporting applications, hyper/supercar parts (BMW Group 2018). 

Finally, Persona C, is the control case and uses equal weightings. This scenario represents the 

compromise condition where the designer may not fully understand the problem or the impact of 

the design variables on the final design. It is likely that this condition, will provide a spectrum of 

different results, with high-performing solutions for each of the evaluation criteria for the 

designer to evaluate. This scenario may be representative of typical problems faced by the 

aerospace industries, where a reduction in part mass can lead to significant savings in the total 

cost of the aircraft. It is estimated that 9-17% of total typical aircraft mass may be replaced by AM 

components to provide a 6.4% reduction in fuel consumption (Huang et al. 2016). However, it is 

still necessary to produce the required volume of parts at a suitable cost if AM is going to be used 

in production aerospace (Uriondo et al. 2015) with large aerospace companies producing 

approximately 700 planes per year (Airbus Group; 2018). 
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Viewing this from a different perspective, Figure 5-17 demonstrates the relationship between the 

manufacturing personas and the iron triangle. The bottom left of the image shows regions of non-

optimised designs. Designers do not want to create solutions within this region as they are 

outperformed by other designs. Conversely, designers wish to develop designs in the top right 

corner. This is infeasible due to the constraint of the iron triangle. Persona A wishes to design 

parts with low cost and high throughput (speed) trading off against quality. Persona B aims to 

maximise quality and part build speed with the relaxed constraint being part cost. Persona C 

desires to understand the underlying trade-offs in the design problem by equalising all values.  

 

Figure 5-17: Schematic of different production scenarios generated from weighted level 2 abstraction criteria and 
achievable design limitations created by the iron triangle. 

5.3.3.5. User Preferences 
As described in the research scope in Chapter 4, this research is solely concerned with 

quantitative user objectives. The user inputs are acquired through an interactive user input 

module, shown in Figure 5-18, in which the user requirements are divided into percentage blocks 

and summed to 100%. The selections are made from benefit criteria (those values that are to be 

maximised) and cost criteria (minimised). The inputs are used to derive the objective functions in 

both the data-driven and goal-driven approaches to generative design.  
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Figure 5-18: User input selection box used to define objective function weightings and whether the criteria should be 
maximised (benefit) or minimised (cost). 

5.4. Research Methods 
The following research methods are used to implement the research methodology. The methods 

for data-driven and goal-driven generative are two possible realisations derived from the 

generative design CAD framework in Chapter 3. 

5.4.1. Data-Driven Methods for Generative Design 
The aim of data-driven generative design methods is to develop and implement computational 

solutions that locate the highest performing concepts within a previously generated AM solution 

space with respect to the different objectives. Often large multi-dimensional solution spaces are 

difficult to navigate due to difficulties in human comprehension of multi-dimensional data 

(Halford et al. 2005). Therefore data-driven methods aim to make sense of these datasets and 

feedback to the user.  

Data-driven methods can be described as decision-support tools that aid the user in locating the 

highest-performing design solutions within a generated solution space given a set of user-defined 

goals. Data-driven methods can be used on existing datasets of solutions, or in the case of this 

research, in conjunction with a generative shape synthesis method. Decision support tools are 

particularly useful in making sense of complex multi-dimensional solution outputs. This allows 

users to rank solutions against conflicting goals and overcome the time constraints associated 

with examining and evaluating large numbers of solutions. 
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Many MCDA techniques have been developed to support decision making in engineering (Greco 

et al. 2016). The aim of MCDA techniques is to evaluate multiple conflicting criteria in decision 

making. This is imperative in design where design concept evaluation can be a complex multi-

criteria decision-making problem that can combine many factors from customer needs and 

constraints to enterprise resources (Geng et al. 2010). 

The following list includes examples of common MCDA techniques: 

 Weighted sum model (WSM) (Fishburn 1967) 

 Weighted product model (WPM) (Bridgman 1922) 

 Analytical hierarchy programming (AHP) (Saaty 1990) 

 VIKOR (Opricovic and Tzeng 2004) 

 TOPSIS (Yoon and Hwang 1995) 

The listed MCDA approaches share some common elements. For example, that values for 

alternatives are assigned for each of the criteria and then multiplied by corresponding weights 

and finally combined to produce a total score. However, the approaches differ in the details of 

how criteria values are assigned and combined. Due to the relevant strengths and weaknesses 

associated with the mathematical differences in the methods, typically researchers will select one 

of the approaches to be the most appropriate for a given problem. 

The TOPSIS method (Technique for Order of Preference by Similarity to Ideal Solution) seeks to 

maximise the benefit criteria and minimise the cost criteria to find solutions closest to the ideal 

solution. Advantages of TOPSIS include being easy to implement, both positive and negative ideal 

solutions can be used and it can contain fuzzy numbers to deal with uncertainty (Kabir and Sumi 

2012). Furthermore, TOPSIS returns a cardinal ranking of solutions making it easy for end-users to 

locate the top 𝑛 performing solutions. 

Researchers have compared different MCDA techniques (Caterino et al. 2009) and apart from the 

WSM and WPM methods that are more appropriate for problems involving variables with similar 

dimensions and criteria that require maximising or minimising, all other methods tend to be 

suitable for data-driven generative design problems. TOPSIS and VIKOR methods are typically the 

most flexible as they permit the use of variables with different units and criteria of different types. 
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The TOPSIS algorithm used within this research is described in the following steps. 

i) Establish a decision matrix consisting of 𝑚 alternatives and 𝑛 criteria, the intersection of 

each alternative and criteria is given as 𝑥𝑖𝑗, giving the matrix (𝑥𝑖𝑗)𝑚×𝑛. The 𝑚 alternatives 

correspond to each design solution in the solution space. 

 

ii) The matrix (𝑥𝑖𝑗)𝑚×𝑛 is then normalised to form the matrix (𝑟𝑖𝑗)𝑚×𝑛 

𝑟𝑖𝑗 = 
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

, 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛 
(13) 

 

 

iii) Calculate the weighted normalised decision matrix 

𝑡𝑖𝑗 = 𝑟𝑖𝑗 ⋅  𝑤𝑗, 𝑖 = 1, 2, … ,𝑚, 𝑗 = 1, 2, … , 𝑛 (14) 

 

𝑤𝑗 = 
𝑊𝑗

∑ 𝑊𝑗
𝑛
𝑗=1

 , 𝑗 = 1, 2, … , 𝑛 (15) 

 

The criteria are weighted on a user selection input panel by allocating a percentage of 

resources to any given performance criteria. As described in Section 5.3.3.5, to prevent 

the user from attempting to maximise every performance criteria the user is allocated 

100% of resources to divide between each of the performance criteria as they wish, such 

that 

∑𝑊𝒋  ≤ 100 

𝑛

𝑗=1

 

 

(16) 

Where 𝑊𝑗  is the value for each of the 𝑛 performance criterion. 

 

iv) Determine the worst alternative (𝐴𝑤) and the best alternative (𝐴𝑏) 

𝐴𝑤 = {〈max (𝑡𝑖𝑗|𝑖 = 1,2,… ,𝑚 | 𝑗 ∈  𝐽_〉, 〈min (𝑡𝑖𝑗|𝑖 = 1,2, … ,𝑚| 𝑗 ∈  𝐽+〉 }  

≡  {𝑡𝑤𝑗| 𝑗 = 1, 2, … , 𝑛}, 

𝐴𝑏 = {〈min (𝑡𝑖𝑗|𝑖 = 1,2, … ,𝑚 | 𝑗 ∈  𝐽_〉, 〈max (𝑡𝑖𝑗|𝑖 = 1,2,… ,𝑚| 𝑗 ∈  𝐽+〉 }  

≡  {𝑡𝑏𝑗| 𝑗 = 1, 2, … , 𝑛}, 

(17) 
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Where, 

𝐽+ = {𝑗 = 1, 2, … , 𝑛 | 𝑗 }, where the criteria have a positive impact (i.e benefit) 

𝐽− = {𝑗 = 1, 2, … , 𝑛 | 𝑗 }, where the criteria have a negative impact (i.e cost) 

 

v) Calculate the Euclidean distance between the alternative 𝑖 and the worst condition 𝐴𝑤 

𝑑𝑖𝑤 = (∑(𝑡𝑖𝑗 − 𝑡𝑤𝑗)
2

𝑛

𝑗=1

)

1
2

 , 𝑖 = 1, 2, … ,𝑚 (18) 

 

and the distance between the alternative 𝑖 and the worst condition 𝐴𝑏 

𝑑𝑖𝑏 = (∑(𝑡𝑖𝑗 − 𝑡𝑏𝑗)
2

𝑛

𝑗=1

)

1
2

 , 𝑖 = 1, 2, … ,𝑚 

 

(19) 

Where 𝑑𝑖𝑤  and 𝑑𝑖𝑏 are the L2-norm distances for the target alternative 𝑖 to the worst and 

best conditions respectively. 

 

vi) Calculate the distance to the ideal condition 

𝑠𝑖𝑤 = 
𝑑𝑖𝑤

(𝑑𝑖𝑤 + 𝑑𝑖𝑏)
, 0 ≤  𝑠𝑖𝑤  ≤ 1, 𝑖 = 1, 2,… ,𝑚 (20) 

  

 

vii) Rank the alternatives according to 𝑠𝑖𝑤 = (𝑖 = 1, 2. , … ,𝑚) 

 

viii) Visualise the top 𝑛-performing solutions within the data visualisation dashboard outlined 

in Chapter 6. 

 

The data-driven research method can be generalised into three distinct phases. 1) DEFINE: 

Defining the correct conditions for a specific structural optimisation problem, 2) GENERATE: 

generating a solution space of feasible design solutions and 3) LOCATE: searching this solution 

space to find the preferred solutions to a given set of objectives. 
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Within the DEFINE phase, three distinct elements of information are expressed. The first action is 

to define the structural constraints. This includes the positions, magnitude and direction of the 

loading conditions, boundary conditions for the optimisation, and any material void spaces in 

which material is not permitted. Secondly, performance goals are defined. These are the level 2 

abstraction criteria to be maximised or minimised, including, build time, build plate packing, cost 

per-part or structural performance. Finally, the independent variables that are to be explored as 

well as the sampling frequency for each variable are defined. Examples include specific 

information related to the AM process, such as the build angle of the part or whether a 

manufacturing constraint will be applied. Next, in the GENERATE phase, the number of samples 

for each parameter are selected to create the solution space. Finally, in the LOCATE phase, the 

quantitative evaluation criteria calculated during the GENERATE phase are mapped onto the 

performance criteria from the DEFINE stage to identify the most appropriate designs in a solution 

space.  

By iterating through the design parameters, a space of structurally optimised mesh solutions can 

be generated. The output mesh from the optimisation is subsequently scrutinised using a number 

of selected evaluation criteria to generate a high-dimensional representation of the final solution 

performance. This mapping from 3D to ‘nD’ is key to generative design as parts can be 

represented by their characteristics and behaviour rather than their CAD geometry. The criteria 

selected for this research are specific to DfAM and include the part compliance, the build height, 

width and angle, and the amount of support structure required to build the part successfully. 

However, there is potential for solutions to be evaluated and represented by many more 

evaluation criteria if required. 

Finally, a mapping must be created that links the output evaluation criteria to the input 

performance goals. This leads to a performance-centric representation for each design solution. 

The solution space can then be searched using a MCDA technique that ranks the solutions for 

their ability to fulfil the requirements of the specified design problem, e.g. maximise structural 

performance or part throughput. The solution space is presented to the user using a series of data 

visualisations, identifying the best results in the solution space and providing further insight into 

the design problem.  

This experimental procedure is presented in Figure 5-19. 
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Figure 5-19: Experimental procedure for data-driven generative design for additive manufacturing. 

5.4.2. Bayesian Build Orientation Optimisation in Additive Manufacturing 
Due to the inefficient and expensive nature of generating solution spaces of optimised parts, 

there is a requirement to efficiently generate and explore AM-specific design spaces. Chapter 7 

compares the use of grid search, random search and surrogate models for their suitability to be 

used for locating the optimal build orientation for AM parts by minimising the total support 

structure requirements.  

A surrogate model describes the relationship between inputs (input parameters to a model) and 

outputs (the performance measure of the simulation). Training an accurate surrogate model 

requires an adequate number of input and output points. The most economical way of 

constructing a surrogate model is to adaptively select the next set of parameters based on the 

responses from the previous trials (Wang et al. 2014). 

Many surrogate optimisation models exist that are able to perform the function approximation; 

these are all commonly-used machine learning models. An overview of the most common 

surrogate models is outlined as follows:  

 Polynomial regression, sometimes referred to as non-linear regression aims to minimise 

the squared error between a parametric model and training data by adjusting the 

numerical weights within the model. 

 Random forests (Breiman 2001) are an ensemble machine learning method comprising 

multiple decision trees in order to perform either classification or regression. The 

advantage of random forests is that the algorithm is very stable when new data is added. 

It is also unlikely that the data will impact all of the trees. Additionally, random forests can 
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deal with both categorical and numerical features. One of the disadvantages of random 

forests is that they do not train well on small datasets. Therefore their reliability may be 

questionable for certain surrogate models.  

 Support vector regression is an extension of support vector machines that seek to fit the 

error from a theoretical hyperplane, which represents the learnt function, and the data 

within a certain threshold.  

 Artificial neural networks work by altering the weights within the layered network, it is 

possible to approximate the function given by the training data.  

 Gaussian process regression (sometimes termed Kriging) uses a covariance function 

(kernel) to estimate the value for an unseen point based on training data. Gaussian 

Processes not only return the estimate for the unseen point but crucially also the 

uncertainty of the estimate, which can be useful when modelling ill-defined problems.  

It has been shown the surrogate modelling using Gaussian processes consistently produces better 

results than other modelling techniques (Wang et al. 2014). As such Gaussian processes will be 

used to form the surrogate optimisation model within this research. Bayesian optimisation is a 

method of adaptive surrogate modelling, which typically uses a Gaussian process to form a 

surrogate model. This model is then updated using an acquisition function. It provides a strategy 

to find the extrema of objective functions that are expensive to evaluate. Bayesian optimisation 

techniques are particularly efficient in terms of the number of function evaluations required, 

which is attributed to the ability to incorporate prior belief about the problem to help direct the 

sampling (Brochu et al. 2010; Shahriari et al. 2016). 

When attempting to locate the optimal build orientation, the target is to minimise the total 

amount of support structure required to support the overhanging faces on the part. Three 

different proxy metrics of the total support requirement are compared for their efficiency and 

accuracy, in order to efficiently evaluate the best possible part orientation. 

To determine the orientation of the part, a three-step procedure is implemented. Firstly, the part 

is rotated by an angle, 𝜃, about the global x-axis. Then, it is rotated by an angle, 𝜑, about the 

global y-axis, and finally, the part height is readjusted by translating in z. The final translation in 

the z-direction is such that the lowest facet on the triangular mesh is aligned with the height of 

the build plate. In this study, 𝜃 and 𝜑 belong to the set, 𝜃, 𝜑 ∈ ℤ: 𝜃, 𝜑 ∈ [0, 359]. 

The following list describes the research method enacted within Chapter 7: 
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1. For two component designs, perform a grid search for each of the support requirement 

evaluation criteria, namely number of overhanging faces, support length and support 

volume at 15°, 20°, and 30° build angle increments. Selecting these increments will test 

the assumption that greater numbers of iterations will always generate better solutions 

and also both even and odd angle increments, whilst remaining computationally feasible. 

2. Using only the first test part, run Bayesian optimisation with the Matèrn kernel and 

Expected Improvement (EI) acquisition function for 15, 25, 35, 50 and 100 iterations, 

repeating each test 30 times. 

3. Using only the first test part, run random search for 15, 25, 35, 50 and 100 iterations, 

repeating each test 30 times. 

4. Compare the grid search results to the results produced from both random search and 

Bayesian optimisation to determine the following. 

a. Compare the minimum support structure values obtained by each of the methods 

b. Perform the Mann-Whitney U test to determine whether differences between the 

results of the support structure calculation methods are statistically significantly.  

5. Based on the results from 2 & 3, using the first test part, examine the effect of changing 

the covariance functions for 𝑛 iterations depending on the balance on computational time 

and the performance of the Bayesian optimisation algorithm, repeating the test 30 times. 

6. Compare the results of Bayesian optimisation and random search at 35 iterations 

a. Compare the best values obtained by each of the support structure calculation 

methods. 

b. Perform the Mann-Whitney U test to determine whether results of different 

methods are significantly different to one another. 

7. Repeat steps 5+6 for the second test part. 

A detailed explanation of the test parts, evaluation criteria and evaluation methods will be 

explained in the following sections. 

5.4.2.1. Test Cases 
As part of this experiment, two test parts have been selected to evaluate the performance of 

different support structure estimation metrics and optimisation approaches. Each test part was 

selected to be representative of engineering parts that arise from an industrial AM pipeline. In 
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particular, the geometries have been optimised for the manufacturing process and consist of a 

representative number of facets in the STL models. Furthermore, these test parts were generated 

using continuum based topology optimisation methods, therefore showing the ability for the test 

methods to generalise further than just ground structure-based optimisation techniques. 

Crucially, both parts are open-access, which will permit future comparisons with this study. The 

test parts were selected from the GrabCAD (2017) repository, a freely available database of 

engineering parts. Both test parts were set as community challenges with the aim of redesigning 

the part for AM. 

The first selected part, shown in Figure 5-20, is the aeroplane bearing bracket challenge created 

by Alcoa. This was set as a community challenge in 2016 (GrabCAD 2016; Kurniawan 2013), and 

the resulting component has 14,172 faces in the STL file. 

 

Figure 5-20: Front and side views of the winning solution to the Alcoa bracket challenge, hosted by GrabCad 

The second test part, shown in Figure 5-21, is the winner of the GE jet engine bracket challenge 

(GrabCAD 2013; Nikol 2016). As the GrabCAD repository only contains a STEP file for this part, an 

STL file containing 45,432 faces was created by converting the file using Autodesk Fusion 360 with 

the default STL parameter settings. 

 

Figure 5-21: Front and side views of the winning solution to the GE bracket challenge, hosted by GrabCad 

5.4.2.2. Grid Search 

Grid search requires that a set of values is chosen for each variable (𝐿(1) …𝐿(𝑘)). Using grid search, 

the set of trials is formed by assembling every possible combination of values, which gives the 

total number of trials as:  𝑆 =  ∏ |𝐿(𝑘)|𝐾
𝑘=1 . The product over 𝐾 sets makes grid search suffer from 
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the curse of dimensionality as the number of searches exponentially grows with the number of 

parameters (Bellman 2015). 

5.4.2.3. Random Search 
One improvement over the grid search is to sample the points within the design space randomly. 

Random search can be more exploratory than a grid search, as detailed in Bergstra and Bengio 

(2012).  For each iteration, a random number is sampled from a uniform distribution to represent 

the rotation angle in the 𝑥- and 𝑦-axis, respectively. Figure 5-22 shows that if one of the 

dimensions has a greater impact on the objective function than another (horizontal axis), then 

grid search has the potential to miss high-performing solutions. Furthermore, by sampling at 

random, it is possible to explore a much greater distance than with grid search as each point 

searches new regions in all axes. In contrast, random search explores three times as many points 

in the horizontal axis than grid search, thereby increasing the likelihood of locating high-

performing solutions. 

 

Figure 5-22: Comparison of grid search and random search (Bergstra and Bengio 2012). 

5.4.2.4. Bayesian Optimisation 
Bayes theorem, a representation of which is shown in (21), is the key to optimising an objective 

function. Bayes theorem states that the posterior probability of a model, 𝐴, given evidence, 𝐵, is 

proportional to the likelihood of 𝐴 given 𝐵, multiplied by the prior probability of 𝐴. The prior 

represents the belief relating to the space of possible objective functions. Although this is 

unknown, it is possible to make assumptions about its nature, which makes some solutions more 

feasible than others. 

𝑃(𝐴|𝐵)  ∝ 𝑃(𝐵|𝐴)𝑃(𝐴) (21) 
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A Gaussian process can be used as a surrogate optimisation method. It is an extension of the 

multivariate Gaussian distribution to an infinite dimension stochastic process for which any finite 

combination of dimensions will be a Gaussian distribution. A Gaussian process is a distribution 

over functions that is specified by its mean function, 𝜇, and covariance function, 𝑘, associated 

with two input vectors, 𝒙 and 𝒙′ as described in (22): 

𝑓(𝒙) ~ 𝐺𝑃(𝜇(𝒙), 𝑘(𝒙, 𝒙′)) (22) 

 

The covariance function in the Gaussian process determines the smoothness of the samples that 

are drawn from it. The choice of the covariance function is dependent on the underlying data that 

is being modelled. In this research, two common covariance functions will be evaluated: the 

squared exponential kernel and the Matèrn kernel. 

The squared exponential function is described in (23): 

𝑘(𝒙, 𝒙′) = exp (−
1

2𝜃2
|𝒙 − 𝒙′|2) (23) 

 

where 𝜃 is a hyperparameter that controls the width of the kernel. 

The Matèrn is another common kernel that incorporates a smoothness parameter, 𝜍,  to permit 

greater flexibility when modelling functions and is shown in (24). 

𝑘(𝒙, 𝒙′) =
1

2𝜍−1Γ(𝜍)
(
2√𝜍

𝜅
‖𝒙 − 𝒙′‖)

𝜍

Η𝜍 (
2√𝜍

𝜅
 ‖𝒙 − 𝒙′‖) (24) 

 

where 𝛤(·) and 𝐻𝜍 (·) are the Gamma function and the Bessel function of order ς. Note that as ς 

→ ∞, the Matèrn kernel reduces to the squared exponential kernel, and when ς = 0.5, it reduces 

to the unsquared exponential kernel. As with the squared exponential function, a length factor, 𝜅, 

is also included. 

The aim of the GP is to estimate the value of a point based on previous training data. Given a set 

of inputs 𝒙 ∈ ℝ𝒏 and corresponding outputs 𝒇 ∈ ℝ𝑛, the purpose of the GP is to estimate the 

outputs 𝒇∗ for a set of new test points 𝒙∗.  

The covariance matrix, 𝑲, is given by all possible combinations of the samples such that 
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𝑲 = [

𝑘(𝒙𝟏, 𝒙𝟏) 𝑘(𝒙𝟏, 𝒙𝟐) ⋯ 𝑘(𝒙𝟏, 𝒙𝒏)

𝑘(𝒙𝟐, 𝒙𝟏) 𝑘(𝒙𝟐, 𝒙𝟐) ⋯ 𝑘(𝒙𝟐, 𝒙𝒏)
⋮

𝑘(𝒙𝒏, 𝒙𝟏)
⋮

𝑘(𝒙𝒏, 𝒙𝟐)
⋱        ⋮        
… 𝑘(𝒙𝒏, 𝒙𝒏)

] (25) 

 

The covariances for the unknown sample 𝒙∗ are written as 𝒌∗ =

[𝑘(𝒙∗, 𝒙𝟏), 𝑘(𝒙∗, 𝒙𝟐), … , 𝑘(𝒙∗, 𝒙𝒏)
𝑇, and 𝑘∗∗ = 𝑘(𝒙∗, 𝒙∗). 

Combining the observed and unobserved data into the GP, a multivariate normal is formed with 

the following mean and covariance structure: 

(
𝒇
𝒇∗

)~𝒩 ((
𝝁𝒙 

  𝝁𝒙∗ 
) , (

𝑲 𝒌𝑥∗
𝑇  

𝒌∗ 𝑘∗∗
)) (26) 

 

Forming the conditional in order to form an estimate for 𝑓∗, the expression becomes 

𝑝(𝒇∗|𝒙∗, 𝒙, 𝒇) =  𝒩(𝝁𝒙∗ + 𝒌∗𝑲
−𝟏(𝒇 − 𝝁𝒙∗), 𝑘∗∗ − 𝒌∗𝑲

−𝟏𝒌∗
𝑻) (27) 

 

This means that for value within the specified problem domain it is possible to predict the mean 

and variance at that point. The full derivation for the following equations (28) and (29) can be 

found in Murphy (2012). 

𝜇(𝒙∗) = 𝝁𝒙∗ + 𝒌∗𝑲
−𝟏(𝒇 − 𝒎𝒙∗) (28) 

and, 

𝜎(𝑚(𝒙∗)) =  𝑘∗∗ − 𝒌∗𝑲
−𝟏𝒌∗

𝑻 (29) 

 

In Bayesian optimisation, observations are accumulated such that 𝒟1:𝑡 = {𝒙1:𝑡, 𝑦1:𝑡}, a prior 

distribution 𝑃(𝑓), is combined with  the likelihood function 𝑃(𝒟1:𝑡|𝑓) to produce the posterior 

distribution: 𝑃(𝑓|𝒟1:𝑡) ∝ 𝑃(𝒟1:𝑡|𝑓)𝑃(𝑓). This posterior captures the updated beliefs about the 

unknown function. The algorithm for implementing Bayesian optimisation is shown below. 

Algorithm 1: Bayesian Optimisation 

FOR t = 1,2,… do 

    Find 𝒙𝒕 by optimising the acquisition function over the GP:𝒙𝑡 = argmax
𝑥

𝑢(𝒙|𝒟1:𝑡−1)  

    Sample the objective function: 𝑦𝑡 = 𝑓(𝒙𝑡) 

    Augment the data 𝒟1:𝑡 = {𝒟1:𝑡−1, (𝒙𝑡, 𝑦𝑡)} and update the GP.     

