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ABSTRACT 
 

Cassava is the sixth most important crop in the world, feeding over 500 million people 

worldwide. The storage root is a staple source of carbohydrates, and its ability to grow 

in nutrient-poor soil and drought tolerance make it an ideal food security crop. Cassava 

is also used as animal feed and in industry for starch and biofuel. The potential of 

cassava is limited by several factors, with post-harvest physiological deterioration (PPD) 

of storage roots being a major constraint. PPD is a phenomenon triggered upon 

harvesting and mediated by reactive oxygen species and scopoletin accumulation that 

ultimately renders the storage roots unpalatable and unmarketable.  

Scopoletin is biosynthesised through the phenylpropanoid metabolism, which is highly 

conserved in plants. Using Arabidopsis thaliana as a reference, homologous genes of 

enzymes involved in the biosynthesis of scopoletin were identified; these were 

phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate CoA 

ligase (4CL), Hydroxycinnamoyl-CoA shikimate:quinate hydroxycinnamoyl-transferase 

(HCT), p-coumaroyl shikimate 3' hydroxylase (C3’H), caffeoyl CoA O-methyltransferase 

(CCoAOMT), feruloyl 6’-hydroxylase (F6’H) and caffeic acid O-methyltransferase 

(COMT). Gene expression analysis was performed on said candidate genes and 

CCoAOMT, F6’H and COMT genes were selected to be knocked-down through RNAi 

silencing. Two RNAi constructs were generated, pRNAi-CCoAOMT/F6’H (2x), to target 

CCoAOMT and F6’H simultaneously, and pRNAi-CCoAOMT/F6’H/COMT (3x), to target 

CCoAOMT, F6’H and COMT simultaneously. Using Agrobacterium-mediated 

transformation, transgenic cassava lines were generated. Wild-type and pRNAi-F6’H 

(1x) transgenic cassava were grown alongside the 2x and 3x lines. 

1x, 2x and 3x transgenic cassava lines have significantly reduced discolouration and 

scopoletin accumulation compared to wild-type plants. qRT-PCR results show F6’H 

having significant reduction in gene expression whereas expressions of CCoAOMT and 

COMT are not up-regulated during PPD; confirming de novo synthesis of scopoletin is 

mainly through the dominant pathway involving F6’H and not through O-methylation of 

esculetin. 
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1 INTRODUCTION 

 

 CASSAVA 

1.1.1 TAXONOMY AND ORIGINS 

Cassava (Manihot esculenta Crantz) is a perennial, dicotyledonous shrub belonging to 

the Euphorbiaceae; a large family that consists of approximately 300 genera and 8000 

species and includes other important agronomical species such as castor bean (Ricinus 

communis) and rubber (Hevea braziliensis) (Lebot, 2009). Although the Euphorbiaceae 

group is known for its latex producing capacity (Webster, 1994), cassava is not grown 

for this purpose but for its storage roots instead. 

The genus Manihot consists of 98 species which are all found in the Americas (Rogers 

and Appan, 1973), of which many are a source of food to humans (Olsen and Schaal, 

2001). For a period of time, it was thought that M. esculenta originated through 

interbreeding of different species in the Manihot genus (Allem, 1994) but the discovery 

of wild populations led to the reclassification of three cassava subspecies: M. esculenta 

Crantz ssp. esculenta (cultivated), M. esculenta Crantz ssp. peruviana (wild) and M. 

esculenta Crantz ssp. flabellifolia (wild) (Allem, 2002). Olsen and Schaal (2001) used 

microsatellite polymorphism to show that M. esculenta was domesticated from the wild 

subspecies M. esculenta flabellifolia since microsatellites of M. esculenta are a subset 

of those of M. esculenta flabellifolia.  

Cassava may have been domesticated approximately 10,000 years ago or by 7000 BC 

(Isendahl, 2011; Olsen and Schaal, 1999) but the site of domestication is highly 

contested with multiple sites in South America being proposed (Allem, 2002). Using a 

phylogenetic approach by evaluating polymorphism within the single-copy nuclear gene, 

glyceraldehyde 3-phosphate dehydrogenase (G3pdh), Olsen and Schaal (1999) 

identified the South Amazon border with Bolivia as the most likely origin of domestication. 

In addition, with botanical mapping of the current distribution of cassava, it was 

suggested that the savannas to the south of the Amazon rainforest, the Cerrado of the 

Brazilian states of Rondonia, and the north-western Mato Grosso are likely to be the 

geographical origin of cassava (Isendahl, 2011).  

Cassava was introduced to Africa and Asia by the Spanish and Portuguese during the 

sixteenth and seventeenth centuries respectively (Cock, 1982) and has since become a 

staple food source in many countries. Nowadays, cassava is cultivated for its starchy 
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storage roots and it is grown in tropical and subtropical regions all around the world. The 

global yield of cassava is forecasted to be 278.0 million tonnes per annum in 2017 with 

Nigeria producing 55 million tonnes of the annual yield. Nigeria is followed by Thailand 

(30.9 million tonnes), Indonesia (20.3 million tonnes) and Brazil (20.1 million tonnes) 

(FAO, 2017). 

 

1.1.2 MORPHOLOGY AND PHYSIOLOGY 

Cassava is considered to be an amphidiploid or sequential allopolyploids and possesses 

2n = 36 chromosomes (El-Sharkawy, 2003). Cassava has a height of 1-4 m and has 

simple leaves with palmated veins, ranging between 3-9 lobes depending on the cultivar, 

age of the plant and environmental conditions. The leaves are alternate and the length 

of a petiole from a fully opened leaf usually ranges between 5-30 cm, although up to 40 

cm has been recorded. The upper (adaxial) surface of the leaves is covered with a waxy 

epidermis with most cultivars having stomata located on the undersurface (abaxial). A 

study by El-Sharkawy and Cock (1990) found that only 2% of 1500 cultivars examined 

had stomata on the adaxial surface; these stomata are functional and bigger than those 

on the abaxial surface. The large variability in cassava morphological characteristics 

suggests a high level of interspecific hybridisation (Alves, 2002).  

Cassava is monoecious, bearing both male (pistillate) and female (staminate) flowers on 

the same inflorescence (Figure 1.1). The male flowers are located on the upper part of 

the inflorescence and the female flowers on the lower part. There are usually fewer 

female flowers than male flowers and the female flowers open 1-2 weeks before the 

males to encourage cross pollination, thus contributing to the high heterozygosity 

observed in cassava populations (Alves, 2002). Individuals within a population often 

have staggered flowering time that may be affected by environmental conditions 

(Ceballos et al., 2004). In addition, some cultivars have never been known to flower 

(Sayre et al., 2011; Manu-Aduening et al., 2005), therefore making cassava breeding 

difficult and time consuming. Successful fertilisation will yield three seeds per capsule 

(Alves, 2002) and a high temperature is required to break dormancy and induce 

germination (Pujol et al., 2002). The unpredictability of cassava flowering, its highly 

heterozygous population and germination conditions renders propagation through sexual 

reproduction difficult (Ceballos et al., 2004). 
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Figure 1.1 The flowers of cassava. (A) A female flower with the stigma and ovary 
present. (B) A male flower with anthers and a fertilised ovary on the bottom right corner. 
Photos courtesy by Ahmad Fathoni and Gerald D. Carr respectively (Liu, 2016). 

 

The cassava root cannot be considered a true tuber like potato (Solanum tuberosum) as 

tubers are derived from stem tissues whereas cassava storage roots are derived from 

root tissue entirely (Alves, 2002). As the cassava plant matures, secondary thickening of 

fibrous roots will lead to the development of storage roots. Zhang et al. (2003b) found 

that during the initiation of storage root formation, fibrous roots that will become storage 

roots have a rapid upregulation of activity of the cambium, leading to the differentiation 

of secondary xylem into enlarged parenchyma cells in which starch will accumulate. This 

is an abnormal but advantageous phenotype that has been selectively bred by man since 

the domestication of cassava as shown in Figure 1.2 (Jansson et al., 2009). Growth 

conditions and cultivar variety affects the number of storage root yield per plant; an 

individual plant will usually develop between 2-3 kg or 3-10 storage roots (van Oirschot 

et al., 2000). As cassava storage root is not a true tuber, formation of bud primordia will 

not occur, therefore it cannot be used as propagules. This is why cassava has to be 

propagated via woody stem cuttings; although this limits the rate of multiplication, it 

ensures that the economically important part of the crop can be fully utilised and not be 

reinvested in new planting material (Cock, 1982). 

A B 
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Figure 1.2 The roots of (A) domesticated Manihot esculenta and (B) wild M. 
esculenta flabellifolia. The storage roots are coloured yellow. Picture modified from 
(Jansson et al., 2009). 

 

A mature storage root has a diameter of 3-15 cm and a length of up to 100 cm (Alves, 

2002). It is comprised of three distinct tissues: bark (periderm), peel (cortex) and the 

edible parenchyma (Figure 1.3). During the development of storage roots, the periderm 

which is made of a thin layer of dead cork cells will be shed and replaced by new cells 

to accommodate the thickening of the root. The flexible cortex which is only 1 mm thick 

contains the sclerenchyma, cortical parenchyma and phloem (Alves, 2002). The 

parenchyma accounts for 85% of the root’s weight and the colour varies considerably 

between cultivars as it correlates with the total carotenoid content of the storage root 

(Sánchez et al., 2006). The parenchyma is the edible part of the storage root and 

contains a large amount of starch, accounting for approximately 85-91% of the total 

weight (Alves, 2002). It also contains radially distributed xylem vessels and a large 

vascular bundle running through the middle of the storage root (Onwueme, 1978).  

 

Figure 1.3 A transverse section of a cassava storage root. (1) bark/periderm, (2-4) 
the peel, (2) sclerenchyma, (3) cortical parenchyma, (4) phloem, (5) cambium, (6) 
storage parenchyma, (7) scattered vascular bundles, (8) central vascular bundle. (Hunt 
et al., 1977) 
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1.1.3 GROWTH AND CULTIVATION 

Cassava is a hardy plant that can grow on nutrient-poor soil and withstand up to six 

months of drought (Lokko et al., 2007). Due to this, it is often grown on marginal soil that 

is unsuitable for other crops. Depending on the cultivar and growth conditions, cassava 

can reach a height of up to four metres (Alves, 2002). As cassava is a tropical crop, its 

optimal growth conditions would be between 25-29°C with an annual rainfall of 1000-

1500 mm but it can still grow and yield despite limited water supply. Cassava growth will 

halt if the temperature is lower than 17°C or higher than 37°C (El-Sharkawy, 2003). 

Since the cassava storage root is a true root and not a propagule, it must be propagated 

via hardwood stem cuttings. Stems that have hardened but not extensively lignified from 

8-18 month old cassava are ideal for propagating (Lozano et al., 1977). Stem cuttings of 

approximately 20-30 cm with 5-7 nodes are used for propagation as it will have sufficient 

nutrients for the initial establishment of roots and leaves (Onwueme, 1978). Within 5-7 

days, adventitious roots will develop from the nodes of axillary buds and a callus will form 

at the base of the cutting, from which roots will develop (El-Sharkawy, 2003). Leaves will 

start developing 10-13 days after planting. The cassava plant will produce a well-

established root system, stem and leaves within the first two months. By the third month, 

3-10 fibrous roots will start thickening and initiating the development into storage roots. 

After 4-5 months, the plant will have achieved its maximal canopy and will start to 

produce more photosynthetic products than what is required for growth, leading to 

carbohydrate being stored as starch in the storage roots. From the sixth month onwards, 

root bulking accelerates, leaves begin to senesce as carbohydrates are increasingly 

being transported from the leaves to the root, and the stem becomes lignified. After ten 

months, plants may go through a period of inactive growth, after which it can resume 

storage root bulking and vegetative growth (El-Sharkawy, 2003; Alves, 2002). 

 

1.1.4 GLOBAL IMPORTANCE OF CASSAVA AS A CROP 

Cassava is the sixth most important crop globally (Mann, 1997) and feeds approximately 

500 million people worldwide (Best and Henry, 1992). The starchy storage root is a staple 

source of carbohydrates and accounts for 50% of total calorific intake in certain countries 

(Cock, 1985). Besides that, cassava is a rich source of minerals and vitamins; it not only 

has a high carbohydrate content but is also rich in vitamin C (Table 1.1), with just 450g 

of cassava meeting the recommended daily dietary intake of vitamin C for an adult male 

(Chandrasekara and Josheph Kumar, 2016). 
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Table 1.1 Comparison of nutritional content between cassava and other root and 
tuber crops (Chandrasekara and Josheph Kumar, 2016). 

Nutrient 
(per 100 g) 

Cassava 
Potatoes Sweet 

potatoes 
Yam 

White Red 

Energy (kcal) 160 69 70 86 118 

Carbohydrate (g) 38.1 15.7 15.9 20.1 27.9 

Protein (g) 1.4 1.7 1.9 1.6 1.5 

Total lipid (g) 0.3 0.1 0.1 0.1 0.2 

Dietary fibre (g) 1.8 2.4 1.7 3.0 1.8 

Calcium (mg) 16 9 10 30 17 

Magnesium (mg) 21 21 22 25 21 

Potassium (mg) 271 407 455 337 816 

Vitamin C (mg) 20.6 19.7 8.6 2.4 17.1 

Vitamin A (IU) 13 8 7 14187 138 

Vitamin K (μg) 1.9 1.6 2.9 1.8 2.3 

Vitamin E (mg) 0.19 0.01 0.01 0.26 0.35 

 

Due to its ability to grow on nutrient-poor soil and withstand extended periods of drought, 

cassava plays a key role in food security, especially in African countries. Cassava is an 

attractive crop for poorer farmers in the tropics as land unfitted for other agronomic 

purposes can be used. It can also be incorporated into an intercropping strategy since it 

can be grown at the end of a cropping cycle when the soil nutrient levels are low (Borin 

and Frankow-Lindberg, 2005). 

Nowadays, cassava storage roots are also used as animal feed and as raw material for 

industrial purposes such as starch, paper, textiles, biofuel and many more (Vlaar et al., 

2007). As demands for renewable alternatives to fossil fuels increases, cassava is 

becoming a favoured alternative to corn starch in the biofuel industry due to its high yield 

and cheaper price (Zhang et al., 2003a). Cassava is an ideal alternative to corn for 

bioethanol production as firstly, it can be grown and harvested all year round without 

seasonal limitations (Nguyen et al., 2007). Secondly, it produces a good yield under sub-

optimal growth conditions such as limited water and nutrients, making it a crop of low 

maintenance and cost. Thirdly, land that is not able to sustain other crops can be used 

to grow cassava which maximises land use. Finally, the high starch content of the 

cassava root makes it ideal for ethanol fermentation (Ziska et al., 2009). In Asia, 

especially Indonesia, China, Thailand and Vietnam, cassava is mainly grown for 
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industrial purposes. China is currently the biggest importer of cassava chips and the 

promising cassava market has contributed to the industrialisation and development of 

rural areas in developing countries. For example, in Vietnam, cassava has become a 

cash crop where cassava chips and starch are being produced competitively. This has 

created many jobs, attracted foreign investment, increased exports and contributed to 

modernisation and industrialisation of rural areas (Kim et al., 2017). 

 

1.1.5 CONSTRAINTS OF CASSAVA AS A CROP 

Cassava, like most other crops, has its share of constraints and setbacks that limits its 

production and utilisation. These include the low nutritional value of the storage root, the 

accumulation of toxic cyanogenic glucosides, diseases and pests and the short shelf-life 

of the storage root post-harvest.  

 

 NUTRITIONAL CONTENT 

Despite being a good source of calories due to its reliable yield and high carbohydrate 

content, cassava is unfortunately lacking in other macronutrients and vitamins (Nassar 

and Ortiz, 2010). Cassava is severely lacking in protein as it only accounts for 1-5% of 

the root’s total dry weight unlike cereals where 14% of its dry weight is protein, making 

cassava one of the staple foods with the lowest protein to energy ratio (Stephenson et 

al., 2010; Young and Pellett, 1994). Besides that, essential sulphur-containing amino 

acids such as leucine and lysine are also only present at low levels (Stupak et al., 2006). 

Cassava leaves, on the other hand, at the age of 11-12 months, consists of 20-30% of 

crude protein, with essential amino acids apart from sulphur-containing ones (Eggum, 

1970). A setback to this is the cyanogenic compounds in the leaves require prolonged 

boiling to be removed thereby destroying the amino acids (Stupak et al., 2006). Since 

cassava is mainly a staple food in poorer countries and communities, people relying on 

cassava as a vital food source may suffer from protein energy malnutrition (Stupak et al., 

2006). 

 

 CYANOGENIC COMPOUNDS 

In its raw form, cassava is potentially toxic to human consumption due to the presence 

of cyanogenic glucosides which are present in all cassava tissues, apart from the seeds. 

The cyanogenic glucosides present are mainly linamarin, which accounts for 

approximately 95% of total cyanogenic glucosides, the glucoside of acetone cyanohydrin 
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and lesser quantities of lotaustralin (Siritunga and Sayre, 2003; Santana et al., 2002; 

Cock, 1985). Linamarin is synthesised in the leaves and then transported to the roots 

and stored in the cell vacuoles (Sayre et al., 2011; Du et al., 1995). Leaves of cassava 

and the peel of storage roots contain the highest levels of cyanogenic glucosides. The 

quantity of cyanogenic glucosides also depends on the cassava cultivar (Wheatley et al., 

1992); most cultivars have less than 100 ppm fresh weight of cyanogenic glucosides but 

there are ‘bitter’ cultivars which have up to 500–1000 ppm of linamarin (Cardoso et al., 

2005). According to WHO, the maximal residual cyanogen concentration is 10 ppm, 

therefore these cultivars are obviously harmful if not processed appropriately.  

The enzyme linamarase, located in the cell membrane on the inner cell wall, is 

responsible for the release of hydrogen cyanide (HCN). It is found in high concentrations 

in cassava peel but is also present in the parenchyma (flesh) (Cooke et al., 1978). The 

toxic cyanogenic glucosides are a defence mechanism against herbivores; when the 

cells are mechanically damaged, linamarin and linamarase will come in contact with each 

other and react to produce acetone cyanohydrin. Cyanohydrin will then decompose to 

release HCN spontaneously if the pH is greater than 5 or catalysed by hydroxynitrile 

lyase (Sayre et al., 2011). This release of HCN as a gas provides a method to detoxify 

cassava roots and avoid cyanide poisoning. By mashing, soaking, fermenting and boiling 

the cassava roots, most of the cyanogenic glucosides will be successfully removed 

through gaseous HCN unless there is an exceedingly high concentration of cyanogen.  

Tropical ataxic neuropathy (TAN) and konzo (irreversible spastic paraparesis) are 

diseases that arise from acute or chronic exposure to cassava cyanogen and can happen 

if the cyanogenic glucosides are inadequately removed (Cardoso et al., 2005; Siritunga 

and Sayre, 2003). In addition, the low protein content of cassava, especially the lack of 

sulphur-containing amino acids, compounds the condition as they are involved in cyanide 

detoxification (Cliff et al., 2011; Ernesto et al., 2002).  

To address the problem of cyanide toxicity from cassava roots, transgenic lines where 

linamarin synthesis was blocked were generated. Unfortunately, inhibition of linamarin 

biosynthesis in the leaves led to the reduction of linamarin in the root and caused 

transgenic plants to have impaired growth in the field (Sayre et al., 2011). 

 

 PESTS AND DISEASES 

Cassava is susceptible to many pests and diseases resulting in significant yield loss, 

especially in South America and Africa (Lebot, 2009). Cassava is affected by 
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approximately 200 different species of pests including mealybugs, whiteflies, mites, 

thrips, gallmidges, stem borers, root mealy bugs, lace bugs, shoot flies, hornworm, 

burrower bugs and more (Bellotti et al., 1999). These pests not only cause physical 

damage to the plant, but some are involved in transferring and spreading diseases. 

Nematodes can also cause damage to the plant, increasing its vulnerability towards 

subsequent bacterial and fungal infections. One of the most damaging bacterial diseases 

is cassava bacterial blight (CBB) caused by the pathogen Xanthomonas axonopodis pv. 

Manihotis; CBB significantly impacts cassava yield as leaf biomass, storage root and 

stem (planting material) are all affected (Wydra et al., 2001). Besides that, there are 

around 250 species of fungi that affect cassava; Cercospora henningsii being the most 

prominent as it causes brown leaf spot disease in cassava. This disease is widespread 

in all cassava producing countries and is characterised by the brown spots on both leaf 

surfaces (Lebot, 2009). 

Cassava is also susceptible to a range of viral diseases. At least 17 different viruses that 

infect cassava have been identified, with cassava mosaic disease (CMD) and cassava 

brown streak disease (CBSD) being the most damaging to cassava production in Sub-

Saharan Africa (Ephraim et al., 2015). The economic losses due to these two diseases 

are estimated to be more than USD 1 billion per year (Legg et al., 2006b). 

CMD is caused by cassava mosaic geminiviruses (CMGs) which are transmitted by the 

whitefly (Bemisia tabaci) and reports show that the CMD pandemic has caused an 

economic loss of approximately US1.9-2.7 billion annually in East and Central Africa 

(Patil and Fauquet, 2009). It is one of the most detrimental plant virus diseases in the 

world, causing famine that has led to the death of thousands of people (Legg et al., 

2006a). CMD is currently only present in the African continent and Indian subcontinent 

but is continuing to expand (Fargette et al., 2006). Even though countries in South-East 

Asia and South America are cultivating cassava at a large-scale, CMD is absent due to 

B. tabaci biotype being unable to colonise cassava successfully in said countries 

(Carabali et al., 2005). However, CMD still poses a huge threat and strict quarantine 

restrictions are necessary to prevent the import of CMGs and cassava-adapted B, tabaci 

biotypes (Patil and Fauquet, 2009). Several cultivars that are resistant to CMD are 

currently being used to control CMD in Africa but are inadequate to combat the CMD 

pandemic (Legg and Fauquet, 2004). RNAi silencing mechanisms have been used to 

target CMG promoters and genes involved in CMD and have produced promising results 

though a fully resistant cultivar has not yet been successfully engineered (Bull et al., 

2011; Sayre et al., 2011; Zhang et al., 2005). 
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Cassava brown streak disease (CBSD) is caused by two viruses belonging to the 

Ipomovirus genus, cassava brown streak virus (CBSV) and Ugandan cassava brown 

streak virus (UCBSV) (Revers and García, 2015). This disease is widespread in the East 

and coastal regions of Africa (Hillocks and Jennings, 2003). CBSD causes severe 

necrosis and chlorosis of infected leaves, dry brown-black necrotic rot of the storage root 

which starts as a lesion and may spread to the entire root and may lead to stunted growth 

of the cassava plant (Bull et al., 2011; Alicai et al., 2007). Tolerant cultivars may be able 

to restrict the rot in the storage root to a lesion, but susceptible cultivars may suffer the 

loss of the entire root. Depending on the cultivar, CBSD can cause up to 70% of root 

weight loss (Maruthi et al., 2005). Current means of controlling the disease are through 

field sanitation and thorough screening to avoid using diseased stem cuttings. Using 

CRISPR/Cas9-mediated genome editing, cassava mutants show suppressed disease 

symptoms but still not a complete resistance to CBSD (Gomez et al., 2018). 

 

 POST-HARVEST PHYSIOLOGICAL DETERIORATION (PPD) 

Additionally, a major problem cassava faces as a crop is its short shelf life after which 

the storage root will deteriorate to the point of becoming unpalatable and unmarketable. 

The short shelf-life of cassava is attributable to a response is called post-harvest 

physiological deterioration (PPD), and is an active physiological response triggered by 

harvesting. This causes huge economical losses for farmers and severely restricts the 

potential of cassava as a crop. It is estimated that 5-25% of cassava roots are lost due 

to PPD worldwide (Saravanan et al., 2014), with Africa suffering up to 29% of losses and 

Latin America and Asia losing 10% and 8% respectively (Salcedo and Siritunga, 2011). 

The issue of shelf-life is especially problematic in the case of cassava farming as many 

farmers operate at small-scale in developing countries and PPD makes it hard for them 

to sell their products as the market demand mainly exists for roots in their fresh form. A 

study by (Rudi et al., 2010) has shown that delaying PPD by two weeks in Nigeria could 

increase profit by approximately USD 2.9 billion over a 20-year period. In the North-East 

of Thailand alone, it could save around USD 26.5 million per year for the starch industry 

and USD 8.5 million per year for farmers if PPD is delayed by 45 days (Vlaar et al., 2007).  
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 POST-HARVEST PHYSIOLOGICAL DETERIORATION 

1.2.1 WHAT IS POST-HARVEST PHYSIOLOGICAL DETERIORATION? 

Post-harvest physiological deterioration (PPD) can be characterised by the blue-black 

discolouration of the parenchyma and xylem vessels known as vascular streaking 

(Figure 1.4). This is caused by the inevitable wounding during harvest as discolouration 

appears first around the wounds and gradually spreads through the root (Reilly et al., 

2007). PPD is intricately connected to the wound response as it is induced by mechanical 

damage to the root but is further influenced by various environmental factors such as 

growth and storage conditions (Tumuhimbise et al., 2015). These traits make the 

mechanism of PPD difficult to understand as it is not caused by a single factor and is 

more of a network comprised of multiple physiological responses. Early studies found 

that PPD is a spontaneous endogenous physiological response rather than a microbial 

or pathological response since neither bacteria nor fungi were isolated from freshly 

harvested roots and bactericide and fungicide did not influence the deterioration process 

(Noon and Booth, 1977). Although this is the case initially, PPD is often followed by 

microbial infection, known as secondary or microbial deterioration, due to its disordered 

physiology (Buschmann et al., 2000a). 

 

Figure 1.4 PPD development in cassava storage root. (A) Fresh root (B) Root 24 
hours post-harvest (C) Root 72 hours post-harvest. 

 

1.2.2 MECHANISMS OF PPD 

 BACKGROUND 

PPD is a complicated phenomenon that is related to the wound response and shares 

many similarities such as gene expression changes, accumulation of secondary 

metabolites and production of enzymes and molecules involved in defence (Beeching et 

al., 2000). PPD is triggered by the wounding of the root during harvest which causes an 

initial oxidative burst of superoxide radical (O2
͞  ) within 15 minutes. Following this, 
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reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH) 

and secondary metabolites such as scopoletin, which have anti-microbial and/or anti-

oxidant activities are produced (Qin et al., 2017; Vanderschuren et al., 2014). The initial 

wounding stimulates the cells to release signal molecules that lead to the production of 

compounds in different pathways that are involved with defence, tissue cell protection, 

restoration and programmed cell death (PCD) (Figure 1.5) (Owiti et al., 2011). Signal 

molecules such as the phytohormone ethene, which is involved in coordinating wound 

and senescence response in plants (Ecker and Davis, 1987), is increased during PPD 

(Hirose et al., 1984). Other signal molecules produced include jasmonic acid, salicylic 

acid, abscisic acid and H2O2 (Beeching et al., 1994). PPD also causes an increase in 

respiration and activity of acid invertase, which causes the mobilisation of starch to 

sugars (Tanaka et al., 1983).  

 

 

Figure 1.5 Biological pathways affected the PPD process in cassava storage roots. 
Red boxes indicate proteins up-regulated during early stages of PPD, orange/brown 
boxes indicate proteins up-regulated during late stages of PPD, yellow boxes indicate 
proteins down-regulated during early PPD, green boxes indicate protein down-regulated 
during late PPD, and blue boxes indicate proteins with both up- and down-regulation 
during PPD. SAMS, S-adenosyl methionine synthase; ACCS, 1-aminocyclopropane-1-
carboxylate synthase; ACCO, 1-aminocyclopropane-1-carboxylate oxidase; AOC, allene 
oxide cyclase; OPR, oxophytodienoate reductase; CaM, calmodulin; SOD, superoxide 
dismutase; CAT, catalase; APX, ascorbate peroxidase; NDK, nucleoside diphosphate 
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kinase; MDHAR, monodehydroascorbate reductase; DHAR, dehydroascorbate 
reductase; GPX, glutathione peroxidase; GR, glutathione reductase; PAL, phenylalanine 
ammonia lyase; HCT, hydroxycinnamoyl transferase; HNL, hydroxynitrile lyase; TCTP, 
translationally controlled tumor protein; XET, xyloglucan endotransglycosylase; PL, 
pectate lyase; PME, pectin methyl esterase; PAE, pectin acetylesterase; PE, pectin 
esterase (Owiti et al., 2011).  

 

 PPD AND THE OXIDATIVE BURST 

PPD is the result of an oxidative process as the visual symptom of PPD, the blue-black 

discolouration of the xylem vessels and parenchyma, is due to the oxidation of phenolic 

compounds, in particular, the coumarin scopoletin (Buschmann et al., 2000a). The 

oxidative burst is one of the earliest observable aspects of a plant’s defence strategy 

where large quantities of reactive oxygen species (ROS) are produced rapidly and 

transiently (Low and Merida, 1996). In normal conditions, ROS are generated inevitably 

as a by-product of photosynthesis through successive one-electron reductions of oxygen 

(O2). ROS are involved in several plant metabolic pathways such as the cell cycle, 

growth, hormone signalling, PCD and biotic and abiotic stress responses (Figure 1.5) but 

they can also cause oxidative damage to cells (Mittler et al., 2004). Plants can normally 

prevent this potential toxicity with ROS scavenging mechanisms but during the oxidative 

burst, the rapid production of ROS disrupts the equilibrium between ROS production and 

scavenging (Apostol et al., 1989).  

The oxidative burst is one of the earliest events that lead to PPD development in cassava 

(Iyer et al., 2010). Within 15 minutes of harvest where inevitable tissue damage occurs, 

superoxide radical (O2
͞  ) is detected, followed by hydrogen peroxide (H2O2) within 3 hours 

of injury. The reaction between H2O2 and secondary metabolites (mainly scopoletin) 

results in the blue-black pigmentation observed in PPD (Reilly et al., 2003). Xu et al. 

(2013) showed that increasing the expression of genes encoding ROS scavengers, 

superoxide dismutase (SOD) and catalase (CAT), delayed PPD development. SOD and 

CAT are ROS scavengers that work together to remove ROS. Firstly, SOD converts 

superoxide (O2
͞  ) to hydrogen peroxide (H2O2). Then, CAT converts hydrogen peroxide 

(H2O2) to water (H2O) and oxygen (O2) (Figure 1.6) (Apel and Hirt, 2004).  
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Figure 1.6 The mode of action of enzymatic ROS scavenging by superoxide 
dismutase and catalase (Apel and Hirt, 2004). 

 

ROS are signalling compounds that manage various conditions that arise due to stress 

such as production of restorative or defensive compounds, and PCD. Interaction 

between ROS and the cells can cause oxidative damage to DNA, proteins and lipids 

(Apel and Hirt, 2004). Therefore, another approach to prevent PPD could be to stop the 

cells from producing excessive amounts of ROS. Cyanogenesis plays an important role 

in the oxidative burst that results in PPD (Zidenga et al., 2012). The disrupted tissues 

release hydrogen cyanide (HCN) through cyanogenesis from linamarin and linamarase. 

HCN stops mitochondrial respiration by inhibiting complex IV in the mitochondrial 

electron transfer chain, leading to a rapid and excessive production of ROS at complex 

I and III. This suggests that PPD could be cyanide dependent. A study conducted by 

Zidenga et al. (2012) showed that the overexpression of the Arabidopsis thaliana 

mitochondrial alternative oxidase gene (AOX1A) in cassava resulted in a 10-fold 

reduction in ROS accumulation and delayed PPD for up to two weeks. Unfortunately, 

this had adverse effects on the root yield under field conditions. In addition, recent 

studies showed that melatonin can control homeostasis of cellular ROS in the cells and 

by applying exogeneous melatonin, PPD has been significantly delayed (Hu et al., 2016; 

Ma et al., 2016). Melatonin activates ROS-scavenging and ROS signal transduction 

pathways such as calcium signalling, mitogen-activated protein kinases (MAPK) and 

transcription factors at the early stage of PPD. It also plays a role in the reduction of H2O2 

by increasing peroxidase and catalase activity during middle and late stages of PPD. 

Therefore, manipulating the biosynthesis of melatonin could potentially delay the onset 

of PPD (Hu et al., 2016).  

 

 PPD AND THE WOUND RESPONSE 

Cassava PPD resembles wound responses found in other plant species (Rickard, 1985). 

During PPD development, changes in total phospholipids, glyceroglylipids and sterol-

containing lipids can be observed in damaged tissues; these membrane lipids have 
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presumably been broken down (Beeching et al., 1999). The interaction of ROS such as 

H2O2 with membrane lipids leads to the production of long chain fatty acids such as 

linolenic acid which is a precursor in jasmonic acid biosynthesis, a signalling molecule 

involved in the wound response (Farmer and Ryan, 1992). 

Starch degradation is a part of the wound response, and during the cassava PPD 

development, an increase in total soluble sugars, such as fructose and glucose, is 

observed (Uarrota et al., 2015). Soluble sugars are involved in stress responses and act 

as nutrient and metabolite signalling molecules which activate specific or hormone-

crosstalk transduction pathways, leading to changes in gene expression and protein 

synthesis (Couée et al., 2006). High glucose levels can activate NADPH oxidase in the 

oxidative pentose-phosphate (OPP), which is a major cofactor of pathways involved in 

ROS scavenging such as ascorbate-glutathione cycles (Couée et al., 2006). Glutathione 

levels have been shown to correlate with the plant’s adaptation to stress conditions (May 

et al., 1998). Besides that, different sugars may have different effects in oxidative stress 

responses. For example, ascorbate levels in harvested broccoli florets increased after 

being fed with sucrose (Nishikawa et al., 2005). Under the action of the ascorbate 

peroxidase (APX) enzyme, ascorbate converts H2O2 to water thus preventing ROS 

accumulation (Figure 1.6). Sánchez et al. (2013) found that storage roots with a higher 

sugar content correlated with delayed PPD onset in cassava when stored in ambient 

conditions. The trend of higher sugar level and delayed PPD was also observed in 

cassava roots when the plant was pruned before harvest (van Oirschot et al., 2000). 

Although studies have shown that sugars seem to play a role in delayed PPD in cassava 

storage roots, the exact role that sugars play during PPD development is still unknown. 

In addition to the production of signalling and defensive compounds, cassava storage 

roots also produce reparative compounds such as suberin and lignin to heal damaged 

tissues and to prevent microorganism invasion (Beeching et al., 1999). Wound repair, or 

curing, occurs upon tissue disruption. The activation of PAL enzymes and up-regulation 

of hydroxyproline-rich glycoproteins (HPRGs) during PPD lead to the production of 

various compounds which include suberin and lignin (Reilly et al., 2007). Cassava roots 

are capable of repairing wounded tissues independent of PPD when they are still 

attached to the main stem. Unfortunately, once the storage root is detached from the 

stem, the ability to repair becomes inadequate and thus PPD is observed (Beeching et 

al., 2000). The process of sealing and healing of the wound sites does occur in the 

storage root, but it is too slow under normal conditions to prevent deterioration. If the 

storage roots are kept under optimum storage conditions of 30-35°C and 80-85% relative 

humidity, a wound cork can form and delay the progress of PPD (Beeching et al., 1994). 
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However, the curing method is uneconomical due to the specificity of the storage 

conditions and if the cured storage roots are wounded again, rapid PPD will develop 

regardless of the previous treatment (Beeching et al., 1994).  

 

1.2.3 POST-HARVEST RESPONSES IN OTHER ROOT AND TUBER 

CROPS 

Like cassava, other root and tuber crops are often inevitably damaged during harvest, 

transportation and storage. Wound responses in other root and tuber crops such as 

potato, sweet potato, taro and yam are similar to cassava, but they recover better from 

wounding and stresses in comparison to cassava, making their storage easier and shelf-

life longer. Understanding and comparing post-harvest responses of other root and tuber 

crops may provide beneficial insights into cassava PPD.  

 

 POTATO 

Potato (Solanum tuberosum L.) is cultivated for its starchy tuber and is the fourth highest 

produced food crop in the world after maize, wheat and rice. The inevitable wounding of 

the potato tubers during harvest leads to the production of polyphenolic and polyaliphatic 

compounds which are involved in the suberisation of wounds thus preventing microbial 

infection and desiccation of the tuber (Lulai et al., 2008). Within 15 minutes of wounding, 

callose is produced, leading to the biosynthesis of ethene. Enzymes such as 

lipoxygenase and plant defence genes such as phenylalanine ammonia-lyase (PAL) and 

extensin are also activated in response to wounding (Lulai and Corsini, 1998). There was 

also an increase in the expression of the enzyme, tyramine hydroxycinnamoyl 

transferase (THT), within 3 to 4 hours of wounding. THT is responsible for the 

biosynthesis of hydroxycinnamoyl tyramines which are involved in suberisation (Negrel 

et al., 1993). Like cassava, potato tubers also experience starch degradation; this 

happens in the first 12 hours after wounding because of the increase in the activity of 

alpha and beta-amylases (Kato and Uritani, 1976). 

 

 SWEET POTATO 

Sweet potato (Ipomoea batatas (L.) Lam) is grown for its storage root like cassava. It is 

cultivated across Asia, tropical Africa and America for both food and industrial uses 

(Lebot, 2009). Unlike cassava, sweet potato has a relatively long shelf life, depending on 

the storage conditions and cultivars, it can last for weeks up to 10 months if it is stored 
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in optimal conditions (Ray and Ravi, 2005; Holmes and Stange, 2002).  Sweet potato 

has a thin skin that is vulnerable to injury during harvest and handling. When the sweet 

potato is wounded, the site of injury will undergo curing where the exposed parenchyma 

suberises and forms a periderm to seal the site of wounding (Ray and Ravi, 2005). 

Phenolic compounds will also accumulate underneath the periderm after wounding 

(Schadel and Walter Jr, 1981). Besides that, wounding of the sweet potato roots also 

triggers ethene synthesis which will acts as an activator of various metabolic responses 

such as the upregulation of PAL and peroxidase activity (Imaseki et al., 1968). The 

increased activity of peroxidase indicates that ROS is involved in the wound response 

mechanism in sweet potato. Ethene also induces responses that increase resistance to 

fungal resistance (Stahmann et al., 1966). 

 

 YAM 

Yams (Dioscorea spp.) consist of multiple species from the Dioscoreaceae family and 

are cultivated for their starchy tubers. They are also a major food source in Africa, Asia, 

South America and the Pacific. The deterioration seen in yams is very similar to sweet 

potato. Post-harvest loss usually stems from an increase in respiration which leads to a 

reduced weight and a loss of marketability (Ravindran and Wanasundera, 1992). The 

cortical periderm of yam is vulnerable due to its thinness, which can easily be damaged 

during harvest (Ejechi and Souzey, 1999). Unlike cassava, yams are stem tubers and 

not a true root which may be why they can fully cure wounds despite being separated 

from the main stem (Ravi et al., 1996). When the tuber is wounded, a response is 

triggered to form a cork periderm underneath the wounds within five days to seal to 

suppress respiration rate and water loss, thus allowing storage for several months. 

Abscisic acid (ABA) induces the expression of PAL which leads to the accumulation of 

phenolic compounds (Cottle and Kolattukudy, 1982). The amount of polyphenols present 

will be 5-6 times higher five days after wounding than in fresh tubers (Ikediobi et al., 

1989). Besides that, oxidation-related enzymes, such as peroxidase, polyphenol oxidase 

and lipoxygenase, are also activated following wounding; polyphenol oxidase is shown 

to be greatly up-regulated, suggesting polyphenols are involved in wound suberisation 

(Rhodes and Wooltorton, 1978) as well as stress resistance and antioxidation (Ikediobi 

et al., 1989). 

In addition, sprouting of the tubers is another major source of losses for yams. After 

harvest, yams resume a state of dormancy where metabolic activity has been reduced 

to a minimum (Passam and Noon, 1977). Sprouting can be delayed in temperatures of 
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around 15°C, regardless of relative humidity. Unfortunately, such a temperature is not 

ideal for curing and hard to be achieved in practice in tropical regions. Batatasins are 

endogenous phenolic growth inhibitors that are responsible for inducing and maintaining 

dormancy; yams only start sprouting when the levels of batatasin fall. Once the yam has 

sprouted, available nutrients will be used for growth and the tuber will rapidly start to 

senesce, ultimately leading to tuber deterioration (Passam and Noon, 1977).  

 

 SCOPOLETIN 

1.3.1 SCOPOLETIN AND OTHER SECONDARY METABOLITES IN PPD 

As mentioned in section 1.2.2.2, during the development of PPD in cassava, secondary 

metabolites involved in the stress response such as coumarins, phenolic compounds, 

phytosterols and fatty acids accumulate. Although it is unusual in plant stress responses, 

a large family of 22 different diterpenic compounds that accumulated in wounded 

cassava storage roots has been identified (Sakai and Nakagawa, 1988). Other 

metabolites that are involved in the PPD response include flavanols, leucoanthocyanins, 

catechin, gallocatechin and delphinidin (Sakai et al., 1986). However, out of all the 

metabolites involved in PPD, hydroxycoumarins show the most significant accumulation 

(Bayoumi et al., 2010), especially scopoletin and its glucoside scopolin (Figure 1.7). 