ENDFOR 
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The role of the acquisition function is to guide the search for the optimum. A high value of the 

acquisition function typically denotes a predicted high value of the objective function. Thus, 

maximising the objective function provides the ability to find the next set of parameters to be 

used to evaluate the objective function. The maximum value of the acquisition function is found 

by minimising the negative of the function using the L-BFGS-B method (Byrd et al. 1995). The two 

acquisition functions tested in this article are the upper confidence bounds (UCB) shown in (30),  

 

𝑈𝐶𝐵 =  𝜇(𝒙) + 𝜅𝜎(𝒙) (30) 

 

where 𝜇(𝒙) is the mean value at 𝒙, 𝜅 is a variable used to tune the acquisition function and 𝜎(𝒙) 

is the variance at 𝒙 and the EI function shown in (31). 

 

𝐸𝐼 =  
𝜇(𝒙) − 𝑓(𝒙+) − 𝜉

𝜎(𝒙)
 (31) 

 

Where 𝜇(𝒙) is the mean value at 𝒙, 𝑓(𝒙+) is the best observed value, 𝜉 is a variable used to vary 

the acquisition function to favour the mean or variance and 𝜎(𝒙) is the variance at 𝒙. 

As the acquisition function is based on the expected improvement of the Gaussian process as well 

as the uncertainty it is possible to balance the trade-off of exploiting and exploring. By increasing 

the values of 𝜅 and 𝜉, the acquisition function favours exploring higher areas of variance, 

therefore exploring a greater region of the design space. Whereas, low values provide a bias 

toward exploiting high values of the predicted mean. The values of 𝜅 and 𝜉 are tuned by 

observing a number of tests and adjusting appropriately until a suitable balance between 

exploration and exploitation is determined. 

5.4.3. Goal-Driven Methods for Generative Design 
The use of Bayesian optimisation as a surrogate model will be explored as a method to efficiently 

locate the highest performing solutions for a given problem definition for each of the 

manufacturing production scenarios outlined in Section 5.3.3.4 

The goal-driven generative methods used within this research apply adaptive surrogate modelling 

methods to efficiently explore AM design spaces in order to locate high-performing solutions 
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based on user-defined goals. The experimental procedure applied when performing the goal-

driven generative design experiments can be seen in Figure 5-23.  

 

Figure 5-23: Experimental procedure employed for goal-driven approach to generative design in Chapter 8. 

As with the data-driven approach, a three-stage method is created. As the goal-driven generative 

design approach undertaken within this research is a stochastic process, the tests are repeated 21 

times, in order to gain a robust median value to assess the quality of the method. The decision to 

perform repetitions is based on the balance between robustness of the Mann-Whitney U test, and 

the computational cost of running multiple tests. 
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Figure 5-24: Global and local optimisation strategies used to create goal-driven generative design for additive 
manufacturing solutions. 

Firstly, within the DEFINE stage the loading points and structural constraints, performance goals 

and independent variables are defined. The conditions are derived from the design problem 

described in Section 5.3, but can be extensible to other problems if required.  

Next, within the GENERATE stage, a solution space is created by first creating an initial set of data 

points used to form the surrogate model. This stage consists of two different optimisation 

approaches, as shown in Figure 5-24. The first optimisation stage taken in the build orientation 

and manufacturing constraint as input parameters and performs a structural optimisation with 

the output being evaluated against the level 0, level 1 and level 2 abstraction criteria. 

The topology optimisation is performed by rotating the part and randomly setting a 

manufacturability constraint between 0° − 45° that defines the part to be some region between 

non-manufacturable without support structure and fully manufacturable without support. Unlike 

the data-driven method, this must be continuous to form the surrogate model. The multi-

dimensional representation of the design is then formed by evaluating the design against multiple 

evaluation criteria e.g. level 2 abstraction criteria.  

The objective function will be formed of weighted level 2 abstraction criteria. The goal of the 

optimisation is to minimise the function, 𝑓, subject to the maximisation or minimisation of this 

objective function. The treatment of the evaluation criteria is dependent on whether the user 

desires the criteria to be maximised (benefit) or minimised (cost). As the evaluation criteria each 

have different units and orders of magnitude, the function must be expressed in a normalised 

form. This can be achieved by dividing each metric by its maximum value for objectives that are to 
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be minimised or by dividing the minimum value by the sum of the minimum and the evaluated 

metric for objectives that are to be maximised as shown in (32): 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑓 = 𝑤1 ×
𝑓1

max𝑓1
+ 𝑤2 ×

min𝑓2
min𝑓2 + 𝑓2

+ ⋯+ 𝑤𝑚 ×
min𝑓𝑚

min𝑓𝑚 + 𝑓𝑚
+ 𝑤𝑛 ×

𝑓𝑛
max𝑓𝑛

 (32) 

 

Once the initial points have been created, the Gaussian process surrogate model can be fitted to 

the data and the maximum value can be located and combined with the acquisition function to 

select the next points for evaluation. For 𝑛 iterations, the model is adaptively updated and after 

ten iterations the best observed result is recorded. This optimisation is referred to as the global 

optimisation as this is what controls the set of parameters used to synthesise the final generative 

part. Once all of the tests have been completed, the median and interquartile range (IQR) values 

value for each of the tests is calculated and the data is plotted for comparison with the data-

driven generative design method described in Section 5.4.1. 

5.5. Comparison 
By taking the best values from the goal-driven method, the number of iterations required to 

locate high-performing areas of the solution space can be compared. Furthermore, it is possible to 

assess the flexibility of each of the algorithms when dealing with new information or increased 

numbers of design parameters. An assessment will be made on the suitability of each approach 

for its ability to achieve optimised design results for various design problems. 

The following approach will be used to compare the two generative design methods. Firstly, all of 

the design instances will be evaluated against the objective function for each of the three 

manufacturing personas and normalised against the maximum value in the dataset. Secondly, 

these will be ranked from smallest to largest using the default sort function in Python. Thirdly, the 

minimum value will be subtracted from each of the values to indicate the distance from the best 

solution within the dataset. The implication of this approach is that the highest performing data-

driven design instance will have a value of 0. The approach can be seen in Table 5-2. 
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Table 5-2: Example values for calculating distances between data-driven and goal-driven generative design for additive 
manufacturing methods. 

Design 

Instance 

Normalised 

Objective 

Function 

Design 

Instance 

Ranked 

Normalised 

Objective 

Function 

Ranked Normalised Objective Function  

- min (Ranked Normalised 

Objective Function) Distance  

1 0.245 1 0.245 0 

2 0.876 3 0.423 0.178 

3 0.423 4 0.674 0.429 

4 0.674 2 0.876 0.631 

… … … … … 

𝑛 𝑥 𝑛 𝑦 𝑧 

 

The first quartile, median and third quartile values can then be calculated for 21 iterations of the 

goal-driven method. The minimum value for the data-driven dataset can then be subtracted from 

these values. This value can be compared with the subtracted ranked normalised objective 

function list to give a value of its position within the data-driven dataset. This will provide a value 

of the goal-driven method to generate solutions within the top 𝑛 % of solutions within the data-

driven generative design method. An example of this can be viewed in Table 5-3, where the goal-

driven value is labelled 𝐺𝐷. 

Table 5-3: Example comparison of goal-driven design with data-driven design instances dataset. 

Design 

Instance 

Normalised 

Objective 

Function 

Design 

Instance 

Ranked 

Normalised 

Objective 

Function 

Ranked Normalised Objective Function  

- min (Ranked Normalised 

Objective Function) Distance  

1 0.245 1 0.245 0 

2 0.876 𝐺𝐷 0.316 0.071 

3 0.423 3 0.423 0.178 

4 0.674 4 0.674 0.429 

… … 2 0.876 0.631 

𝑛 𝑥 … … … 

𝐺𝐷 0.316 𝑥 𝑦 𝑧 

 

To answer the research aim, it is necessary to determine the distance for which goal-driven 

methods are sufficiently similar to data-driven methods to define them as having comparable 

performance. Within this research, goal-driven generative design solutions will be determined to 

have comparable performance to data-driven generative design solutions if the median 
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performing value lies within the top 10% or greater than the 90% percentile of the data-driven 

solution space. 

By dividing the number of iterations required to achieve goal-driven solutions within the top 10% 

of those derived using the data-driven generative design method it is possible to derive a value 

for the efficiency of the process. This is shown in (33) 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑑𝑎𝑡𝑎−𝑑𝑟𝑖𝑣𝑒𝑛

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑔𝑜𝑎𝑙−𝑑𝑟𝑖𝑣𝑒𝑛
 (33) 

 

The number of iterations was selected as the metric for comparing efficiency of the two methods 

rather than computational speed as it is both hardware and software agnostic. If improvements in 

computational hardware decrease computation time, or different implementations or algorithms 

for the evaluation metrics are derived, the results within this research will remain valid. 

5.6. Software Implementation  
It is important to note that the research reported in this thesis is based on fundamental principles 

and as such will work regardless of programming language or operating system. However, for the 

purpose of reimplementation, the following description, and schematic (Figure 5-25), of the 

software implementation used within this research is described.  

 

Figure 5-25: Software implementation used to implement the research methodology. 

To implement the generative design methods outlined above, a software stack has to be selected 

that can perform the required functions. These include performing structural optimisation, 

visualising and analysing both 3D geometric and solution space data, and also performing the 

structural and Bayesian optimisations. The contrasting requirements for interactive visualisations 
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and 3D graphics, and scientific computing necessary for generative design systems lead to the 

decision to utilise multiple programming languages that would be best suited to each of the 

different requirements.  

The generative design environment will be developed in the form of a web application with a 

HTML/CSS/JavaScript driven front end with a Python back-end connected using Ajax for GET and 

POST requests through the Flask server framework. Bootstrap and JQuery are used to facilitate 

the development of the frontend user interface environment. For the purposes of this research, 

the server is hosted locally. However, this server could be hosted on hardware dedicated for high-

performance computing or alternatively, on the cloud. Google Chrome was selected as the web 

browser to perform the experimental work. 

The front-end, referring to the layer that the user can access, is used for geometry processing and 

data visualisation. The geometry analysis processing is aided with the use of the THREE.js 

framework for 3D geometry and the D3.js framework for the development of the interactive data 

visualisation dashboard. The user input, solution synthesis and data visualisation environments 

are built using separate web-pages and data is transferred between the two using either a cloud-

database (Google Firebase) or a pre-saved CSV file depending on user preference. User 

implementation of the TOPSIS algorithm is developed in JavaScript, for part rotation and for the 

evaluating the multi-dimensional evaluation criteria that are necessary for generative design. 

Python is used to perform the optimisation during the synthesis stage. The truss optimisation 

code was extended from the 2D model developed by Aranda and Bellido (Aranda and Bellido 

2016) to 3D. The NlOpt library is used to perform the non-linear MMA optimisation that is 

required for the ground-structure topology optimisation. Scipy is used to fit the Gaussian Process 

that is used for the Bayesian Optimisation. 

5.7. Summary 
This chapter has outlined the research methodology that will be used in order to achieve the main 

aim of the thesis as outlined in Chapter 4. The main outcomes from this chapter are as follows: 

 The research methodology outlining the underpinning methods used to fulfil the overall 

objectives of this research and in turn, answer the aim of the research are detailed. The 

research methodology consists of three stages: the first stage outlines the design 

problem, a ground structure topology optimisation of a cantilever beam used in 

conjunction with a build orientation optimisation. The second stage outlines two different 

approaches to explore the design space, namely data-driven and goal-driven approaches 
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as well as a pilot study to test the feasibility of using Bayesian optimisation to optimise 

AM-specific design problems efficiently. Finally, a comparison stage that tests the efficacy 

of data-driven and goal-driven solutions to find high-performing solutions to various user-

defined high-level design problems. 

 Three levels of abstraction have been defined mapping low-level evaluation criteria to 

high-level design objectives. Depending on the stakeholders involved in a project and the 

skill of the designer, abstraction criteria from each of the levels can be used to drive the 

global part optimisation. The equations defining the criteria have been defined for the 

DMLS process. However, the methods are extensible to other AM processes. 

 Weighted combinations of the high-level design objectives are used to define three 

different production scenarios that are common within the AM industry and are 

representative of the trends currently observed by the latest product releases and 

technical forecasts (Wohlers et al. 2018). 

 A description of the three-stage experimental method used to robustly explore data-

driven generative design methods for AM has been provided. A number of MCDA 

techniques have been analysed for the suitability for generative design. The TOPSIS 

method was selected and mathematically defined. 

 A method for performing efficient build orientation optimisation is defined alongside 

three different proxy metrics for the required amount of support structure to support 

overhanging faces. Three methods: grid search, random search and Bayesian optimisation 

surrogate models are defined in order to test their effectiveness and accuracy at finding 

the optimal build orientation for two open-access AM parts. These part examples are 

typical of parts defined using continuum based topology optimisation techniques. 

 Goal-driven generative design for AM is defined, and a flow-chart is provided describing 

the research method used to examine how Bayesian optimisation could be used to 

efficiently explore AM design spaces in order to locate high-performing solutions. 

 A normalised objective function distance metric is defined in order to quantitatively 

compare the outputs from both data-driven and goal-driven approaches to generative 

design for AM. 

 An outline of the software implementation that will be used to develop a prototype of the 

generative design system to achieve the above research methods is provided. This is to 
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aid in the replication of the results provided in the following chapters. However, it should 

be noted that the research methods are software agnostic, and other software stacks 

would also be suitable for creating new implementations of generative design tools. 

The implementation of this methodology will now be presented, starting with Chapter 6, which 

will demonstrate the development of the data visualisation dashboard as well as results from the 

data-driven approach to generative design. 
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Chapter 6 – Data-Driven Generative 
Design for Additive Manufacturing 

6.1. Introduction 
This chapter will implement the method outlined in Chapter 5, Section 5.4.1, to develop a data-

driven generative design method for additive manufacturing. A data-visualisation dashboard will 

be produced to navigate a solution space containing multiple design instances generated using a 

generative design synthesis method. The solution space will be created using a conventional grid 

search by altering the build orientation and overhang constraint on the parametric input to a 

ground structure topology optimisation. A TOPSIS MCDA support tool will be used to locate the 

top-performing solutions within the solution space for the different production scenarios.  

6.2. Data-Visualisation Dashboard to Support Solution Space 

Exploration 
Given that generative design methods produce a series of design solutions with multi-dimensional 

evaluation criteria, it is beneficial for the designer to have a method to easily interact with the 

solutions and quickly focus in on areas of high-performing designs. The data visualisation 

dashboard developed for this research is comprised of three stages, guiding the designer from the 

entire solution space to a single design solution by utilising different graphical representations.  

This dashboard has been inspired by multivariate visualisation methods from the Design Explorer 

(Thornton Tomasetti 2015) and Ashour and Kolarevic (2015) and extended for the specific 

application for AM-specific generative design problems. 
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6.2.1. Stage 1 – Solution Space Visualisation 
A parallel coordinate plot (Figure 6-1) is used for stage one of the data visualisation. Parallel 

coordinate plots have been shown to be an effective way of visualising vast quantities of multi-

dimensional data (Theus 2008). This gives the designer the ability to visualise the entire solution 

space. Studies have shown that parallel coordinate plots require a level of interactivity to be 

useful when large datasets are shown (Wills 2008). One technique for improving user interactivity 

is to apply brushing to individual axes. This allows the designer to highlight a subset of the 

solution space by reducing the domain of a selected axis, thus highlighting designs with certain 

attributes. Brushing is applied within the interactive dashboard by allowing a user to click and 

drag within an axis, thereby generating a rectangle describing the new axis domain. The filtered 

results from the parallel coordinates plot are linked to the input to stage two of the visualisation. 

 

Figure 6-1: Stage one data visualisation showing parallel coordinates plot with the top 5 solutions displayed in 
emboldened red. 

6.2.2. Stage 2 – Filtered Solution Space Visualisation  
The aim for the second stage of the data visualisation is to allow the designer to understand the 

relationships between different evaluation criteria within the data set. A scatterplot was selected 

to allow the designer to easily see patterns within the data and determine any correlations 

between design variables. An α-transparency value of 0.7 is applied to all filtered designs to allow 

the user to distinguish the filtered results from the parallel coordinates plot from the rest of the 

solution space. Further interactivity is available to the designer within this stage, firstly, by 

allowing the designer to select the axis variables. By selecting different axes, the designer can 

view correlations between any two variables. A zoom function is also implemented to allow the 

designer to examine areas that show multiple design instances with similar parameter values. This 

is particularly important when large datasets require exploration. The designer is able to highlight 

particular design instances by clicking on the scatter plot circles. Upon doing this, the circle is 
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highlighted, and information for the particular design instance feeds into stage three of the 

visualisation tool. The stage 2 visualisation is shown in Figure 6-2. 

 

Figure 6-2: Stage 2 data visualisation. The numbered cursors show the human interaction used to navigate this 
visualisation stage. 

6.2.3. Stage 3 – Individual Solution Visualisation 
The final stage of the data visualisation involves feeding individual part data back to the user for 

selection of the most appropriate design solution to a given design problem. The objective of this 

visualisation stage is to allow the user to evaluate and select superior designs from the solution 

set. The part data within this stage is normalised against the entire solution set to provide a 

relative quality metric for each of the parts. Figure 6-3 shows the user interaction that can be 

used to navigate stage 3 of the data visualisation dashboard. 

Two primary charts are selected for this visualisation, namely a radar chart and a bar chart. The 

radar chart provides a normalised comparison of the part for three user-selected criteria against 

the solution set. Radar charts provide a method of visualising high dimensional quantitative data. 

Radar charts are produced for each design comparison and overlaid using multiple colours and 

opacities. A bar chart is also presented that contains part specific information, including elements 

to indicate part manufacturability. Three manufacturability criteria are shown in Figure 6-3, 

notably, part volume, part surface area and part cost. However, any combination of the multi-

dimensional solution space can be selected. The manufacturability data provided is scaled against 
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the data set to a value between 0-10. This is so that the designer can easily get numerical 

feedback on a parts quality relative to the entire solution set. A 3D visualisation of the design is 

also shown to allow the designer to view the aesthetics of the final part to determine its 

acceptability as a final design solution.  

The designer can compare different solutions by rating individual potential solutions using 

interactive slider bars. The designer is given the opportunity to rate the design from 0 to 10. 

When the user clicks the ‘Rate and Compare’ button the current design image and slider bar value 

are stored above the radar chart; these designs can then be accessed at any point by clicking on 

the image. Two designs can be stored and compared at any time. The evaluation score for each 

part is stored within an array and can be accessed or exported from the visualisation environment 

at any time. 

 

Figure 6-3: Use of stage 3 of the data visualisation dashboard to explore individual solutions within the AM solution 
space. 

6.3. Data-Driven Generative Design for Additive Manufacturing 
To generate the AM solution space, the ground structure was rotated between the angles of -90° 

and 90° in increments of 5°. This was repeated with varying overhang constraints applied between 

0°, which leads to a design with no support structure, and 45°, where no manufacturability 

constraint is applied. The manufacturability constraint is again applied at increments of 5°. 
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The support structure metric used within this chapter is total support length. Based on the 

drawbacks associated with this metric discussed in Chapter 5, it is necessary to check the 

distribution of triangle areas in the generated truss structures. Figure 6-4 shows two histograms 

depicting the distribution of triangle areas in trusses generated from the ground structure 

topology optimisation. The results show that no significantly large triangles are present in the 

truss-based meshes. This is aligned with the way in which cylinders are typically triangulated in 

STL files. As the triangles areas are closely distributed, the potential drawbacks of the support 

length metric are not present for truss based geometries. 

 

Figure 6-4: Histograms showing triangle area distribution for two typical truss based structures generated using a 
ground structure topology optimisation method. 

Figure 6-5 shows the total length of the support structure required to print the solution for each 

build angle. As expected, there is no support requirement when the manufacturability constraint 

is applied. As the manufacturability constraint is relaxed, the length of support increases until no 

manufacturing constraints are applied, and the greatest amount of support structure is required. 

Furthermore, in line with previous studies (Mass and Amir 2016), when manufacturability 

constraints are applied to the optimisation, the structural performance of the part decreases. As 

the angle moves closer to zero, the part performance, as indicated by the compliance value, 

decreases dramatically. This can be attributed to a significant reduction in the structural rigidity of 

the ground structure. Combinations of build orientation and manufacturability constraint that 

have build angle in which the principle axis of the cantilever beam remains close to horizontal and 

a high manufacturability constraint do not produce feasible solutions, this is attributed to 

infeasible ground structures. These solutions were removed from the solution space leaving a 

total of 175 solutions for exploration. The results are shown in Figure 6-6.  
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Figure 6-5: Support Length vs Angle for total solution space. 

 

 

Figure 6-6: Compliance vs angle for total solution space. 
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6.4. Exploring Different Additive Manufacturing Production 

Scenarios 
The application of data-driven generative design for additive manufacturing methods will now be 

used to find the 𝑛 best performing solutions within the solution space in Figure 6-5 and Figure 

6-6, for each of the production scenarios defined in Section 5.3.3.4. 

6.4.1. Highest Overall Performance  
Consider a scenario in which the designer wants the best overall performance by equally assigning 

the weights to the four possible performance criteria. This is the scenario described in persona C, 

in the research methodology. This scenario represents a common situation in which the designer 

may not fully understand the problem and would like to test the general case of optimising for the 

overall performance of a part. The performance criteria weightings, 𝑤, are detailed below: 

 

𝑤 = {

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 25
𝑏𝑢𝑖𝑙𝑑 𝑝𝑙𝑎𝑡𝑒 𝑝𝑎𝑐𝑘𝑖𝑛𝑔 = 25

𝑏𝑢𝑖𝑙𝑑 𝑠𝑝𝑒𝑒𝑑 = 25
𝑏𝑢𝑖𝑙𝑑 𝑐𝑜𝑠𝑡 = 25

 

 

The results in Figure 6-7 demonstrate that MCDA finds preferable areas of the solution space 

minimising compliance, build projection and part cost. It is generally desirable to print at build 

angles whereby the principal axis of the cantilever beam is at 90° with respect to the build plate, 

as this minimises the support required for the part, maximises the number of parts that can be 

placed on the build plate and also maintains desirable structural performance. The output 

solutions and corresponding evaluation criteria for the general performance persona, which are 

built at 90° with respect to the build plate, are shown in Table 6-1.  

 

Figure 6-7: Cost against build projection (left) and (right) compliance against build time plots with top solutions shown in 
(blue) diamonds for highest overall performance production scenario. 
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Table 6-1: Highest performing optimised solutions from the highest overall performance persona. 

Optimisation Output 

   

Manufacturing 

Constraints 

No Support 

Constraint 

Partial Support 

Constraint 

Full Support 

Constraint 

Build Angle (°) -90 -90 -90 

Build Projection (mm2) 900 900 900 

Compliance (µmN-1) 167 214 247 

Support Length (mm) 40,795 16,169 0 

 

The parallel coordinates plot showing the result in conjunction with the solution space is 

displayed in Figure 6-8. The top five performing solutions are shown with emboldened (red) lines. 

The plot shows that designs with a full, partial or no support constraint may be appropriate in this 

case, depending on the permissible structural performance trade-offs defined by the user. 

 

Figure 6-8: Parallel Coordinates plot showing top 5 solutions in solution space for the persona c, the highest overall 
performance production scenario. 

6.4.1.1. Sensitivity Analysis on Input Selections 
It is necessary to examine the effect of altering the weights on the output from the MCDA. To test 

this, each parameter is altered by 10%, and the top 5 outputs from the MCDA recorded. The 

following results show that for multi-objective problems with clear trade-offs, such as the overall 
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performance case, the MCDA is capable of finding the top results from each of the compromise 

conditions. This indicates that it would be beneficial to test multiple different weightings in the 

MCDA to broaden the number of potential outputs for exploration. The role of the designer is 

important in generative design. For multi-objective problems, it is the role of the designer to 

select the most appropriate solution given potentially conflicting outcomes (Chiandussi et al. 

2012).   

The following results indicate that the output from the MCDA is responsive to small changes 

(10%) to the user-defined input weightings. The results for the key sensitivity analysis tests are 

now explained. Firstly, the following weights are tested. 

𝑤 = {

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 15
𝑏𝑢𝑖𝑙𝑑 𝑝𝑙𝑎𝑡𝑒 𝑝𝑎𝑐𝑘𝑖𝑛𝑔 = 25

𝑏𝑢𝑖𝑙𝑑 𝑠𝑝𝑒𝑒𝑑 = 35
𝑏𝑢𝑖𝑙𝑑 𝑐𝑜𝑠𝑡 = 25

 

 

Figure 6-9: Output solution space showing top performing solutions in blue diamonds showing a preference toward high 
production quantity.  

The results in Figure 6-9 show that this weighting scenario favours the high production quantity 

scenario, with a high build plate packing ratio trading off against build time and structural 

performance. 

Secondly, the weights are set as: 

𝑤 = {

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 25
𝑏𝑢𝑖𝑙𝑑 𝑝𝑙𝑎𝑡𝑒 𝑝𝑎𝑐𝑘𝑖𝑛𝑔 = 25

𝑏𝑢𝑖𝑙𝑑 𝑠𝑝𝑒𝑒𝑑 = 15
𝑏𝑢𝑖𝑙𝑑 𝑐𝑜𝑠𝑡 = 35
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Figure 6-10: Solution space showing top performing solutions (blue diamonds) showing preference towards high 
structual performance and a low build time.  