Esculetin and its glucoside esculin are also present, although to a lesser extent. These 

secondary metabolites may have antimicrobial abilities or act as anti-oxidants 

(Buschmann et al., 2000b).  

 

Figure 1.7 Scopoletin and its glucoside, scopolin. Scopoletin can be converted to 
scopolin by the enzyme scopoletin-glucosyltransferase and vice versa by scopolin-beta-
glucosidase. 
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The hydroxycoumarin, scopoletin (7-hydroxy-6-methoxychromen-2-one), is of interest in 

understanding cassava PPD as it shows a significant accumulation over the PPD 

process. Harvested cassava roots show a rapid increase in the concentration of 

scopoletin from <1 ng/mg in fresh roots to 60-80 ng/mg two days post-harvest, and 

remains at a high concentration throughout the whole PPD process (Buschmann et al., 

2000b). This accumulation of scopoletin observed in PPD suggests that it is involved in 

storage root deterioration. Besides that, peroxidase has a high affinity to scopoletin, 

which oxidises it to a blue-black insoluble metabolite. This correlates with the blue-black 

discolouration known as vascular streaking observed in the roots. When exogenous 

scopoletin is applied to fresh cassava root, the roots show a faster rate of discolouration 

and more intense fluorescence under UV light (Figure 1.8) (Wheatley and Schwabe, 

1985). In addition, a study performed in sunflower (Helianthus annuus), where 

peroxidase was extracted from a detached leaf was incubated with scopoletin and H2O2 

produced an insoluble blue product. But, if H2O2 was absent or if catalase was added, no 

blue product was formed, suggesting that it is the oxidation of scopoletin that forms the 

observed blue product (Edwards et al., 1997). Due to the bioactive nature of scopoletin, 

under normal conditions, it is stored as the inactive glucoside known as scopolin. During 

PPD or stress conditions, scopoletin is both synthesised de novo and released from its 

inactive glycone, scopolin, via deglycosylation through a specific beta-glucosidase. 

 

Figure 1.8 Cassava samples, (A) fresh and (B) 24 hours post-harvest, emit 
fluorescence under 366 nm UV light. (A) The fluorescence of the root is not 
significantly different compared to the filter paper beneath; (B) Cassava roots 24 hours 
post-harvest developed significant fluorescence in comparison to the filter paper 
beneath. Picture taken from Liu (2016). 

 

Scopoletin also plays a role in plant defence as it has antifungal and antimicrobial 

properties (Rodríguez et al., 2000). The fungitoxicity of cassava was investigated on 



35 
 

Microcyclus ulei (P. Henn.) V. Arx that infects Hevea brasiliensis (rubber tree) which is 

also in the Euphorbiaceae family. Following inoculation, the leaflets showed scopoletin 

accumulation and the in vitro tests confirm the inhibitory action of scopoletin on M. ulei 

conidium germination and germ tube elongation (Garcia et al., 1995). Besides that, H. 

brasiliensis infected with Phytophthora palmivora also showed a high level of scopoletin 

accumulation and that scopoletin inhibited P. palmivora mycelial growth (Churngchow 

and Rattarasarn, 2001). In addition, the study by Valle et al. (1997) showed a rapid 

accumulation of scopoletin following inoculation of Ophiostoma ulmi on cell suspension 

cultures of Ulmus campestris Linn. and U. pumila L.; antifungal activity was also directly 

observed in the in vitro bioassays performed.  

Scopoletin may also have some health implications as it can trigger apoptosis in 

mammalian cells. A study by Kim et al. (2005) found that scopoletin induced apoptosis 

in human premyeloleukemic cells and activated caspase-3 as shown by the proteolytic 

cleavage of the proenzyme and protease activity. Liu et al. (2001) also found that at 

doses of 100, 200 and 400 ug/ml, scopoletin induces apoptosis and cell cycle arrest 

thereby inhibiting the proliferation of human prostate adeno-carcinoma cells. 

 

1.3.2 SCOPOLETIN BIOSYNTHESIS 

Since scopoletin plays a vital role in the development of PPD in cassava storage roots, 

understanding its biosynthesis will provide an important insight into extending the shelf 

life and delaying PPD in cassava. Scopoletin is synthesised through the phenylpropanoid 

metabolism which is also responsible for many other secondary metabolites that are 

essential for the survival of the plant. These secondary metabolites include lignin which 

is needed for structural support and vascular integrity, flavonoids which are involved in 

UV protection and in attracting pollinators, coumarins and phytoalexins which are 

involved in defence mechanisms and many more (Vogt, 2010; Dixon et al., 2002). Within 

the phenylpropanoid metabolism, there are three likely pathways leading to the 

biosynthesis of scopoletin (Figure 1.9). These are via (1) hydroxycinnamate, (2) 

hydroxycaffeate and (3) ferulate intermediates; the dominant pathway is via the ferulate 

intermediate where 90% of total scopoletin in cassava is produced (Bayoumi et al., 

2008).  

As shown in Figure 1.9, L-phenylalanine (L-Phe) is processed to trans-cinnamate ((E)-

cinnamate) by phenylalanine ammonia-lyase (PAL) and then (E)-p-coumarate through 

cinnamate 4-hydroxylase (C4H). It is then linked to a coenzyme A (CoA) through a 

thioester bond to its carboxyl group by 4-coumarate CoA ligase (4CL). p-coumaroyl 
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shikimate 3’ hydroxylase (C3’H) then adds a hydroxyl group to the 3’-carbon of the 

activated (E)-p-coumaroyl CoA to convert it to (E)-caffeoyl CoA. The 3’-hydroxyl group 

is then methylated to (E)-feruloyl CoA (the CoA-linked form of ferulate) by caffeoyl CoA 

3-O-methyltransferase (CCoAOMT) (Ferrer et al., 2008).  

The last enzyme involved in the biosynthesis of scopoletin in the major pathway is a 2-

oxoglutarate-dependent dioxygenase (2ODG) known as feruloyl CoA 6’-hydroxylase 1 

(F6’H1) in A. thaliana (Kai et al., 2008). This enzyme adds a 6’-hydroxyl group to the 

benzene circle of (E)-feruloyl CoA to form (E)-6’-hydroxylferuloyl CoA. For lactonization 

to occur, the 6’-hydroxyl and carboxyl group needs to be converted via E-Z isomerisation 

to the Z-isomer. Once (E)-6’-hydroxylferuloyl CoA is converted by an isomerase to (Z)-

6’-hydroxylferuloyl CoA, the lactone structure can form spontaneously thus generating a 

scopoletin molecule (Kai et al., 2008). Scopoletin can then be glucosylated to its 

glucoside, scopolin, through scopoletin-glucosyltransferase (scopoletin-GT); and 

deglucosylated from scopolin back into scopoletin through scopolin-β-glucosidase 

(scopolin-βG) (Ahn et al., 2010; Gachon et al., 2004). 
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Figure 1.9 Three alternative pathways of the biosynthesis of scopoletin in cassava. 
Entry points of the three possible pathways are labelled 1, 2 and 3 (Bayoumi et al., 2008). 
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Alternatively, scopoletin can be synthesised through esculetin (pathways 1 and 2). In 

pathway 1, (E)-p-coumarate is 2’-hydroxylated to produce 2’, 4’-dihydrocinnamate which 

then goes through several reactions to produce esculetin. Pathway 2 branches from (E)-

caffeoyl CoA which is 6’-hydroxylated into (E)-6’-hydroxycaffeoyl CoA and converted to 

(Z)-6’-hydroxycaffeoyl CoA through E-Z isomerisation and then processed into esculetin. 

Esculetin is then methoxylated into scopoletin through an O-methyltransferase enzyme. 

This was shown by Kim et al. (2006) where Escherichia coli (E. coli) expressing O-

methyltransferase (POMT-9) from poplar (Populus deltoids Marsh) was able to generate 

scopoletin, isoscopoletin and scoparone from esculetin through the methoxylation of the 

C6 hydroxyl group. As mentioned previously, the two alternative pathways only account 

for less than 10% of the total amount of scopoletin produced in cassava roots undergoing 

PPD (Bayoumi et al., 2008).  

Through the understanding of the biosynthesis of scopoletin in cassava, studies have 

been done to reduce scopoletin accumulation with the aim of delaying PPD and 

extending the shelf-life of cassava. Liu et al. (2017) managed to significantly reduce 

scopoletin accumulation and deterioration in transgenic cassava through RNAi inhibition 

of cassava homologs of the A. thaliana F6’H1 gene. Unfortunately, scopoletin production 

was not completely inhibited, as there are seven members in the F6’H gene family in 

cassava for which the RNAi construct may not be able to target them all, despite the fact 

that most of the genes within the family share a high sequence similarity. Another reason 

for the accumulation of scopoletin in the transgenic lines may be due to the production 

of scopoletin through the alternative pathways. Although the alternative pathways 

normally account for less than 10% of the scopoletin produced during PPD, there might 

be a feedback mechanism that causes an increase in scopoletin production due to the 

inhibition of the major pathway. Besides that, transgenic cassava lines where cassava 

scopoletin-GT was knocked-down through RNAi inhibition and where A. thaliana 

scopolin-βG was overexpressed also showed reduction in scopoletin accumulation and 

delayed PPD. Interestingly, both transgenic lines would initially lead to increased 

accumulation of scopoletin in cells under normal conditions.  However, due to its reactive 

nature, it is possible that enhanced peroxidase activity occurring as a direct consequence 

of increased scopoletin levels resulted in a higher oxidation rate of scopoletin, thereby 

reducing its overall accumulation (Chong et al., 2002). It could also be due to a feedback 

mechanism where upstream enzyme activity is downregulated because of the 

accumulation of scopoletin (Fathoni, 2017). These findings further confirm the 

importance of scopoletin in PPD development and provide a platform for further to 

understand the deterioration process in cassava storage root. 
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 PHENYLPROPANOID METABOLISM 

As discussed in section 1.3, scopoletin plays a major role in the development of PPD in 

cassava storage roots and by manipulating genes involved in its biosynthesis, PPD can 

be delayed. Scopoletin is one of many secondary metabolites synthesised through the 

phenylpropanoid metabolism. Phenylpropanoids are a diverse group of compounds that 

are derived from the carbon skeleton of phenylalanine (the end product of the shikimate 

pathway) which may be involved in plant structural support, defence and survival (Figure 

1.10) (Vogt, 2010). Compounds derived from the phenylpropanoid metabolism are 

referred to as ‘secondary metabolites’ because they are not directly involved in basal 

cellular processes such as nucleic acid and protein synthesis, respiration and 

photosynthesis. Due to the lack of understanding of the roles these secondary 

metabolites have in plants, they can appear to be superfluous to plant survival. Although 

not every compound’s function is understood still, the importance of phenylpropanoids 

to the survival of the plant is undeniable. Specifically, the production of hydroxycinnamyl 

alcohols, also known as monolignols, which serve as building blocks of lignin (lignin 

monomers) and confer structural support, vascular integrity and defence in plants 

(Boerjan et al., 2003). Lignin is formed through the dehydrogenative polymerisation of 

three monolignols, p-coumaroyl alcohol, coniferyl alcohol and sinapyl alcohol, which 

respectively give rise to p-hydroxyphenyl (H), guiacyl (G) and syringyl (S) units of the 

lignin polymer. 

The entry point of the phenylpropanoid pathway is the amino acid L-phenylalanine (L-

Phe) which is the end product of the shikimate pathway. Phenylalanine ammonia-lyase 

(PAL) catalyses the first step where L-phenylalanine is deaminated to produce trans (E)-

cinnamate and ammonia (Figure 1.10). In A. thaliana, the active PAL isoforms are 

encoded by a gene family, as is the case in many other plant species; the 4 genes are 

PAL1-PAL4 (Raes et al., 2003). According to a study by Raes et al. (2003), PAL1 and 

PAL2 encode the main PAL enzymes of A. thaliana as they have conserved specific 

promoter elements. In addition, A. thaliana pal1pal2 double mutant over-accumulates 

phenylalanine and has reduced lignin content with a higher syringyl (S) to guaiacyl (G) 

ratio (Rohde et al., 2004), and is also deficient in anthocyanin and tannin biosynthesis 

(Huang et al., 2010).  
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Figure 1.10 A simplified representation of the phenylpropanoid metabolism to 
show the various secondary metabolites that are synthesised through it, including 
scopoletin which is within the coumarin group (Vogt, 2010). 

 

(E)-cinnamate is then hydrolysed by cinnamate 4-hydroxylase (C4H) which is a 

cytochrome P450-dependent monooxygenase (P450, CYP) to yield (E)-p-coumarate 

(also known as 4-coumarate). The P450 group is divided into families which are at least 

40% identical to one another and sub-families of proteins which are at least 55% similar 

to one another, although there are cases where sequence identity among P450s can be 

less than 20% (Werck-Reichhart et al., 2002). The A. thaliana genome comprises of 272 

cytochrome P450 genes and is one of the largest protein families in higher plants. C4H 
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is the first of three P450s in the phenylpropanoid metabolism that is involved in lignin 

biosynthesis and CYP73A5 is the only CYP73 family member in A. thaliana (Werck-

Reichhart et al., 2002) which is why the knock-out mutant of that gene is inviable (Bell-

Lelong et al., 1997).  

p-coumarate is then catalysed by 4-coumarate:CoA ligase (4CL) in an ATP dependent 

formation of the thioester bond between coenzyme A (CoA) and its carboxyl group to 

form p-coumaroyl CoA. There are four 4CL proteins, 4CL1-4CL4, in A. thaliana (Costa 

et al., 2005). Studies show that the isozymes have different expression patterns and 

activities. 4CL1 and 4CL2 are 83% identical and they have similar expression profiles 

(Hamberger and Hahlbrock, 2004). 4CL3 is only 61% identical to 4CL1, shows higher 

expression in siliques and is induced by UV radiation and not pathogen attack like 4CL1 

and 4CL2 (Ehlting et al., 1999). Expression profiles and data from 4CL homologues in 

other plant species suggest that 4CL1 and 4CL2 are expected to be involved in lignin 

biosynthesis and 4CL3 is likely to be involved in flavonoid biosynthesis (Ehlting et al., 

1999). On the other hand, 4CL4 likely has a different metabolic function from the other 

three as it shows preferential activity towards ferulate and sinapate instead of p-

coumarate (Hamberger and Hahlbrock, 2004).  

Hydroxycinnamoyl-CoA shikimate:quinate hydroxycinnamoyl-transferase (HCT) is 

involved in two reactions in the phenylpropanoid metabolism. Firstly, it catalyses the 

transfer of the p-coumaroyl group in p-coumaroyl CoA to shikimate to produce p-

coumaroyl shikimate (Hoffmann et al., 2003). p-coumaroyl shikimate 3’ hydroxylase 

(C3’H) then catalyses the hydroxylation of p-coumaroyl shikimate to produce caffeoyl 

shikimate (Franke et al., 2002a). Caffeoyl shikimate is then catalysed by HCT again to 

transfer the caffeoyl moiety back to CoA to form caffeoyl CoA (Hoffmann et al., 2003). 

HCT can use quinate instead of shikimate but not very well. A. thaliana mutants where 

the HCT gene has been silenced show a dwarf phenotype with accumulation of 

flavonoids and reduced S lignin in comparison to wild-type plants (Hoffmann et al., 2004). 

C3’H is the second out of three P450s that is involved in lignin biosynthesis in the 

phenylpropanoid metabolism. It is also one of the three belonging in the CYP98 family 

(CYP98A3) in A. thaliana (Franke et al., 2002a; Schoch et al., 2001). C3’H is able to act 

on both the shikimate ester and the quinate ester of p-coumarate but the conversion rate 

for the shikimate ester is four times higher than the latter (Schoch et al., 2001). ref8 is a 

CYP98A3 mutant where a single transition mutation resulting in a substitution that greatly 

reduces C3’H activity (Franke et al., 2002a). Like other ref mutants, ref8 plants have 

lower levels of sinapoylmalate accumulation but in addition to that, ref8 plants also 
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deposit H lignin instead of G and S lignin and are dwarfed and hyperaccumulate 

flavonoids (Franke et al., 2002b). 

Caffeoyl CoA 3-O-methyltransferase (CCoAOMT) catalyses the methyl-transfer of the 

3’-hydroxyl group of caffeoyl CoA to yield feruloyl CoA. Although there are seven 

CCoAOMT-like genes in A. thaliana, only one is a functionally confirmed CCoAOMT 

gene (CCoAOMT1). T-DNA insertion mutants have lower stem lignin content and 

collapsed xylem vessels but no visible morphological differences compared to the wild-

type (Do et al., 2007). Coumarin biosynthesis is also significantly affected; the levels of 

scopoletin and scopolin compared to wild-type roots are approximately 30% and 15% 

lower respectively (Kai et al., 2008).  

Feruloyl CoA is then catalysed by cinnamoyl-CoA reductase (CCR) to produce 

hydroxycinnamaldehydes. CCR can act on caffeoyl CoA, sinapoyl CoA and feruloyl CoA 

but has the highest affinity for the latter. Two CCR proteins have been identified in A. 

thaliana, AtCCR1 and AtCCR2, and they are 80% identical (Baltas et al., 2005). Although 

they are very similar, they have different expression profiles; AtCCR1 expression is 

detected in flowers and leaves and highly expressed in stems under normal conditions, 

but AtCCR2 is not detected in any tissue type until exposure to bacterial pathogens. 

When leaves are exposed to bacterial pathogens, AtCCR2 transcripts begin to steadily 

increase over a 12-hour period whereas AtCCR1 transcripts decrease. These findings 

suggest that AtCCR1 is involved in normal lignin biosynthesis and AtCCR2 is involved in 

pathogen-induced lignification (Lauvergeat et al., 2001). AtCCR1 antisense transgenic 

plants are severely dwarfed, have approximately 50% less lignin than wild-type plants 

and have collapsed xylem vessels. These mutants also exhibit reduced levels of 

sinapoylmalate because of reduced levels of hydroxycinnamaldehydes and 

hydroxycinnamoyl alcohols and accumulate feruloylmalate due to the redirecting of 

feruloyl CoA into a potential thioester-based pathway (Derikvand et al., 2008). 

The third P450 involved in lignin biosynthesis in the phenylpropanoid metabolism is 

ferulate 5-hydroxylase (F5H) and is from the CYP84 family (Meyer et al., 1996). F5H 

catalyses the 5-hydroxylation of coniferaldehyde and coniferyl alcohol to form 5-

hydroxyconiferaldehyde and 5-hydroxyconiferyl alcohol respectively. F5H mutants fail to 

accumulate sinapoylmalate and deposit S lignin (Chapple et al., 1992). 

Caffeic acid O-methyltransferase (COMT) methoxylates the C5 position of the phenolic 

ring of aldehyde and alcohol precursors of S lignin such as 5-hydroxyconiferaldehyde 

and 5-hydroxyconiferyl alcohol to produce sinapaldehyde and sinapyl alcohol, 

respectively. The T-DNA knockout-mutant for the COMT gene (COMT1) in A. thaliana, 
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COMT1, contains lignin lacking in S units and reduced sinapoylmalate levels in stem, 

leaves and seedlings (Goujon et al., 2003). COMT also plays a role in the biosynthesis 

of scopoletin through the alternative pathways in which esculetin is methoxylated to yield 

scopoletin (Alhalaseh, 2017).  

Cinnamyl alcohol dehydrogenase (CAD) is responsible for the last step in lignin 

biosynthesis of G and S subunits. CAD catalyses the NADPH-dependent reduction of 

coniferaldehyde and sinapaldehyde to the monolignols coniferyl alcohol (G lignin) and 

sinapyl alcohol (S lignin) respectively. The primary CADs that are involved in lignin 

biosynthesis in A. thaliana are AtCAD4 and AtCAD5 which are both highly expressed in 

vascular bundles and several other tissue types (Kim et al., 2007). The double mutant 

for AtCAD4 and AtCAD5 has a 94% reduction in G and S lignin monomers in comparison 

to wild-type plants and deposits lignin composed primarily of coniferaldehyde and 

sinapaldehyde subunits (Sibout et al., 2003).  

These findings show how significant the phenylpropanoid metabolism is to the survival 

of the plant as it is responsible for the biosynthesis of lignin, flavonoid, coumarins and 

many other important secondary metabolites.   
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 RESEARCH STRATEGY 

Cassava PPD is a complex phenomenon that is yet to be fully understood, but there is 

sufficient evidence suggesting that scopoletin plays an important and significant role in 

the development of cassava root deterioration. The understanding of the biosynthesis of 

scopoletin through the phenylpropanoid metabolism allowed Liu et al. (2017) to 

successfully manipulate genes to reduce scopoletin biosynthesis, though not fully 

inhibited, by silencing F6’H genes using RNAi constructs. This study, however, was 

insufficient to tackle the entire problem as only the major biosynthetic pathway of 

scopoletin was addressed and the alternative pathways may have played a 

compensatory role. Besides that, due to having seven members in the F6’H gene family 

in cassava, the RNAi construct may not be able to target all the F6’H genes leading to 

some scopoletin being synthesised through the major pathway. 