The results for the following weighting, demonstrated in Figure 6-10, depict a preference towards 

the structural performance of the part with the trade-off occurring with poor build plate packing. 

Finally, the weights are adjusted to: 

𝑤 = {

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 25
𝑏𝑢𝑖𝑙𝑑 𝑝𝑙𝑎𝑡𝑒 𝑝𝑎𝑐𝑘𝑖𝑛𝑔 = 35

𝑏𝑢𝑖𝑙𝑑 𝑠𝑝𝑒𝑒𝑑 = 25
𝑏𝑢𝑖𝑙𝑑 𝑐𝑜𝑠𝑡 = 15

 

 

Figure 6-11: Output solution space showing top performing solutions (blue diamonds) finding high-performing solutions 
for conflicting requirements. 

This final result shown in Figure 6-11, displays the compromise condition with the best results 

favouring either the part performance or part throughput. In this trade-off situation the designer 

has to select which results will be the most appropriate for their given design specification.  
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6.4.2. High Performance Part Production  
This second test case represents the high-performance environment (such as competitive motor 

racing) that was described by persona B in the Chapter 5. This production scenario aims to 

maximise structural performance with the relaxed constraints being part cost and material 

consumption. To locate parts within the solution space that maximise structural performance, the 

percentage allocation of weights, 𝑤, is given as follows: 

𝑤 = {

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 80
𝑏𝑢𝑖𝑙𝑑 𝑝𝑙𝑎𝑡𝑒 𝑝𝑎𝑐𝑘𝑖𝑛𝑔 = 0

𝑏𝑢𝑖𝑙𝑑 𝑠𝑝𝑒𝑒𝑑 = 20
𝑏𝑢𝑖𝑙𝑑 𝑐𝑜𝑠𝑡 = 0

 

Figure 6-12 shows that the MCDA analysis highlights the area of the solution space with the 

lowest compliance but also shows the area with the lowest amount of support structure, which 

although not specifically requested by the designer is clearly advantageous. The solution space is 

highlighted in (red) circles with the top five results from the MCDA analysis plotted in (blue) 

diamonds. 

 

Figure 6-12: (Left) Part cost versus build projection area plot and (right) compliance versus part build time showing top 
results in diamonds for high-part performance scenario. 
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Figure 6-13: Parallel coordinates plot showing optimised solutions for structural performance with respect to solution 
space 

A parallel coordinates plot is shown in Figure 6-13, which highlights the position of these solutions 

with respect to the entire solution space. The results show that a manufacturability constraint 

should not be applied and that minimal support can be achieved by building the structure at 0° or 

90° to the build plate. For a single part, build time can be reduced by minimising build height, 

therefore the solution at 0° build angle is selected. To validate the printability, the design was 

exported from the design environment and printed with support structures, using an Ultimaker 2+ 

Extended material extrusion printer as shown in Figure 6-14 (centre). The supports were removed 

after the build, and the final part is shown in Figure 6-14 (right). The successful print provides two 

important results. Firstly, it indicates that the geometric constraints selected for the structural 

optimisation still lead to quality builds. Secondly, it emphasises the importance of understanding 

both the design requirements and the generative synthesis method as support structures can 

have a large contribution to the overall material usage. This is particularly challenging with 

ground-structure topology optimisation synthesis methods. Significant time and care must be 

dedicated to support structure removal to prevent compromising the target part. 

 

Figure 6-14: Optimised design for structural performance, digital (left), with supports (centre) and after support removal 
(right) 

6.4.3. High Volume Part Production  
To maximise the economic advantage and increase the uptake of AM as a competitive 

manufacturing process, it is imperative that per-part costs are reduced. Pili et al (2015), show that 

total build cost can be reduced by up to 91.2% if the total area of the build plate is used when 



96 
  

compared to a single part; this could be exploited by utilising existing research undertaken in the 

field of build plate packing optimisation (Zhang et al. 2018). In high production quantity 

(represented by persona A), the overall cost of the part, including part-processing time, is 

extremely important. Support structure also adds significant time and cost to builds (Strano et al. 

2013). Therefore, reducing support requirements is crucial for high production quantity. The 

weights, 𝑤, have been selected to maximise build plate packing, with some additional input from 

the per-part build time. As multiple parts are required, there is a trade-off between the minimum 

part cost and the ability to nest multiple parts on a single build plate. 

𝑤 = {

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 0
𝑏𝑢𝑖𝑙𝑑 𝑝𝑙𝑎𝑡𝑒 𝑝𝑎𝑐𝑘𝑖𝑛𝑔 = 20

𝑏𝑢𝑖𝑙𝑑 𝑠𝑝𝑒𝑒𝑑 = 0
𝑏𝑢𝑖𝑙𝑑 𝑐𝑜𝑠𝑡 = 80

 

 

Figure 6-15: (Left) Part cost versus Build projection area plot and (right) compliance versus part build time showing top 
results in diamonds for a high-production quantity scenario. 

The results in Figure 6-15 (left), show that the optimal parts for high production quantity occur 

with a minimum build projection on the build plate, but also aim to minimise the supports that 

occur thus, reducing build cost and post-processing time. This can be seen to be traded off against 

structural performance (right). In Figure 6-16, it is clear that placing the parts on the build plate 

with a smaller projection area (left) yields a greater build packing ratio (2.57:1) as it is possible to 

fit 36 parts onto the build plate versus 14 when the build projection area is at its greatest 

projection area (right). Using the Cura build preparation software (Ultimaker 2017), the print time 

can be calculated for each production scenario. The highest part performance build plate takes 

approximately 3d 5h 38min to complete, whereas the build time for highest production quantity 

was 4d 22h 09min. Taking the packing ratio into account, the maximum production quantity 

scenario yields a 60.87% efficiency improvement in part throughput. This adds further credence 

to the importance of incorporating design objectives within structural optimisation. The parts 
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built in Figure 6-16 (left) representing the high-production quantity scenario perform differently 

to the corresponding solutions in Figure 6-16 (right), where structural performance is critical. 

 

Figure 6-16: Comparison of packing efficiency when minimising vs maximising build projection area. (Left) High 
production quantity persona output compared with (right) highest structural performance output. 

The highest rated design has the smallest build width and can accommodate the greatest number 

of parts on the build plate. Furthermore, the manufacturing constraint is applied, eliminating the 

requirement for support structures. The build height is relatively high, but this is traded-off 

against the packing volume. The position of the top 5 solutions relative to the solution space is 

highlighted in the parallel coordinates plot (Figure 6-17). 

 

Figure 6-17: Parallel coordinates plot showing optimised solution for high production quantity with respect to solution 
space 

The result from the constrained optimisation for the maximum production quantity goal can be 

seen in Figure 6-18. The as-built version is also shown demonstrating its manufacture without 

support structure. This highlights that a maximum overhang of 45° is suitable for manufacturing 

using the FDM process. Surface finish is shown to deteriorate with distance from the starting 

node, this indicates that the potential benefits of including an aspect ratio constraint. 
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Figure 6-18: Digital (left) and as printed designs (right) for optimised design for maximum production volume 

6.5. Summary 
By applying a novel DfAM method that combines a ground-structure topology optimisation with 

TOPSIS MCDA, design solutions for a cantilevered beam have been designed by optimising for 

three common AM-specific design personas. This chapter shows the capability of TOPSIS MCDA to 

accurately highlight areas of the solution space that maximise part quality with respect to 

abstracted design and business criteria. 

The main findings from this chapter are as follows:  

 The usefulness of manufacturing constraints within topology optimisation is dependent 

on design objectives. It is feasible that blanket utilisation of manufacturing constraints 

may lead to sub-optimal solutions to certain design tasks.  

 Defining design objectives early in the design process and utilising generative design to 

explore the design space (e.g. multiple build orientations) can help to discover higher 

performing design solutions.  

 Small changes in weightings can affect the final outcome for the MCDA. Therefore it is 

recommended that for multi-objective problems, the designer tests multiple different 

weightings to locate a broader range of feasible solutions. Thus highlighting the 

importance of keeping a designer within the generative part design process. 

 As manufacturing constraints have a direct effect on structural performance, it is crucial 

to understand any machine-specific manufacturing limitations and utilise these within 

topology optimisation to leverage the full potential of AM.  

Presently, the generated solutions space is independent of the defined goals, and the MCDA 

analysis is used to highlight areas of the solution space that maximise these goals. In Chapter 7, 
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intelligent search strategies, such as Bayesian optimisation will be introduced to reduce the 

computational expense of creating a solution space of structurally optimised parts. 
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Chapter 7 - Bayesian Optimisation in 
Generative Design 

7.1. Introduction 
Chapter 6 has shown the applicability of data-driven methods to locate the highest-performing 

solutions within a generated AM solution space for multiple differing objective functions. One of 

the disadvantages of using data-driven methods is the computational and time expense 

associated with generating a solution space at a suitable resolution to capture high-performing. 

This chapter will explore alternatives to data-driven generative design methods that can locate 

high-performing solutions by finding build orientations that minimise support structure 

requirements with much greater computational efficiency. 

7.2. Alcoa Bracket 
The first test part to be evaluated is the Alcoa bracket. Even with only two dimensions, due to 

computational limitations, it is infeasible to compute all possible angle permutations. A 

comparison of iterations at 15, 20, 30 degree increments are taken, and the minimum value of the 

objective function is found. The results for each of the evaluation metrics can be viewed in Table 

7-1. 

Table 7-1: Best solutions for different numbers of iterations of grid search for the Alcoa bracket. 

Orientation 

Interval 

[°] 

Minimum Number 

of Overhanging 

Faces 

Minimum  

Support Length  

[mm] 

Minimum  

Support Volume 

[mm3] 

15 304 6,412 3,461 

20 438 7,311 5,541 

30 488 7,381 7,371 

 

To determine the number of iterations required to approximate the Gaussian process response 

surface for overhanging surfaces or the amount of support, a series of tests were run with varying 

numbers of function evaluations. The best result from this exploration is displayed in Table 7-2.  
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Table 7-2: The best values found using random search and Bayesian optimisation during the iteration tests. 

 

Test Method 

 

Minimum 

Number of 

Overhanging 

Faces 

Minimum  

Support Length 

[mm] 

Minimum  

Support Volume 

[mm3] 

Random 301 6,337 2,193 

Bayesian Optimisation 300 6,016 1,546 

 

For each number of iterations explored, tests were repeated 30 times to perform a non-

parametric Mann-Whitney U test. The null hypothesis of this test was that there would be no 

differences between the median value for the evaluation criterion found with a grid search and, 

independently, either random search or Bayesian optimisation. The results are presented in the 

boxplots of Figure 7-1 to Figure 7-3, where the horizontal red line corresponds to the best value 

found throughout all tests. Tables including the median value of each test and the corresponding 

p-value obtained from the statistical comparison and shown in Table 7-3, Table 7-4 and Table 7-5. 

The circles represent data points that are less than 1.5 × 𝐼𝑄𝑅 from quartile 1 (Q1) or greater than 

1.5 × 𝐼𝑄𝑅 from quartile 3 (Q3), where IQR is the inter-quartile range (Q3-Q1). 

Table 7-3: Iteration test values for number of overhangs for Alcoa test bracket. 

Test Criteria Random Bayesian Optimisation 

 Median Median P-Value 

15 604 584 1.90x10-1 

25 570 535 1.40x10-1 

35 455 399 1.90x10-3 

50 455 336 7.50x10-4 

100 410 309 4.52 x10-6 

 

Figure 7-1: Comparison of number of iterations for random search (left) and Bayesian optimisation (right) and the 
number of overhanging faces (n=30 tests) 
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Table 7-4: Iteration test values for total support length for Alcoa test bracket. 

Test Criteria Random Bayesian Optimisation 

 Median (mm2) Median (mm2) P-Value 

15 8537 7386 1.60x10-2 

25 7381 7179 5.41x10-4 

35 7361 7155 2.05x10-6 

50 7315 7122 2.45x10-6 

100 7221 7119 9.25x10-4 

 

Figure 7-2: Comparison of number of iterations ran for random search (left) and Bayesian optimisation (right) and the 
output support length (n=30 tests) 

Table 7-5: Iteration test values for total support volume for Alcoa test bracket. 

Test Criteria Random Bayesian Optimisation 

 Median (mm3) Median (mm3) P-Value 

15 12381 10239 3.20x10-1 

25 9334 8086 0.20x10-1 

35 7633 6779 3.50x10-2 

50 7393 2338 2.70x10-4 

100 7100 2220 1.48x10-5 

 

Figure 7-3: Comparison of number of iterations ran for random search (left) and Bayesian optimisation (right) and the 
output support volume (n=30 tests) 
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This experiment established that 35 iterations of Bayesian optimisation with the Matèrn kernel 

and Expected Improvement acquisition function produced improved results when compared to 

random search. Now, all combinations of acquisition and covariance functions are tested and 

compared against random search to identify their relative performances when trying to minimise 

support structure.  The resulting box plots are shown in Figure 7-4. The median values and p-value 

obtained from the comparison of random search and Bayesian optimisation are found in Table 

7-6, Table 7-7, and Table 7-8. The horizontal blue line indicates the best value found in all 

repeated tests. Comparing each combination of covariance and acquisition function to random 

search, shows that Bayesian optimisation provides significantly better results for 35 iterations. 

There is no significant difference between any of the Bayesian optimisation acquisition function 

and covariance functions.  
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Figure 7-4: Exploring the effect of changing the covariance and acquisitions functions for 35 iterations of Bayesian 
optimisation compared to random search for each support structure evaluation metric for the Alcoa bracket (n=30 

tests). 
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Table 7-6: Median values for number of overhangs for Alcoa test bracket 

Test Criteria Median Value P-Value 

Random 455 - 

UCB-RBF 412 2.10x10-2 

UCB-Matern 437 9.00x10-3 

EI-RBF 421 9.00x10-3 

EI-Matern 399 1.90x10-3 

 

Table 7-7: Median values for total support length for Alcoa test  bracket 

Test Criteria Median Value (mm2) P-Value 

Random 7361 - 

UCB-RBF 7160 2.45x10-6 

UCB-Matern 7017 1.02x10-6 

EI-RBF 7190 6.44x10-6 

EI-Matern 6982 2.06x10-6 

 

Table 7-8: Median values for total support volume for Alcoa test bracket 

Test Criteria Median Value (mm3) P-Value 

Random 7633 - 

UCB-RBF 5039 1.10x10-2 

UCB-Matern 6739 3.30x10-2 

EI-RBF 4678 3.51x10-2 

EI-Matern 6779 3.60x10-2 

 

7.3. GE Bracket 
The following section describes the results arising from the GE bracket experiments. A grid search 

was performed using 15°, 20°, and 30° intervals and the best result for each of the evaluation 

criteria is recorded in Table 7-9.  

Table 7-9: The best solutions identified for different numbers of iterations of grid search when testing the GE bracket. 

Orientation 

Interval 

[°] 

Minimum Number of  

Overhanging Faces 

 

Minimum  

Support Length 

[mm] 

Minimum  

Support Volume 

[mm3] 

15 4,036 63,718 10,181 

20 3,930 66,583 22,854 

30 4,101 76,029 28,142 

 

Based on the results in Section 7.2. 35 samples are taken for both the random search and the 

combinations of acquisition and covariance functions in order to determine their effect on the 

evaluation criteria. The graphs of the results are shown in Figure 7-5, and Table 7-10 shows the 
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minimum values from each method. Table 7-11,Table 7-12 and Table 7-13 provide the p-values 

for each of the statistical tests. The horizontal blue line indicates the best results found in all 

repeated tests. 

Table 7-10: Exploring the effect of changing the covariance and acquisitions functions for 35 iterations of Bayesian 
optimisation compared to random search for different performance metrics for the GE bracket (n=30 tests). 

 

Test Method 

Minimum Number of 

Overhanging Faces 

Minimum  

Support Length 

[mm] 

Minimum  

Support Volume 

[mm3] 

Random 3,896 61,058 13,401 

Bayesian 

Optimisation 

3,883 60,015 10,181 

 

Table 7-11: Median values for total number of overhangs for GE bracket 

Test Criteria Median Value P-Value 

Random 4091 - 

UCB-RBF 3961 4.61x10-6 

UCB-Matern 3886 6.36x10-9 

EI-RBF 3984 9.17x10-5 

EI-Matern 3944 3.02x10-6 

 

Table 7-12: Median values for total support length for GE bracket 

Test Criteria Median Value (mm2) P-Value 

Random 83860 - 

UCB-RBF 65920 2.72x10-6 

UCB-Matern 60665 4.37x10-11 

EI-RBF 65581 4.59x10-6 

EI-Matern 65074 2.618x10-6 

 

Table 7-13: Median values for total support volume for GE bracket. 

Test Criteria Median Value (mm3) P-Value 

Random 37699 - 

UCB-RBF 31464 9.60x10-2 

UCB-Matern 38570 4.30x10-3 

EI-RBF 32301 6.60x10-2 

EI-Matern 33659 4.91x10-2 
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Figure 7-5: Exploring the effect of changing the covariance and acquisitions functions for 35 iterations of Bayesian 
optimisation compared to random search for support structure evaluation metric for the GE bracket (n=30 tests). 
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7.4. Key Observations 
The results show that even for a small two-dimensional design problem, a grid search is an 

ineffective method to locate the optimal build orientation unless a fine resolution is selected. This 

may be computationally infeasible for large mesh sizes unless the best solution coincides with the 

selected resolution. 

By selecting real-world examples for test parts, it has been demonstrated that Bayesian 

optimisation can operate alongside representative mesh sizes. The results show that good 

solutions can be found by forming a response surface using small numbers of iterations. Autodesk 

Meshmixer (Autodesk 2018a) is a commercially-available software package with the option to find 

optimised build orientations. The software provides multiple outputs for this optimisation, and 

these have been compared to the best results from the metrics for support length (Figure 7-6 (a) 

and Figure 7-7 (a)) and support volume (Figure 7-6 (b) and Figure 7-7 (b)). From visual inspection, 

it is clear that the results correspond well with the results given by the commercial software.  

 

 

Figure 7-6: A comparison of results between the Meshmixer software (top) and Bayesian optimisation algorithm 
(bottom) for the Alcoa bracket. 
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Figure 7-7: A comparison of results between the Meshmixer software (top) and Bayesian optimisation algorithm 
(bottom) for the GE bracket. 

7.4.1. Evaluation of Optimisation Methods 
The Alcoa bracket results highlight that grid search is an inefficient method for finding the optimal 

build orientation. Firstly, using the number of overhanging facets as the evaluation criterion 

showed that: 

 35 iterations of random search produces a better median value than the best result from 

grid search with a resolution of 30°.  

 35 iterations of Bayesian optimisation produce a better result than a 20° resolution of grid 

search. 

 Bayesian optimisation was found to produce a better result than a 15° increment in the 

grid search using 50 iterations; a 12.5 fold improvement in required iterations for an 

improved result.  

Using support length as the evaluation criterion: 

 25 iterations of Bayesian optimisation produce a better median value than increments of 

20° in the grid search.  

 Both Bayesian optimisation and random search find better solutions than all resolutions 

of grid search.  

Finally, using the estimated support volume as the evaluation criterion: 

 35 iterations of Bayesian optimisation and 50 iterations of random search both find 

better median solutions than the best solution for increments of 30° in the grid search.  

 50 iterations of Bayesian optimisation produce a better median result than increments of 

20° in the grid search. 
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 100 iterations of Bayesian optimisation produces a better median than all tests 

performed using grid search; a six-fold improvement in efficiency.  

The “best value” results are more challenging to compare. The total number of iterations for the 

best value can be calculated as the product of the number of tests (n=30) and the number of 

iterations run per test. For example, the best Bayesian optimisation result for 35 iterations arose 

from a total of 30 × 35 = 1,050 evaluations (see Figure 7-8 and Figure 7-9). The best value for 

the Alcoa bracket was found with the rotation angles 303° and 31° about the x- and y-axes, 

respectively. As these numbers are prime, the grid search would have to have to use 1° 

increments to locate the same value.  
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Figure 7-8: Comparison between grid search, random search and Bayesian optimisation for differing numbers of 
iterations and support structure evaluation metrics using the Alcoa test bracket. 



112 
  

 

 

 

Figure 7-9: Comparison between different covariance and acquisition functions for the GE bracket. Showing the median 
and best values of support evaluation criteria metric compared to the best value found using grid search. 
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The grid search results from the GE bracket (using the number of overhanging facets as the 

evaluation criterion) show that 20° resolution performs better than 15° resolution in the grid 

search. This further illustrates that grid search is a challenging method for use in optimising build 

orientation unless the resolution is extremely small. Using the same evaluation criterion, the 

median value arising from 35 iterations of random search is lower than the values found using 30° 

increments in the grid search. 

The median value for the Bayesian optimisation for all combinations of acquisition and covariance 

functions outperforms grid search for 15° increments after just 35 iterations. Both random search 

and Bayesian optimisation find lower values than all grid search tests, with Bayesian optimisation 

producing the best results. Bayesian optimisation performed better than grid search for 30° 

increments, and the combination of the UCB acquisition function and Matèrn covariance function 

produces a better median result than all tested increment sizes for grid search.  

Using the estimated support volume criterion with the GE bracket shows that the RBF covariance 

function underperforms when compared against the Matèrn. Accordingly, the results yield p-

values slightly above 0.05 when compared to random search. Both p-values for the Matèrn 

covariance function show that Bayesian optimisation performs significantly better than random 

search. This suggests that the addition of a smoothness factor can be important for certain 

geometries.  

The success of Bayesian optimisation indicates that this method is effective, irrespective of which 

evaluation criterion is used. If fast and accurate implementations of support structure algorithms 

are available, they can be substituted as the evaluation metric, and Bayesian optimisation can still 

efficiently locate high-performing results. This shows that this method is likely to generalise to the 

support structure methods described in Chapter 2 and also GPU-accelerated implementations. 

For both test parts, p-values from the Mann Whitney U test show that Bayesian optimisation 

consistently outperforms random search for thirty-five iterations or greater. This indicates that 35 

iterations is a safe estimate for the minimum number of iterations required to locate high-

performing results. However, it should be noted that higher numbers of iterations have been 

shown to produce lower median values across repeated tests. Therefore, the designer must find a 

balance between computational time and accuracy when parts have large mesh sizes. 

7.4.2. Comparison of Evaluation Criteria 
To compare each of the evaluation criteria, both test parts were processed using Ultimaker’s Cura 

v3.4.1 build preparation software (Ultimaker 2017). The parts were orientated according to the 

median and best-recorded results for 35 iterations of Bayesian optimisation (in terms of support 
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minimisation).  The Cura software was set to the default settings: 20% infill, 0.1mm layer height, 

PLA material, 0.4mm nozzle with a 45° max overhang angle. Table 7-14 and Table 7-15 show the 

Cura results. The data provided includes the support quantity in terms of filament length and 

mass alongside the rotation angle used to achieve these results for both the median and best 

observed values from the Bayesian optimisation. 

Table 7-14: Comparison of different evaluation criteria using mass and filament usage length measurements given by 
the Cura software for the Alcoa bracket. 

 

 

Evaluation Criterion 

Median 

support 

quantity, 

length and 

mass 

[m, g] 

Rotation 

about  

x- and y-axes 

[°] 

Best support 

quantity, 

length and 

mass 

[m, g] 

Rotation 

about  

x- and y-axes 

[°] 

Number of Overhangs 4.01m/~32g [303, 215] 3.75m/~30g [263, 226] 

Total Length of Support 3.69m/~29g [  64,   93] 3.12m/~25g [270, 185] 

Total Volume of Support 5.22m/~41g [329,   11] 3.37m/~29g [303,   31] 

 

Table 7-15: Comparison of different evaluation criteria using mass and filament usage length measurements given by 
the Cura software for the GE bracket. 

 

 

Evaluation Criterion 

Median support 

quantity, length 

and mass 

[m, g] 

Rotation 

about  

x- and y-axes 

[°] 

Best support 

quantity, length 

and mass 

[m, g] 

Rotation 

about  

x- and y-axes 

[°] 

Number of Overhangs 13.33m/~105g [189, 171] 13.04m/~103g [     8,     0] 

Total Length of Support 12.89m/~102g [  16,      0] 13.12m/~104g [194, 176] 

Total Volume of Support 13.35m/~106g [217, 177] 13.08m/~103g [225,      0] 

 

The test results for the Alcoa bracket (Table 7-14) show that the median value lies within 8% of 

the mass of the minimum value found. Using the number of overhanging facets as the evaluation 

criterion performs comparatively worse than the support volume, with the support length metric 

resulting in the most effective minimisation of support structure. The suggested Meshmixer 

rotations, as depicted in Figure 7-6, were imported into Cura and shown to have a mass of 28g 

and 24g, respectively. This indicates that for this test part, the support length and support volume 

criteria are accurate representations with the support length metric locating values within 3.45% 

of commercial software. As the Alcoa bracket has a plane of symmetry, the best values are 

mirrored. For example, x-axis and y-axis rotations of [270°, 185°] are equivalent to [90°, 355°]. To 

improve the efficiency of the search, parts with a plane of symmetry should exploit this efficiency 

and half the search domain. 
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The value of total support length for the GE bracket shows that the lowest value of support 

structure is also found using the support length metric. The median value for the total support 

volume is lower than the maximum value, indicating that the support volume metric does not 

accurately represent the total amount of support structure required to support the bracket within 

the Cura software. This can be attributed to the limitations described in Chapter 5.  