To fully understand the biosynthesis of scopoletin and block its production with the aim 

of extending the shelf-life of cassava, this study intends to further the understanding into 

the function and gene expression patterns of the enzymes responsible for the 

biosynthesis of scopoletin (Figure 1.11).  

1. The initial phase of the investigation will be to identify homologous genes of PAL, 

C4H, 4CL, HCT, C3’H, CCoAOMT and COMT in the cassava genome using 

functionally confirmed reference genes from A. thaliana. By understanding the gene 

expression of these genes, candidate genes for CCoAOMT and COMT will be taken 

forward for RNAi silencing along with F6’H. 

 

2. As the F6’H single knock-down transgenic lines have already been generated by Liu 

et al. (2017), transgenic cassava with a double RNAi construct for CCoAOMT and 

F6’H and a triple RNAi construct for CCoAOMT, F6’H and COMT for simultaneous 

gene silencing will be generated. 

 

3. The storage roots of all three transgenic lines will be harvested and PPD 

assessment will be performed to analyse the rate of PPD development. Lines from 

each RNAi construct that show the slowest rate of PPD development will be 

analysed for gene expression and changes in metabolites. 
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Figure 1.11 The biosynthesis of scopoletin through three alternative pathways in 
the phenylpropanoid metabolism. 
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 MATERIALS AND METHODS 

 

 INSTRUMENTS 

Unless stated otherwise, all reagents and chemicals used were obtained from Sigma-

Aldrich and all plastic consumables were obtained from Fisher Scientific. A Thermo 

Cycler PTC-200 (MJ Research) was used for PCR and other reactions which required 

incubation. The PowerPac 200 (Bio-Rad) was used for gel electrophoresis of DNA and 

RNA samples and the GDS 7500 UV transilluminator (UVP) with a Grab-IT 2.0 

(Synoptics Ltd.) imaging system was used to visualise the gel and capture images. 

Different centrifuges were used depending on the requirement of the sample, e.g. speed 

and volume. A MiniSpin microfuge (Eppendorf) was used to centrifuge samples with a 

volume less than 2 mL; an Allegra 25R centrifuge (Beckman Coulter) was used for high 

speed centrifugation; and a Universal 32R centrifuge (Hettich) was used for low-speed 

centrifugation. A Helios spectrophotometer (ThermoFisher Scientific) was used to 

measure the absorbance of cell cultures and a Nanovue spectrophotometer (GE 

Healthcare Life Sciences) was used to quantify nucleic acid samples. Arabidopsis 

thaliana plants and in vitro cassava were grown in a Fitotron plant growth chamber 

(Weiss Gallenkamp). The electro-transformation of E. coli and Agrobacterium was 

carried out through a MicroPulser electroporator (Bio-Rad). Petri dishes were incubated 

in a Function Line microbiological incubator (Heraeus) and bacterial cultures that 

required shaking were incubated in an Orbital Incubator (Sanyo). The film developer 

OPTIMAX X-Ray Film Processor Model 1170-1-0000 (PROTEC GmbH & Co KG, 

Germany) was used to develop southern blot films. 

 

 PLANT MATERIALS 

Wild-type cassava cultivar TMS60444 (tropical Manihot series 60444) was obtained from 

the glasshouse of Department of Biology and Biochemistry, University of Bath. Friable 

embryogenic calli (FEC) cultivar TMS60444 were obtained from the cassava research 

group from the Institute of Molecular Plant Biology in ETH Zürich. 
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 BACTERIA STRAINS 

Library Efficiency™ DH5α™ Competent Cells (Invitrogen) were used in Escherichia coli 

transformation. Agrobacterium tumefaciens line LBA4404 (disarmed pAL4404 Ti 

plasmid; genomic antibiotic: Rifampicin; Ti plasmid antibiotic: Tetracycline) (Hoekema et 

al., 1983; Negrotto et al., 2000) was obtained from ETH-Zürich and electro-competent 

cells were made in the lab.  

 

 PLASMID 

The RNAi vector pRNAi-GG was made by Yan et al. (2012) and was purchased from the 

Arabidopsis Biological Resource Center (ABRC) at the Ohio State University. The vector 

was made using the binary vector pBI121 as the skeleton. It contains the binary borders 

for Agrobacterium-mediated transformation, a kanamycin resistant gene to select for 

bacteria that carry it and neomycin phosphotransferase (nptII) gene to select transformed 

plants. A constitutive cauliflower mosaic 35S promoter (CaMV 35S) regulates the 

expression of the T-DNA region. 

 

 SOFTWARE AND STATISTICAL METHODS 

The sequences of cassava and Arabidopsis thaliana genes were obtained from 

Phytozome (http://phytozome.jgi.doe.gov/pz/portal.html) and National Center for 

Biotechnology Information (NCBI). BLAST analyses to compare similarities between the 

gene sequences were carried out in Phytozome (Goodstein et al., 2012). PROSITE 

(https://prosite.expasy.org) was used to identify protein domains and functional sites for 

cassava homologous genes. Primers for PCR, qPCR and sequencing were designed 

with NCBI primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and IDT oligo-

Analyzer (https://www.idtDNA.com/calc/analyzer) (Ye et al., 2012). The alignments, 

comparison and phylogenetic tree reconstruction of sequences were carried out 

using Geneious R8 (Kearse et al., 2012). The PPD discolouration of cassava roots was 

quantified and analysed with a MatLab-based programme designed at ETH-Zurich 

(Vanderschuren et al., 2014). StepOne Software v2.3 by Applied Biosystems (UK) was 

used in qRT-PCR for gene expression quantification. 

All statistical analyses were carried out using R studio Version 1.1.442 and graphical 

visualisations were made with SigmaPlot v14 (Systat Software Inc). Statistical methods 

used were Shapiro-Wilk test to check for normality and Levene’s test to check for equal 
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variance. A one-way ANOVA analysis followed by a Tukey’s comparison was performed 

for data that met the assumptions.  

 

 PRIMERS 

Primers listed in Table 2.1 were used in various experiments such as gene expression 

analysis for specific genes, quantitative gene expression analysis through qRT-PCR, 

southern blots and sequencing.  

Table 2.1 List of primers. 

Primer name Primer sequence (5’ to 3’) 

Gene specific primers for RT-PCR 

Cassava4.1_034377_Fwd ACTTCACCTGGATTTTCCTCTGC 

Cassava4.1_034377_Rev TTGACCCCAGCTCGAGCCT 

Cassava4.1_002628_Fwd GGCAACAATCTCTCAGAATGGTC 

Cassava4.1_002628_Rev AAGGTCTCGCCGCCTAACTTG 

Cassava4.1_002709_Fwd CACTTTCCTTCCACCTTTCCCA 

Cassava4.1_002709_Rev GCCAAAGCCAGTGGTGATG 

Cassava4.1_028434_Fwd ACGGTGAGAATGAGAAGAATCCTAGTAG 

Cassava4.1_028434_Rev AGCAACCCAGTGCCCACC 

Cassava4.1_002591_Fwd AGTGGGAATCCTGCAGTC 

Cassava4.1_002591_Rev CTACTGCAATGGAACCAAAGTG 

Cassava4.1_003117_Fwd CAAGAGGTTCTCGTCAAAAGG 

Cassava4.1_003117_Rev AGCACTTCAACAAAACATCTCC 

Cassava4.1_005978_Fwd AGCTTGATACAGTGCTTGGACC 

Cassava4.1_005978_Rev TTCTGCACCAAACGTCCCAAAG 

Cassava4.1_005006_Fwd GAGTCAGAGCTCCATAATCACTG 

Cassava4.1_005006_Rev GTGATTATGAGTTTCGTGTTAGACC 

Cassava4.1_005014_Fwd CAGAGCTCCCTCATCATCTT 

Cassava4.1_005014_Rev CCAAGAAATGAAAGAACGAATTGG 

Cassava4.1_004658_Fwd ACAAGCTGCTTCAGACACAGGA 

Cassava4.1_004658_Rev TGGACAACCCAGCAGCACA 

Cassava4.1_004136_Fwd TGACATCTATAGCCTCTGAAACC 

Cassava4.1_004136_Rev GGTTGGATAATCCAGCAGCAGT 

Cassava4.1_027178_Fwd AGTTTACGCTGAGAAAGTGAAGCAA 

Cassava4.1_027178_Rev CAGAACGATCGGAGGCACGAA 

Cassava4.1_008045_Fwd GCTCGCGGTCTTGACATTACTG 

Cassava4.1_008045_Rev CCAGGTTGGCTTTGATTGCAGG 

Cassava4.1_008063_Fwd TCCTCCATCCGATCTCCCACTC 

Cassava4.1_008063_Rev TGCACCAGGGCCTTACTAAGCC 

Cassava4.1_005910_Fwd TAGATTCCGATGCTACGCCGAG 

Cassava4.1_005910_Rev GTTCACGAACCGCTTGCCAAATG 

Cassava4.1_014783_Fwd GAATGGTTCTGTGGTGGCAG 

Cassava4.1_014783_Rev AGAGGTCCAATTACACACGTGG 
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qRT-PCR primers 

qPCR_CCoAOMT_Fwd  

qPCR_CCoAOMT_Rev  

qPCR_F6’H_Fwd TGGGTTCATGTTCCTCCCAT 

qPCR_F6’H_Rev CTCCTATATCGACCATTGCTGAGTA 

qPCR_COMT_Fwd  

qPCR_COMT_Rev  

qPCR_ubq10_Fwd CACCGGATCAGCAAAGGCTTA 

qPCR_ubq10_Rev CAGACACACAGATCAAAGCAGC 

Southern Blot Probes 

SB_Probe_Fwd ACTAGATCGGGCCTCCTGTC 

SB_Probe_Rev CAAAAGGGCGACATTCAACCG 

Other Primers 

PP2A_Fwd TGCAAGGCTCACACTTTCACT 

PP2A_Rev CTGAGCGTAAAGCAGGGAAG 

M13_Fwd GTAAAACGACGGCCAGT 

M13_Rev AACAGCTATGACCATG 

 

 

 BACTERIA AND PLANT MANIPULATION 

2.7.1 ANTIBIOTICS 

Table 2.2 contains all relevant information about the working conditions of the antibiotics. 

Table 2.2 Antibiotics and their properties. 

Antibiotic Solvent Sterilisation Stock concentration 

Ampicillin MilliQ water Filter sterilisation 100 μg/mL 

Carbenicillin EtOH N/A 50 μg/mL 

Chloramphenicol MilliQ water Filter sterilisation 30 μg/mL 

Geneticin MilliQ water Filter sterilisation 25 ug/mL 

Kanamycin MilliQ water Filter sterilisation 100 μg/mL 

Streptomycin MilliQ water Filter sterilisation 100 μg/mL 

Rifampicin DMSO N/A 50 μg/mL 

 

 
   

2.7.2 BACTERIAL CULTURES 

E. coli colonies were grown on LB agar plates (5 g/L yeast extract, 10 g/L tryptone, 10 

g/L NaCl and 16 g/L agar, pH = 7.0) with appropriate antibiotics at 37°C overnight (16 

hours). Single colonies were picked with a sterile 10 uL pipette tip and inoculated in liquid 

LB medium (5 g/L yeast extract, 10 g/L tryptone and 10 g/L NaCl, pH = 7.0) with 
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appropriate antibiotics. The culture was kept overnight (16 hours) at 37°C in a shaking 

incubator (200 rpm).  

A. tumefaciens colonies were grown on LB agar plates with the same composition as 

above with appropriate antibiotics at 28°C for 2 days in the dark. Single colonies were 

picked with a sterile 10 uL pipette tip and inoculated in liquid LB medium with the same 

composition as above with appropriate antibiotics. The culture was kept in the dark for 2 

days at 28°C in a shaking incubator (200 rpm). 

 

2.7.3 PREPARATION OF ELECTRO-COMPETENT A. TUMEFACIENS 

A single colony of A. tumefaciens LBA4404 was picked with a sterile 10 uL pipette tip 

and inoculated in 30 mL of liquid LB medium with Streptomycin (100 ug/mL) and 

Rifampicin (50 ug/mL). The culture was incubated overnight in the dark at 28°C, 200 

rpm. The following day, 1 mL of the overnight culture was inoculated in 75 mL of liquid 

LB medium with the same antibiotics. The culture was incubated overnight (18 hours) in 

the dark at 28°C, 200 rpm. The following morning, the cell density was monitored by 

reading the absorption at 600 nm using a spectrophotometer every 30 min. Once OD600 

was reached 0.7 – 1.0, 50 mL of the culture was transfered to a 50 mL conical tube and 

centrifuged in a Universal 32R centrifuge (Hettich) at 4000 rpm at 4°C for 10 min. The 

supernatant was discarded, and the cell pellet was re-suspended in 25 mL of ice-cold 

sterile MilliQ water to wash it. The cells were centrifuged (4°C, 4000 rpm, 10 min) again 

and the supernatant was discarded. The re-suspension and precipitation were repeated 

twice, and the cells were collected by centrifuging under the same conditions. 10 mL of 

ice-cold sterile 10% glycerol solution was added the re-suspend the cell pellet. The 

glycerol suspension was pelleted by centrifugation under the same conditions and the 

supernatant was discarded. The cell pellet was then re-suspended in 300 uL of ice-cold 

sterile 10% glycerol solution and was mixed by pipetting gently. 50 uL of suspended cell 

solution was then aliquoted to sterile pre-chilled 1.5 mL tubes and snap-frozen in LN2 

and stored at -80°C. 

 

2.7.4 TRANSFORMATION OF CHEMICALLY COMPETENT E. COLI 

Commercial chemically competent DH5α cells (Library Efficiency™ DH5α™ Competent 

Cells) (Invitrogen) were used. The protocol used was provided by Invitrogen, nothing 

was amended. 
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2.7.5 TRANSFORMATION OF ELECTRO-COMPETENT A. 

TUMEFACIENS 

The lab prepared A. tumefaciens electro-competent cells were transformed through 

electroporation. An aliquot of 50 uL cells were thawed on ice and mixed with 15 ng of 

purified plasmid DNA. The mixture was left to stand for 2 min on ice and then transferred 

to a pre-chilled ice-cold electroporation cuvette (Bio-Rad, 1 mm gap) and electroporated 

with one single pulse at 2.5 kV with a MicroPulser (Bio-Rad). Immediately after that, 1 

mL of liquid LB medium was added to the cuvette and mixed with a pipette before 

transferring to a sterile 15 mL test tube. The culture was incubated at 28°C at 220 rpm 

for three hours before spreading on LB agar plates with appropriate antibiotics. The plate 

was incubated in the dark at 28°C for 48 hours to allow colonies to grow. 

 

2.7.6 SUBCULTURE AND GROWTH OF CASSAVA 

Wild-type and transgenic cassava plants were grown from in vitro plants. Buds with 8-10 

mm of stem were cut from in vitro cassava plants and subcultured in sterile pots with 

CBM (4.4 g/L Murashige-Skoog medium with vitamin, 20 g/L sucrose, 2 μM CuSO4, and 

3 g/L Gelrite (Duchefa), pH = 5.9). In vitro plants were grown in a controlled environment 

suite (24°C, relative humidity 50%, 16 hours daylight, Weiss-Gallenkamp) and 

subcultured every 6 months.  Cassava lines to be transferred to soil were subcultured 

into CBM pots with 2.5 g/L Gelrite and grown in vitro for 7-10 days for the root and stem 

to develop. The subcultured plantlets were transferred to soil (three parts of Levington’s 

M2 compost and one part of perlite). The cassava plants were then kept and grown in 

the University glasshouse with supplemented lighting at 30°C during the day and 17°C 

during the night. 

 

2.7.7 CASSAVA TRANSFORMATION 

Cassava transformation was carried out on friable embryogenic calli (FEC) with several 

modifications following the methods from Bull et al. (2009). Modifications to the protocol 

was the use of the plasmid pRNAi-GG instead of pCambia 1305.1. Due to this, 

paromomycin and geneticin were used as the plant selectable markers instead of 

hygromycin. The concentration of paromomycin in the GD medium used during the 

recovery and maturation of transformed FEC was 27.5 uM for 3 weeks. After that, 25 uM 

of geneticin was used for the regeneration of transgenic plants. The concentration of 

carbenicillin was kept the same at 250 uM for both the maturation and regeneration 
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steps. Preliminary screening using the rooting experiment was not done. Transgenic 

plants were identified through PCR genotyping with primers designed specific to the 

RNAi construct. 

 

 NUCLEIC ACID MANIPULATION 

2.8.1 CASSAVA LEAF DNA EXTRACTION 

The DNA extraction protocol without the use of chloroform from Huang et al. (2013) was 

used. 100 mg of cassava leaf sample was ground up to powder with liquid nitrogen (LN2) 

in a 1.5 mL Eppendorf tube. 1 mL of lysing buffer (2% (w/v) CTAB, 200 nM Tris, 2 M 

NaCl, 25 mM EDTA, 1% (w/v) LSS, 20 mM Borax, pH = 8.0) that was preheated at 65°C 

was added to the tissue powder and mixed thoroughly by vortexing. The homogenate 

was incubated for 30 min at 65°C and vortexed every 10 min. The homogenate was then 

centrifuged at 13,400 rpm for 10 min in a MiniSpin microfuge (Eppendorf) at room 

temperature (RT). 500 uL of supernatant was transferred to a clean 1.5 mL 

Eppendorf tube and mixed with 500 uL of 70% isopropanol. The mixture was stored 

at -20°C for at least 30 min and then centrifuged at 13,400 rpm for 10 min at RT to pellet 

nucleic acids. The supernatant was discarded, and the pellet was washed with 1 mL of 

75% EtOH (4°C). The supernatant was discarded, and the pellet was washed another 

time with 100% EtOH. The pellet was air-dried at room temperature for 10 min and 

suspended in 50 uL of MilliQ water. The DNA concentration and quality were checked 

with a NanoVue spectrophotometer (GE).  

 

2.8.2 SOUTHERN BLOT 

 PREPARATION OF DIG-LABELLED PROBE 

Specific primers (Table 2.1) for the probe were designed from the T-DNA region of the 

plasmid pRNAi-GG. The probe was prepared in a 0.2 mL tube and the reaction was 

carried out in a Thermo Cycler PTC-200 (MJ Research). The composition of the probe 

and the reaction conditions are listed in Tables 2.3 and 2.4, respectively. The PCR 

product was run on a 1.2% (w/v) agarose gel electrophoresis for 60 min at 60 V and 

purified using the protocol provided by QIAquick Gel Extraction Kit (Qiagen). The gel-

purified probe was eluted in 50 μL of sterile MilliQ water and stored at -20°C until use. 
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Table 2.3 Composition of reaction for the probe  

Component Volume (uL) 

10x standard Taq reaction buffer 5 

10x DIG dNTPs  5 

Taq DNA polymerase (5 U/uL) 1 

10 µM probe-forward primer 0.5 

10 µM probe-reverse primer 0.5 

15ng/ul Plasmid DNA (pRNAi-GG) 1 

Nuclease-free water 33 

Total volume 50 

 

Table 2.4 Probe PCR reaction conditions 

Step Temperature (°C) Time 

Initial denaturation 94 2 min 

Denaturation 94 30 sec 

Annealing 57 30 sec 

Elongation 72 1 min 

Final elongation 72 5 min 

Final hold 12 Forever 

 

 REAGENTS USED FOR SOUTHERN BLOTTING 

Reagents used in southern blotting are 20X SSC, 20% SDS, depurinating solution, 

denaturing solution, neutralisation solution, washing solution 1 (W1), washing solution 2 

(W2), washing solution 3 (W3), washing buffer (WB), B1 solution, B2 solution and B3 

solution (McCabe et al., 1997). The compositions of the reagents are available in 

Appendix I. 

 SOUTHERN BLOT 

Day 1: Digestion reaction 

10 ug of cassava genomic DNA was digested with the restriction enzyme HindIII 

(Promega) in a 0.2 mL tube with a total volume of 150 uL at 37°C overnight in a Thermo 

Cycler PTC-200 (MJ Research). The master mix composition for the digestion reaction 

is listed in Table 2.5. pRNAi-GG plasmid DNA was used as a positive control. 