The GE bracket appears to have been designed with the [90°, 0°] orientation in mind. However, if 

the results arising from the total support length criterion are compared against the results for the 

original orientation, a 17.7% saving is made in support material. The highest performing 

Meshmixer solutions, shown in Figure 7-7, were found to have masses of 105g and 101g, 

respectively. This shows that the support length criteria is within 2.86% of this value and the 

support volume criteria is within 1.94% of the observed value. 

The results show that support length is a good approximation of the total support requirement of 

the part. Provided that the part is not subject to the limitations of this metric as described in 

Chapter 5, the support length requirement acts as a suitable and computationally efficient metric 

for the total support requirement. In addition, by selecting ray casting as the method to perform 

support length, the speed of this evaluation criterion can be improved further by parallelisation 

using GPU accelerated computing. 

7.5. Summary 
The research within this chapter presents a novel method to determine the optimal build 

orientation of an additively manufactured part using Bayesian optimisation. Different evaluation 

criteria are assessed to determine their success in finding high-quality build orientations. These 

are then compared against commercial software, and their performance is commensurate. The 

proposed method was verified using two open-access engineering parts that are typical in AM 

applications.  

The following observations can be drawn from the research in this chapter: 

 The number of overhanging facets, support structure length and support structure 

volume all approximate the total amount of support structure well. Based on the 

efficiency of calculation and the performance benchmarked against commercial software, 

support length is recommended as the most appropriate support proxy providing the 

parts do not have large flat faces. The results for each support structure metric have been 

shown to align within 3.5% of commercial software estimations.  



116 
  

 Grid search is a poor method for finding the optimal build orientation unless the angular 

increments are small. This is often not feasible due to computational constraints. 35 

iterations of Bayesian optimisation has been shown to consistently outperform grid 

search at an angular increment of 20° (324 iterations) and perform significantly better 

than random search for the same number of iterations. 

 Whilst Bayesian optimisation does not always guarantee locating the global optimum 

solution, the median solution is generally close to the best observed solution and has 

been shown to be over 17 times more efficient at finding good build orientations than 

grid search. 

The results in this chapter have shown that Bayesian optimisation can be used to significantly 

improve the efficiency of locating the high-performing build orientations for additive 

manufacturing. The use of proxy metrics for evaluating the amount of support structure provides 

useful and efficient approximations of the true value (as demonstrated using build preparation 

software). The ability to efficiently optimise build orientation will reduce the amount of 

unnecessary support structure in AM builds. This, in turn, will reduce manufacturing times, waste 

material and the significant time and cost penalties incurred in removing support structure. This is 

confirmed by the results, which reduced the total mass of the GE bracket by 16.2%, by optimising 

build orientation. 

The results from this chapter have shown that Bayesian optimisation can be used as an effective 

surrogate model for finding high-performing solutions to design problems which are 

computationally challenging to grid search. These research findings will now be used to test the 

goal-driven generative method, which will be described in Chapter 8, to improve the efficiency of 

generating optimised solutions to various design objectives. This will then be compared to the 

data-driven method outlined in Chapter 6. 
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Chapter 8 - Goal-Driven Generative 
Design for Additive Manufacturing 

8.1. Introduction 
The results from Chapter 7 show the potential to use adaptive surrogate models, in particular, 

Bayesian optimisation, to optimise the build orientation of structurally optimised AM parts. This 

chapter extends this to the design problem described in Chapter 5 by assessing goal-driven 

approaches to generative design for their ability to generate suitable geometry for high-level 

functionally optimised geometry. The results from the goal-driven generative design method will 

be compared against random search for its ability to converge on high-performing solutions. 

Secondly, the effect of changing the acquisition function will be explored, and differing numbers 

of iterations will be tested to determine the number of iterations required to locate high-

performing solutions. Next, the design space domain will be extended to determine the ability for 

goal-driven methods to search larger design spaces than would be feasible with data-driven 

methods. Finally, the performance of solutions generated by both data-driven and goal-driven 

methods will be compared to answer the research question set out in Chapter 4. 

8.2. Benchmarking Results against Random Search 
To ensure the results from the Bayesian optimisation are converging on high median values of the 

objective function, the results must be benchmarked against random search. Based on the results 

from Chapter 7, tests are conducted for the Matèrn covariance and UCB acquisition functions. The 

results for each of the production scenarios described in the research methodology are run for 10 

iterations of both Bayesian optimisation and random search. The results are repeated 21 times to 

generate a median value, as shown in Table 8-1. 

Table 8-1: Output values for 21 iterations of random search and Bayesian optimisation for 10 iterations 

Persona Bayesian Optimisation 

(median) 

Random 

(median) 

Best result 

 

p-value 

 

Overall Performance 0.536 0.565 0.531 3.23x10-8 

Highest Structural 

Performance 

0.341 0.427 0.316 9.82x10-5 

Highest Production 

Quantity 

0.366 0.434 0.349 1.64x10-7 
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8.3. Goal-Driven Generative Design for Additive Manufacturing  
To evaluate the effectiveness of using Bayesian optimisation for locating high-performing 

solutions for different AM scenarios, different numbers of iterations were tested and evaluated 

against the multi-dimensional criteria outlined in the research methodology. The tests were 

repeated 21 times in order to attain a median estimate for the location of the best solution. The 

following graphs show the output with respect to the level 2 abstraction criteria. The red circles 

represent all of the solutions evaluated, the blue diamonds represent the best objective function 

value achieved for n-iterations, and the golden star represents the median value attained from 

each of the best values obtained from the 21 runs. The gold star may overlay a number of the 

blue diamonds if the same best value for the objective function is located on multiple runs. This 

value represents the most-likely value to be attained from any repeated test with n-iterations. All 

tests were performed using the Matèrn covariance function with a UCB acquisition function.  

8.3.1. Ten Iterations of Random Search and Bayesian Optimisation 
The following section contains the results for 10 iterations of both the random and Bayesian 

optimisation algorithms for each of the production scenarios outlined in Section 5.3.3.5. 

8.3.1.1. High Overall Performance 
Described by persona C in the research methodology, the following figures display the results for 

the overall performance metric, for both random search and Bayesian optimisation. The results 

show that Bayesian optimisation performs significantly better than random search for this 

performance metric, as shown in Table 8-1. Figure 8-1 shows the results from the random search 

scenario. The results show that whilst high-performing solutions are found, the high interquartile 

range, shown in the boxplots in Figure 8-3, means that these solutions are unlikely to be found 

unless many computational runs are performed. This may be computationally infeasible. 

 

Figure 8-1: Cost-projection area and compliance-time graphs for 10 iterations of random search for the maximum 
overall performance metric. 
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Figure 8-2 shows the result from the Bayesian optimisation strategy, the results show a bias 

towards a low cost, low build projection solution. The best results are generated at 90°/-90° build 

orientation with no overhang constraint applied. The interquartile range of results is far smaller 

than the random case as shown in the boxplot in Figure 8-3. 

 

Figure 8-2: Cost-projection and compliance-time plots for Bayesian optimisation using 10 iterations for the maximum 
overall performance production scenario. 

 

 

Figure 8-3: Boxplots for maximum overall performance persona, showing 10 iterations of Bayesian optimisation and 
random. 

8.3.1.2. High Performance Part Production 
The persona B production scenario results are detailed in this section. Figure 8-4 shows the results 

from random search. The results show a large range in the best performing solutions, with the 

mean result performing poorly with respect to minimising structural performance and build time. 
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Figure 8-4: Cost-projection and compliance-time plots for using 10 iterations of random search with the aim of 
maximising part performance. 

Figure 8-5 shows the results from 10 iterations of the Bayesian optimisation search strategy. The 

results clearly show a bias toward regions of low compliance and build time. However, whilst 

high-performing solutions were found in the 21 tests, the median solution was lower performing 

than would be satisfactory, indicating that a greater number of iterations is likely to be required 

to improve the median value. 

 

Figure 8-5: Cost-projection and compliance-time plots for Bayesian optimisation using 10 iterations of UCB acquisition 
function with the objective of maximising part performance. 

To measure the effect of increasing the number of iterations on the overall performance of the 

random search and Bayesian optimisation strategies, 15 and 20 iterations were tested for both 

methods. The following boxplots highlight the performance of the Bayesian optimisation when 

compared to random for 10, 15, and 20 function iterations. The results are illustrated in the 

boxplots in Figure 8-6. Whilst each set of tests show that the Bayesian optimisation outperforms 

random search, 20 iterations are required to provide a consistent median result at the highest 

performing value. 
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Figure 8-6: Trends in maximum overall part performance with the x-axis rotation set between [-90°, 90°] for different 
numbers of structural optimisation iterations. 

Figure 8-7 shows the scatter plots comparing build cost and part projection area, part compliance 

and part build time for 20 iterations of Bayesian optimisation. The results show that there are a 

small number of solutions which deviate from the highest performing solution. The median 

sample is focused on the lowest compliance and lowest build time indicating that the search 

strategy has achieved the target from the objective function. 

 

Figure 8-7 - Cost-projection and compliance-time plots for Bayesian optimisation using 20 iterations of UCB acquisition 
function with the objective of maximising part performance. 

7.3.1.3. High Volume Part Production 
The following section details the results from the highest volume part production scenario. As 

with the previous results, Figure 8-8 shows that the random search method at 10 iterations finds 

high-performing results with a large interquartile range (depicted in Figure 8-10), indicating its 

unreliability as a method to guarantee high-performing results. 
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Figure 8-8: Cost-projection and compliance-time plots for 10 iterations of random search for the highest part throughput 
production scenario. 

Figure 8-9 shows the Bayesian optimisation results for 10 iterations. The results show a strong 

bias towards minimising build projection and build cost with the top performing solution found to 

be at -90° with a full manufacturability overhang constraint. The interquartile range of the 

Bayesian optimisation is also far smaller than that of the random search, as seen in Figure 8-10. It 

is notable that the best solutions for the highest overall part performance and the highest 

production quantity scenarios exist at the bounds of the design space domain. To show that the 

goal-driven generative design algorithm generalises, the design space will be modified so that the 

best performing solutions exist in a different location in the design space. This would ensure that 

the surrogate model would also find top performing solutions when they are not present at the 

bounds of the optimisation.

 

Figure 8-9: Cost-projection and compliance-time plots for Bayesian optimisation using 10 iterations of UCB acquisition 
function with the objective of maximising part throughput. 
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Figure 8-10: Boxplots for highest production quantity scenario for original design space problem. 

8.3.2. Extending the Domain of the Design Space 
The x-axis rotation angle is increased to, 𝜃 ∈ ℤ: 𝜃 ∈ [0, 359]. This design space is important for 

two reasons. Firstly, it represents a design problem where the optimal solutions are not found at 

the edges of the design space domain. Secondly, this design problem is representative of the 

types of problems that would likely be infeasible using the grid search based approaches using in 

data-driven generative design for AM due to computational limitations. 

8.3.2.1. High Volume Part Production 
Initially, the experiment for highest production quantity was designed with a value of 𝜅 = 3.0, 

input to the acquisition function. The boxplot results of 21 iterations of this experiment are shown 

in Figure 8-11 with the output objective function value. The results demonstrate that there is not 

a statistically significant difference between the results from the Bayesian optimisation and the 

random search algorithm for either 15 iterations (𝑝 = 0.232) or 20 iterations (𝑝 = 0.119). 
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Figure 8-11: Boxplots for 15 and 20 iterations of Bayesian optimisation and random search for high production quantity 
persona with a UCB hyper parameter value 𝜅 = 3.0.  

The following graph (Figure 8-12) shows the output from the Bayesian optimisation algorithm 

with 20 iterations. The results show the best results clustered around the area of lowest cost and 

build projection area, which is in line with the top performing results from the data-driven 

approaches. However, it is anticipated that this could be improved by altering the acquisition 

function hyper parameters with a preferential bias towards maximising the mean value. 

 

Figure 8-12: Cost-projection and compliance-time plots for Bayesian optimisation using 20 iterations of UCB acquisition 
function with the objective of maximising part throughput. 

Figure 8-13 depicts the contour plots for the Gaussian process output after 13 iterations. The 

results give an indication of the poor performance of the Bayesian optimisation. Despite the 

algorithm locating regions of high-performing solutions indicated with a high mean value, the 



125 
  

acquisition function strongly favours unexplored areas of the solution space. This process is 

repeated unsuccessfully as these are areas of infeasible solutions. 

 

Figure 8-13: Plots for Gaussian process mean, variance and corresponding acquisition function value set with k=3.0 

Figure 8-14 depicts the design space used within this problem. This plot was created by randomly 

sampling the design space. The areas in which no solutions are present within the plot represent 

areas of design space combinations that produce infeasible solutions. This is also represented in 

Figure 8-13 with the lighter coloured areas in the Gaussian process variance contour plot. This is 

attributed to high variance depicting unexplored regions of the design space. The top performing 

solutions are shown with blue diamonds at two distinct x-values. Discontinuities in functions can 

be challenging for Bayesian optimisation as they leave regions of high uncertainty which are 

repeatedly targeted by the Bayesian optimisation process if the hyper parameters of the 

acquisition function are set to favour areas of high variance. If the acquisition function favours the 

variance term too highly, the Bayesian optimisation will test the areas of infeasible solutions at 

each iteration. Upon finding an infeasible solution, the algorithm then samples a random set of 

design space parameters, which in turn leads to the solution space tending toward that of the 

random search. 
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Figure 8-14: Design Space for 20 iterations of random search for the highest production quantity scenario. Blue 
diamond’s represent the best solution for each experimental run. 

To improve the performance of the Bayesian optimisation, the hyper parameters of the 

acquisition function can be reduced to bias the output to areas of higher mean value rather than 

variance. To locate this value, the following plots were produced at each iteration and the values 

of the mean, variance and acquisition function are recorded. Figure 8-15 shows the Gaussian 

process contour plot after the hyper parameters have been selected that favour higher mean 

values rather than areas of higher variance. This agrees with the values from the design space in 

Figure 8-14. As the dimensionality of the design space increases, it becomes difficult to visualise 

the Gaussian process. However, the hyper parameters can still be selected either by manual 

search or alternatively, by combining the surrogate modelling with multi-dimensional visualisation 

techniques as shown in Wortmann (2017).  
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Figure 8-15: Plots for Gaussian process mean, variance and corresponding acquistion function value set with 𝑘 = 0.25. 

The results were rerun for the lower value of 𝜅 = 0.25, and the following boxplots, in Figure 8-16, 

depict the output results from this experiment. The results show that the reduced 𝜅 value leads to 

statistically significant improvement of Bayesian optimisation when compared to random search 

for both 15 iterations (𝑝 = 1.34 × 10−2) and 20 iterations (𝑝 = 5.53 × 10−3). 

 

Figure 8-16: Boxplots for 15 and 20 iterations of Bayesian optimisation and random search for highest production 
quantity metric with a UCB hyper parameter value 𝜅 = 0.25. 
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The results after the parameter 𝜅, is reduced are shown in Figure 8-17. As expected from the 

boxplot results, the variance in the data is much less and the performance values are closer to the 

data-driven generative design approach in Chapter 6. 

 

Figure 8-17: Cost-projection and compliance-time plots for 20 iterations Bayesian optimisation for highest production 
quantity metric with a UCB hyper parameter value 𝜅 = 0.25 

8.3.2.2. High Overall Part Performance 
The results for the highest overall part performance case are detailed within this section. Figure 

8-18 shows the result of 20 iterations with a 𝜅 = 3.0. As the overall performance case contains a 

tradeoff, it may be beneficial to have an acquisition function value which is biased towards the 

variance to encourage greater exploration of the design space. The results show that this works 

with high-performing solutions found for minimising each of the individual level 2 abstraction 

criteria.

 

Figure 8-18: Cost-projection and compliance-time plots for 20 iterations Bayesian optimisation for highest overall part 
performance metric with a UCB hyper parameter value 𝜅 = 3.0 

An alternative scheme is to reduce the hyper parameter value in the acquisition function to 𝜅 =

0.25, in order to favour higher mean values. The results shown in Figure 8-19 highlight that this 
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scheme favours greater exploitation, showing a much lower variance of points surrounding the 

mean value. This method is arguably less useful to designers in learning the underlying structure 

of the design space and understanding any trade-offs that might occur within this space. 

 

Figure 8-19: Cost-projection and compliance-time plots for 20 iterations Bayesian optimisation for highest overall part 
performance metric with a UCB hyper parameter value 𝜅 = 0.25 

One way in which a greater diversity of solutions can be achieved is by showing solutions which 

are within a determined percentage from the minimum value of the objective function. Figure 

8-20 shows the output when results are shown within 2% of the best observed value. These 

results are shown in green squares. The results show that if the experiment is run multiple times, 

this is an effective way of locating many possible feasible and satisfactory solutions, which can be 

a useful method for exploring and understanding various trade-offs in the design space.

 

Figure 8-20: Cost-projection and compliance-time plots for 20 iterations Bayesian optimisation for highest production 
quantity metric with a UCB hyper parameter value 𝜅 = 0.25 with the values increased to +/- 2% of the best observed 

value for each test. 

By providing the designer with the fitted surrogate model, it is possible to create an interactive 

exploration of the design space. Figure 8-21 shows the Gaussian process output when fitted to 20 



130 
  

data points. The yellow regions within the Gaussian process mean plot highlight the top 

performing areas of the design space. This graph could be implemented as part of the interactive 

data visualisations to allow for a user defined design exploration. 

 

Figure 8-21: Gaussian process mean, variance and acquisition function plots for the maximum overall performance 
design problem. 

8.4. Comparison with Data-Driven Generative Design Methods 
To compare data-driven and goal-driven generative design methods, the following plots were 

generated. Firstly, the normalised objective function values for each of the performance metrics 

were taken and sorted using the default sort function in Python. The maximum value is 

subtracted from each value and the absolute value is calculated, such that the best design has a 

value of 0. The same approach was calculated for 25th percentile, the median and 75th percentile 

values for goal-driven and overlaid on to the data-driven bar chart to show its relative position on 

the dataset. The closer the goal-driven values are to zero, the higher the solution quality. 

8.4.1. Maximum Overall Performance 
The median and 25th percentile solution distance for the highest overall performance metric is 

aligned with the 8th position in the data-driven solution space. The 75th percentile solution 

performs better with a value corresponding to the 7th position. This shows that the goal-driven 

solutions are most likely to be generated within the top 5% of the data-driven solutions within 20 

iterations. However, as shown from the scatterplots in Figure 8-20, by expanding the located 

values to lie within 2% of the minimum value, a greater range of high performing solutions can be 

located. In this case, the findings are more consistent with the data-driven methods. When 
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comparing conflicting metrics within the objective functions, it is sensible to engineer a more 

exploratory search design problem which can then be optimised further by reframing the 

problem. In these scenarios, analysis of the Gaussian process surrogate can lead the designer to 

alternative regions of the design space, which may yield higher performing solutions for certain 

design metrics. The graph is shown in Figure 8-22. The blue bars indicate the objective values 

obtained by each design instance from the data-driven method. Coloured bars are overlaid that 

indicate the quartile 1, median and quartile 3 results obtained from the goal-driven method. 

Areas of interest are highlighted for clarity. 

 

Figure 8-22: Normalised objective function distance metric comparing maximum overall performance median value for 
20 iterations to each design instance created in the data-driven generative design dataset. 
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8.4.2. High Performance Part Production 
The highest structural performance case, for the 20 iterations experimental test case, Q1, the 

median and Q3 all have a value of 0 indicating that the median and the interquartile range 

solutions are equivalent to the highest performing value from the data-driven approach. The 

graph showing its contextual position in the data-driven dataset is shown in Figure 8-23. The 

values from the goal-driven method cannot be seen on the graph due to their zero value. 

 

Figure 8-23: Normalised objective function distance metric comparing structural performance median value for 20 
iterations of each design instance created in the data-driven generative design dataset. 
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8.4.3. High Volume Part Production 
The Q1 solution of goal-driven generative design is zero, indicating that this is equivalent to the 

best design in the data-driven dataset. The median value is shown in the 11th position and the Q3 

result is at the 16th position. This indicates that the goal-driven method is most likely to find 

solutions within the top 10% of solutions in the data-driven dataset within 20 iterations. The small 

interquartile range also highlights the consistency of the goal-driven methods when the 

acquisition function is set with a bias toward the mean. The distance graph is shown in Figure 

8-24. 

 

Figure 8-24: Normalised objective function distance metric comparing highest production quantity performance median 
value for 20 iterations to each design instance created in the data-driven generative design dataset. 

8.5. Key Observations 
As with the results in Chapter 7, the results show that Bayesian optimisation is far more efficient 

at finding high-performing design space solutions than random search. The initial design space 

can have a significant impact on the performance of the Bayesian optimisation algorithm, where 

optimised results can be found within as few as 10 iterations in cases where the best solution 

exists in the boundaries of the input domain. This can be attributed to the fact that these regions 

are typically areas of high variance and will therefore be targeted by the Bayesian optimisation 

algorithm acquisition function. 

As design problems become more complex and increase in dimensionality, the likelihood of the 

top solutions existing at the bounds of the design domain reduces. This is due to the curse of 

dimensionality (Bellman 2015). This states that as dimensionality increases, the probability of 

exploring a space for a given number of samples decreases exponentially in proportion to the 
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increased number of dimensions. Therefore, the designer’s selection of the acquisition function 

hyper parameters becomes more important. For multi-dimensional problems tuning the hyper 

parameters can be challenging. However, based on the results in this chapter, if the design space 

contains discontinuities it is beneficial to select a hyper parameter value that is biased towards 

the mean as this prevents repeated tests within infeasible regions. 

For design problems with conflicting design objectives, the designer can either select hyper 

parameters with a bias towards variance to create a greater diversity of solutions or alternatively 

include solutions that exist within a small percentage of the global maximum solutions. The 

results show that running the algorithm once can find high-performing solutions. Visualisation of 

the Gaussian process can also show other regions of the design space with high-performing 

solutions. The designer can select different regions of the design space in order to validate the 

accuracy of the surrogate model and generate further feasible solutions. This is a computationally 

efficient method for exploring the design space. 

Comparison of the goal-driven and data-driven generative design for additive manufacturing 

approaches using the ranked normalised objective function distance metric shows that the 75th 

percentile solutions of the goal-driven method consistently find solutions in the top 10% of 

solutions found with the data-driven approach. The median values of goal-driven approaches sit 

within the top 5% of data-driven solutions for design personas B and C. The results from persona 

A are within at least 7%, even for an increased design space domain. This shows that goal-driven 

and data-driven design methods generate comparable design solutions according to the criteria 

defined in the research methodology.  

In terms of computational efficiency, the goal-driven approaches only require 20 iterations for the 

same design problem. By comparing this with 175 solutions required for data-driven approaches 

and utilising equation 33, goal-driven methods are shown to be at least 8.75 times more efficient. 

The use of goal-driven approaches also allows for larger design spaces to be explored whilst still 

locating solutions comparable to those found using data-driven approaches. Therefore unless 

designers have access to a pre-existing dataset it is preferential to use goal-driven approaches 

over data-driven approaches if the design solutions are computationally challenging to generate. 

8.6. Summary 
The results of the goal-driven generative design for AM method has been implemented by using a 

Bayesian optimisation surrogate model to efficiently locate optimal solutions to a number of high-

level evaluation criteria. The results were run using the same problem definition that was used to 

perform the data-driven method in Chapter 6 and comparable results were found between the 
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two methods. Goal-driven methods were shown to find the optimal solutions within as few as 10 

iterations when compared to the dataset of 175 solutions in the case of data-driven generative 

design methods. 

When the domain of the build orientation, and therefore, the size of the design space was 

increased, it was found that the quality of solutions found is dependent on the selection of hyper 

parameters input into the surrogate optimisation. The results show that when discontinuities are 

present in the design space then it is better to select hyper parameters which favour high mean 

values. When exploring trade-offs in the design problem, it can be beneficial to select hyper 

parameters that favour higher variance or to visualise the output from the surrogate and 

manually explore the predicted high-performing solutions. 

The results between goal-driven and data-driven generative design methods were compared and 

the results demonstrate that goal-driven methods consistently find solutions in the top 10% of 

data-driven methods for the same design problem. Goal-driven design methods are shown to be 

at least 8.75 times more efficient at locating high-performing design solutions than data-driven 

methods. This highlights their suitability for use in generative design when calculating large 

datasets of solutions results in a high computational cost. 

Chapter 9 will now provide a critical discussion of the results obtained in this research as well as 

any limitations of the research methodology. 
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Chapter 9 – Discussion 

9.1. Introduction 
In this chapter, the methods, observations and results from this research will be critically 

discussed. Discussions relate to the aim, objectives and limitations of the research and are later 

used to formulate the conclusions and future research.  

9.2. Research Discussion 

9.2.1. State-of-the-Art Literature Review and Generative CAD Framework 

The review of the state-of-the-art literature identified a number of key research gaps that need to 

be addressed before the next generation of CAD tools for DfAM can be realised. The geometric 

design freedom provided by AM allows designers to design for intent, rather than DFMA 

limitations that constrain other traditional manufacturing technologies. However, the complexity 

of AM is often underestimated. Current DfAM tools often provide solutions that are infeasible to 

manufacture or are expensive to produce. This leads to a number of research gaps within state-of-

the-art generative design that must be addressed with tools to aid designers in producing end-

use, commercially-viable AM components. 