 

 

 

 

30 Cycles 
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Table 2.5 Master mix composition for the digestion using HindIII 

Component Volume (uL) 

Cassava genomic DNA (500 ng/uL) 20 

Promega Buffer E 15 

10x BSA 5 

HindIII (10 U/uL) 10 

MilliQ water 10 

Total volume 150 

 

Day 2: Ethanol Precipitation 

After the overnight digest, the reaction was heat-inactivated at 80°C for 20 min. The 

digested sample (150 uL) was transferred to a 1.5 mL tube (Eppendorf) and 15 uL of 

NaOAC (pH 4.8) and 350 uL of 95% (v/v) ethanol were added to the mixture and 

incubated at -20°C for 2 hours. The mixture was then centrifuged at 13,000 rpm, RT for 

15 min and the pellet was washed with 1 mL of 70% (v/v) ethanol. The pellet was air-

dried at RT for 10 min and then resuspended in 15 uL of MilliQ water. The resuspended 

pellet was incubated at 65°C for 10 min to allow the pellet to dissolve and was vortexed 

and spun down. 

Agarose gel electrophoresis 

A DIG-labelled ladder was prepared (2 uL of DNA Molecular Weight Marker VII, DIG-

labelled (Sigma-Aldrich), 5 uL of 5x loading dye and 13 uL of MilliQ water). 5 uL of 5x 

loading dye was added to 15 uL of digested DNA to make a total volume of 20 uL to be 

loaded onto the gel. The samples and DIG-labelled ladder were run overnight on a 0.8% 

(w/v) agarose gel (no EtBr) at 1 V/cm in Tris-Borate-EDTA (TBE) as the running buffer. 

Day 3: DNA visualisation under UV light 

The gel was stained with 0.3 mg/ml Ethidium Bromide for 15 min and then de-stained in 

water for 20 min. The gel was observed under UV light for DNA visualisation and 

documentation. 

Capillary transfer of DNA to membrane 

The gel was cut at the bottom right corner to mark its orientation. The gel was incubated 

in 300 mL of depurination buffer for 30 min on a shaker (The Belly Dancer, Stovall Life 

Science). It was then washed twice with sterile MilliQ water and incubated in 300 mL of 

denaturation buffer for 30 min on the shaker. The gel was washed twice with sterile MilliQ 

water and was incubated in 300 mL of neutralisation buffer for 15 min twice. The gel was 

set up for overnight capillary transfer of DNA to a nylon membrane (GE Healthcare, Life 

Sciences) (Southern, 2006). 
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Day 4: Hybridisation with DIG-labelled probe 

The membrane was cut at the bottom right to mark its orientation (same corner as the 

gel). The membrane was placed onto fresh Whatman paper and dried at RT for 5 min 

and then placed under 254 nm UV light for 2 min to undergo UV-crosslinking. The 

membrane was placed in a hybridisation tube and 10 mL of DIG easy hybridisation 

solution (Rohce) was added. The membrane was pre-hybridized at 42°C for 4.5 hours 

(minimum of 1 hour). The DIG easy hybridisation solution was discarded and 10 mL of 

fresh DIG easy hybridisation solution containing 50 μL of pre-heated (95°C, 5 min) DIG-

labelled probe was added to the tube and incubated at 42°C overnight. 

Day 5: Washing membrane 

The DIG easy hybridisation solution containing the probe was poured into a 15 mL tube 

and stored at -20°C. All washing and incubation steps were done on a shaker. The 

membrane was placed into a clean container and washed 3 times (3x) with 300 mL W1 

solution for 15 min each, followed by 300 mL of pre-warmed (68°C) W2 for 15 min and 

then 300 mL of pre-warmed (72°C) W3 solution for 30 min. The container was changed 

with each wash. The membrane was then incubated in 300 mL of WB solution for 3 min 

and then in 160 mL of B2 solution for a minimum of 1 hour. The B2 solution was 

discarded and fresh B2 solution with 1.5 μL of antibodies (Rohce) was added to incubate 

the membrane for 30 min. The membrane was then washed 5x with WB solution (1x for 

5 min, 2x for 10 min, 1x for 1 hr and 1x for 30 min). After washing, the membrane was 

incubated in 93 mL of B3 solution for 5 min, and then overlaid with 7 mL of B3 solution 

containing 40 μL of CDP star (Rohce) for 5 min. The membrane was dried on Whatman 

paper for 5 min at RT. Once the membrane was completely dry, it was sealed with Saran 

plastic wrap (DowBrands, USA) and put in a film cassette (Kodak BioMax light film, 

Sigma Aldrich) with a film and was incubated at 37°C overnight. 

Day 6: Developing film 

The film was developed in a dark room using OPTIMAX X-Ray Film Processor Modell 

1170-1-0000 (PROTEC GmbH & Co KG, Germany). 

 

2.8.3 CASSAVA RNA EXTRACTION 

The Spectrum™ Plant Total RNA Kit (Sigma-Aldrich) was used to extract cassava 

storage root RNA. 50 mg of root sample was ground up with LN2 in a pestle and mortar 

that were pre-baked at 200°C to denature RNase. 1000 uL of the lysis solution and 2-

mercaptoethanol mixture were used per sample that was then incubated at room 

temperature for 3 minutes. To bind the RNA to the column, Protocol A was used and due 



56 
 

to the low levels of RNA, the binding solution was increased to 750 uL. To remove 

residual genomic DNA from the RNA samples, on-column DNAse digestion was 

performed using the On-Column DNAse I Digest Set (Sigma-Aldrich) as per protocol 

provided by the kit. The concentration and quality of the RNA samples were verified with 

a NanoVue spectrophotometer (GE) and checked on gel for degradation. If the RNA 

concentration was too low (<15 ng/uL), the purified RNA samples was vacuum-

concentrated using a Savant SpeedVac vacuum concentrator (Thermo Fisher). The RNA 

samples were then stored at -80°C until further use.  

 

2.8.4 cDNA PREPARATION 

The High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) with oligo dT 

(18) primer (New England Biolabs) were used to synthesise cDNA from RNA samples. 

150 ng of total RNA was used in each reaction and the protocol provided was followed 

with an additional 1 uL of 50 uM oligo dT (18) primer in each reaction. The reaction was 

incubated in a Thermo Cycler PTC-200 (MJ Research). 

 

2.8.5 E. COLI PLASMID EXTRACTION 

A single E. coli colony was inoculated in 5 mL of sterile LB medium with appropriate 

antibiotic. The culture was incubated in a shaking incubator overnight at 37°C, 200 rpm 

to allow the cells to multiply. The overnight bacterial culture was centrifuged at 2000 rpm 

to pellet the cells in a Universal 32R centrifuge (Hettich). The supernatant was discarded, 

and the plasmid extracted from the bacterial cell pellet with the QIAprep Spin Miniprep 

Kit (Qiagen) and eluted with 35 uL to 50 uL of sterile MilliQ water. The quality and 

concentration of the plasmid DNA were verified with a NanoVue spectrophotometer 

(GE). 

 

2.8.6 POLYMERASE CHAIN REACTION (PCR) 

Taq DNA Polymerase and Q5® Hot Start High-Fidelity DNA Polymerase were both used, 

and they were obtained from New England Biolabs (NEB). All reactions were carried out 

in a Thermo Cycler PTC-200 (MJ Research). Taq DNA polymerase was used for 

genotyping and screening to determine the presence or absence of a target DNA 

sequence (cDNA or genomic DNA). The PCR preparation and reaction set up are listed 

in Table 2.6 and 2.7. When amplifying a DNA fragment for vector construction and 

sequencing, Q5® Hot Start High-Fidelity DNA Polymerase was used due to its proof-
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reading ability to minimise errors during amplification. The PCR preparation and reaction 

set up are listed in Table 2.8 and 2.9. 

 

Table 2.6 Taq DNA polymerase Reaction Mixture 

Component Volume (25 µl reaction) Final concentration 

10x standard Taq reaction buffer 2.5 µl 1x 

10 mM dNTPs 2 µl 200 µM each 

Taq DNA polymerase 0.125 µl 0.025 U/µl 

10 µM forward primer 1 µl 0.4 µM (0.05-1 µM) 

10 µM reverse primer 1 µl 0.4 µM (0.05-1 µM) 

Template DNA 1 µl < 1000 ng 

Nuclease-free water to 25 µl  

 

Table 2.7 Taq DNA Polymerase Set-up 

Step Temperature (°C) Time 

Initial denaturation 94 2 min 

Denaturation 94 30 sec 

Annealing 50-65 30 sec 

Elongation 72 1 min/kb 

Final elongation 72 5 min 

Final hold 14 Forever 

 

Table 2.8 Q5 High Fidelity DNA Polymerase Reaction Mixture 

Component 25 µL Reaction 50 µL Reaction Final concentration 

5x Q5 Reaction Buffer 5 µl 10 µl 1x 

10 mM dNTPs 2 µl 4 µl 200 µM each 

Q5 High-Fidelity DNA 

polymerase 

0.25 µl 0.5 µl 0.02 U/µL 

10 µM forward primer 1.25 µl 2.5 µl 0.5 µM (0.05-1 µM) 

10 µM reverse primer 1.25 µl 2.5 µl 0.5 µM (0.05-1 µM) 

Template DNA 1.25 µl 2.5 µl < 1000 ng 

Nuclease-free water to 25 µl to 50 µl  

 

Table 2.9 Reaction set up using Q5 High-Fidelity DNA polymerase 

Step Temperature (°C) Time 

Initial denaturation 94 2 min 

Denaturation 94 30 sec 

Annealing 50-65 1 min 

Elongation 72 30-40 sec/kb 

Final elongation 72 5 min 

Final hold 14 Forever 
 

30 Cycles 

30 Cycles 
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 PLASMID MANIPULATION 

2.9.1 DNA RESTRICTION ENDONUCLEASE DIGESTION 

Restriction enzymes from Promega were used unless stated otherwise. The protocol for 

the restriction digest provided by the manufacturer was used and up to 1 ug of DNA was 

used in each reaction unless stated otherwise.  

 

2.9.2 DNA ELECTROPHORESIS DNA GEL PURIFICATION 

Agarose electrophoresis was used to analyse nucleic acid samples. The gel was 

prepared by dissolving agarose (Bioline) in 70 mL or 120 mL (depending on the gel rack 

used) of 1x TAE buffer (40 mM Tris-Acetate and 1 mM EDTA) in the microwave oven. 

The solution was cooled and mixed with ethidium bromide solution to a final 

concentration of 0.25 mg/mL. The solution was poured into a sealed gel rack with 

appropriate combs and left for 20 min to solidify. The gel was placed in an electrophoresis 

tank with 1x TAE buffer and nucleic acid samples mixed with 1x loading dye (8% sucrose 

and 0.05% bromophenol blue) were loaded into the wells. The voltage used and running 

time depended on the size of nucleic acid fragments. The gel was visualised with a GDS 

7500 UV transilluminator (UVP) and Grab-IT 2.0 imaging software (Synoptics Ltd). 

 

2.9.3 DNA GEL PURIFICATION 

A 0.8% gel was used and the gel was run at 70 V for 60 min for DNA gel purification. 

The DNA band was excised from the gel with a sterile razor and kept in a sterile 

microfuge tube. The QIAquick Gel Extraction Kit (Qiagen) was used to extract the DNA 

from the gel following the protocol from the manufacturer. The DNA was eluted in 50 μL 

of MilliQ water. 

 

2.9.4 RNAi CONSTRUCT 

The plasmid pRNAi-GG (Yan et al., 2012) was used to create the RNAi constructs 

following the protocol provided. Further information in chapter 4.  

 

2.9.5 DNA SEQUENCING 

Plasmids were purified from E. coli (refer to 2.8.5). 15 uL of plasmid DNA samples with 

a concentration of 70 – 100 ng/uL and 15 uL of appropriate primers (10 pmol/µl) were 
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sent to Eurofins for sequencing. The results were analysed with the Geneious R8 

software.  

 

 PPD ASSESSMENT 

2.10.1  CASSAVA HARVEST 

Cassava plants were grown in the glasshouse for 9 months and then harvested for the 

storage roots. 3 biological replicates were selected for each line with 1-4 individual plants 

per replicate. The selected cassava plants were measured for their height (cm) and 

weight of roots per plant (g). After the height of the plant had been measured, the fibrous 

roots were removed, and the storage roots were washed in the glasshouse to remove 

soil before transferring to the lab. The stem and leaves of the plants were kept in -80⁰C 

for further analyses. The storage roots were then weighed (g). The storage roots were 

then immersed in 10% (v/v) bleach solution for 10 minutes for sterilisation to minimise 

bacterial and fungal contamination during the PPD induction process. 

 

2.10.2   PPD INDUCTION IN CASSAVA ROOTS 

Cassava PPD was induced using the method developed by Buschmann et al. (2000b), 

where the roots were sliced into discs with a thickness of 10-15 mm. The sliced root discs 

were placed in a Petri dish (at least 3 slices per petri dish) lined with a single dry filter 

paper (Whatman). This was done in the laminar hood and all surfaces and equipment 

were sterilised with 70% ethanol to prevent fungal and bacterial contamination. The 

plates with the root samples were then incubated in a growth chamber with the lid on in 

the dark at 25 ± 2°C but no control over relative humidity. PPD evaluation was carried 

out on 3 biological replicates with 3 technical replicates each. Samples were collected at 

4 timepoints postharvest: day 0 (fresh), day 2, day 4 and day 6. To determine the PPD 

level, the roots were photographed and the discolouration score measured with a MatLab 

imaging program based on the grayscale of the image (Vanderschuren et al., 2014). The 

root discs had the dry areas sliced off and photographed (Pentax K20D) with the 

following settings: Exposure time: 1/180 sec, ISO-speed: 400, Aperture: f/5.6, Focal 

length: 50, Metering mode: Centre Weighted Average, Flash mode: OFF, White balance: 

manual.  
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2.10.3   PPD MEASUREMENT 

The MatLab program (Vanderschuren et al., 2014) measures PPD level by converting 

the colour images of the user selected area (parenchyma tissue) to grey scale and 

analysing the frequency distribution of the selected area to generate a histogram with 

two sets of values as quantile 2.5% and 97.5%. The program then calculates the PPD 

score based on the formula:  

PPD score = (Quantile 97.5% - Quantile 2.5%) / Quantile 97.5% 

 

 BIOCHEMICAL ANALYSIS 

2.11.1   SAMPLE PREPARATION 

500 mg of cassava sample was ground to fine powder with LN2 with a pestle and mortar 

and the powder was transferred into a 5 mL screw-cap glass vial (Fisher). 2.0 mL of 

99.9% (v/v) ethanol (HPLC grade) containing 4-methylumbelliferone (4-MU), the first 

internal control, was added to the ground samples and incubated for 16 hours overnight 

on a shaker (IKA-VIBRAX-VXR) at room temperature at 10 rpm. 1.2 mL of the extract 

(liquid phase) was filtered through a 13 mm, 0.22 um PVDF syringe filter (Kinesis) into a 

2 mL screw-cap microfuge tube (Thermo Fisher). The filtrate was then vacuum-

concentrated in a Savant SpeedVac vacuum concentrator (Thermo Fisher) for 

approximately 3 to 4 hours until the solvent had completely evaporated. 200 uL of 10% 

(v/v) methanol (HPLC grade) containing 1 ug/mL of scoparone, the second internal 

control, was added to the dried filtrate and incubated overnight for 16 hours at 4⁰C to 

dissolve the extract. The extract was vortexed vigorously for at least 10 seconds before 

incubation. After the incubation, it was centrifuged at 13,400 rpm for 5 min to spin down 

floating particulates and 150 ul of the extract was transferred into a 300 uL screw-cap 

vial (Waters) which was sent for HPLC-MS in the Department of Pharmacy and 

Pharmacology, University of Bath. 

 

2.11.2   STANDARD PREPARATION 

Standard solutions for the standard curve were prepared in 10% (v/v) methanol (HPLC-

grade) at six concentrations: 2000 ug/mL, 1000 ug/mL, 500 ug/mL, 250 ug/mL, 125 

ug/mL, 62.5 ug/mL and 31.25 ug/mL in a total volume of 600 uL per vial. The working 

concentrations were adjusted depending on the number of standards to be included so 
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that the final concentration would be as listed above. If the compound has a low solubility 

in the solvent (methanol), DMSO was added to allow the compound to dissolve.  

 

 QUANTITATIVE GENE EXPRESSION ANALYSIS 

2.12.1   PRIMER DESIGN AND STANDARD CURVE 

Primers were designed specifically for qPCR analysis (Table 2.1). The parameters for 

designing the primers were: melting temperatures of 55-62⁰C with less than 5⁰C 

difference between the primer pair, GC content of 50-60%, amplicon size between 70-

150bp, primer spans an exon-exon junction and no four same nucleotides consecutively. 

The primers for F6H gene family were obtained from Liu et al. (2017). The primers were 

all tested on cDNA with RT-PCR to make sure they work before proceeding for qPCR. 

Relative standard curve was performed to test the efficiency of each primer pair before 

using them for gene expression analysis. Firstly, a cDNA sample was diluted to five 

different concentrations (1x, 0.2x, 0.04x, 0.008x, 0.0016x), in order to create a standard 

curve. The qPCR reaction was set up using the StepOne Software V2.3 (Applied 

Biosystems, UK). The program set-up for the relative curve were 95°C for 30 sec, 94°C 

for 20 sec, 60°C for 20 sec and 72°C for 20 sec, with 40 cycles in total, 95°C for 15 sec 

and 40°C for 2 min. The set-up for the reaction was 1x PCR master mix containing 10 

uL of fast SYBR green master mix, 0.4 uL forward primer (200 nM), 0.4 uL reverse primer 

(200 nM) and 8.2 uL of MilliQ water was prepared in a 96 well reaction plate (Applied 

Biosystems, UK). All preparations were done on ice and the plate was centrifuged at 

2,000 rpm for 2 min at RT to remove bubbles. The results were then analysed on the 

same software and primer pairs with the highest efficiency were used for comparative 

CT experiment for gene expression analysis. 

 

2.12.2   COMPARATIVE CT EXPERIMENT 

The reaction master-mix was prepared in the reaction plate with the same components 

and procedure at above (2.12.1). The comparative CT experiment was used for 

quantitative gene expression analysis, so the cDNA template was used directly without 

any dilutions. The program settings for this reaction are: 95°C for 30 sec, 94°C for 20 

sec, 60°C for 20 sec and 72°C for 20 sec, with 40 cycles in total, then, 95°C for 15 sec 

and 40°C for 2 min. 
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The housekeeping gene used as a reference for this experiment was ubiquitin 10 

(ubq10); the primer sequences are listed in Table 2.1. The control used was wild-type 

cassava storage root sample at day 0.  

The relative quantity (RQ) of the target genes are quantified with the ∆∆CT method which 

has the formula:  

 

∆CTE = TE (Target Experimental) – HE (Housekeeping Experimental) 

∆CTC = TC (Target Control) – HC (Housekeeping Control) 

∆∆CT = ∆CTE - ∆CTC 

Relative Quantity (RQ) = 2^-∆∆CT 
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 ARE PHENYLPROPANOID METABOLISM 

GENES INVOLVED IN SCOPOLETIN 

BIOSYNTHESIS FOUND IN CASSAVA? 

 

 INTRODUCTION 

3.1.1 BACKGROUND 

The accumulation of scopoletin increases by 150-200 times in cassava storage roots 

after harvest, strongly indicating that scopoletin is involved in PPD development 

(Wheatley and Schwabe, 1985). Peroxidase has a high affinity to scopoletin, oxidising it 

to a blue-black insoluble metabolite, which correlates with the blue-black discolouration, 

known as vascular streaking, observed in the roots (Reilly et al., 2007). Phenylalanine 

ammonia-lyase (PAL), the entry enzyme of the phenylpropanoid metabolism, which is 

also responsible for the biosynthesis of scopoletin, increased during the PPD response 

(Góez‐Vásquez et al., 2004), suggesting de novo synthesis of scopoletin. Further 

evidence supporting the oxidation of scopoletin playing a role in PPD is that the exclusion 

of oxygen by waxing the roots after harvest effectively delays PPD development (Reilly 

et al., 2003). Scopoletin is most likely a quencher to ROS compounds such as H2O2, 

which accumulate during the oxidative burst which is triggered by wounding (Reilly et al., 

2003).  