The prominent research gaps include: 

 Generative design synthesis methods. For example, topology optimisation has been 

shown to provide performance benefits when successfully applied to AM parts. Examples 

have shown potential weight savings of 57% (Emmelmann et al. 2011) and 60% (Tomlin 

and Meyer 2011) respectively for two aerospace brackets and, more recently, a 69% 

reduction in an vehicle airbrake hinge (Smith et al. 2016). Topology optimisation often 

leads to designs that require large amounts of support structure to manufacture. Liu 

(2018) states that between 40-70% of AM product cost can be attributed to support 

structure removal; therefore a large body of research has been dedicated to 

manufacturability constrained topology optimization. Promising studies (Langelaar 2018) 

have shown that this work can be extended by integrating build orientation into the 

manufacturability constrained optimisation to further increase the potential to create 

lightweight components and also to reduce part cost by reducing post-processing 

requirements. However, further work was required to evaluate the effectiveness of 

combining build orientation and manufacturing constrained generative synthesis on the 

development of 3D AM parts. 
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 Secondly, as topology optimisation has evolved to include manufacturing constraints, the 

output designs have moved from being impractical and cost prohibitive to fabricate, to 

producible with AM. However, the results do not consider the cost as part of the 

optimisation. It is advantageous to move away from low-level design objectives 

requirements traditionally found in topology optimisation results, such as minimising 

compliance or mass. Instead, topology optimisation should move towards high level 

objectives such as part throughput or part performance, incorporating considerations 

such as build time and cost. This would give designers a better understanding of the 

impact of design changes on the part development process, and ultimately increase the 

profitability of AM parts. 

 Finally, research has shown that humans are susceptible to a number of cognitive biases 

that limit the use of CAD in the design process (Robertson and Radcliffe 2009). 

Additionally, humans can only process a maximum of four variables at once (Halford et al. 

2005). By increasing the number of dimensions in which design instances are represented, 

design can be created that are not only judged on their appearance but also on their 

behaviour. To achieve the next generation of design tools it is necessary to explore 

methods that allow designers to easily comprehend and efficiently explore multi-

dimensional design and solution spaces to generate high-performing, optimised AM part 

solutions. 

Based on the research gaps identified in Chapter 2, a generalised CAD framework for generative 

design tools has been introduced containing the key features required of generative design 

systems. The purpose of this framework is to guide the development of generative design tools 

that can assist designers in producing high-quality manufacturable parts based on a series of pre-

defined design goals and constraints. The research undertaken within this thesis explores two 

implementations of generative design systems drawn out of the framework, notably, data-driven 

and goal-driven generative design with a truss-based geometry synthesis method. However, many 

generative design methods and tools could be developed from this framework. 

9.2.2. Adaptation of Structural Optimisation Incorporating Manufacturability 

and Build Orientation 
A truss optimisation strategy was developed using the theory from Christensen and Klarbring  

(2009) and a ground structure pruning scheme was incorporated to eliminate potential trusses 

from the model that exceed a user-defined maximum overhang angle. A minimum strut thickness 

was also implemented, derived from design guidelines reviewed within existing literature. The 
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ability to rotate the ground structure is incorporated into the optimisation so that the build 

orientation of the part is incorporated within the structural optimisation. This ensures that the 

optimisation is contextualised within the layer-wise AM build process.  

Within the last two years, industry has begun to integrate manufacturing constraints into 

commercial topology optimisation applications (Frustum 2018; Solid Thinking 2016). However, to 

the best of the authors’ knowledge, it is only Autodesk Generative Design that aims to explore 

multiple manufacturing orientations into the optimisation. In addition, at the time of writing, this 

is still constrained to three orientations, which are 90° rotations with respect to the imported part 

orientation. The design problem used within this research consisting of a manufacturing 

constrained optimisation and additionally, incorporating the possibility to optimise for all build 

angles is representative of industrial state-of-the-art. The results from this research show that by 

modelling all build angles in the design space higher performing solutions can be obtained that 

would have otherwise been possible. Only a single research article (Langelaar 2018) incorporates 

a similar level of flexibility however, this article still only provides 2D results that do not represent, 

or even inspire real manufacture-ready geometries. 

9.2.3. Abstracting from Low to High-Level Generative Design Objectives 
A series of high-level design goals have been generated by abstracting and combining a set of 

evaluation metrics across four stages. The first stage combines low-level facet data with 

information within the design space. From this, it is possible to generate part based evaluation 

criteria, including the compliance, part volume, build height, build projection area and support 

requirements.  

The next abstraction stage combines these criteria or reinterprets the criteria to make it clearer 

for the end user. An example of this is translating build projection area into build plate packing. It 

also allows for greater generalisation should further optimisations such as build plate nesting 

algorithms be integrated into the generative design system. Finally, the highest level of design 

abstraction includes a series of production AM typical production scenarios. The purpose of this 

abstraction is to allow for better interpretability of multi-dimensional evaluation criteria.  

While scope of this research dictates that the generative design methods are only applicable to 

design problems that can be formed into a measurable objective function. The use of abstraction 

criteria allows the designer to quickly formulate multiple different design abstractions to test. In 

viewing design in its teleological sense, designers must purposefully make decisions based on 

current information to predict future states (Jones 1992). Therefore, design abstractions may be 

used, even within ‘wicked’ design problems, to make informed decisions about the importance of 
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a number of design objectives, reducing the uncertainty surrounding the initial problem. This links 

back to the Dorst and Cross (2001) view of design as co-evolution of the problem and solution 

space where the authors state that further information about a problem can only be found by 

actively searching for it. 

As with any model, the designer must take great care to ensure that the weighted abstraction 

model is representative of the design problem that they are trying to solve. Designers must take 

great care to ensure that the computational model that is optimised maps directly onto the real-

world design problem. It is likely that experimental validation of the model will be required to 

ensure that the weighted abstraction model correctly maps onto the actual design task therefore 

safeguarding against optimising for false proxy measures. Multi-criteria optimisation models have 

been developed for AM in previous research studies (Brika et al. 2017). However, these have not 

been combined with a structural optimisation and abstracted into metrics representing high-level 

design objectives such as different production scenarios. To, the best of the authors knowledge, 

this research is first attempt at incorporating the conflicting guidelines from the so-called ‘iron 

triangle’ (Atkinson 1999), exploring trade-offs between cost, quality and time which is a constant 

challenge and guides many industrial production strategies. As such, this research allows 

designers to begin understanding the trade-offs that occur in the design process when design 

constraints are applied, and directly map part geometry onto production scenarios, reducing the 

time and cost in developing AM parts.  

9.2.4. Data-Driven Generative Design Method 
A data-driven method was defined using MCDA TOPSIS that was used to locate the highest 

performing solutions within a user-generated solution space according to a series of specified 

abstracted design goals. Data-driven methods present a novel way of analysing CAD models and 

are particularly compelling in generative design due to the n-dimensional representation of design 

solutions. The MCDA was shown to be capable of locating high-performing solutions for each of 

the three design scenarios.  

Research has shown that designers struggle to deal with large numbers of design concepts (Finke 

et al. 1992). To overcome this, an interactive data visualisation dashboard has been generated 

depicting the output generated solution space for user exploration. Based on previous research 

(Theus 2008; Ashour and Kolarevic 2015), a series of data visualisations were selected for their 

ability to present the design data back to the user. The three stages of visualisations are intended 

to allow the designers to quickly make sense of the multi-dimensional datasets that are necessary 

for generative design systems by assessing the location of generated points with respect to other 
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positions within the solution space. The creation of an interactive, manual solution space 

exploration tool can be considered equivalent to the state-of-the-art commercial 

implementations of generative design tools as described in the literature review. The solution 

space dashboard allows designers to find trends and correlations in the design data. Additionally, 

the use of dashboards decreases the time designers take to comprehend multi-dimensional 

design representations reducing the challenges that occur when evaluating multiple design 

concepts. 

Previous research has shown that designers struggle to understand the relationship between 

geometric freedom and concepts such as build cost and time (Pradel, Bibb, et al. 2018). By 

integrating simulation into the n-dimensional part representations in generative design, it is 

feasible to partially overcome this gap. One of the key outputs from Chapter 6 is the importance 

of a full understanding of the design limitations of the material and process combination.  This is 

because it is possible to create higher structurally performing solutions when overhang 

constraints are not applied, however, this comes at the detriment of post-process time. 

Furthermore, the research shows that the indiscrimindate use of manufacturing constraints 

during generative solution synthesis may lead to suboptimal solutions depending on the 

overarching design objectives. This provides two critical findings: firstly, the importance of 

defining design objectives clearly at the start of the design process. Secondly, it is important to 

provide clear feedback to the user about the results after each set of design solutions is 

generated. This allow the user to alter the design objectives if sensible design solutions are not 

being produced. In this sense data-driven generative design methods align with the view that 

computers act as design assistants (Schon 1992), aiding the designer in uncovering trends, while 

automating repetitive task such as generating geometry. However, it is the human designer that 

makes decisions on the next design task that must be performed. 

Additionally, the results have shown that small pairwise changes (10%) in the weights can alter 

the top performing solutions returned from the TOPSIS MCDA. Therefore, it is recommended that 

designers test different input weights to understand underlying trade-offs within the design 

objectives and also to yield a more diverse range of feasible solutions. 

If multiple search strategies are run for the same design problem, the results should be recorded 

to augment the data-driven algorithms. This gives the advantage of being able to adapt the 

algorithm for different goals. This suggests that even when using goal-driven methods, it would be 

beneficial to record all low-level evaluation criteria results. This data can be used to find high-
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performing solutions to different design objectives within a dataset by creating different 

abstractions from the low-level data. 

A disadvantage to using data-driven methods is the requirement to generate solution spaces that 

are computationally expensive when complex modelling and simulation strategies are required. 

Additionally, by generating large numbers of poor-performing solutions, the sensitivity of search 

is reduced. This makes locating solutions using the data-visualisation dashboard more challenging. 

However, the use of MCDA reduced the impact of this phenomenon.  

Based on this information, it was deemed appropriate to pursue more efficient exploration 

methods that aim to minimise the number of expensive structural optimisation evaluations 

required to find the optimal design space parameters, i.e. build orientation and manufacturing 

constraint combination. 

9.2.5. Surrogate Optimisation Method for Build Orientation Optimisation 
Optimising the part orientation can have a significant impact on the overall cost of a part, simply 

by reducing the support structure requirements (Zwier and Wits 2016). However, support 

structures can be costly to compute (Morgan et al. 2016).  The results from Chapter 7 

demonstrate that a support length measure is an appropriate proxy for evaluating the total 

amount of support structure required for the parts tested within this research. The results for the 

two test parts show alignment within 3.5% of commercial software estimations while being more 

computationally efficient. 

In addition, using surrogate optimisation models has the potential to reduce the number of 

iterations required to locate high-performing solutions to design problems. By testing two open-

access continua-based topology optimised brackets, it was found that support structure length 

and Bayesian optimisation were the most effective method at locating the optimal build 

orientation. Thirty repeats of each test were performed to ensure robustness in the statistical 

analysis methods.  The results were benchmarked against random search to show the efficacy of 

Bayesian optimisation for efficiently minimising objective functions.  

Secondly, grid search is shown to be an inferior method for exploring solution spaces unless the 

resolution for each of the input parameters is small. Random is shown to perform significantly 

better than grid search. However, Bayesian optimisation is shown to outperform both other 

methods, in particular, grid search up to a factor of 17. 

The selection of brackets developed using continuum based generative synthesis methods 

highlights that the surrogate optimisation methods used within the research can be generalised to 
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different synthesis techniques. As continuum based solutions are commonly used within 

commercial software, this generalisation increases the potential to integrate this research into 

existing commercial topology optimisation tools. 

A further result of Chapter 7 is the added emphasis on the importance of combining build 

orientation with structural optimisation. Evidence of this is provided by showing that the total 

volume of material (part and support structure) for the GE bracket can be reduced by 16.2% from 

the as-optimised direction solely by optimising the build orientation. This demonstrated 

considerable potential in reducing costs associated with post-processing and support removal for 

AM components. 

9.2.6. Goal-Driven Generative Design Method 
Based on the success of the results from the surrogate based build optimisation, Bayesian 

optimisation was used as a method to minimise the number of expensive structural optimisation 

evaluations required to locate the highest performing areas of the solution space. 

The Bayesian optimisation was demonstrated to locate top performing solutions when compared 

to data-driven methods in 10 iterations when the solutions fall on the bounds of the design 

spaces domain. This can be attributed to the high variance associated with these bounds, 

therefore, they are likely to be targeted by the Bayesian optimisation algorithm. When the top 

solutions were not located on the bounds of the domain, as with the maximum part performance 

case, 20 iterations were required to find solutions comparable to the best solution found in the 

data-driven solution space. 

The size of the design space was increased to between 0° and 360° to ensure the optimal 

solutions could be located for the other two production scenarios. It is common for there to be 

discontinuities in the response surface output from the design space as there is going to be 

infeasible material and load combinations for certain ground structures. If there are 

discontinuities in the response surface function, then it can be challenging to locate the optimal 

solutions as it is impossible to explore these areas and they are always areas of high variance. As 

such the acquisition function may continuously try and test these areas leading to the output 

solutions tending toward a random search. 

The use of hyper parameters in the acquisition function allows the designers to modify the 

balance between exploration and exploitation of the Bayesian optimisation algorithm (Brochu et 

al. 2010). Favouring high variance indicates greater exploration. This is often risky as it requires an 

investment of time that does not always equate to good solutions, however, the reward may be 

large. Favouring the mean reduces risk but may lead to locating local optima. Depending on the 
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design objective, designers may make different decisions when deciding whether to favour 

exploring or exploiting.  

By modifying the hyper parameters in the acquisition function to favour the mean rather than the 

variance, it is possible to locate the optimal solutions even with discontinuities in the response 

surface. The hyper parameters can be determined by creating visualisations of the Gaussian 

process surrogate; for high-dimensional design spaces, the work within this research could be 

extended by using techniques developed by Wortmann (Wortmann 2017).  

Gaussian process surrogates, as with many machine learning models, perform best when there 

are underlying trends within the design space landscape that can be modelled. This means that 

overly stochastic design spaces will be difficult to learn, and are unlikely to yield better results 

than random search. Whilst it is possible to build noise into the Gaussian process regression 

model to deal with some stochasticity in the system (Rasmussen 2004), if the generative synthesis 

method yields unpredictable results, other goal-driven generative design methods may be more 

suitable. 

In order to answer the research aim a distance metric was created based on the normalised 

objective functions for each of the three performance personas detailed in Chapter 5. The results 

show that the goal-driven method consistently finds high-performing solutions, with the median 

results being either close (top 7%) or exactly the same, when compared to the data-driven 

methods. The best performing solution in the goal-driven case consistently locates the top 

solution in the data-driven dataset, even when the size of the design space is increased. 

One of the benefits of the increased efficiency associated with Bayesian optimisation is the ability 

to optimise larger design spaces. This includes extending the bounds of the input variables or 

increasing the dimensionality of the space. This research has not explored large multi-dimensional 

design spaces and, therefore, it is not clear how many iterations would be required to locate 

optimal solutions within these computationally challenging generative design spaces. However, 

surrogate optimisation strategies have consistently been shown to be the most appropriate 

strategy for efficiently locating optimal solutions when function evaluations are costly (Wortmann 

et al. 2015). Therefore, it is suggested that high-performance computation could be combined 

with surrogate optimisation strategies such as goal-driven generative design to extend this work 

to complex multi-dimensional design spaces. 

By improving the efficiency of locating optimed design space parameters, there is potential to 

increase the number of input dimensions in the design space. This leads to potential for future 
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research in optimising machine parameters alongside the build orientation and manufacturing 

constraints within the design problem. Further maximising the potential advantages of goal-

driven generative design in industrial AM. 

While it may appear that the computer is designing parts, human designers are making all of the 

creative decisions in the development of goal-driven generative design solutions. This approach to 

design alleviates many of the problems associated with premature fixation, circumscribed 

thinking (Robertson and Radcliffe 2009) and design fixation (Crilly 2015). However, the designer 

now faces new challenges when using generative design methods. These include: engineering the 

correct design space, selecting the generative synthesis method, choosing hyper parameters for 

surrogate models and performing the correct statistical techniques to locate the best performing 

solutions. New approaches to design education are required to further understand and overcome 

these issues. The results in Chapter 8, show the potential of generative design systems to 

efficiently find high-performing solutions to well-defined design spaces. This highlights the 

collaborative nature of generative design systems that combine the strengths of human creativity 

and computational speed within the design process. 

Arguably, generative design methods shift the issues associated with cognitive biases into the 

selection of generative design methods rather than the individual part design. As designers make 

decisions about the synthesis methods and parameters of a design problem, they are implicitly 

shrinking the design space into a computationally tractable domain. However, many satisfactory 

designs may exist externally to the design space, in a so-called creative space that designers 

manually navigate, as outlined in Figure 9-1. As more synthesis methods are used, a greater span 

of the creative space can be covered by the design space and a greater diversity of solutions can 

be generated. This is attributed to the fundamental principle that algorithms follow a set of rules 

and the solutions derived from algorithms must exist within this rule base. Expert designers have 

been shown to break rules when creating innovative solutions (Cross 2004), therefore, designers 

must be aware of the limitations of generative design tools (and the methods used to realise 

them) and use them in conjunction with other creative practices to fully maximise their potential. 
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Figure 9-1: Schematic demonstrating how the design space acts as a subset of the creative space that designers 
navigate when solving wicked design problems. 

The use of topology optimisation as a generative design synthesis method reduces diversity within 

the solution space as the fundamental principles of structural mechanics lead to solutions that 

display certain physical characteristics (i.e. perpendicular beams). For a more diverse exploration, 

designers may select more exploratory synthesis methods, for example, shape grammars 

(Antonsson and Cagan 2005).  

This research supports previous studies that describe design optimisation as a method to develop 

further understanding problems rather than setting out to find the objective ‘best’ solution (Chen 

et al. 2015b; Bradner et al. 2014). By visualising the output from the design optimisation, both in 

the visualisation dashboard and in the Gaussian process contour plots, the designer is able to 

review parameter bounds and restate problems in order to continue the search for high-

performing design solutions. 

It cannot be said, therefore, that generative design is suitable for all design problems. Problems 

that cannot be mathematically defined within the design space remain outside the capability of 

both of the generative design methods outlined in this research. Conversely, goal-driven 

generative design has been found to be successful when solving problems that can be formulated 

with an objective function. As such, designers may benefit from using generative design methods 

as part of a ‘toolkit’ of approaches to generate ideas. 

9.3. Generalising the Research Findings 
Although the work presented in this thesis is focused on the methods described in Chapter 5, 

throughout the research, decisions were made to ensure that the research could be generalised. 

Furthermore, experimental findings have shown that there are areas in which the research can be 
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extended outside the scope of the methods outlined in Chapter 4. Firstly, the results from Chapter 

7, show that goal-driven generative design methods for AM are suitable for continuum based 

structural synthesis methods as well as the truss based solutions shown in Chapter 8. Secondly, 

the results show that different combinations of level 2 abstractions can be combined and 

minimised. It is expected that further evaluation criteria could be added to the objective function 

to extend the research outcomes further. Thirdly, the laser-PBF process was used for each of the 

equations for the abstracted evaluation criteria. However, this research can be readily extended 

for other AM processes as long as the abstraction criteria (build cost, time, etc.) can be defined 

for these processes. Finally, the CAD framework illustrates that there are many ways of defining 

problems, synthesising solutions and visualising those solutions when creating generatively 

designed parts for AM. However, further research is required to validate these potential 

implementations. 

9.4. Research Limitations 
The work provided in synthesising geometries using data-driven and goal-driven generative design 

methods provides the beginnings of future design systems to support DfAM, with geometry 

outputs acting as inspiration to designers rather than the final solutions. There is still considerable 

research to be undertaken before industrial AM becomes a click-and-print solution. Therefore, 

the following section outlines a set of limitations associated with the research methodology. 

9.4.1. Solely Quantitative Evaluation Criteria 
As outlined in the literature review, the complexity of the design process means that it is often 

impossible for designers to explain why certain features of a design are important. For example, 

one person may deem a location to be cosy whereas another may describe it as being cramped. It 

is this so-called tacit knowledge that is very challenging to model using computers. Additionally, 

quantification bias can occur when users value measurable data over the immeasurable. As such, 

designers must be careful to ensure that correlations within data are not treated as causation. 

Consequently, without including qualitative design requirements into generative design tools, 

their use in the design of functional end-use products will be limited for many design scenarios. 

However, this does not mean that the use of quantitative generative design tools cannot be used 

to strongly influence and augment the ability for a professional design engineer to design fully 

functional, high-performing parts for AM. In the future it may be possible to add further levels of 

abstraction, to further define objectives that represent the reasons why designers are creating 

parts, and may include, profit, sustainability or aesthetics, as seen in Figure 9-2. Research will 

have to be undertaken to determine how to develop the low-level evaluation criteria and the 

abstraction mappings to facilitate design for qualitative objectives. 
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Figure 9-2: Expanding to level 4 abstraction criteria with the addition of qualitative evaluation criteria. 

9.4.2. Manufacturability Criteria 
Throughout this research, there has been an assertion that the ability to successfully manufacture 

a part was determined by the overhang angle and minimum diameter of each of the struts. Whilst 

these are important manufacturability constraints, typically, design guidelines consist of many 

more constraints, including aspect ratios, bridge lengths, minimum hole size etc. In reality, these 

must all be followed to ensure a successful build. Therefore, it is impossible to suggest that a 

design will be completely manufacturable on any process using solely thin wall and overhang 

constraints. Furthermore, the work undertaken in Chapter 7, could be tested on a more extensive 

set of geometries to generalise further than just topology optimisation based generative synthesis 

methods. For example, those based on meso- or micro- structures. Currently, there are limited 

existing research articles that extend additive manufacturing constraints further than these 

criteria. However, the methodology is extensible to add generative synthesis methods that can 

incorporate further manufacturing constraints.  

9.4.3. Truss Node Valence and Stress Concentrations 
The decision to utilise ground structure topology optimisation was made for its ability to perform 

exceptionally well when the desired output volume is a small percentage of the starting DSV and 

also the computational efficiency of using beam elements in the FEA. However, one of the 

limitations with using beam elements within the model is the failure to accurately model the as 

manufactured parts. Firstly, as the beam elements are rendered using 3D tube elements in the 

THREE.js framework, when two elements meet there is a discontinuity in the modelling, and a 

continuum structure is not formed, as shown in Figure 9-3. To overcome this, the elements are 

exported and solidified in Meshmixer before the manifold mesh file is created for 3D printing. This 
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could have been alternatively performed within the synthesis algorithm itself, either by using 

spheres at the nodes, as shown in Smith et al (2016), by solidifying the wireframe (Srinivasan et al. 

2005) or by using an implicit representation of the struts (Angles et al. 2017). 

 

 

Figure 9-3: Optimised truss structure showing areas with unconnected struts. 

A further manufacturing issue that is not taken into account during the structural optimisation is 

the number of struts entering a node. When large numbers of struts enter a single node, the 

stress concentration at that node increases as there are no fillet radii defined at the node-strut 

intersections. This would suggest that manufacturing the as-manufactured trusses will have a 

lower stiffness when compared with the output from the truss optimisation. Therefore it is 

recommended that the output continuum structure as exported from Autodesk Meshmixer 

should be re-meshed and analysed using a 3D FEA model for structural verification.  

The case study was selected for its simplicity and the ability to easily understand the output 

geometry. However, it should be noted that for more complex DSV’s, it may be significantly more 

challenging to determine a suitable ground-structure and spatial distribution of nodes. More 

complex implementations of ground-structures should be realised to enable generalisation to all 

possible design space volumes. 

9.4.4. Multiphysics Optimisation Tools 
With industry trends showing a proliferation of metal AM (Wohlers et al. 2018), it is necessary to 

ensure that optimisation models can accurately model the materials and processes that are used 

within this field. The layered manufacturing process and the complex thermal phenomena that 

occur during AM builds often leads to material anisotropy in the build parts. This needs to be 

understood before full confidence in the structural integrity of the as-built part can be realised. 

In order to comprehensively assess the manufacturability of a part, more complex simulations 

must be undertaken that take into account other important factors such as thermal deformations 

and residual stresses. Furthermore, it is impossible to assess the effect of build plate packing on 
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the manufacturability of a part without thermal simulation. Although it is possible that parts can 

be manufactured as single parts, scaling to a full build plate can have detrimental effects on the 

part quality due to changes in the tool/scan path and layer cooling times. This is particularly 

important when designing for the abstracted objectives as outlined in this thesis. 

By including multiphysics simulation tools, it would also be possible to extend the design space to 

include the machine parameters, for example, hatching distance and laser power. This is due to 

the fact that the model interactions between build time, cost and thermal distortion could 

accurately be modelled. This would give further credence to following a goal-driven generative 

design approach due to the limitations of increasing the dimensionality of design space with data-

driven generative design methods. 

Some phenomena cannot be simulated and it may be necessary to perform empirical 

experimentation in order to fill knowledge gaps in understanding the design problem. It may be 

necessary to include hybrid methods, which incorporate experimentation and simulation in order 

to fully represent the AM problems that designers face. The methodology in this research is, 

however, fully extensible to incorporate these aspects and could be extended to include accurate 

AM build simulation models. 
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Chapter 10 - Conclusions and Future 
Work 

10.1. Introduction 
This chapter presents the conclusions obtained from this research along with the overall 

contribution to knowledge. Potential areas in which this research could be further investigated 

are covered in the final section of this chapter. 