 

3.1.2 SCOPOLETIN BIOSYNTHESIS IN CASSAVA AND ARABIDOPSIS 

The phenylpropanoid metabolism is responsible for the biosynthesis of many secondary 

metabolites, including scopoletin, which is a hydroxycoumarin. Within the 

phenylpropanoid metabolism, there are three pathways that lead to the biosynthesis of 

scopoletin in cassava (figure 3.1); to simplify the explanation, coenzyme A is omitted 

from the metabolites. These are via (1) hydroxycinnamate, (2) hydroxycaffeate and (3) 

ferulate intermediates of which the dominant pathway is via the (3) ferulate intermediate 

where 90% of total scopoletin in cassava is produced (Bayoumi et al., 2008). All three 

pathways start with the conversion of L-phenylalanine to (E)-cinnamate by PAL and then 

cinnamate 4-hydroxylase (C4H) catalyses the cinnamate to yield (E)-p-coumarate. After 

this, pathway 1 diverges as (E)-p-coumarate is 6’-hydroxylated to form (E)-2’,4’-

dihydroxycinnamate, which is then E-Z isomerised to (Z)-2’,4’-dihydroxycinnamate. It is 
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then lactonise to form umbelliferone and then 3’-hydroxylated to from esculetin. Esculetin 

can then be 3’-methylated to form scopoletin through an O-methyltransferase enzyme. 

In pathway 2 and 3, p-coumarate is first 3’-hydroxylated to (E)-caffeate. Pathway 2 then 

branches from (E)-caffeate which is 6’-hydroxylated into (E)-6’-hydroxycaffeate, then 

isomerised to (Z)-6’-hydroxycaffeate and lactonised into esculetin. Like pathway 1, 

esculetin is then converted into scopoletin through an O-methyltransferase enzyme. In 

pathway 3, (E)-caffeate is 3’-methylated to ferulate and then 6’-hydroxylated to yield (E)-

6’-hydroxyferulate. It is then E-Z isomerised to (Z)-6’-hydroxyferulate which is lactonised 

to produce scopoletin. Scopoletin can then be glucosylated to its glucoside, scopolin, 

through scopoletin-glucosyltransferase (scopoletin-GT); and deglucosylated from 

scopolin back into scopoletin through scopolin-β-glucosidase (scopolin-βG) (Ahn et al., 

2010; Gachon et al., 2004).  

Like cassava, the model plant, A. thaliana, which has been well studied and 

characterised, also synthesises scopoletin and scopolin in its roots. This makes it a 

valuable tool in studying the genes involved in scopoletin biosynthesis as it can act as a 

reference to understand said pathways in cassava (Kai et al., 2006). Although other 

alternative pathways involved in scopoletin biosynthesis have not been thoroughly 

explored in A. thaliana, it is likely that the major routes will be shared between cassava 

and A. thaliana (Bayoumi et al., 2008; Kai et al., 2006). This is due to the majority of 

pathways in the phenylpropanoid metabolism being conserved in higher plants because 

the acquisition of phenylpropanoid metabolism occurred early on the evolution of 

terrestrial plants, aiding the adaptation to new environments and opportunities of life out 

of water (Tohge et al., 2013). As the majority of scopoletin is biosynthesised through the 

major pathway, using A. thaliana as a reference, the final enzyme involved in the 

biosynthesis of scopoletin, F6’H1 (feruloyl CoA 6’-hydroxylase 1, gene ID At3g13610, 

NCBI reference sequence: NC_003074.8), which is responsible for the 6’-hydroxylation 

of feruloyl CoA, is of great interest. When F6’H1 is knocked-out in A. thaliana by a T-

DNA insertion, the mutant does not accumulate scopoletin (Kai et al., 2008). These data 

confirm that the dominant biosynthetic pathway of scopoletin in cassava is the same as 

the major pathway (3) in cassava. Using A. thaliana as a reference, homologous F6’H 

genes (Me10291, Me33240, Me10292, Me10381, Me27567, Me10376 and Me30526) 

were identified in cassava and, with the intent to reduce scopoletin biosynthesis and thus 

delaying/preventing PPD, RNAi knock-down cassava lines of homologous F6’H genes 

were generated (Liu et al., 2017). This managed to significantly reduce scopoletin 

accumulation and root deterioration in the RNAi knock-down cassava lines but not 

completely; therefore, PPD still occurred, albeit delayed. The reason for this may be due 
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to there being seven members in the F6’H gene family in cassava so the RNAi construct 

may not be able to target all the cassava F6’H genes although it should have been able 

to target most of the genes due to the high similarities between them.  

 

Figure 3.1 The biosynthesis of scopoletin through three alternative pathways in the 
phenylpropanoid metabolism. The enzymes of interest are highlighted in red. 
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Another reason for the accumulation of scopoletin in the transgenic lines may be due to 

the production of scopoletin through the alternative pathways. Although the alternative 

pathways normally account for less than 10% of the scopoletin produced during PPD 

(Bayoumi et al., 2008), there might be a feedback mechanism that causes an increase 

in scopoletin production due to the inhibition of the major pathway. The positive results 

from the F6’H RNAi knock-down cassava mutants confirm that the suggested 

biosynthetic pathways of scopoletin is correct, and that A. thaliana is a good reference 

to identify other homologous genes involved in the biosynthesis of scopoletin. 

Understanding the other genes in the phenylpropanoid metabolism involved in the 

biosynthesis of scopoletin may provide answers as to why the cassava knock-down lines 

still accumulate scopoletin. It may also identify other potential candidate genes to be 

manipulated with the aim of fully inhibiting scopoletin biosynthesis.  

 

3.1.3 PHENYLPROPANOID METABOLISM GENES INVOLVED IN 

SCOPOLETIN BIOSYNTHESIS IN ARABIDOPSIS 

Phenylpropanoids are a diverse group of compounds that are derived from the carbon 

skeleton of phenylalanine and are involved in plant structural support, defence and 

survival (Vogt, 2010). Although not every secondary metabolite’s function is understood, 

the importance of phenylpropanoids for plant survival is undeniable. Especially the 

production of monolignols (lignin monomers) that serve as building blocks of lignin which 

provides structural support, vascular integrity and defence in plants (Boerjan et al., 

2003). Lignin is formed through the dehydrogenative polymerisation of three 

monolignols, p-coumaroyl alcohol, coniferyl alcohol and sinapyl alcohol, which 

respectively give rise to p-hydroxyphenyl (H), guiacyl (G) and syringyl (S) units of the 

lignin polymer (Figure 1.10). Other secondary metabolites synthesised include 

flavonoids which are important plant pigments needed for flower colouration to attract 

pollinators as well as coumarins such as scopoletin and esculetin which play a role in 

plant defence (Lepiniec et al., 2006; D’Auria and Gershenzon, 2005). Figure 3.1 shows 

the biosynthesis of scopoletin through the three alternative pathways in cassava and 

includes the enzymes involved through reference from A. thaliana which will be further 

discussed in this section. 

 PHENYLALANINE AMMONIA-LYASE (PAL) 

The entry point of the phenylpropanoid pathway is the amino acid L-phenylalanine (L-

Phe) which is the end product from the shikimate pathway. PAL catalyses the initial 

reaction in which trans-cinnamate ((E)-cinnamate) and ammonia are produced through 
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the deamination of phenylalanine. There are four PAL isoforms (PAL1 (At2g37040), 

PAL2 (At3g53260), PAL3 (At5g04230) and PAL4 (At3g10340)) in A. thaliana (Raes et 

al., 2003). Expression studies performed in A. thaliana have shown that PAL1 and PAL2 

are the main PAL enzymes as there are specific promoter elements related to PAL1 and 

PAL2 but not PAL3 and PAL4 (Raes et al., 2003). To further support the observation that 

PAL1 and PAL2 are the main isoforms in A. thaliana, studies by Rohde et al. (2004) have 

shown that pal1 and pal2 mutants have no noticeable phenotype as PAL2 is upregulated 

in the pal1 mutant and vice versa. The pal1pal2 double mutant has reduced lignin content 

with a higher syringyl (S) to guaiacyl (G) ratio, accumulates phenylalanine and is also 

deficient in anthocyanin and tannin biosynthesis (Rohde et al., 2004). PAL4 is up-

regulated in both pal1 and pal2 mutants as well as the double mutant but it only partly 

compensates the loss of the main two PAL genes. The pal1 pal2 pal3 pal4 mutant has 

stunted growth with reduced lignin content but still has residual PAL activity which could 

mean that there are other unidentified PAL-like genes (Huang et al., 2010). 

 CINNAMATE 4-HYDROXYLASE (C4H) 

C4H is a member of the cytochrome P450-dependent monooxygenase family (P450s) 

that catalyses the hydroxylation of (E)-cinnamate into (E)-p-coumarate (also known as 

4-coumarate). C4H is the first of three P450s in the phenylpropanoid metabolism that is 

involved in lignin biosynthesis and is only encoded by a single gene, CYP73A5 

(At2g30490), in A. thaliana (Werck-Reichhart et al., 2002). C4H plays an important role 

in the biosynthesis of lignin as there is a high expression level of C4H in cells and roots 

that are undergoing lignification (Bell-Lelong et al., 1997). Besides that, C4H expression 

is also upregulated by light, wounding and pathogen infections in plants (Chapple, 1998). 

A viable mutant for C4H has only recently been identified in A. thaliana (Schilmiller et al., 

2009; Ruegger and Chapple, 2001) as the complete loss of C4H is lethal to the plant due 

to its importance in vascular development (Bell-Lelong et al., 1997). There are three 

reduced epidermal fluorescence 3 (ref3) mutants with a missense mutation that leads to 

amino acid substitutions in the highly conserved structural motifs of the C4H protein that 

result in reduced enzyme activity. The mutants (ref3-1, ref3-2 and ref3-3) all have lower 

concentrations of sinapoylmalate compared to wild-type plants. ref3 mutants have lower 

lignin deposition compared to wild-type plants as well as reduced levels of condensed 

tannins in the seeds (Schilmiller et al., 2009). 

 4-COUMARATE COA LIGASE (4CL) 

p-coumarate is then catalysed by 4-coumarate:CoA ligase (4CL) to form p-coumaroyl 

CoA in an ATP dependent formation of the thioester bond between coenzyme A (CoA) 

and its carboxyl group. There are four isoforms of 4CL, 4CL1 (At1g51680), 4CL2 
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(At3g21240), 4CL3 (At1g65060) and 4CL4 (At3g21230), in A. thaliana (Costa et al., 

2005; Hamberger and Hahlbrock, 2004; Ehlting et al., 1999; Lee et al., 1995). The 

expression of 4CL1 correlates with pathogen attack, stem bolting and lignin deposition 

in seedlings (Lee et al., 1995). 4CL2 has a similar expression pattern in stems to 4CL1 

as they are 83% identical (Hamberger and Hahlbrock, 2004). 4CL3 is only 61% identical 

to 4CL1 and is primarily expressed in siliques and unlike 4CL1 and 4CL2, 4CL3 is 

induced by UV radiation and not pathogenic infiltration (Ehlting et al., 1999). Expression 

profiles and data from 4CL homologues in other plant species suggest that 4CL1 and 

4CL2 are likely to be involved in lignin biosynthesis and 4CL3 to be involved in flavonoid 

biosynthesis (Ehlting et al., 1999). 4CL4 is the last isozyme to be identified and it has a 

completely different metabolic function to the other three isozymes as it shows favoured 

activity towards sinapate and ferulate instead of p-coumarate (Hamberger and 

Hahlbrock, 2004).  

 HYDROXYCINNAMOYL-COA SHIKIMATE:QUINATE 

HYDROXYCINNAMOYL-TRANSFERASE (HCT) 

Hydroxycinnamoyl-CoA shikimate:quinate hydroxycinnamoyl-transferase (HCT) is 

involved in two reactions in the phenylpropanoid metabolism. Firstly, it catalyses the 

transfer of the p-coumaroyl group in p-coumaroyl CoA to shikimate to produce p-

coumaroyl shikimate (Hoffmann et al., 2003). p-coumaroyl shikimate 3’ hydroxylase 

(C3’H) then catalyses the hydroxylation of p-coumaroyl shikimate to produce caffeoyl 

shikimate (Franke et al., 2002a). HCT then proceeds to catalyse the transfer of the 

caffeoyl moiety back to the CoA to form caffeoyl CoA (Hoffmann et al., 2003). HCT can 

use quinate instead of shikimate but not very efficiently. At5g48930 is the is only gene 

encoding HCT in A. thaliana and A. thaliana mutants where HCT accumulation is 

inhibited by RNA-mediated gene silencing show a dwarf phenotype with accumulation of 

flavonoids and have reduced S lignin in comparison to wild-type plants (Hoffmann et al., 

2004). 

 P-COUMAROYL SHIKIMATE 3’ HYDROXYLASE (C3’H) 

C3’H is the second out of three P450s involved in lignin biosynthesis in the 

phenylpropanoid metabolism and it catalyses the hydroxylation of p-coumaroyl shikimate 

to produce caffeoyl shikimate (Franke et al., 2002a). It is also one of the three members 

belonging in the CYP98 family (CYP98A3) in A. thaliana (Franke et al., 2002a; Schoch 

et al., 2001). C3’H is able to act on both the shikimate ester and the quinate ester of p-

coumarate but the rate of conversion for the shikimate ester is four times higher than the 

latter (Schoch et al., 2001). The CYP98A3 mutant, ref8, has a single mutation which 

leads to a G444D substitution that greatly reduces C3’H activity (Franke et al., 2002a). 
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Like the other ref mutants, ref8 plants accumulates lower concentrations of 

sinapoylmalate in comparison to wild-type plants and deposit H lignin instead of G and 

S lignin. It also has a dwarfed phenotype and over-accumulates flavonoids (Franke et 

al., 2002b). 

 CAFFEOYL COA 3-O-METHYLTRANSFERASE (CCoAOMT) 

Caffeoyl CoA 3-O-methyltransferase (CCoAOMT) catalyses the transfer of the methyl 

group of caffeoyl CoA to yield feruloyl CoA. There is only one functionally confirmed 

CCoAOMT gene in A. thaliana (CCoAOMT1) but there are seven other CCoAOMT-like 

genes. T-DNA knock-out mutants have collapsed xylem vessels as well as a lower stem 

lignin concentration than wild-type plants (Do et al., 2007). Kai et al. (2008) also showed 

that the lack of CCoAOMT activity significantly affected the biosynthesis of coumarins; 

the levels of scopoletin and scopolin compared to wild-type roots were approximately 

30% and 15% lower respectively. 

 FERULOYL COA 6’-HYDROXYLASE (F6’H) 

Feruloyl CoA 6’-hydroxylase 1 (F6’H1) is an A. thaliana gene which regulates the 

hydroxylation of feruloyl CoA to 6’-hydroxyferuloyl CoA and is required for scopoletin 

biosynthesis (Kai et al., 2008). F6’H1 belongs to the 2-oxoglutarate dependent 

dioxygenase (2OGD) enzyme family where 2OGD integrates both atoms of an O2 

molecule to a 2-oxoglutarate molecule and its substrate. For scopoletin biosynthesis, 

F6’H1 incorporates a hydroxyl group to feruloyl-CoA, turning it to 6’-hydroxyferuloyl CoA. 

When this gene was knocked-out through a T-DNA insertion in A. thaliana, scopoletin 

failed to accumulate in the roots, confirming that the dominant scopoletin biosynthetic 

pathway in cassava is the same in A. thaliana (Kai et al., 2008).  

 CAFFEIC ACID O-METHYLTRANSFERASE (COMT) 

In both the alternative pathways, esculetin is methoxylated to produce scopoletin, which 

means this reaction is catalysed by an O-methyltransferase enzyme. A study by Kim et 

al. (2006) showed that E. coli expressing an O-methyltransferase gene from poplar 

(Populus deltoids Marsh), POMT-9, was able to produce scopoletin, isoscopoletin and 

scoparone from esculetin. The homologue of POMT-9 in A. thaliana is caffeic acid O-

methyltransferase 1 (COMT1). COMT methoxylates at the C5 position of the phenolic 

ring and is responsible for the biosynthesis of sinapyl alcohol, the precursor of the 

syringyl (S) units. An A. thaliana mutant with the COMT1 gene knock-out shows lignins 

lacking in S units and contains 5-OH-G units derived from 5’-hydroxyconiferyl alcohol 

although it did not show reduction in lignin content (Goujon et al., 2003).  

 



70 
 

 AIM OF RESEARCH 

This study intends to further the understanding into the function and gene expression 

patterns of the phenylpropanoid enzymes to gain an insight into the biosynthesis of 

scopoletin. Since the major pathway of scopoletin biosynthesis is shared between 

cassava and A. thaliana and phenylpropanoid enzymes are highly conserved (Tohge et 

al., 2013), homologous genes in cassava can be identified using functionally confirmed 

A. thaliana genes of said enzymes (PAL, C4H, 4CL, HCT, C3’H, CCoAOMT and COMT). 

This will be done through BLASTing A. thaliana reference genes in the cassava genome 

and identifying active sites, binding sites and signature patterns in the cassava candidate 

genes to confirm functionality. Gene specific primers will be designed for the cassava 

candidate genes and tested on cassava storage root and leaf cDNA to understand the 

expression profiles. Ultimately, selected cassava candidate genes may be knocked-

down using RNA-mediated silencing to produce transgenic cassava with the aim to 

inhibit scopoletin accumulation.  

 

 RESULTS 

3.3.1 CASSAVA CANDIDATE GENES 

The A. thaliana reference sequences were retrieved from NCBI and peptide sequences 

were used to BLAST for cassava homologous genes in the Phytozome database 

(Goodstein et al., 2012) with the default algorithmic parameters. The candidate genes 

were evaluated under two parameters, the Expect (E) value and score. The E-value 

describes the number of hits to be expected by chance when searching a database of a 

certain size. Essentially, the E-value describes the background noise and the lower the 

E-value (the closer it is to 0), the more ‘significant’ the match is. The score indicates the 

similarity between the query sequence and the hit sequence and the E-value is expected 

to decrease exponentially as the score of the match increases (Goodstein et al., 2012). 

The scores and E-values of the cassava candidate genes and the A. thaliana reference 

genes are shown in Appendix II. Active sites, binding sites and signature pattern obtained 

from PROSITE are also observed to make sure the candidate genes are true homologs 

of the reference genes. Although these domain signatures are generally accurate, there 

are false positive hits as well as false negative sequences, hence these signature 

patterns can only be used alongside the phylogenetic analyses as a selection criterion 

and do not confirm functionality of the cassava candidate genes. 
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 PHENYLALANINE AMMONIA-LYASE (PAL) 

The four PAL sequence - PAL1 (At2g37040), PAL2 (At3g53260), PAL3 (At5g04230) and 

PAL4 (At3g10340) from A. thaliana were used as references to identify homologous 

genes in the cassava genome. Six genes from cassava (Cassava4.1_002628, 

Cassava4.1_034377, Cassava4.1_002709, Cassava4.1_002591, Cassava4.1_028434 

and Cassava4.1_003117) were good candidates as the E values were 0 and the scores 

were above 80% for all except Cassava4.1_003117 which has an identity score of 59.3% 

to 64.5% depending on which PAL sequence was used. These genes were then 

compared with PAL genes from dicotyledons, monocotyledons and bryophytes in a 

Neighbour-Joining consensus phylogenetic tree with a bootstrap replicate of 1000 

(Figure 3.2). The phylogenetic analysis includes dicotyledons (cassava (Manihot 

esculenta), Arabidopsis thaliana, Citrus sinensis, Malus domestica, Solanum tuberosum, 

Boechera stricta, Brassica rapa and Populus tricocarpa), monocotyledons (Sorghum 

bicolor, Brachypodium distachyon, Setaria italica and Oryza sativa) and bryophyte 

species (Physcomitrella patens). Cassava4.1_002628, Cassava4.1_034377, 

Cassava4.1_002709, Cassava4.1_002591 and Cassava4.1_028434 are most closely 

related to the A. thaliana PAL genes within the dicotyledon cluster. Cassava4.1_3117 is 

more distantly related and is most closely related to a bryophyte (P. patens) which 

suggests that this gene is perhaps older than the others (Figure 3.2). 

Cassava4.1_003117 does not have an intron whereas the other candidate genes all 

possess one intron, but the coding sequence of all the candidate genes are all relatively 

the same length. Despite not having an intron, the coding sequence of 

Cassava4.1_003117 is aligned to the other cassava candidate genes.  

To confirm that the retrieved cassava genes are good candidates that are likely to share 

the same functions as the A. thaliana reference genes, the active site, binding site and 

PAL signature pattern have been investigated. The active site of the A. thaliana reference 

PAL1 is tyrosine (Y) at position 117, the binding site is arginine (R) at position 363 and 

the PAL signature pattern is [GS]-[STG]-[LIVM]-[STG]-[SAC]-S-G-[DH]-L-x-[PN]-L-[SA]-

x(2,3)-[SAGVTL] (Langer et al., 1994; Schuster and Retey, 1994; Taylor and McInnes, 

1994). The symbol ‘x’ is used when any amino acid is acceptable and amino acids 

indicated between a square bracket [ ] means any of those amino acids can be accepted, 

for example, [STG] means either serine, threonine and glycine can be accepted. These 

conserved sites are all present in the six cassava candidate genes (Figure 3.3), 

indicating that they should share the same function and activity as the reference genes. 
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Figure 3.2 Neighbour joining consensus phylogenetic analysis of phenylalanine 
ammonia-lyase (PAL) peptide sequences with 1000 bootstrap replicates. A. 
thaliana reference sequences (PAL1 (At2g37040), PAL2 (At3g53260), PAL3 
(At5g04230) and PAL4 (At3g10340)) are highlighted in red and the cassava candidate 
genes (Cassava4.1_002628, Cassava4.1_034377, Cassava4.1_002709, 
Cassava4.1_002591, Cassava4.1_028434 and Cassava4.1_003117) are in green. The 
blue highlight shows the node from which the cassava candidate genes were selected. 
The plant species included in this analysis are the dicots cassava (Manihot esculenta), 
Arabidopsis thaliana, Citrus sinensis, Malus domestica, Solanum tuberosum, Boechera 
stricta, Brassica rapa and Populus tricocarpa, monocots Sorghum bicolor, Brachypodium 
distachyon, Setaria italica and Oryza sativa and bryophyte species Physcomitrella 
patens. The scale bar represents 0.06 substitutions per amino acid.  
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Figure 3.3 Protein map of PAL and MUSCLE alignment of the cassava candidate 
genes (Cassava4.1_002628, Cassava4.1_034377, Cassava4.1_002709, 
Cassava4.1_002591, Cassava4.1_028434 and Cassava4.1_003117) and the A. 
thaliana PAL genes (PAL1 (At2g37040), PAL2 (At3g53260), PAL3 (At5g04230) and 
PAL4 (At3g10340)). A) Tyrosine (Y) is the active site for PAL enzymes. B) The PAL 
signature pattern. C) Arginine (R) is the binding site of PAL enzymes.  

  

A

B 
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 CINNAMATE 4-HYDROXYLASE (C4H) 

The A. thaliana gene, At2g30490, was used as a reference to identify homologous genes 

in the cassava genome. Two genes from cassava (Cassava4.1_005978 and 

Cassava4.1_005452) were selected as candidates because the E-values were both 0 

and the scores were 827.0 and 580.1 respectively. These genes were then compared 

with C4H genes from dicotyledons (cassava (Manihot esculenta), Arabidopsis thaliana, 

Boechera stricta and Linum usitatissimum), monocotyledons (Sorghum bicolor, 

Brachypodium distachyon, Oryza sativa and Zea mays) and bryophyte (Physcomitrella 

patens) species in a Neighbour-Joining consensus phylogenetic tree with a bootstrap 

replicate of 1000 (Figure 3.4). The phylogenetic analysis shows that bryophyte, 

monocotyledons and dicotyledons are in separate clusters and Cassava4.1_005978 is 

more closely related to the reference At2g30490 which is why it was selected as the 

homologous gene and Cassava4.1_005452 was disregarded.  

To confirm that the retrieved cassava genes are good candidates that will share the same 

functions as the A. thaliana C4H reference, the C4H signature pattern [FW]-[SGNH]-x-

[GD]-{F}-TG-[RKHPT]-{P}-C-[LIVMFAP]-[GAD] where cysteine (C) is the heme iron 

ligand is also present in the peptide sequence of Cassava4.1_005978, indicating the 

shared function between them (Figure 3.5). The symbol ‘x’ is used when any amino acid 

is acceptable and amino acids indicated between a square bracket [ ] means any of those 

amino acids can be accepted, for example, [STG] means either serine, threonine and 

glycine can be accepted. The curly brackets {x} indicate any amino acids can be 

accepted except x, for example, {G} means apart from glycine, all other amino acids are 

acceptable. 
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Figure 3.4 Neighbour joining consensus phylogenetic analysis of cinnamate 4-
hydroxylase peptide sequences with 1000 bootstrap replicates. A. thaliana 
reference sequence (At2g3049) is highlighted in red and the cassava candidate genes 
(Cassava4.1_005978 and Cassava4.1_005452) are in green. The blue highlight shows 
the node from which the cassava candidate genes were selected from. The plant species 
analysed are the dicots, (cassava (Manihot esculenta), Arabidopsis thaliana, Boechera 
stricta and Linum usitatissimum), monocots (Sorghum bicolor, Brachypodium 
distachyon, Oryza sativa and Zea mays) and bryophyte (Physcomitrella patens). 
Cassava4.1_005978 is the best candidate with A. thaliana At2g30490 as the reference 
gene. The scale bar represents 0.1 substitutions per amino acid. 
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Figure 3.5 Protein map of C4H and MUSCLE alignment of the cassava candidate 
gene’s peptide sequence, Cassava4.1_005978, and the A. thaliana reference C4H, 
At2g30490. The amino acids highlighted (FGVGRRSCPG) are the C4H signature 
pattern. 

 

 4-COUMARATE COA LIGASE (4CL) 

The four 4CL isozymes are encoded by four genes in A. thaliana, 4CL1 (At1g51680), 

4CL2 (At3g21240), 4CL3 (At1g65060) and 4CL4 (At3g21230). These were used as 

references to identify homologous genes in the cassava genome. Four genes from 

cassava (Cassava4.1_005006, Cassava4.1_005014, Cassava4.1_004658 and 

Cassava4.1_004136) were identified as having low enough E values with both high 

identity and score (Appendix II). These genes were then compared with 4CL genes from 

dicotyledons (cassava (Manihot esculenta), Arabidopsis thaliana, Prunus persica, Citrus 

sinensis, Aquilegia coerulea and Linum usitatissimum), monocotyledons (Sorghum 

bicolor, Brachypodium distachyon and Oryza sativa) and a bryophyte species 

(Physcomitrella patens) in a Neighbour-Joining consensus phylogenetic tree with a 

bootstrap replicate of 1000 (Figure 3.6). The phylogenetic tree shows that 

Cassava4.1_005006 and Cassava4.1_005014 were more closely related to 4CL1 

(At1g51680), 4CL2 (At3g21240) and 4CL4 (At3g21230), whereas Cassava4.1_004658 

and Cassava4.1_004136 were more closely related to 4CL3 (At1g65060).  

To confirm that the retrieved cassava genes are good candidates that will share the same 

functions as the A. thaliana reference genes, the nucleotide binding sites and 4CL 

signature pattern were present in the candidate genes (Figure 3.7). The 4CL signature, 

which is an AMP-binding domain signature, is [LIVMFY]-{E}-{VES}-[STG]-[STAG]-G-

[ST]-[STEI]-[SG]-x-[PASLIVM]-[KR]. Within the signature pattern, SSGTTGLPK is a 

nucleotide binding site where a mutagenesis study showed that enzyme activity is greatly 

reduced when lysine (K) is replaced by serine (S) (Stuible et al., 2000). The other 

highlighted sequences are binding sites which have shown reduction in enzyme activity 



77 
 

and substrate specificity when mutated; the activity of 4CL is completely inhibited when 

lysine (K) is replaced by asparagine (N) (Figure 3.7D) (Stuible et al., 2000). 

 

Figure 3.6 Neighbour joining consensus phylogenetic analysis of 4 coumarate CoA 
ligase (4CL) peptide sequences with 1000 bootstrap replicates. A. thaliana reference 
sequences 4CL1 (At1g51680), 4CL2 (At3g21240), 4CL3 (At1g65060) and 4CL4 
(At3g21230) are highlighted in red and the cassava candidate genes’ peptide sequence 
(Cassava4.1_005006, Cassava4.1_005014, Cassava4.1_004658 and 
Cassava4.1_004136) are in green. The blue highlight shows the node from which the 
cassava candidate genes were selected from. The plant species analysed are the dicots 
cassava (Manihot esculenta), Arabidopsis thaliana, Prunus persica, Citrus sinensis, 
Aquilegia coerulea and Linum usitatissimum, monocots Sorghum bicolor, Brachypodium 
distachyon and Oryza sativa, and bryophyte Physcomitrella patens. The scale bar 
represents 0.3 substitutions per amino acid.  
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Figure 3.7 Protein map of 4CL and MUSCLE alignment of the cassava candidate 
peptide sequences, Cassava4.1_005006, Cassava4.1_005014, Cassava4.1_004658 
and Cassava4.1_004136, and the A. thaliana references, 4CL1 (At1g51680), 4CL2 
(At3g21240), 4CL3 (At1g65060) and 4CL4 (At3g21230). A) The 4CL signature pattern 
and nucleotide binding region (SSGTTGLPK). (B) GYGMTE is a nucleotide binding 
region. C) Aspartic acid (D) and arginine (R) are nucleotide binding sites. D) Lysine (K) 
is a nucleotide binding site which results in activity loss if mutated (Stuible et al., 2000).  

A

B
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 HYDROXYCINNAMOYL-COA SHIKIMATE:QUINATE 

HYDROXYCINNAMOYL-TRANSFERASE (HCT) 

The peptide sequence of the A. thaliana HCT reference gene, At5g48930, was used as 

a reference to identify homologous genes in the cassava genome. Two cassava 

sequences were identified (Cassava4.1_008045 and Cassava4.1_008063) as good 

candidates as the E-values were 0 and they have a score of 755.7 and 750.7 respectively 

(Appendix II). These peptide sequences were then compared with HCT sequences from 

dicotyledons (cassava (Manihot esculenta), Arabidopsis thaliana, Populus tricocarpa, 

Cucumis sativus and Brassica rapa), monocotyledons (Sorghum bicolor, Brachypodium 

distachyon, Oryza sativa, Setaria italica and Panicum virgatum) and bryophyte 

(Physcomitrella patens) species in a Neighbour-Joining consensus phylogenetic tree 

with a bootstrap replicate of 1000 (Figure 3.8). The phylogenetic analysis shows that 

Cassava4.1_008045 and 008063 are closely related to the A. thaliana HCT gene 

reference.  

To confirm that the retrieved cassava genes are good candidates that will likely share 

the same functions as the A. thaliana HCT reference gene, the motif HxxxD which is part 

of the active site (histidine (H)) has been identified in the candidate genes (Figure 3.9A). 

The x indicates any amino acid is acceptable. The aspartic acid (D) (Figure 3.9B) is also 

an active site (proton acceptor) (Levsh et al., 2016). 
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Figure 3.8 Neighbour joining consensus phylogenetic analysis of 
hydroxycinnamoyl-CoA shikimate:quinate hydroxycinnamoyl-transferase (HCT) 
peptide sequences with 1000 bootstrap replicates. The A. thaliana reference 
sequence (At5g48930) is highlighted in red and the cassava candidate genes’ peptide 
sequences (Cassava4.1_008045 and Cassava4.1_008063) are in green. The blue 
highlight shows the node from which the cassava candidate genes was selected from. 
The plants species analysed are the dicots, cassava (Manihot esculenta), Arabidopsis 
thaliana, Populus tricocarpa, Cucumis sativus and Brassica rapa, the monocots, 
Sorghum bicolor, Brachypodium distachyon, Oryza sativa, Setaria italica and Panicum 
virgatum and bryophyte species, Physcomitrella patens. The scale bar represents 0.2 
substitutions per amino acid. 
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Figure 3.9 Protein map of HCT and MUSCLE alignment of the cassava candidate 
peptide sequences, Cassava4.1_008045 and Cassava4.1_008063, and the A. 
thaliana reference, At5g48930. A) HXXXD a motif of the HCT enzyme with histidine 
(H) being the active site. B) An active site (Levsh et al., 2016). 

 

 

 P-COUMAROYL SHIKIMATE 3’ HYDROXYLASE (C3’H) 

C3’H is encoded by one gene in A. thaliana (At2g40890), which has been used as a 

reference to identify homologous genes in the cassava genome. Only one candidate 

gene from cassava (Cassava4.1_005910) was identified as having a low enough E value 

(0.0) and high score (853.2). The cassava candidate peptide sequence was then 

compared with C3’H sequences from dicotyledons (cassava (Manihot esculenta), 

Arabidopsis thaliana, Populus tricocarpa, Solanum tuberosum and Brassica rapa), 

monocotyledons (Sorghum bicolor, Brachypodium distachyon, Oryza sativa and Setaria 

italica) and a bryophyte (Physcomitrella patens) in a Neighbour-Joining consensus 

phylogenetic tree with a bootstrap replicate of 1000 (Figure 3.10).  

To confirm that the retrieved cassava genes are good candidates that will likely share 

the same functions as the A. thaliana C3’H reference gene, the C3’H signature pattern 

which is the cytochrome P450 cysteine heme-iron ligand signature, [FW]-[SGNH]-x-

[GD]-{F}-[RKHPT]-{P}-C-[LIVMFAP]-[GAD], where the cysteine (C) in the signature is the 

heme iron ligand has been investigated in cassava. The signature is conserved in the 

cassava candidate gene Cassava4.1_005910 (Figure 3.11). The glycine (G) amino acid 

which causes loss of enzyme activity in A. thaliana when mutated to aspartic acid (D) 

A

B
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(Franke et al., 2002b) is also conserved between the reference sequence and the 

cassava candidate sequence.  

 

Figure 3.10 Neighbour joining consensus phylogenetic analysis of p-coumaroyl 
shikimate 3’ hydroxylase (C3’H) peptide sequences with 1000 bootstrap replicates. 
The A. thaliana reference sequence (At2g40890) is highlighted in red and the cassava 
candidate gene’s peptide sequence (Cassava4.1_005910) is in green. The blue highlight 
shows the node from which the cassava candidate gene was selected from. The peptide 
sequences from other plants species analysed are the dicots, cassava (Manihot 
esculenta), Arabidopsis thaliana, Populus tricocarpa, Solanum tuberosum and Brassica 
rapa, the monocots, Sorghum bicolor, Brachypodium distachyon, Oryza sativa and 
Setaria italica and a bryophyte, Physcomitrella patens. The scale bar represents 0.3 
substitutions per amino acid. 
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Figure 3.11 Protein map of C3’H and MUSCLE alignment of the cassava candidate 
peptide sequence, Cassava4.1_005910, and the A. thaliana reference sequence, 
At2g40890. FGAGRRVCPG where cysteine (C) is the heme iron ligand is the signature 
pattern of cytochrome P450 cysteine heme-iron ligand which includes the C3’H enzyme. 
The highlighted glycine (G) three sequences from the highlighted signature pattern is 
shown to cause loss of C3’H activity in A. thaliana when mutated to aspartic acid (D) 
(Franke et al., 2002b). 

 

 

 CAFFEOYL COA 3-O-METHYLTRANSFERASE (CCoAOMT) 

CCoAOMT is encoded by one gene (At4g34050) in A. thaliana which has been used as 

a reference to identify homologous genes in the cassava genome. Two genes from 

cassava (Cassava4.1_011832 and Cassava4.1_014783) were selected as candidates 

as the E values were low enough, 7.40E-162 and 4.60E-159 with a score of 453.4 and 

446.4 respectively. The peptide sequences of the cassava candidate genes were then 

compared with CCoAOMT peptide sequences from dicotyledons (cassava (Manihot 

esculenta), Arabidopsis thaliana, Populus tricocarpa, Solanum tuberosum, and 

Boechera stricta), monocotyledons (Sorghum bicolor, Brachypodium distachyon, Oryza 

sativa and Setaria italica) and a bryophyte (Physcomitrella patens) in a Neighbour-

Joining consensus phylogenetic tree with a bootstrap replicate of 1000 (Figure 3.12).  

To confirm that the retrieved cassava genes are good candidates and will likely share 

the same functions as the A. thaliana CCoAOMT reference gene, both the domain and 

binding sites of the CCoAOMT enzyme are present in the cassava candidate peptide 

sequence (Figure 3.13).  
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Figure 3.12 Neighbour joining consensus phylogenetic analysis of caffeoyl CoA 3-
O-methyltransferase (CCoAOMT) peptide sequences with 1000 bootstrap 
replicates. The A. thaliana reference sequence (At4g34050) is highlighted in red and 
the cassava candidates’ sequences (Cassava4.1_011832 and Cassava4.1_014783) are 
in green. The blue highlight shows the node from which the cassava candidate genes 
were selected from. The plants species analysed are the dicots, cassava (Manihot 
esculenta), Arabidopsis thaliana, Populus tricocarpa, Solanum tuberosum, and 
Boechera stricta, the monocots, Sorghum bicolor, Brachypodium distachyon, Oryza 
sativa and Setaria italica and a bryophyte, Physcomitrella patens. The scale bar 
represents 0.2 substitutions per amino acid. 

 

 

 

 



85 
 

 

 

Figure 3.13 Protein map of CCoAOMT and MUSCLE alignment of the cassava 
candidate peptide sequence, Cassava4.1_011832 and Cassava4.1_014783, and the 
A. thaliana reference sequence, At4g34050. The highlighted peptide sequences are 
all binding sites of the CCoAOMT enzyme.  
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 CAFFEIC ACID O-METHYLTRANSFERASE (COMT) 

The POMT9 peptide sequence from P. deltoids which was found to produce scopoletin 

from esculetin in E. coli was used to identify the A. thaliana gene, At5g54160, also known 

as COMT1. This was then used as a reference to identify homologous genes in the 

cassava genome. Two genes from cassava, Cassava4.1_010187 and 

Cassava4.1_010203, were selected as candidates because the E-values were both 0 

and the scores were 612.5 and 606.3 respectively. These candidate genes’ peptide 

sequences were then compared with other COMT sequences from dicotyledons 

(cassava (Manihot esculenta), Arabidopsis thaliana, Populus deltoids, Solanum 

tuberosum, Brassica rapa and Malus domestica), monocotyledons (Oryza sativa, 

Ananas comosus and Zea mays) and bryophyte (Physcomitrella patens) species in a 

Neighbour-Joining consensus phylogenetic tree with a bootstrap replicate of 1000 

(Figure 3.14). 

To confirm that the retrieved cassava genes are good candidates and will likely share 

the same functions as the A. thaliana COMT1 reference gene, both the binding and 

active sites of the COMT1 enzyme are present in the cassava candidates’ peptide 

sequences (Figure 3.15). The two glutamate amino acids highlighted in dark orange are 

active sites that have been confirmed by Byeon et al. (2014). 
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Figure 3.14 Neighbour joining consensus phylogenetic analysis of caffeic acid O-
methyltransferase (COMT) peptide sequences with 1000 bootstrap replicates. The 
A. thaliana reference sequence (At5g54160) is highlighted in red, the P. deltoids 
sequence is highlighted in purple and the cassava candidate genes’ peptide sequences 
(Cassava4.1_010187 and Cassava4.1_010203) are in green. The blue highlight shows 
the node from which the cassava candidate sequences were selected from. The plants 
species analysed are the dicots, cassava (Manihot esculenta), Arabidopsis thaliana, 
Populus deltoids, Solanum tuberosum, Brassica rapa and Malus domestica), monocots, 
Oryza sativa, Ananas comosus and Zea mays, and bryophyte, Physcomitrella patens. 
The scale bar represents 0.2 substitutions per amino acid. 
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Figure 3.15 Protein map of COMT and MUSCLE alignment of the cassava COMT 
candidate peptide sequence, Cassava4.1_010187 and Cassava4.1_010203, and the 
A. thaliana reference sequence, At5g54160 and POMT9 from Populus deltoids. The 
light orange highlighted amino acids are binding sites of the COMT enzyme. The darker 
orange highlights are active sites of COMT (Byeon et al., 2014). 
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3.3.2 CASSAVA CANDIDATE GENE EXPRESSION PROFILES 

Gene expression of cassava candidate genes was analysed to gain an insight into the 

role the genes played during PPD in different tissues (storage root and leaf). cDNA was 

synthesised from storage roots over the course of PPD development (0 hour (fresh), 24 

hours, 48 hours and 72 hours) and leaves. Gene specific primers were designed for all 

candidate genes except for CCoAOMT candidate genes (Cassava4.1_011832 and 

Cassava4.1_014783) and COMT candidate genes (Cassava4.1_010187 and 

Cassava4.1_010203) as these genes were too similar to one another to allow primers to 

target the specific individual gene (Table 2.1). The primers were designed using the 

Geneious v8.0.5 software and they span an intron so that the product size will be different 

for genomic DNA and cDNA to be certain that the amplicon for the gene expression 

analysis will definitely be from cDNA and not genomic DNA. Other criteria for the primers 

were that the melting temperature (Tm) must be above 52⁰C and below 62ᵒC with a GC 

content of 40% to 62%. Hairpins and dimer structures were also examined to ensure that 

the temperatures in which these structures will form were considerably lower than the 

Tm. The properties were checked through OligoAnalyzer 3.1 from Integrated DNA 

Technologies (https://www.idtDNA.com/calc/analyzer). All primers were first tested on 

cassava genomic DNA and optimised through gradient RT-PCR and were confirmed to 

be working before being performed on cDNA. The RT-PCR results are qualitative and 

not quantitative and only show whether the gene is expressed or not, so expression 

levels are not comparable (Table 3.1). Cassava candidate genes were renamed to 

facilitate discussion and referencing (Table 3.2). 
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Table 3.1 RT-PCR results performed on cassava storage roots over the PPD 
timescale (0 hour, 24 hours, 48 hours and 72 hours) and leaf with gene specific 
primers excluding CCoAOMT and COMT which used primers that targeted both 
genes in the family. A tick () represents the gene is expressed and a cross () 
represents no gene expression.  
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Table 3.2 Names given to cassava candidate genes encoding relevant enzymes. 