10.2. Conclusions 
As a result of the research completed in this thesis, the following conclusions can be made: 

 Inspired by the research gaps identified in the state-of-the-art literature review, a 

generalised CAD framework is defined to guide future development of generative design 

tools to support DfAM. The framework recognises the collaborative nature of generative 

design, highlighting that the best design work will be undertaken using a combination of 

human creativity and computational speed.  

 An existing ground structure topology optimisation technique was extended from 2D to 

3D and two AM specific manufacturing constraints were applied, namely maximum 

overhang angle and minimum strut thickness. This provided an estimation of the 

structural performance of a part whilst ensuring that it remains manufacturable with 

excessive support structure requirements. 

 A series of abstraction criteria were defined that map low-level geometric evaluation 

criteria associated with the synthesised geometry onto high-level design criteria. For 

example, business and production criteria, providing simple, and easily interpretable 

design objectives for designers. 

 A data-driven generative design approach using a TOPSIS MCDA, was defined and used to 

locate the top performing solutions in a predefined solution space. This solution space 

was defined by using grid search at 5° on the parametric design space inputs, and include 

a manufacturability constraint on the maximum overhang angle and the rotation angle 

about the x-axis.  

 A novel method for optimising build orientation based on the minimisation of support 

structure has been defined and tested on two open-access AM parts that are typical of 
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part outputs from the topology optimisation process. It is performed using a Bayesian 

optimisation with the aim of minimising the number of evaluations required to locate the 

best orientation. The results show that in 35 iterations, the method can more efficiently 

find the same build orientations as current state-of-the-art commercial software. 

 A goal-driven generative design strategy was created utilising Bayesian optimisation 

surrogate optimisation and is then applied to the same problem defined in the data-

driven approach for comparison. Experiments show that the highest performing set of 

design parameter can be found with 20 structural optimisation evaluations.  

 The results of the data-driven and goal-driven generative design for AM methods were 

compared and the results show that the more efficient method of goal-driven generative 

design was capable of locating solutions within the top 7% of solutions found using the 

data-driven methods in 8.75 times fewer iterations. This demonstrated its capability to 

generatively design structural components specifically for AM. 

10.3. Contributions to Knowledge 
The following contributions to knowledge have been realised as a result of this research: 

 A goal-driven generative design for AM method comprised of a Bayesian optimisation 

surrogate was used to efficiently locate optimal solutions for different production 

scenarios. The results demonstrated that optimal solutions could be found within 20 

iterations which is 8.75 times more efficient than data-driven methods. In addition, this is 

also extensible to larger design spaces that would not be possible for data-driven 

methods due to the curse of dimensionality. 

 A data-driven generative design approach to AM was implemented using a TOPSIS MCDA 

algorithm to find the top performing solutions within a solution space defined using grid-

search, in three different AM production scenarios. Data-driven approaches were shown 

to be an effective method to easily navigate solution spaces and understand trade-offs 

that occur in multi-dimensional AM evaluation criteria. 

 A novel surrogate model using Bayesian optimisation and Gaussian processes is 

implemented as an efficient method used to find build orientations that minimise the 

need for support structure for two commonly used topologically optimised parts. 

 A generalised CAD Framework was developed providing the basis for developing future 

generative design tools for AM. Many possible generative design methods can be derived 
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from the framework including variations on the methods outlined in Chapter 5. Examples 

include modifying the surrogate optimisation models in goal-driven generative design or 

using alternative MCDA techniques in data-driven generative design. 

 A novel data visualisation dashboard was defined using multiple different data 

visualisation methods to allow designers to explore the trade-offs and correlations that 

occur between multi-dimensional AM solution space data. 

10.4. Future Research  
In addition to the research gaps established into the literature review, the work undertaken in this 

thesis has produced knowledge that can be extended. The research limitations discussed in 

Chapter 9 should be addressed to further generalise the research methodology. However, farther 

reaching perspectives will be provided in this section that could be used to extend the impact of 

the work provided within this thesis. 

10.4.1. User Testing of Generative Design Systems 
To ensure that future generative design CAD tools will be successful in aiding users in designing 

parts for AM, research must be undertaken to examine the optimal user interaction within the 

system. User testing should be carried out examining the efficacy of using interactive visualisation 

dashboards, for example the layout developed in Chapter 6, in examining multi-dimensional 

design solutions. Secondly, an evaluation of potential user interfaces should be explored to 

ascertain the best method for improving design solutions within the user feedback loop defined 

within the CAD framework in Chapter 4. Finally, research should be carried out examining 

methods that can be utilised for incorporating qualitative metrics and extracting tacit user 

knowledge to generate improved design solutions. 

10.4.2. Qualitative Evaluation Metrics and Recommendation Systems 
As explained in Chapter 9, a limitation of this research, is the lack of qualitative design evaluation 

metrics. Therefore, future work should focus on integrating qualitative design aspects such as, 

aesthetics. In order to achieve this, the feedback loop between the human designers in the 

visualisation stage of the generative design framework needs to be exploited. It is believed that 

conscious methods including recommendation systems, similar to those used to suggest products 

to users in e-commerce marketplaces as well as unconscious techniques such as user eye tracking 

could be used to ascertain the most favourable designs from a solution space based solely on 

aesthetics or other qualitative design considerations. Early examples of this technique can be 

explored in recent studies, for example Bylinskii et al (2017) and Mothersill and Bove Jr (2015). 

This problems remains an open challenge in generative design as often designers have conflicting 
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opinions on similar metrics with research required in the user interface and user experience fields 

of generative design. 

10.4.3. Generative Design Marketplaces 
Practically ubiquitous internet access, increased computational power and improved mobile 

connectivity have allowed for an ever more connected design and manufacturing industry that 

has been termed industry 4.0. To exploit the generative synthesis of AM parts, it is possible to 

integrate generative design into a marketplace system. A generative design marketplace will 

consist of a generative design engine. This exists as a manifestation of a generative design 

approach derived out of the generative design CAD tool framework outlined in Chapter 3 and a 

generative design marketplace that sits on top of this engine. A schematic of this structure can be 

seen in Figure 10-1. 

The generative design marketplace is likely to consist of a webpage in which users can purchase 

information that can be used to improve the performance of the algorithms within the generative 

design engine. This may include design guidelines for material and machine combinations, 

alternative generative synthesis algorithms, statistical analysis methods (i.e. TOPSIS or Bayesian 

optimisation) or available manufacturing machines, akin to a manufacturing hub. 

In the marketplace, the machine availability will be presented containing information surrounding 

the location and cost of the machines. Should a machine be in use, the generative design system 

could modify the output geometry to be specifically created for the second-best machine-material 

combination in the list. This process is repeated until a satisfactory solution is met. 

The information stored within the generative design marketplace can be manifested in multiple 

different database architectures. Two possibilities include centralised or decentralised 

architectures. Centralised databases are commonplace and are easy to implement. However, a 

single entity would have control over the marketplace. Decentralised architectures, on the other 

hand, often rely of peer-to-peer sharing of information and blockchain-like security and give users 

greater control over the data that they share in the marketplace. The advantages and 

disadvantages of both architectures would have to be evaluated as part of this future research. 

A further advantage of the marketplace is that is democratises the process of generating 

information for the marketplace. This increases the number of shareholders in the design and 

manufacturing process. Consider, a small enterprise that can accurately define the manufacturing 

constraints for a given process; this information could be traded on the generative design 

marketplace bringing in revenue for small companies doing research and also improving the 

quality of the parts output from the market. 
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Figure 10-1: Schematic of the generative design marketplace structure. 

10.4.4. Extension to Different Manufacturing Technologies 
For generative design to become applicable to different industries, this research should be 

extended to include a wider array of manufacturing processes. Even with advances in 

manufacturing speed from new state-of-the-art AM techniques such as single pass jetting from 
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Desktop Metal (Desktop Metal 2018), the process remains unsuitable for production volumes 

greater than 100,00 parts. 

Extending generative design to other manufacturing techniques involves understanding the 

process and constraints and encoding these constraints into the generative synthesis algorithms. 

This is challenging as tool access algorithms will have to be incorporated into synthesis algorithms 

for subtractive processes such as milling and turning. In addition, machining fixation points would 

have to be taken into account. 

The combination of AM and investment and sand casting is becoming popular due to the relative 

ease of casting a vast range of metal alloys, and the ability to certify cast parts easier than those 

produced by AM (Schwab 2017). To achieve the production volumes required by industries such 

as commercial automotive, further research must be conducted to explore the production trade-

offs that occur when designing for casting. 

The ability for computers to synthesise shapes for multiple manufacturing processes will be 

extremely beneficial to designers as it has the potential to considerably reduce the development 

time for complex parts with conflicting design specifications. 

10.4.5. Extending Generative Design with Machine Learning 
This research has utilised a form of machine learning, namely Bayesian optimisation to improve 

the state-of-the-art in design space exploration in generative design for AM. However, there is 

scope for future research incorporating other machine learning techniques into the generative 

design process. Using generative design allows greater exploitation of machine learning due to 

the large amounts of data that is produced when generating many solutions with multi-

dimensional design and solution spaces. This could include using machine learning for generating 

near real-time feedback during the design exploration and using multi-modal inputs to influence 

the generation of stylised or themed parts.  

i) Real-time Generation of Design Instances 

A primary motivation of using Bayesian optimisation as a surrogate within this research was due 

to the computationally expensive process of performing structural optimisation simulations. This 

means that real-time exploration of generative design solution spaces is very challenging as 

exploring new areas of the solution space requires at least one further expensive computation to 

fit another point within the surrogate model. It would be beneficial if new methods could be 

developed that learn the functional mapping between the parametric design space and the 

output geometry from the structural optimisation. One possible method for achieving this is 
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through the use of generative machine learning models. These models are a subtype of statistical 

modelling techniques and are not related to the term ‘generative design’ used elsewhere in this 

thesis. The aim of generative models is to learn the joint probability distribution between an input 

and output. Popular examples include variational autoencoders (Doersch 2016) and generative 

adversarial networks (Goodfellow et al. 2014). There are many different types of generative 

models that aim to learn the true data distribution of the training set so as to generate new data 

points with some variations. 

Recent advances in deep learning research have made it possible to learn complex functions by 

training neural networks on large datasets. Currently, one of the main limitations of generative 

design systems is their reliance on complex optimisation routines. Future research should be 

undertaken to attempt to map the inputs and outputs of the optimisation in order to gain real 

time estimates of geometry outputs from topology optimisation programs. In order to achieve 

this, a data set will still have to be generated. Whilst this is slow, it could be achieved using 

supercomputers or cloud computing clusters speeding up the generation of a sufficiently large 

dataset to learn the underlying generative model. Once the model is created the user could select 

any set of design space parameters and the model would output an approximation of the 

geometry as the output of the synthesis algorithm. Examples of these ideas have already been 

successful in the fields of material synthesis (Zsolnai-Fehér et al. 2018) and computational fluid 

dynamics (Umetani and Bickel 2018). 

ii) Multi-modal Inputs to Improve User Experience when Generating Parts 

Another advancement in machine learning is the ability to transfer stylistic elements from 

multiple input mediums. An interesting application of this has been in style transfer (Gatys et al. 

2016), here the user inputs two images. The first being the content image, and the second the 

style image containing stylistic elements that are to be transferred to the initial image. An 

example of this is shown in Figure 10-2.  
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Figure 10-2: Example of 2D image style transfer (Gatys et al. 2016). 

At the centre of style transfer is a type of machine learning model, typically used for dealing with 

images, termed a convolutional neural network. Style transfer aims to minimise the error 

between the features in the content image and the mixed image and also to minimise the error 

between the style features of the style image and the mixed image. Future investigations could 

extend this research to 3D design. In this case the user could input a series of designs that they 

already favour, and use the style transfer algorithm to generate a series of new alternatives that 

are similar to the initial inputs.  

A critical limitation of using deep-learning for 3D geometry is the requirement for large datasets 

of parts to train the algorithms. Databases of 3D geometry must be extended and made publicly 

available, through using crowdsourcing platforms, if we are to see the successful uptake of 

generative machine learning models extended to production ready software. 

The future work has shown that this research has great potential to be further extended. It is 

hoped that the research provided within this thesis, alongside the suggestions for future can 

provide a basis for the development of next generation CAD tools that will support DfAM. 

 

 



158 
 

References 

3D Hubs, 2017. 3D Hubs [Online]. Available from: www.3dhubs.com [Accessed 30 August 2017]. 

3D Hubs, 2018. How to design parts for Metal 3D printing [Online]. Available from: 

https://www.3dhubs.com/knowledge-base/how-design-parts-metal-3d-printing#design 

[Accessed 13 June 2018]. 

Aage, N., Andreassen, E., Lazarov, B.S., and Sigmund, O., 2017. Giga-voxel computational 

morphogenesis for structural design. Nature, 550(7674), p.84. 

Abdelall, E., Frank, M.C., and Stone, R., 2018. A study of design fixation related to Additive 

Manufacturing [Online]. Journal of Mechanical Design. Available from: 

http://dx.doi.org/10.1115/1.4039007. 

Additive Industries, 2017. Metal Fab1 [Online]. Available from: 

https://additiveindustries.com/systems/metalfab1 [Accessed 12 September 2018]. 

Airbus Group, 2016. Pioneering bionic 3D printing - Learning from nature [Online]. Available from: 

http://www.airbusgroup.com/int/en/story-overview/Pioneering-bionic-3D-printing.html 

[Accessed 14 June 2016]. 

Airbus Group;, 2018. Airbus Commercial Aircraft delivers record performance [Online]. Available 

from: https://www.airbus.com/newsroom/press-releases/en/2018/01/airbus-commercial-

aircraft-delivers-record-performance.html [Accessed 28 October 2018]. 

Al-Ahmari, A.M., Abdulhameed, O., and Khan, A.A., 2018. An automatic and optimal selection of 

parts orientation in additive manufacturing. Rapid Prototyping Journal, (just-accepted), p.0. 

Allaire, G., Jouve, F., and Toader, A.-M., 2002. A level-set method for shape optimization. Comptes 

Rendus Mathematique, 334(12), pp.1125–1130. 

Allen, S. and Dutta, D., 1994. On the computation of part orientation using support structures in 

layered manufacturing. In: Proceedings of solid freeform fabrication symposium, university of 

texas at austin, austin, TX, June. pp.259–269. 

Angles, B., Tarini, M., Wyvill, B., Barthe, L., and Tagliasacchi, A., 2017. Sketch-based implicit blending. 

ACM Transactions on Graphics (TOG), 36(6), p.181. 

Antonsson, E.K. and Cagan, J., 2005. Formal engineering design synthesis. Cambridge University 



159 
 

Press. 

Aranda, E. and Bellido, J.C., 2016. Introduction to Truss Structures Optimization with Python. 

Electronic Journal of Mathematics & Technology, 10(1). 

Ashour, Y. and Kolarevic, B., 2015. Optimizing creatively in multi-objective optimization. In: 

Proceedings of the Symposium on Simulation for Architecture & Urban Design. Society for 

Computer Simulation International, pp.128–135. 

ASTM, 2012. Standard A F2792 - Standard terminology for additive manufacturing technologies. 

Atilola, O., Tomko, M., and Linsey, J.S., 2015. The effects of representation on idea generation and 

design fixation: A study comparing sketches and function trees [Online]. Design Studies. 

Available from: http://www.sciencedirect.com/science/article/pii/S0142694X15000939 

[Accessed 10 December 2015]. 

Atkinson, R., 1999. Project management: cost, time and quality, two best guesses and a 

phenomenon, its time to accept other success criteria [Online]. International Journal of Project 

Management, 17(6), pp.337–342. Available from: 

https://www.sciencedirect.com/science/article/pii/S0263786398000696 [Accessed 5 October 

2018]. 

Atzeni, E. and Salmi, A., 2012. Economics of additive manufacturing for end-usable metal parts 

[Online]. The International Journal of Advanced Manufacturing Technology, 62(9–12), pp.1147–

1155. Available from: http://dx.doi.org/10.1007/s00170-011-3878-1. 

Autodesk, 2018a. Autodesk Meshmixer [Online]. Available from: www.meshmixer.com. 

Autodesk, 2018b. How GM and Autodesk are using generative design for vehicles of the future 

[Online]. Available from: http://blogs.autodesk.com/inthefold/how-gm-and-autodesk-use-

generative-design-for-vehicles-of-the-future/ [Accessed 6 August 2018]. 

Ayres, C., 2015. Algorithmic Archery [Online]. Available from: 

http://www.core77.com/posts/43879/Algorithmic-Archery [Accessed 30 August 2017]. 

Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O., 2014. Spin-it: optimizing moment of 

inertia for spinnable objects. ACM Transactions on Graphics (TOG), 33(4), p.96. 

Baumers, M., Holweg, M., and Rowley, J., 2016. The economics of 3D Printing: A total cost 

perspective [Online]. Available from: https://www.sbs.ox.ac.uk/sites/default/files/research-

projects/3DP-RDM_report.pdf. 



160 
 

Baumers, M., Tuck, C., Wildman, R., Ashcroft, I., Rosamond, E., and Hague, R., 2012. Combined build-

time, energy consumption and cost estimation for direct metal laser sintering. In: From 

Proceedings of Twenty Third Annual International Solid Freeform Fabrication Symposium—An 

Additive Manufacturing Conference. 

Bellman, R.E., 2015. Adaptive control processes: a guided tour. Princeton university press. 

Bendsøe, M.P., Ben-Tal, A., and Zowe, J., 1994. Optimization methods for truss geometry and 

topology design [Online]. Structural optimization, 7(3), pp.141–159. Available from: 

https://doi.org/10.1007/BF01742459. 

Bendsøe, M.P. and Kikuchi, N., 1988. Generating optimal topologies in structural design using a 

homogenization method. Computer methods in applied mechanics and engineering, 71(2), 

pp.197–224. 

Bendsøe, M.P. and Sigmund, O., 2003. Topology optimization : theory, methods and applications. O. 

(Ole) Sigmund 1966-, ed. Berlin: Berlin. 

Bergstra, J. and Bengio, Y., 2012. Random search for hyper-parameter optimization. Journal of 

Machine Learning Research, 13(Feb), pp.281–305. 

BMW Group, 2018. Additive Manufacturing: 3D printing to perfection [Online]. Available from: 

https://www.bmw.com/en/innovation/3d-print.html [Accessed 22 September 2018]. 

Booth, J.W., Alperovich, J., Chawla, P., Ma, J., Reid, T.N., and Ramani, K., 2017. The Design for 

Additive Manufacturing Worksheet [Online]. Journal of Mechanical Design, 139(10), 

pp.100904–100909. Available from: http://dx.doi.org/10.1115/1.4037251. 

Boothroyd, G., Dewhurst, P., and Knight, W.A., 2011. Product design for manufacture and assembly. 

3rd ed. P. Dewhurst & W. A. (Winston A. Knight 1941-, eds. Boca Raton, Fla.: Boca Raton, Fla. 

Brackett, D., Ashcroft, I., and Hague, R., 2011. Topology optimization for additive manufacturing. In: 

Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX. pp.348–362. 

Bradner, E., Iorio, F., and Davis, M., 2014. Parameters tell the design story: ideation and abstraction 

in design optimization. In: Proceedings of the Symposium on Simulation for Architecture & 

Urban Design. Society for Computer Simulation International, p.26. 

Breiman, L., 2001. Random forests. Machine learning, 45(1), pp.5–32. 

Bridgman, P.W., 1922. Dimensional analysis. Yale University Press. 



161 
 

Brika, S.E., Mezzetta, J., Brochu, M., and Zhao, Y.F., 2017. Multi-Objective Build Orientation 

Optimization for Powder Bed Fusion by Laser [Online]. Journal of Manufacturing Science and 

Engineering, (50732), p.V002T01A010. Available from: http://dx.doi.org/10.1115/MSEC2017-

2796. 

Brochu, E., Cora, V.M., and De Freitas, N., 2010. A tutorial on Bayesian optimization of expensive 

cost functions, with application to active user modeling and hierarchical reinforcement 

learning. arXiv preprint arXiv:1012.2599. 

Buchanan, R., 1992. Wicked problems in design thinking. Design issues, 8(2), pp.5–21. 

Von Buelow, P., 2012. ParaGen: Performative Exploration of generative systems. Journal of the 

International Association for Shell and Spatial Structures, 53(4), pp.271–284. 

Bylinskii, Z., Kim, N.W., O’Donovan, P., Alsheikh, S., Madan, S., Pfister, H., Durand, F., Russell, B., and 

Hertzmann, A., 2017. Learning visual importance for graphic designs and data visualizations. In: 

Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology. 

ACM, pp.57–69. 

Byrd, R.H., Lu, P., Nocedal, J., and Zhu, C., 1995. A limited memory algorithm for bound constrained 

optimization. SIAM Journal on Scientific Computing, 16(5), pp.1190–1208. 

Cadman, J.E., Zhou, S., Chen, Y., and Li, Q., 2013. On design of multi-functional microstructural 

materials [Online]. Journal of Materials Science, 48(1), pp.51–66. Available from: 

http://dx.doi.org/10.1007/s10853-012-6643-4. 

Cagan, J., Campbell, M.I., Finger, S., and Tomiyama, T., 2005. A Framework for Computational Design 

Synthesis: Model and Applications [Online]. Journal of Computing and Information Science in 

Engineering, 5(3), pp.171–181. Available from: http://dx.doi.org/10.1115/1.2013289. 

Campbell, I., Bourell, D., and Gibson, I., 2012. Additive manufacturing: rapid prototyping comes of 

age. Rapid prototyping journal, 18(4), pp.255–258. 

Campbell, M.I. and Shea, K., 2014. Computational design synthesis. AI EDAM, 28(3), pp.207–208. 

Carstensen, J. V and Guest, J.K., 2018. Projection-based two-phase minimum and maximum length 

scale control in topology optimization [Online]. Structural and Multidisciplinary Optimization. 

Available from: https://doi.org/10.1007/s00158-018-2066-4. 

Carter, W.T., Erno, D.J., Abbott, D.H., Bruck, C.E., Wilson, G.H., Wolfe, J.B., Finkhousen, D.M., Tepper, 

A., and Stevens, R.G., 2014. The GE Aircraft Engine Bracket Challenge: An Experiment in 



162 
 

Crowdsourcing for Mechanical Design Concepts. In: Solid Freeform Fabrication Symposium, 

Austin, TX. pp.1402–1411. 

Casakin, H.P., 2007. Metaphors in design problem solving: Implications for creativity. International 

Journal of Design, 1(2). 

Catchpole-Smith, S., Aboulkhair, N., Parry, L., Tuck, C., Ashcroft, I.A., and Clare, A., 2017. Fractal scan 

strategies for selective laser melting of ‘unweldable’ nickel superalloys [Online]. Additive 

Manufacturing, 15, pp.113–122. Available from: 

https://www.sciencedirect.com/science/article/pii/S221486041630358X [Accessed 6 July 

2018]. 

Caterino, N., Iervolino, I., Manfredi, G., and Cosenza, E., 2009. Comparative analysis of multi‐criteria 

decision‐making methods for seismic structural retrofitting. Computer‐Aided Civil and 

Infrastructure Engineering, 24(6), pp.432–445. 

Chakrabarti, A., Shea, K., Stone, R., Cagan, J., Campbell, M., Hernandez, N.V., and Wood, K.L., 2011. 

Computer-based design synthesis research: an overview. Journal of Computing and Information 

Science in Engineering, 11(2), p.21003. 

Challis, V.J., Guest, J.K., Grotowski, J.F., and Roberts, A.P., 2012. Computationally generated cross-

property bounds for stiffness and fluid permeability using topology optimization. International 

Journal of Solids and Structures, 49(23), pp.3397–3408. 

Chen, K.W., Janssen, P., and Schlueter, A., 2015a. Analysing Populations of Design Variants Using 

Clustering and Archetypal Analysis. Proceedings of the 33rd eCAADe Conference, 1, pp.251–

260. 

Chen, K.W., Janssen, P., and Schlueter, A., 2015b. Analysing Populations of Design Variants Using 

Clustering and Archetypal Analysis. Proceedings of the 33rd eCAADe Conference, (September), 

pp.251–260. 

Cheng, W., Fuh, J.Y.H., Nee, A.Y.C., Wong, Y.S., Loh, H.T., and Miyazawa, T., 1995. Multi-objective 

optimization of part-building orientation in stereolithography. Rapid Prototyping Journal, 1(4), 

pp.12–23. 

Chiandussi, G., Codegone, M., Ferrero, S., and Varesio, F.E., 2012. Comparison of multi-objective 

optimization methodologies for engineering applications [Online]. Computers & Mathematics 

with Applications, 63(5), pp.912–942. Available from: 

http://www.sciencedirect.com/science/article/pii/S0898122111010406. 



163 
 

Chien, S.-F. and Flemming, U., 2002. Design space navigation in generative design systems [Online]. 

Automation in Construction, 11(1), pp.1–22. Available from: 

http://www.sciencedirect.com/science/article/pii/S0926580500000844 [Accessed 16 May 

2016]. 

Chowdhury, S. and Anand, S., 2016. Artificial neural network based geometric compensation for 

thermal deformation in additive manufacturing processes. In: ASME 2016 11th International 

Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 

p.V003T08A006-V003T08A006. 

Christensen, P.W. and Klarbring, A., 2009. Sizing Stiffness Optimization of a Truss. In: P. W. 

Christensen & A. Klarbring, eds. An Introduction to Structural Optimization. Dordrecht: Springer 

Netherlands, pp.77–95. Available from: https://doi.org/10.1007/978-1-4020-8666-3_5. 

Christiansen, A.N., Schmidt, R., and Bærentzen, J.A., 2015. Automatic balancing of 3D models 

[Online]. Computer-Aided Design, 58, pp.236–241. Available from: 

https://www.sciencedirect.com/science/article/pii/S0010448514001614 [Accessed 22 January 

2018]. 

Crilly, N., 2015. Fixation and creativity in concept development: The attitudes and practices of expert 

designers [Online]. Design Studies, 38, pp.54–91. Available from: 

http://www.sciencedirect.com/science/article/pii/S0142694X15000137 [Accessed 6 August 

2015]. 

Cross, N., 2004. Expertise in design: an overview. Design studies, 25(5), pp.427–441. 

Das, P., Chandran, R., Samant, R., and Anand, S., 2015. Optimum Part Build Orientation in Additive 

Manufacturing for Minimizing Part Errors and Support Structures [Online]. Procedia 

Manufacturing, 1, pp.343–354. Available from: 

http://linkinghub.elsevier.com/retrieve/pii/S2351978915010410 [Accessed 23 June 2017]. 

Dayarathna, M., Wen, Y., and Fan, R., 2016. Data center energy consumption modeling: A survey. 

IEEE Communications Surveys & Tutorials, 18(1), pp.732–794. 

Deaton, J.D. and Grandhi, R. V, 2014. A survey of structural and multidisciplinary continuum 

topology optimization: post 2000 [Online]. Structural and Multidisciplinary Optimization, 49(1), 

pp.1–38. Available from: https://doi.org/10.1007/s00158-013-0956-z. 

Desktop Metal, 2018. 3D Printing at Scale [Online]. Available from: 

https://www.desktopmetal.com/products/production/. 



164 
 

Despeisse, M. and Minshall, T., 2017. Skills and Education for Additive Manufacturing: A Review of 

Emerging Issues BT  - Advances in Production Management Systems. The Path to Intelligent, 

Collaborative and Sustainable Manufacturing. In: H. Lödding, R. Riedel, K.-D. Thoben, G. von 

Cieminski, & D. Kiritsis, eds. Cham: Springer International Publishing, pp.289–297. 

Dhokia, V., Essink, W.P., and Flynn, J.M., 2017. A generative multi-agent design methodology for 

additively manufactured parts inspired by termite nest building [Online]. CIRP Annals - 

Manufacturing Technology, 66(1), pp.153–156. Available from: 

http://linkinghub.elsevier.com/retrieve/pii/S0007850617300392 [Accessed 10 August 2017]. 

Ding, D., Pan, Z., Cuiuri, D., and Li, H., 2014. A tool-path generation strategy for wire and arc additive 

manufacturing [Online]. The International Journal of Advanced Manufacturing Technology, 

73(1–4), pp.173–183. Available from: http://dx.doi.org/10.1007/s00170-014-5808-5. 

Doersch, C., 2016. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908. 

Dong, G., Tang, Y., and Zhao, Y.F., 2017. A Survey of Modeling of Lattice Structures Fabricated by 

Additive Manufacturing [Online]. Journal of Mechanical Design, 139(10), pp.100906–100913. 

Available from: http://dx.doi.org/10.1115/1.4037305. 

Dorn, W.S., Gomory, R.E., and Greenberg, H.J., 1964. Automatic design of optimal structures. Journal 

de Mecanique, 3, pp.25–52. 

Dorst, K. and Cross, N., 2001. Creativity in the design process: co-evolution of problem–solution 

[Online]. Design Studies, 22(5), pp.425–437. Available from: 

http://www.sciencedirect.com/science/article/pii/S0142694X01000096 [Accessed 13 January 

2015]. 

Dumas, J., Hergel, J., and Lefebvre, S., 2014. Bridging the Gap: Automated Steady Scaffoldings for 3D 

Printing [Online]. ACM Trans. Graph., 33(4), p.98:1--98:10. Available from: 

http://doi.acm.org/10.1145/2601097.2601153. 

Duncker, K. and Lees, L.S., 1945. On problem-solving. Psychological monographs, 58(5), p.i. 

Eggenberger, T., Oettmeier, K., and Hofmann, E., 2018. Additive Manufacturing in Automotive Spare 

Parts Supply Chains – A Conceptual Scenario Analysis of Possible Effects. In: M. Meboldt & C. 

Klahn, eds. Proceedings of Additive Manufacturing in Products and Applications - AMPA2017. 

Cham: Springer International Publishing, pp.223–237. 

Emmelmann, C., Sander, P., Kranz, J., and Wycisk, E., 2011. Laser Additive Manufacturing and 

Bionics: Redefining Lightweight Design [Online]. Physics Procedia, 12, pp.364–368. Available 



165 
 

from: http://www.sciencedirect.com/science/article/pii/S1875389211001258 [Accessed 19 

November 2015]. 

Essink, W.P., Flynn, J.M., Goguelin, S., and Dhokia, V., 2017. Hybrid Ants: A New Approach for 

Geometry Creation for Additive and Hybrid Manufacturing [Online]. Procedia CIRP, 60, pp.199–

204. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2212827117300239 

[Accessed 10 August 2017]. 

Finke, R.A., Ward, T.B., and Smith, S.M., 1992. Creative cognition: Theory, research, and applications. 

Fishburn, P.C., 1967. Letter to the editor—additive utilities with incomplete product sets: application 

to priorities and assignments. Operations Research, 15(3), pp.537–542. 

Flynn, J.M., Shokrani, A., Newman, S.T., and Dhokia, V., 2015. Hybrid Additive and Subtractive 

Machine Tools-Research and Industrial Developments [Online]. International Journal of 

Machine Tools and Manufacture, 101, pp.79–101. Available from: 

http://www.sciencedirect.com/science/article/pii/S0890695515300894 [Accessed 28 

November 2015]. 

Formlabs, 2015. Formlabs Design Guide. 

Forrester, A.I.J. and Keane, A.J., 2009. Recent advances in surrogate-based optimization. Progress in 

aerospace sciences, 45(1–3), pp.50–79. 

Frank, D. and Fadel, G., 1995. Expert system-based selection of the preferred direction of build for 

rapid prototyping processes. Journal of Intelligent Manufacturing, 6(5), pp.339–345. 

Frank, M.C., Wysk, R.A., and Joshi, S.B., 2004. Rapid planning for CNC milling—A new approach for 

rapid prototyping [Online]. Journal of Manufacturing Systems, 23(3), pp.242–255. Available 

from: https://www.sciencedirect.com/science/article/pii/S0278612504800372 [Accessed 28 

June 2018]. 

Fricke, G., 1999. Successful approaches in dealing with differently precise design problems [Online]. 

Design Studies, 20(5), pp.417–429. Available from: 

https://www.sciencedirect.com/science/article/pii/S0142694X99000186 [Accessed 29 October 

2018]. 

Frustum, 2018. Frustum Generate [Online]. Available from: www.frustum.com [Accessed 30 August 

2017]. 

Fryazinov, O., Vilbrandt, T., and Pasko, A., 2013. Multi-scale space-variant FRep cellular structures 



166 
 

[Online]. Computer-Aided Design, 45(1), pp.26–34. Available from: 

https://www.sciencedirect.com/science/article/pii/S0010448511002405 [Accessed 2 July 

2018]. 

Gatys, L.A., Ecker, A.S., and Bethge, M., 2016. Image style transfer using convolutional neural 

networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 

pp.2414–2423. 

Gaynor, A.T. and Guest, J.K., 2016. Topology optimization considering overhang constraints: 

Eliminating sacrificial support material in additive manufacturing through design [Online]. 

Structural and Multidisciplinary Optimization, 54(5), pp.1157–1172. Available from: 

https://doi.org/10.1007/s00158-016-1551-x. 

Geng, X., Chu, X., and Zhang, Z., 2010. A new integrated design concept evaluation approach based 

on vague sets. Expert Systems with Applications, 37(9), pp.6629–6638. 

Ghouse, S., Babu, S., Van Arkel, R.J., Nai, K., Hooper, P.A., and Jeffers, J.R.T., 2017. The influence of 

laser parameters and scanning strategies on the mechanical properties of a stochastic porous 

material [Online]. Materials & Design, 131, pp.498–508. Available from: 

https://www.sciencedirect.com/science/article/pii/S026412751730624X [Accessed 25 October 

2018]. 

Ghouse, S., Babu, S., Nai, K., Hooper, P.A., and Jeffers, J.R.T., 2018. The influence of laser 

parameters, scanning strategies and material on the fatigue strength of a stochastic porous 

structure [Online]. Additive Manufacturing, 22, pp.290–301. Available from: 

https://www.sciencedirect.com/science/article/pii/S2214860418301313 [Accessed 25 October 

2018]. 

Gibson, I., Rosen, D., and Stucker, B., 2014. Additive Manufacturing Technologies: 3D Printing, Rapid 

Prototyping, and Direct Digital Manufacturing. Springer. 

Gibson, M.A., Myerbeg, J.S., Fulop, R., Verminski, M.D., Fontana, R.R., Schuh, C.A., Chiang, Y.-M., and 

Hart, A.J., 2017. Fabricating an Interface Layer for Removable Support [Online]. Available from: 

https://patentimages.storage.googleapis.com/88/83/15/a0011645565356/US9833839.pdf. 

Goguelin, S., Flynn, J.M., Essink, W.P., and Dhokia, V., 2017. A Data Visualization Dashboard for 

Exploring the Additive Manufacturing Solution Space. Procedia CIRP, 60, pp.193–198. 

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and 

Bengio, Y., 2014. Generative adversarial nets. In: Advances in neural information processing 



167 
 

systems. pp.2672–2680. 

Gordon, E.R., Shokrani, A., Flynn, J.M., Goguelin, S., Barclay, J., and Dhokia, V., 2016. A Surface 

Modification Decision Tree to Influence Design in Additive Manufacturing. In: Sustainable 

Design and Manufacturing 2016. Springer, pp.423–434. 

GrabCAD, 2013. GE Jet Engine Bracket Challenge [Online]. Available from: 

https://grabcad.com/challenges/ge-jet-engine-bracket-challenge [Accessed 4 May 2018]. 

GrabCAD, 2016. Airplane Bearing Bracket Challenge [Online]. Available from: 

https://grabcad.com/challenges/airplane-bearing-bracket-challenge [Accessed 4 May 2018]. 

GrabCAD, 2017. GrabCAD Library [Online]. Available from: www.grabcad.com [Accessed 29 August 

2017]. 

Greco, S., Figueira, J., and Ehrgott, M., 2016. Multiple criteria decision analysis. Springer. 

Griffiths, L., 2017. Carbon on mass 3D printing the Adidas Futurecraft 4d show [Online]. TCT 

Magazine. Available from: https://www.tctmagazine.com/tct-events/tct-show-uk/carbon-

mass-3d-printing-adidas-futurecraft-4d-shoe/. 

Haftka, R.T. and Gürdal, Z., 2012. Elements of structural optimization. Springer Science & Business 

Media. 

Hague, R., Mansour, S., and Saleh, N., 2003. Design opportunities with rapid manufacturing [Online]. 

Assembly Automation, 23(4), pp.346–356. Available from: 

http://dx.doi.org/10.1108/01445150310698643. 

Halford, G.S., Baker, R., McCredden, J.E., and Bain, J.D., 2005. How many variables can humans 

process? Psychological science, 16(1), pp.70–76. 

Hallihan, G.M. and Shu, L.H., 2013. Considering confirmation bias in design and design research. 

Journal of Integrated Design and Process Science, 17(4), pp.19–35. 

Hammond, J.S., Keeney, R.L., and Raiffa, H., 1998. The hidden traps in decision making. Harvard 

business review, 76(5). 

Haselton, M.G., Nettle, D., and Murray, D.R., 2015. The evolution of cognitive bias. The handbook of 

evolutionary psychology, pp.1–20. 

Hayes, J.R., 2013. The complete problem solver. Routledge. 

Hildreth, O.J., Nassar, A.R., Chasse, K.R., and Simpson, T.W., 2016. Dissolvable Metal Supports for 3D 



168 
 

Direct Metal Printing [Online]. 3D Printing and Additive Manufacturing, 3(2), pp.90–97. 

Available from: https://doi.org/10.1089/3dp.2016.0013. 

Hoover, S.P., Rinderle, J.R., and Finger, S., 1991. Models and abstractions in design. Design Studies, 

12(4), pp.237–245. 

Hopkinson, N., Hague, R., and Dickens, P., 2006. Rapid manufacturing: an industrial revolution for 

the digital age. John Wiley & Sons. 

HP, 2018. HP Metal Jet [Online]. Available from: http://www8.hp.com/us/en/printers/3d-

printers/metals.html [Accessed 12 September 2018]. 

Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., Cresko, J., and Masanet, E., 

2016. Energy and emissions saving potential of additive manufacturing: the case of lightweight 

aircraft components [Online]. Journal of Cleaner Production, 135, pp.1559–1570. Available 

from: https://www.sciencedirect.com/science/article/pii/S0959652615004849 [Accessed 28 

October 2018]. 

Huang, X., Ye, C., Wu, S., Guo, K., and Mo, J., 2009. Sloping wall structure support generation for 

fused deposition modeling [Online]. The International Journal of Advanced Manufacturing 

Technology, 42(11–12), pp.1074–1081. Available from: http://dx.doi.org/10.1007/s00170-008-

1675-2. 

Hur, J. and Lee, K., 1998. The development of a CAD environment to determine the preferred build-

up direction for layered manufacturing [Online]. The International Journal of Advanced 

Manufacturing Technology, 14(4), pp.247–254. Available from: 

https://doi.org/10.1007/BF01199879. 

Inui, M., Nagano, S., and Umezu, N., 2018. Fast computation of accessibility cones for assisting 3+ 2 

axis milling. Computer-Aided Design and Applications, 15(5), pp.667–676. 

Jansson, D.G. and Smith, S.M., 1991. Design fixation [Online]. Design Studies, 12(1), pp.3–11. 

Available from: http://www.sciencedirect.com/science/article/pii/0142694X9190003F 

[Accessed 9 November 2015]. 

Jhabvala, J., Boillat, E., André, C., and Glardon, R., 2012. An innovative method to build support 

structures with a pulsed laser in the selective laser melting process [Online]. The International 

Journal of Advanced Manufacturing Technology, 59(1–4), pp.137–142. Available from: 

http://dx.doi.org/10.1007/s00170-011-3470-8. 

Jiang, J., Xu, X., and Stringer, J., 2018. Support Structures for Additive Manufacturing: A Review. 



169 
 

Journal of Manufacturing and Materials Processing , 2(4). 

Johnson, S.G., 2017. The Nlopt nonlinear-optimization package [Online]. Available from: 

https://nlopt.readthedocs.io/en/latest/NLopt_Python_Reference/. 

Johnson, T.E. and Gaynor, A.T., 2018. Three-dimensional projection-based topology optimization for 

prescribed-angle self-supporting additively manufactured structures [Online]. Additive 

Manufacturing. Available from: 

https://www.sciencedirect.com/science/article/pii/S2214860417303846#bib0145 [Accessed 25 

September 2018]. 

Jones, J.C., 1992. Design methods. John Wiley & Sons. 

Kabir, G. and Sumi, R.S., 2012. Selection of concrete production facility location integrating fuzzy 

AHP with TOPSIS method. International Journal of Productivity Management and Assessment 

Technologies (IJPMAT), 1(1), pp.40–59. 

Kazi, R.H., Grossman, T., Cheong, H., Hashemi, A., and Fitzmaurice, G., 2017. DreamSketch: Early 

Stage 3D Design Explorations with Sketching and Generative Design. In: Proceedings of the 30th 

Annual ACM Symposium on User Interface Software and Technology. UIST ’17. New York, NY, 

USA: ACM, pp.401–414. Available from: http://doi.acm.org/10.1145/3126594.3126662. 

Kellner, T., 2015. The FAA Cleared the First 3D Printed Part to Fly in a Commercial Jet Engine from GE 

[Online]. Available from: https://www.ge.com/reports/post/116402870270/the-faa-cleared-

the-first-3d-printed-part-to-fly-2/ [Accessed 22 September 2018]. 

Khardekar, R. and McMains, S., 2006. Fast Layered Manufacturing Support Volume Computation on 

GPUs [Online]. , (4255X), pp.993–1002. Available from: http://dx.doi.org/10.1115/DETC2006-

99666. 

Khorram Niaki, M. and Nonino, F., 2017. Impact of additive manufacturing on business 

competitiveness: A multiple case study. Journal of Manufacturing Technology Management, 

28(1), pp.56–74. 

Kokotovich, V. and Dorst, K., 2016. The art of ‘stepping back’: Studying levels of abstraction in a 

diverse design team [Online]. Design Studies, 46, pp.79–94. Available from: 

https://www.sciencedirect.com/science/article/pii/S0142694X16300436 [Accessed 10 

September 2018]. 

Koslow, T., 2015. New Balance and Nervous System Collaborate to Make Running Great [Online]. 

Available from: http://3dprintingindustry.com/2015/12/07/63131/ [Accessed 21 January 



170 
 

2016]. 

Kranz, J., Herzog, D., and Emmelmann, C., 2015. Design guidelines for laser additive manufacturing of 

lightweight structures in TiAl6V4 [Online]. Journal of Laser Applications, 27(S1), p. Available 

from: http://scitation.aip.org/content/lia/journal/jla/27/S1/10.2351/1.4885235. 

Krish, S., 2011. A practical generative design method [Online]. Computer-Aided Design, 43(1), pp.88–

100. Available from: http://www.sciencedirect.com/science/article/pii/S0010448510001764 

[Accessed 6 August 2015]. 

Kroll, E. and Koskela, L., 2016. Explicating concepts in reasoning from function to form by two-step 

innovative abductions. AI EDAM, 30(Special Issue 02), pp.125–137. 

Kumke, M., Watschke, H., and Vietor, T., 2016. A new methodological framework for design for 

additive manufacturing [Online]. Virtual and Physical Prototyping, 11(1), pp.3–19. Available 

from: http://www.tandfonline.com/doi/abs/10.1080/17452759.2016.1139377. 

Kuo, Y.-H., Cheng, C.-C., Lin, Y.-S., and San, C.-H., 2018. Support structure design in additive 

manufacturing based on topology optimization [Online]. Structural and Multidisciplinary 

Optimization, 57(1), pp.183–195. Available from: https://doi.org/10.1007/s00158-017-1743-z. 

Kurniawan, M.A., 2013. M Kurniawan GE Jet Engine Bracket Version 1.2 [Online]. Available from: 

https://grabcad.com/library/m-kurniawan-ge-jet-engine-bracket-version-1-2-1 [Accessed 4 

May 2018]. 

Lan, P.-T., Chou, S.-Y., Chen, L.-L., and Gemmill, D., 1997. Determining fabrication orientations for 

rapid prototyping with Stereolithography apparatus [Online]. Computer-Aided Design, 29(1), 

pp.53–62. Available from: 

https://www.sciencedirect.com/science/article/pii/S0010448596000498 [Accessed 31 July 

2018]. 

Langelaar, M., 2016. Topology optimization of 3D self-supporting structures for additive 

manufacturing. Additive Manufacturing, 12, pp.60–70. 

Langelaar, M., 2017. An additive manufacturing filter for topology optimization of print-ready 

designs [Online]. Structural and Multidisciplinary Optimization, 55(3), pp.871–883. Available 

from: https://doi.org/10.1007/s00158-016-1522-2. 

Langelaar, M., 2018. Combined optimization of part topology, support structure layout and build 

orientation for additive manufacturing [Online]. Structural and Multidisciplinary Optimization. 

Available from: https://doi.org/10.1007/s00158-017-1877-z. 



171 
 

Lawson, B., 2002. CAD and creativity: does the computer really help? Leonardo, 35(3), pp.327–331. 

Leary, M., Merli, L., Torti, F., Mazur, M., and Brandt, M., 2014. Optimal topology for additive 

manufacture: A method for enabling additive manufacture of support-free optimal structures 

[Online]. Materials & Design, 63, pp.678–690. Available from: 

http://www.sciencedirect.com/science/article/pii/S0261306914004646 [Accessed 21 

September 2015]. 

Lefky, C.S., Zucker, B., Wright, D., Nassar, A.R., Simpson, T.W., and Hildreth, O.J., 2017. Dissolvable 

Supports in Powder Bed Fusion-Printed Stainless Steel [Online]. 3D Printing and Additive 

Manufacturing, 4(1), pp.3–11. Available from: https://doi.org/10.1089/3dp.2016.0043. 

Leong, K.F., Chua, C.K., and Ng, Y.M., 1996. A study of stereolithography file errors and repair. Part 1. 

Generic solution [Online]. The International Journal of Advanced Manufacturing Technology, 

12(6), pp.407–414. Available from: http://dx.doi.org/10.1007/BF01186929. 

Li, D., Levin, D.I.W., Matusik, W., and Zheng, C., 2016. Acoustic Voxels: Computational Optimization 

of Modular Acoustic Filters [Online]. ACM Trans. Graph., 35(4), p.88:1--88:12. Available from: 

http://doi.acm.org/10.1145/2897824.2925960. 

Limitstate LTD, 2018. LIMITSTATE:FORM [Online]. Available from: http://limitstate3d.com/ [Accessed 

14 June 2018]. 

Liu, J., Gaynor, A.T., Chen, S., Kang, Z., Suresh, K., Takezawa, A., Li, L., Kato, J., Tang, J., Wang, C.C.L., 

Cheng, L., Liang, X., and To, A.C., 2018. Current and future trends in topology optimization for 

additive manufacturing [Online]. Structural and Multidisciplinary Optimization, 57(6), pp.2457–

2483. Available from: https://doi.org/10.1007/s00158-018-1994-3. 

Lockett, H., Ding, J., Williams, S., and Martina, F., 2017. Design for Wire + Arc Additive Manufacture: 

design rules and build orientation selection [Online]. Journal of Engineering Design, 28(7–9), 

pp.568–598. Available from: https://doi.org/10.1080/09544828.2017.1365826. 

Maher, M. Lou and Poon, J., 1996. Modeling design exploration as co-evolution. Computer Aided 

Civil and Infrastructure Engineering, 11(3), pp.195–209. 

Maheshwaraa Namasivayam, U. and Conner Seepersad, C., 2011. Topology design and freeform 

fabrication of deployable structures with lattice skins. Rapid Prototyping Journal, 17(1), pp.5–

16. 

Bin Maidin, S., Campbell, I., and Pei, E., 2012. Development of a design feature database to support 

design for additive manufacturing. Assembly Automation, 32(3), pp.235–244. 



172 
 

Markforged, 2018. Metal X [Online]. Available from: https://markforged.com/metal-x/ [Accessed 12 

September 2018]. 

Martin, T., Umetani, N., and Bickel, B., 2015. OmniAD: Data-driven Omni-directional Aerodynamics 

[Online]. ACM Trans. Graph., 34(4), p.113:1--113:12. Available from: 

http://doi.acm.org/10.1145/2766919. 

Mass, Y. and Amir, O., 2016. Topology optimization for additive manufacturing : accounting for 

overhang limitations using a virtual skeleton [Online]. Additive Manufacturing, 18(2014), 

p.2016. Available from: http://www.sciencedirect.com/science/article/pii/S2214860417301045 

[Accessed 4 October 2017]. 

Materialise NV, 2018. Design Guides Homepage [Online]. Available from: 

https://i.materialise.com/en/3d-printing-materials/design-guides [Accessed 13 June 2018]. 

Mehnen, J., Ding, J., Lockett, H., and Kazanas, P., 2014. Design study for wire and arc additive 

manufacture. International Journal of Product Development 20, 19(1–3), pp.2–20. 

Mezzadri, F., Bouriakov, V., and Qian, X., 2018. Topology optimization of self-supporting support 

structures for additive manufacturing [Online]. Additive Manufacturing, 21, pp.666–682. 

Available from: https://www.sciencedirect.com/science/article/pii/S2214860418301519 

[Accessed 17 September 2018]. 

Mirzendehdel, A.M. and Suresh, K., 2016. Support structure constrained topology optimization for 

additive manufacturing [Online]. Computer-Aided Design, 81, pp.1–13. Available from: 

http://linkinghub.elsevier.com/retrieve/pii/S0010448516300951 [Accessed 12 October 2017]. 

Morgan, H.D., Cherry, J.A., Jonnalagadda, S., Ewing, D., and Sienz, J., 2016. Part orientation 

optimisation for the additive layer manufacture of metal components [Online]. The 

International Journal of Advanced Manufacturing Technology, 86(5), pp.1679–1687. Available 

from: https://doi.org/10.1007/s00170-015-8151-6. 

Mothersill, P. and Bove Jr., V.M., 2015. The EmotiveModeler: An Emotive Form Design CAD Tool. In: 

Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in 

Computing Systems. CHI EA ’15. New York, NY, USA: ACM, pp.339–342. Available from: 

http://doi.acm.org/10.1145/2702613.2725433. 

Murphy, K.P., 2012. Machine Learning: A Probabilistic Perspective. MIT Press. 

Nassehi, A., Newman, S., Dhokia, V., Zhu, Z., and Asrai, R.I., 2012. Using formal methods to model 

hybrid manufacturing processes. In: H. A. ElMaraghy, ed. Berlin, Heidelberg: Springer Berlin 



173 
 

Heidelberg, pp.52–56. 

Nikander, J.B., Liikkanen, L.A., and Laakso, M., 2014. The preference effect in design concept 

evaluation [Online]. Design Studies, 35(5), pp.473–499. Available from: 

https://www.sciencedirect.com/science/article/pii/S0142694X14000301 [Accessed 11 July 

2018]. 

Nikol, I., 2016. Alcoa Bracket (BRCT12a) correction [Online]. Available from: 

https://grabcad.com/library/alcoa-bracket-brct-12a-correction-1 [Accessed 4 May 2018]. 

Nourbakhsh, M., Irizarry, J., and Haymaker, J., 2018. Generalizable surrogate model features to 

approximate stress in 3D trusses [Online]. Engineering Applications of Artificial Intelligence, 71, 

pp.15–27. Available from: 

https://www.sciencedirect.com/science/article/pii/S095219761830006X [Accessed 4 August 

2018]. 

nTopology, 2018. nTopology [Online]. Available from: www.ntopology.com [Accessed 30 August 

2017]. 

Ohsaki, M., 1995. Genetic algorithm for topology optimization of trusses. Computers & Structures, 

57(2), pp.219–225. 

Opricovic, S. and Tzeng, G.-H., 2004. Compromise solution by MCDM methods: A comparative 

analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), pp.445–455. 

Oropallo, W. and Piegl, L., 2015. Ten challenges in 3D printing [Online]. Engineering with Computers, 

pp.1–14. Available from: http://dx.doi.org/10.1007/s00366-015-0407-0. 

Osanov, M. and Guest, J.K., 2016. Topology Optimization for Architected Materials Design [Online]. 

Annual Review of Materials Research, 46(1), pp.211–233. Available from: 

http://dx.doi.org/10.1146/annurev-matsci-070115-031826. 

Oxman, R., 2006. Theory and design in the first digital age. Design studies, 27(3), pp.229–265. 

Parry, L., Ashcroft, I.A., and Wildman, R.D., 2016. Understanding the effect of laser scan strategy on 

residual stress in selective laser melting through thermo-mechanical simulation. Additive 

Manufacturing, 12, pp.1–15. 

Pasko, A., Fryazinov, O., Vilbrandt, T., Fayolle, P.-A., and Adzhiev, V., 2011. Procedural function-

based modelling of volumetric microstructures [Online]. Graphical Models, 73(5), pp.165–181. 

Available from: https://www.sciencedirect.com/science/article/pii/S1524070311000087 



174 
 

[Accessed 2 July 2018]. 

Piili, H., Happonen, A., Väistö, T., Venkataramanan, V., Partanen, J., and Salminen, A., 2015. Cost 

Estimation of Laser Additive Manufacturing of Stainless Steel. In: Physics Procedia. Elsevier, 

pp.388–396. Available from: 

http://www.sciencedirect.com/science/article/pii/S1875389215015436 [Accessed 10 

November 2017]. 

Pizzolato, A., Sharma, A., Maute, K., Sciacovelli, A., and Verda, V., 2017. Topology optimization for 

heat transfer enhancement in Latent Heat Thermal Energy Storage [Online]. International 

Journal of Heat and Mass Transfer, 113, pp.875–888. Available from: 

https://www.sciencedirect.com/science/article/pii/S0017931017303034#f0055 [Accessed 24 

January 2018]. 

Ponche, R., Hascoët, J.-Y., Kerbrat, O., and Mognol, P., 2012. A new global approach to design for 

additive manufacturing. Virtual and Physical Prototyping, 7(2), pp.93–105. 

Pradel, P., Bibb, R., Zhu, Z., and Moultrie, J., 2018. Exploring the Impact of Shape Complexity on Build 

Time for Material Extrusion and Material Jetting BT  - Industrializing Additive Manufacturing - 

Proceedings of Additive Manufacturing in Products and Applications - AMPA2017. In: M. 

Meboldt & C. Klahn, eds. Cham: Springer International Publishing, pp.24–33. 

Pradel, P., Zhu, Z., Bibb, R., and Moultrie, J., 2018. Investigation of design for additive manufacturing 

in professional design practice [Online]. Journal of Engineering Design, 29(4–5), pp.165–200. 

Available from: https://doi.org/10.1080/09544828.2018.1454589. 

Prakash, W.N., Sridhar, V.G., and Annamalai, K., 2014. New product development by DFMA and rapid 

prototyping. ARPN J Eng Appl Sci, 9(3), pp.274–279. 

Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O., 2013. Make It Stand: Balancing 

Shapes for 3D Fabrication [Online]. ACM Trans. Graph., 32(4), p.81:1--81:10. Available from: 

http://doi.acm.org/10.1145/2461912.2461957. 

Priedeman Jr, W.R. and Brosch, A.L., 2004. Soluble material and process for three-dimensional 

modeling. 

Querin, O.M., Steven, G.P., and Xie, Y.M., 1998. Evolutionary structural optimisation (ESO) using a 

bidirectional algorithm. Engineering computations, 15(8), pp.1031–1048. 

Rajan, S.D., 1995. Sizing, shape, and topology design optimization of trusses using genetic algorithm. 

Journal of Structural Engineering, 121(10), pp.1480–1487. 



175 
 

Rasmussen, C.E., 2004. Gaussian processes in machine learning. In: Advanced lectures on machine 

learning. Springer, pp.63–71. 

Rebaioli, L. and Fassi, I., 2017. A review on benchmark artifacts for evaluating the geometrical 

performance of additive manufacturing processes [Online]. The International Journal of 

Advanced Manufacturing Technology, 93(5), pp.2571–2598. Available from: 

https://doi.org/10.1007/s00170-017-0570-0. 

Renishaw plc., 2017. Renishaw previews QuantAM Dental software for additive manufacturing at IDS 

[Online]. Available from: https://www.renishaw.com/en/renishaw-previews-quantam-dental-

software-for-additive-manufacturing-at-ids--40927 [Accessed 8 November 2018]. 

Renishaw plc., 2018. RenAM 500Q [Online]. Available from: http://www.renishaw.com/en/renam-

500q--42781 [Accessed 12 September 2018]. 

Robertson, B.F. and Radcliffe, D.F., 2009. Impact of CAD tools on creative problem solving in 

engineering design [Online]. Computer-Aided Design, 41(3), pp.136–146. Available from: 

http://www.sciencedirect.com/science/article/pii/S0010448508001334 [Accessed 2 November 

2015]. 

Rozvany, G.I.N., 2009. A critical review of established methods of structural topology optimization 

[Online]. Structural and Multidisciplinary Optimization, 37(3), pp.217–237. Available from: 

https://doi.org/10.1007/s00158-007-0217-0. 

Rozvany, G.I.N., Zhou, M., and Birker, T., 1992. Generalized shape optimization without 

homogenization [Online]. Structural optimization, 4(3), pp.250–252. Available from: 

https://doi.org/10.1007/BF01742754. 

Ruffo, M., Tuck, C., and Hague, R., 2006. Cost estimation for rapid manufacturing-laser sintering 

production for low to medium volumes. Proceedings of the Institution of Mechanical Engineers, 

Part B: Journal of Engineering Manufacture, 220(9), pp.1417–1427. 

Saaty, T.L., 1990. The analytic hierarchy process. European Journal of Operational Research, 48, 

pp.9–26. 

Salonitis, K., 2016. Design for additive manufacturing based on the axiomatic design method 

[Online]. The International Journal of Advanced Manufacturing Technology, pp.1–8. Available 

from: http://dx.doi.org/10.1007/s00170-016-8540-5. 

Schaedler, T.A. and Carter, W.B., 2016. Architected Cellular Materials. Annual Review of Materials 

Research, (0). 



176 
 

Schaedler, T.A., Ro, C.J., Sorensen, A.E., Eckel, Z., Yang, S.S., Carter, W.B., and Jacobsen, A.J., 2014. 

Designing metallic microlattices for energy absorber applications. Advanced Engineering 

Materials, 16(3), pp.276–283. 

Schmutzler, C., Zimmermann, A., and Zaeh, M.F., 2016. Compensating Warpage of 3D Printed Parts 

Using Free-form Deformation [Online]. Procedia CIRP, 41, pp.1017–1022. Available from: 

https://www.sciencedirect.com/science/article/pii/S2212827115011579 [Accessed 28 October 

2018]. 

Schon, D.A., 1992. Designing as reflective conversation with the materials of a design situation 

[Online]. Research in Engineering Design, 3(3), pp.131–147. Available from: 

https://doi.org/10.1007/BF01580516. 

Schulz, A., Xu, J., Zhu, B., Zheng, C., Grinspun, E., and Matusik, W., 2017. Interactive Design Space 

Exploration and Optimization for CAD Models [Online]. ACM Trans. Graph., 36(4), p.157:1--

157:14. Available from: http://doi.acm.org/10.1145/3072959.3073688. 

Schwab, K., 2017. Autodesk’s Generatively Designed Cabit Seat Could Make Flying Cheaper [Online]. 

Available from: https://www.fastcodesign.com/90124395/autodesks-generatively-designed-

cabin-seat-could-make-flying-cheaper [Accessed 30 August 2017]. 

Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., and Freitas, N. de, 2016. Taking the Human Out of 

the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE, 104(1), pp.148–175. 

Shea, K., Aish, R., and Gourtovaia, M., 2005. Towards integrated performance-driven generative 

design tools [Online]. Automation in Construction, 14(2), pp.253–264. Available from: 

http://www.sciencedirect.com/science/article/pii/S0926580504000809 [Accessed 16 May 

2016]. 

Sigmund, O., 2011. On the usefulness of non-gradient approaches in topology optimization [Online]. 

Structural and Multidisciplinary Optimization, 43(5), pp.589–596. Available from: 

https://doi.org/10.1007/s00158-011-0638-7. 

Sigmund, O. and Maute, K., 2013. Topology optimization approaches [Online]. Structural and 

Multidisciplinary Optimization, 48(6), pp.1031–1055. Available from: 

https://doi.org/10.1007/s00158-013-0978-6. 

Sigmund, O. and Torquato, S., 1997. Design of materials with extreme thermal expansion using a 

three-phase topology optimization method. Journal of the Mechanics and Physics of Solids, 

45(6), pp.1037–1067. 



177 
 

Silverman, B.G. and Mezher, T.M., 1992. Expert critics in engineering design: Lessons learned and 

research needs. AI magazine, 13(1), p.45. 

Simon, H.A., 1973. The structure of ill structured problems. Artificial intelligence, 4(3–4), pp.181–

201. 

Simon, H.A., 1996. The sciences of the artificial. MIT press. 

Simonelli, M., Tse, Y.Y., and Tuck, C., 2014. On the Texture Formation of Selective Laser Melted Ti-

6Al-4V [Online]. Metallurgical and Materials Transactions A, 45(6), pp.2863–2872. Available 

from: https://doi.org/10.1007/s11661-014-2218-0. 

Singh, V. and Gu, N., 2012. Towards an integrated generative design framework [Online]. Design 

Studies, 33(2), pp.185–207. Available from: 

http://www.sciencedirect.com/science/article/pii/S0142694X11000391 [Accessed 8 April 

2016]. 

Smith, C.J., 2016. Application of layout optimisation to the design of additively manufactured 

metallic components. University of Sheffield. 

Smith, C.J., Gilbert, M., Todd, I., and Derguti, F., 2016. Application of layout optimization to the 

design of additively manufactured metallic components [Online]. Structural and 

Multidisciplinary Optimization, 54(5), pp.1297–1313. Available from: 

https://doi.org/10.1007/s00158-016-1426-1. 

Snider, C.M., Culley, S.J., and Dekoninck, E.A., 2013. Analysing creative behaviour in the later stage 

design process [Online]. Design Studies, 34(5), pp.543–574. Available from: 

http://www.sciencedirect.com/science/article/pii/S0142694X13000239. 

Solid Thinking, 2016. SolidThinking Inspire [Online]. Available from: 

http://www.solidthinking.com/productoverview.aspx?item=inspire 

overview&category=products [Accessed 8 September 2016]. 

Sossou, G., Demoly, F., Montavon, G., and Gomes, S., 2018. An additive manufacturing oriented 

design approach to mechanical assemblies [Online]. Journal of Computational Design and 

Engineering, 5(1), pp.3–18. Available from: 

https://www.sciencedirect.com/science/article/pii/S2288430017300659 [Accessed 6 August 

2018]. 

Srinivasan, H., Harrysson, O.L.A., and Wysk, R.A., 2015. Automatic part localization in a CNC machine 

coordinate system by means of 3D scans [Online]. The International Journal of Advanced 



178 
 

Manufacturing Technology, 81(5), pp.1127–1138. Available from: 

https://doi.org/10.1007/s00170-015-7178-z. 

Srinivasan, V., Mandal, E., and Akleman, E., 2005. Solidifying wireframes. In: Proceedings of the 2004 

bridges conference on mathematical connections in art, music, and science. 

Stanković, T., Mueller, J., and Shea, K., 2017. The effect of anisotropy on the optimization of 

additively manufactured lattice structures [Online]. Additive Manufacturing, 17, pp.67–76. 

Available from: https://www.sciencedirect.com/science/article/pii/S2214860417300593#! 

[Accessed 9 November 2018]. 

Stouffs, R. and Rafiq, Y., 2015. Generative and evolutionary design exploration. AI EDAM, 29(4), 

pp.329–331. 

Strano, G., Hao, L., Everson, R.M., and Evans, K.E., 2013. A new approach to the design and 

optimisation of support structures in additive manufacturing [Online]. The International Journal 

of Advanced Manufacturing Technology, 66(9–12), pp.1247–1254. Available from: 

http://dx.doi.org/10.1007/s00170-012-4403-x. 

Svanberg, K., 1987. The method of moving asymptotes—a new method for structural optimization 

[Online]. International Journal for Numerical Methods in Engineering, 24(2), pp.359–373. 

Available from: http://doi.wiley.com/10.1002/nme.1620240207 [Accessed 12 October 2017]. 

Tammas-Williams, S. and Todd, I., 2017. Design for additive manufacturing with site-specific 

properties in metals and alloys. Scripta Materialia, 135, pp.105–110. 

Tang, T.L.E., Liu, Y., Lu, D., Arisoy, E.B., and Musuvathy, S., 2017. Lattice Structure Design Advisor for 

Additive Manufacturing Using Gaussian Process [Online]. , (58110), p.V001T02A020. Available 

from: http://dx.doi.org/10.1115/DETC2017-67282. 

Tang, Y., Kurtz, A., and Zhao, Y.F., 2015. Bidirectional Evolutionary Structural Optimization (BESO) 

based design method for lattice structure to be fabricated by additive manufacturing [Online]. 

Computer-Aided Design, 69, pp.91–101. Available from: 

http://www.sciencedirect.com/science/article/pii/S0010448515000792 [Accessed 12 October 

2015]. 

Tang, Y. and Zhao, Y.F., 2016. A survey of the design methods for additive manufacturing to improve 

functional performance [Online]. Rapid Prototyping Journal, 22(3), pp.569–590. Available from: 

http://www.emeraldinsight.com/doi/abs/10.1108/RPJ-01-2015-0011. 

Teibrich, A., Mueller, S., Guimbretière, F., Kovacs, R., Neubert, S., and Baudisch, P., 2015. Patching 



179 
 

Physical Objects. In: Proceedings of the 28th Annual ACM Symposium on User Interface 

Software &#38; Technology. UIST ’15. New York, NY, USA: ACM, pp.83–91. Available from: 

http://doi.acm.org/10.1145/2807442.2807467. 

Teitelbaum, G.A., Goaer, Y., and Schmidt, L.C., 2009. Examining Potential Design Guidelines for Use 

in Fused Deposition Modeling to Reduce Build Time and Material Volume. ASME 2009 

International Design Engineering Technical Conferences and Computers and Information in 

Engineering Conference, Volume 8, pp.1–10. 

Theus, M., 2008. High-dimensional data visualization. In: Handbook of data visualization. Springer, 

pp.151–178. 

Thomas, D., 2009. The Development of Design Rules for Selective Laser Melting. University of Wales. 

Thompson, M.K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R.I., Gibson, I., Bernard, A., Schulz, J., 

Graf, P., and Ahuja, B., 2016. Design for Additive Manufacturing: Trends, opportunities, 

considerations, and constraints. CIRP annals, 65(2), pp.737–760. 

Thornton Tomasetti, 2015. Design Explorer [Online]. Available from: 

http://core.thorntontomasetti.com/design-explorer/ [Accessed 24 October 2018]. 

Tomlin, M. and Meyer, J., 2011. Topology optimization of an additive layer manufactured (ALM) 

aerospace part. In: Proceeding of the 7th Altair CAE technology conference. pp.1–9. 

Ultimaker, 2017. Ultimaker Cura 3.4.1. [Online]. Available from: 

https://ultimaker.com/en/products/ultimaker-cura-software. 

Ulu, E., Korkmaz, E., Yay, K., Burak Ozdoganlar, O., and Burak Kara, L., 2015. Enhancing the Structural 

Performance of Additively Manufactured Objects Through Build Orientation Optimization 

[Online]. Journal of Mechanical Design, 137(11), pp.111410–111419. Available from: 

http://dx.doi.org/10.1115/1.4030998. 

Umetani, N. and Bickel, B., 2018. Learning Three-dimensional Flow for Interactive Aerodynamic 

Design [Online]. ACM Trans. Graph., 37(4), p.89:1--89:10. Available from: 

http://doi.acm.org/10.1145/3197517.3201325. 

Umetani, N., Panotopoulou, A., Schmidt, R., and Whiting, E., 2016. Printone: Interactive Resonance 

Simulation for Free-form Print-wind Instrument Design [Online]. ACM Trans. Graph., 35(6), 

p.184:1--184:14. Available from: http://doi.acm.org/10.1145/2980179.2980250. 

Uriondo, A., Esperon-Miguez, M., and Perinpanayagam, S., 2015. The present and future of additive 



180 
 

manufacturing in the aerospace sector: A review of important aspects. Proceedings of the 

Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(11), 

pp.2132–2147. 

Utterback, J., Vedin, B.-A., Alvarez, E., Ekman, S., Walsh Sanderson, S., Tether, B., and Verganti, R., 

2006. Design-inspired innovation and the design discourse. Design-inspired innovation, pp.154–

186. 

Vanek, J., Galicia, J.A.G., and Benes, B., 2014. Clever Support: Efficient Support Structure Generation 

for Digital Fabrication [Online]. Comput. Graph. Forum, 33(5), pp.117–125. Available from: 

http://dx.doi.org/10.1111/cgf.12437. 

Vayre, B., Vignat, F., and Villeneuve, F., 2012. Designing for Additive Manufacturing [Online]. 

Procedia CIRP, 3, pp.632–637. Available from: 

http://www.sciencedirect.com/science/article/pii/S2212827112002806 [Accessed 29 October 

2015]. 

Vayre, B., Vignat, F., and Villeneuve, F., 2013. Identification on Some Design Key Parameters for 

Additive Manufacturing: Application on Electron Beam Melting [Online]. Procedia CIRP, 7, 

pp.264–269. Available from: 

http://www.sciencedirect.com/science/article/pii/S2212827113002527 [Accessed 29 October 

2015]. 

VDI Guideline, 1993. 2221: Systematic approach to the development and design of technical systems 

and products. Beuth, Berlin. 

Veisz, D., Namouz, E.Z., Joshi, S., and Summers, J.D., 2012. Computer-aided design versus sketching: 

An exploratory case study [Online]. Artificial Intelligence for Engineering Design, Analysis and 

Manufacturing, 26(3), pp.317–335. Available from: 

https://www.cambridge.org/core/article/computeraided-design-versus-sketching-an-

exploratory-case-study/E49E0BE022FD96D80F9B61691458A95B. 

Wang, C., Duan, Q., Gong, W., Ye, A., Di, Z., and Miao, C., 2014. An evaluation of adaptive surrogate 

modeling based optimization with two benchmark problems [Online]. Environmental Modelling 

& Software, 60, pp.167–179. Available from: 

https://www.sciencedirect.com/science/article/pii/S1364815214001698#bib45 [Accessed 9 

July 2018]. 

Wang, L. and Whiting, E., 2016. Buoyancy optimization for computational fabrication. In: Computer 



181 
 

Graphics Forum. Wiley Online Library, pp.49–58. 

Wang, M.Y., Wang, X., and Guo, D., 2003. A level set method for structural topology optimization. 

Computer methods in applied mechanics and engineering, 192(1), pp.227–246. 

Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., and Xie, Y.M., 2016. 

Topological design and additive manufacturing of porous metals for bone scaffolds and 

orthopaedic implants: a review. Biomaterials, 83, pp.127–141. 

Wills, G., 2008. Linked data views. In: Handbook of data visualization. Springer, pp.217–241. 

Wohlers, T., Campbell, I., Diegel, O., and Kowen, J., 2018. Wohlers Report 2018. 

Wortmann, T., 2017. Surveying design spaces with performance maps: A multivariate visualization 

method for parametric design and architectural design optimization. International Journal of 

Architectural Computing, 15(1), pp.38–53. 

Wortmann, T., 2018. Efficient , Visual , and Interactive Architectural Design Optimization with 

Model-based Methods. , (July). 

Wortmann, T., Costa, A., Nannicini, G., and Schroepfer, T., 2015. Advantages of surrogate models for 

architectural design optimization. AI EDAM, 29(4), pp.471–481. 

Wu, D., Terpenny, J., and Schaefer, D., 2017. Digital design and manufacturing on the cloud: A review 

of software and services [Online]. Artificial Intelligence for Engineering Design, Analysis and 

Manufacturing, 31(1), pp.104–118. Available from: 

https://www.cambridge.org/core/article/digital-design-and-manufacturing-on-the-cloud-a-

review-of-software-and-services/73F654CC4DF987217508D6D8C0C825A2. 

Wu, J., Dick, C., and Westermann, R., 2016. A System for High-Resolution Topology Optimization. 

IEEE Transactions on Visualization and Computer Graphics, 22(3), pp.1195–1208. 

Xie, Y.M. and Steven, G.P., 1993. A simple evolutionary procedure for structural optimization. 

Computers & structures, 49(5), pp.885–896. 

Xu, K., Kwok, T.-H., Zhao, Z., and Chen, Y., 2017. A Reverse Compensation Framework for Shape 

Deformation Control in Additive Manufacturing [Online]. Journal of Computing and Information 

Science in Engineering, 17(2), pp.21012–21019. Available from: 

http://dx.doi.org/10.1115/1.4034874. 

Yang, S., Tang, Y., and Zhao, Y.F., 2015. A new part consolidation method to embrace the design 

freedom of additive manufacturing [Online]. Journal of Manufacturing Processes. Available 



182 
 

from: http://www.sciencedirect.com/science/article/pii/S1526612515000699 [Accessed 30 

November 2015]. 

Yoon, K.P. and Hwang, C.-L., 1995. Multiple attribute decision making: an introduction. Sage 

publications. 

Zhakeyev, A., Wang, P., Zhang, L., Shu, W., Wang, H., and Xuan, J., 2017. Additive Manufacturing: 

Unlocking the Evolution of Energy Materials [Online]. Advanced Science, 4(10), p.1700187. 

Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5644240/. 

Zhang, C. and Chen, T., 2001. Efficient feature extraction for 2D/3D objects in mesh representation. 

In: Image Processing, 2001. Proceedings. 2001 International Conference on. IEEE, pp.935–938. 

Zhang, R., Auzinger, T., Ceylan, D., Li, W., and Bickel, B., 2017. Functionality-aware Retargeting of 

Mechanisms to 3D Shapes [Online]. ACM Trans. Graph., 36(4), p.81:1--81:13. Available from: 

http://doi.acm.org/10.1145/3072959.3073710. 

Zhang, X., Le, X., Panotopoulou, A., Whiting, E., and Wang, C.C.L., 2015. Perceptual models of 

preference in 3D printing direction. ACM Transactions on Graphics (TOG), 34(6), p.215. 

Zhang, Y., Bernard, A., Harik, R., and Fadel, G., 2018. A new method for single-layer-part nesting in 

additive manufacturing [Online]. Rapid Prototyping Journal, 24(5), pp.840–854. Available from: 

https://doi.org/10.1108/RPJ-01-2017-0008. 

Zhao, B., Lin, Z., Fu, J., and Sun, Y., 2017. Generation of truss-structure objects with implicit 

representation for 3D-printing [Online]. International Journal of Computer Integrated 

Manufacturing, 30(8), pp.871–879. Available from: 

https://doi.org/10.1080/0951192X.2016.1224390. 

Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., 

Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X., and Spadaccini, C.M., 2014. Ultralight, ultrastiff 

mechanical metamaterials [Online]. Science, 344(6190), p.1373 LP-1377. Available from: 

http://science.sciencemag.org/content/344/6190/1373.abstract. 

Zhou, M. and Rozvany, G.I.N., 1991. The COC algorithm, Part II: Topological, geometrical and 

generalized shape optimization [Online]. Computer Methods in Applied Mechanics and 

Engineering, 89(1–3), pp.309–336. Available from: 

https://www.sciencedirect.com/science/article/pii/0045782591900469 [Accessed 24 January 

2018]. 

Zsolnai-Fehér, K., Wonka, P., and Wimmer, M., 2018. Gaussian Material Synthesis. arXiv preprint 



183 
 

arXiv:1804.08369. 

Zwier, M.P. and Wits, W.W., 2016. Design for Additive Manufacturing: Automated Build Orientation 

Selection and Optimization. Procedia CIRP, 55, pp.128–133. 

 

 