Enzyme Cassava Candidate Gene New Name 

PAL 

Manes.08G008400.1 (cassava4.1_002628m.g) MePAL1 

Manes.10G047500.1 (cassava4.1_034377m.g) MePAL2 

Manes.09G063700.1 (cassava4.1_028434m.g) MePAL3 

Manes.07G098700.1 (cassava4.1_002709m.g) MePAL4 

Manes.04G018000.1 (cassava4.1_002591m.g) MePAL5 

Manes.16G098200.1 (cassava4.1_003117m.g) MePAL6 

C4H Manes.18G126900.1 (cassava4.1_005978m.g) MeC4H1 

4CL 

Manes.11G071800.1 (cassava4.1_005006m.g) Me4CL1 

Manes.04G095300.1 (cassava4.1_005014m.g) Me4CL2 

Manes.09G127000.1 (cassava4.1_004658m.g) Me4CL3 

Manes.08G066200.1 (cassava4.1_004136m.g) Me4CL4 

HCT 
Manes.11G067800.1 (cassava4.1_008045m.g) MeHCT1 

Manes.04G101700.1 (cassava4.1_008063m.g) MeHCT2 

C3'H Manes.08G063400.1 (cassava4.1_005910m.g) MeC3'H1 

CCoAOMT 
Manes.10G078800.1 (cassava4.1_011832m.g) MeCCoAOMT1 

Manes.07G075700.1 (cassava4.1_014783m.g) MeCCoAOMT2 

COMT 
Manes.01G043700.1 (cassava4.1_010187m.g) MeCOMT1 

Manes.01G043600.1 (cassava4.1_010203m.g) MeCOMT2 

 

 

All PAL candidate genes are expressed in the leaf and are not exclusive to the root which 

is expected as it is the first enzyme in the phenylpropanoid metabolism. Three genes, 

MePAL1, MePAL4 and MePAL5 are constitutively expressed in the storage root over the 

PPD timescale and are not induced by wounding. MePAL2, MePAL3 and MePAL6 are 

likely to be induced by wounding in the storage root as they are not expressed in fresh 

(0h) storage roots and expression is only seen from 24 hours post-harvest.  

There is only one candidate gene for C4H which is MeC4H1. Probably due to the 

importance of the C4H enzyme, this gene is constitutively expressed in all tissue types 

over the PPD time course and in leaf as well (Figure 3.16). 
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Figure 3.16 Expression of the C4H candidate gene, Cassava4.1_005978 (MeC4H1). 
This gene is expressed constitutively in the storage root from fresh (0h) to 72h post-
harvest as well as the leaf. The amplicon size is 397bp. 

 

The 4CL gene, Me4CL4, has no expression in all tissues but is amplified in genomic 

DNA, which suggests that this could be due to gene redundancy after a genome 

duplication event in cassava’s history. Two 4CL candidate genes, Me4CL3 (Figure 3.17) 

and Me4CL1, are induced by wounding in the storage root as there is no expression in 

fresh cassava root. The other 4CL gene, Me4CL2, are constitutively expressed in the 

leaf and storage root. 

 

 

Figure 3.17 Expression of the 4CL candidate gene, Cassava4.1_004658 (Me4CL3). 
This gene is expressed in leaf and 24h, 48h and 72h post-harvest cassava storage root 
and not in fresh root. 
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One of the HCT candidate gene, MeHCT2, is constitutively expressed in the leaf and 

storage root and the other (MeHCT1) is only expressed in the leaf and 24h, 48h and 72h 

post-harvest storage root.  

The only candidate gene for C3’H is MeC3’H1 and it is expressed in the leaf and 

constitutively in the storage root. 

Due to the similarity of the two candidate genes of CCoAOMT (MeCCoAOMT1 and 

MeCCoAOMT2), gene specific primers cannot be designed which is why the primers are 

designed to amplify both genes. The CCoAOMT genes are expressed in the leaf and 

constitutively expressed in the storage root. 

Like the CCoAOMT candidate genes, the candidate genes for COMT are also highly 

identical (MeCOMT1 and MeCOMT2), hence primers are designed to amplify both 

genes. The RT-PCR results show that the COMT genes are constitutively expressed in 

the storage root over the development of PPD and in the leaf.  

 

 DISCUSSION 

Enzymes leading to the biosynthesis of scopoletin were identified from the 

phenylpropanoid metabolism and only the best candidates with the highest identity and 

score were taken forward as cassava candidate genes (Table 3.2). Certain enzymes 

have a larger gene family; for example, PAL and 4CL have a number of isozymes 

whereas C4H, HCT, C3’H, CCoAOMT and COMT are only encoded by a single gene in 

A. thaliana. Cassava is an allotetraploid (Nassar, 2002), which explains why cassava 

has a larger number of isoforms for all enzymes except C4H and C3’H compared to A. 

thaliana. Genome duplication events can lead to duplicated genes becoming a 

pseudogene through loss-of-function mutations which is likely to be the case for 

Me4CL4.  

The ideal characteristics of a candidate gene for RNAi knock-down will be root specific, 

expressed throughout the PPD timescale and come from a small gene family. The likely 

candidates will be found further along the biosynthesis pathway of scopoletin as knocking 

down an enzyme found early in the pathway will have more adverse effects on the plant’s 

fitness. In cassava, there are six PAL isoforms which would mean that to knock-down 

PAL activity, the RNAi construct will have to target all the isoforms and this may be hard 

or even impossible to achieve. PAL is not an ideal option as it is the first enzyme of the 

phenylpropanoid metabolism and is extremely important to the plant. RT-PCR results 

show that all candidate genes for PAL are expressed in the leaf and only three genes 
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(MePAL2, MePAL3 and MePAL6) are induced by wounding. Huang et al (2010) also 

described residual PAL activity in the A. thaliana pal1 pal2 pal3 pal4 quadruple mutant 

which suggests there are other PAL-like genes in the genome.  

The second enzyme in the phenylpropanoid metabolism is C4H which is only encoded 

by a single gene in both A. thaliana and cassava genomes. A. thaliana mutants for C4H 

have adverse phenotypes including stunted growth and reduced lignin deposition. This 

gene is so important that a complete knock-out is lethal to the plant due to its importance 

in vascular development (Bell-Lelong et al., 1997). The expression of C4H in cassava 

from the RT-PCR results affirms its importance as it is strongly and constitutively 

expressed in both leaf tissue and storage root over the PPD development timescale. Due 

to the importance of this enzyme, knocking down its gene will likely affect the plant’s 

survival significantly. 

4CL is the third enzyme in the pathway and it has five isoforms (one may be a 

pseudogene) and is very important to plant survival. It is responsible for the biosynthesis 

of p-coumaroyl CoA which is the starting point of many secondary metabolites including 

lignin (Lee et al., 1995). Apart from Me4CL4 which is not expressed at all and is likely to 

be a pseudogene, all the other genes are expressed in the leaf and storage root, with 

Me4CL1 and Me4CL3 being induced by wounding. Due to the high number of isoforms, 

knocking-down them all with the RNAi construct will be a challenge and the importance 

of this enzyme would greatly reduce the plant’s integrity and growth.  

HCT has two isoforms in which one gene (MeHCT2) is constitutively expressed in all 

tissues although 0h storage root and 72h fibrous root appear to have lower expression 

levels compared to the other tissues and the other gene (MeHCT1) is exclusive to the 

root and is induced by wounding. RNAi silencing was performed in A. thaliana and the 

mutant was shown to be dwarfed (Hoffmann et al., 2004). C3’H is only encoded by a 

single gene in the cassava genome and is expressed in both leaf tissue and storage root 

tissue over the PPD timescale. A missense mutation in the A. thaliana ref8 mutant has 

stunted growth, accumulates flavonoids and shows a complete loss of apical dominance 

(Bonawitz and Chapple, 2013). Although these two enzymes have a small gene family 

which is ideal for RNAi silencing, the studies performed in A. thaliana mutants show that 

knocking out these genes negatively affects the plant’s growth. This would not be useful 

in cassava as it may adversely affect storage root development and the plant’s fitness. 

The last two enzymes responsible for scopoletin biosynthesis, apart from F6’H1 which 

has been studied (Liu et al., 2017), are CCoAOMT (MeCCoAOMT1 and MeCCoAOMT2) 

and COMT (MeCOMT1 and MeCOMT2). These two enzymes are good potential 
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candidates for RNAi silencing due to having a small gene family with a high similarity 

between the genes. RT-PCR results show constitutive expression in the storage roots 

over the PPD development timescale and the leaf for both enzymes. The functions of 

these genes have also been confirmed through complementation of CCoAOMT and 

COMT T-DNA knockout lines for A. thaliana (Alhalasseh, 2017). Unlike other enzymes 

in the phenylpropanoid metabolism where the A. thaliana knockout resulted in growth 

defects and even fatality, the CCoAOMT and COMT knockout mutants did not show any 

adverse effects in its growth and phenotype. However, studies showed that knocking out 

CCoAOMT led to collapsed xylem vessels, lower stem lignin content and reduction in 

coumarin biosynthesis, in particular, scopoletin (Kai et al., 2008; Do et al., 2007). The 

COMT T-DNA knockout mutant COMT1 was missing S lignin as lignin is made up of 

three subunits: H, G and S lignin (Boerjan et al., 2003), and reduced sinapoylmalate 

levels in leaves, stem and seedlings but showed no morphological differences (Goujon 

et al., 2003). These two enzymes are the best candidates among the other 

phenylpropanoid enzymes as they have small gene families and the A. thaliana knockout 

mutants do not show a reduction in fitness despite some changes in the plants’ 

phenotype.  

More information on these genes and strategies involving RNAi silencing will be 

discussed in chapter 4.  
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 GENERATING CASSAVA KNOCK-DOWN 

LINES THROUGH RNAI SILENCING 

 

 INTRODUCTION 

Scopoletin plays a key role during the development of PPD in cassava storage roots and 

by inhibiting the accumulation of scopoletin, PPD can be delayed (Liu et al., 2017). 

Studies have shown that phenylpropanoid metabolism is highly conserved in plants, 

including cassava and A. thaliana (Tohge et al., 2013). Cassava has three possible 

pathways leading to scopoletin biosynthesis, with one dominant pathway through which 

the majority of scopoletin is biosynthesised through (Bayoumi et al., 2008). Apart from 

the dominant pathway, the other alternative pathways involved in scopoletin biosynthesis 

have not been thoroughly explored in A. thaliana, but it is likely that the major routes will 

be shared between cassava and A. thaliana (Kai et al., 2006). This makes A. thaliana a 

good reference to identify homologous genes of interest in cassava.  

The onset of PPD in cassava storage roots was delayed when scopoletin biosynthesis 

was partially inhibited with RNAi which led to the reduced accumulation of scopoletin in 

the storage roots. This was shown by Liu et al. (2017) where RNAi knock-down cassava 

lines targeting the family of F6’H genes (Me10291, Me33240, Me10292, Me10381, 

Me27567, Me10376 and Me30526) in cassava were generated. Due to the considerable 

number of genes in the family, the RNAi construct may be unable to target all the cassava 

F6’H genes, although it should have been able to target most of the genes due to the 

high similarities between them. The reason this gene family was selected to be inhibited 

was because when F6’H1 was knocked-out in A. thaliana by a T-DNA insertion, the 

mutant did not accumulate scopoletin (Kai et al., 2008). Unfortunately, scopoletin 

biosynthesis is more complicated in cassava as there are three pathways and larger 

gene families, hence a complete inhibition of scopoletin accumulation has not been 

achieved. Phenylpropanoid metabolism is a complex network of pathways and 

understanding the other genes involved in scopoletin biosynthesis may provide answers 

as to why the cassava F6’H knock-down lines still accumulated scopoletin. Homologous 

genes in the phenylpropanoid metabolism involved in scopoletin biosynthesis were 

identified in the previous chapter with the aim to select for candidates to be knocked-

down with an RNAi construct. Caffeoyl CoA O-methyltransferase (MeCCoAOMT1 and 

MeCCoAOMT2) and caffeic acid O-methyltransferase (MeCOMT1 and MeCOMT2) were 
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selected as ideal candidates to be targeted for RNAi silencing with the aim of further 

understanding the biosynthesis of scopoletin in cassava storage roots. 

To confirm the functional identity of CCoAOMT and COMT cassava candidate genes, A. 

thaliana T-DNA mutants with the reference genes knocked-out were complemented with 

said genes. Due to the high similarity between MeCCoAOMT1 and MeCCoAOMT2, and 

between MeCOMT1 and MeCOMT2, only MeCCoAOMT1 and MeCOMT1 were selected 

to complement the A. thaliana T-DNA knock-out mutants (Alhalasseh, 2017). Scopoletin 

and scopolin concentrations were reduced by 60% in the root extracts of the A. thaliana 

CCoAOMT mutant plant and through complementation with MeCCoAOMT1, the 

accumulation of both scopoletin and scopolin were restored. In the A. thaliana COMT 

mutant, scopoletin and scopolin concentrations were reduced by 20% and the 

accumulation of both were also restored following the complementation with MeCOMT1 

(Alhalasseh, 2017). This proves that the cassava candidate genes selected share the 

same functions as the reference genes from A. thaliana. Individual members of the gene 

family for CCoAOMT and COMT were not tested for functionality due to the difficulty in 

designing gene specific primers because of the high similarity between them. This is 

ideal as both genes are aimed to be knocked-down by the RNAi construct and the higher 

the similarity between them, the greater the chances of both genes being targeted.  

To understand the biosynthesis of scopoletin in cassava better, in addition to the F6’H 

cassava RNAi lines (pRNAi-F6’H) generated by Liu et al. (2017), two RNAi constructs 

were generated, an RNAi construct targeting both CCoAOMT and F6’H (pRNAi-

CCoAOMT/F6’H) and another RNAi construct targeting all CCoAOMT, F6’H and COMT 

(pRNAi-CCoAOMT/F6’H/COMT) (Figure 4.1). These transgenic cassava lines should be 

able to give answers as to why scopoletin still accumulates in the pRNAi-F6’H lines, and 

provide further understanding into the pathways responsible for scopoletin biosynthesis 

through comparison of scopoletin accumulation in each of the three RNAi mutants during 

PPD. For example, if the double construct (2x), pRNAi-CCoAOMT/F6’H, lines 

accumulate less scopoletin during PPD than pRNAi-F6’H (1x) and pRNAi-

CCoAOMT/F6’H/COMT (3x), this would suggest that the pRNAi-F6’H construct was not 

able to inhibit the whole F6’H gene family and one or more gene family members are still 

being expressed thus leading to scopoletin biosynthesis, and the other two pathways do 

not substantially contribute to scopoletin accumulation. On the other hand, if the triple 

construct (3x), pRNAi-CCoAOMT/F6’H/COMT, lines accumulate less scopoletin during 

PPD compared to pRNAi-F6’H (1x) and pRNAi-CCoAOMT/F6’H (2x), this would mean 

that scopoletin is being biosynthesised through the other non-dominant pathways. 
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Figure 4.1 Biosynthesis of scopoletin through three pathways in the 
phenylpropanoid metabolism. The enzymes targeted to be knocked-down with RNAi 
(CCoAOMT, F6’H and COMT) have been circled in red. The lines in which these genes 
have been knocked-down are also listed: 1x (pRNAi-F6’H), 2x (pRNAi-CCoAOMT/F6’H) 
and 3x (pRNAi-CCoAOMT/F6’h/COMT). 
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 AIMS OF STUDY AND RESEARCH STRATEGIES 

The aim of this chapter is to generate transgenic cassava lines expressing pRNAi-

CCoAOMT/F6’H and pRNAi-CCoAOMT/F6’H/COMT RNAi constructs. The following 

research strategies were implicated to achieve the aim of this study: 

1. Design primers targeting regions of high identity for the CCoAOMT and COMT 

gene families. 

2. Prepare the selected CCoAOMT, F6’H and COMT genes for RNAi using the 

pRNAi-GG protocol developed by Yan et al. (2012), which will be using the 

Golden Gate cloning technology. 

3. Transform wild-type (TMS60444) cassava friable embryogenic callus (FEC) and 

identify individual transgenic lines. 

4. Multiply and grow transgenic lines to obtain storage roots. 

 

 RESULTS 

4.3.1 CREATION OF RNAi CONSTRUCTS 

Interference hairpin RNAi (ihpRNA) constructs were made using the Golden Gate 

technology and the pRNAi-GG vector developed by Yan et al. (2012) (Figure 4.2). Firstly, 

primers were designed for the candidate genes of CCoAOMT and COMT, targeting 

regions with high identity (Figure 4.3). The primers designed will target the CCoAOMT 

region with 90% identity and the COMT region with 98% identity. The gene specific 

primers designed by Liu et al. (2017) to make the F6’H RNAi construct were reused.  

 

Figure 4.2 The cassette of pRNAi-GG. The two 35S CaMV promoter, two copies of the 
ccdB genes, the Pdk intron with the chloramphenicol-resistant gene (Cmr) and the four 
BsaI sites with specific adaptors are cloned between the HindIII and SacI of the T-DNA 
vector pBI121. The nucleotides highlighted in different colours (blue and red) show the 
specific adaptors and the adaptors with the same colour have the same sequences but 
the opposite orientation (Yan et al., 2012). 
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Figure 4.3 Nucleotide Muscle alignment of RNAi target regions. A) CCoAOMT gene 
family alignment of region targeted by the ihpRNA construct. Length of sequence: 418bp; 
Identical sites: 378; Identity: 90%. B) COMT gene family alignment of region targeted by 
the ihpRNA construct. Length of sequence: 330bp; Identical sites: 325; Identity: 98%. 

 

A 

B 
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The universal structure for the primer design is:  

Forward primer (FP): 5′- ACCA (protective bases) - GGTCTC (BsaI) – AGGAG (adaptor 

for pRNAi-GG) - gene specific sequence -3′ 

Reverse primer (RP): 5′- ACCA (protective bases) - GGTCTC (BsaI) – ATCGT (adaptor 

for pRNAi-GG) - gene specific sequence -3′ 

GGAG (FP) and TCGT (RP) are adaptors specific to the pRNAi-GG vector (Figure 4.4). 

 

 

Figure 4.4 ihpRNA construction with the pRNAi-GG vector using Golden Gate 
technology. One-step construction of the ihpRNA where the gene of interest is PCR 
amplified with gene-specific primers with the BsaI site and complementary adaptors to 
the pRNAi-GG vector. The purified PCR product, the pRNAi-GG vector, BsaI restriction 
enzyme and T4 ligase are mixed in one tube for a one-step restriction ligation reaction 
(Yan et al., 2012). 

 

To achieve simultaneous silencing, primers must be designed so that the adaptor 

sequences will complement one another and ligate (Figure 4.5). The primers designed 

for the two constructs, pRNAi-CCoAOMT/F6’H and pRNAi-CCoAOMT/F6’H/COMT are 

in the Table 4.1.  
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Figure 4.5 ihpRNA construction with the pRNAi-GG vector through Golden Gate 
technology for simultaneous silencing of two genes. Two PCR products of genes of 
interest were cloned into the pRNAi-GG vector simultaneously through a single 
restriction-ligation reaction following the same principles as Figure 4.2 (Yan et al., 2012). 

 

Table 4.1 Primers used in the construction of pRNAi-CCoAOMT/F6’H and pRNAi-
CCoAOMT/F6’H/COMT.  

Primer name Primer sequence (5’ – 3’) 

CCoAOMT_pRNAi-

CCoAOMT/F6’H_Fwd 
ACCAGGTCTCAGGAGCTCTTGCTCTTCCTGATGATGG 

CCoAOMT_pRNAi-

CCoAOMT/F6’H_Rev 
ACCAGGTCTCAGCTGAACCGGAAGCATGCAAATCTC 

F6’H_pRNAi-

CCoAOMT/F6’H_Fwd 
ACCAGGTCTCACAGCCCAACACTTGCAGAATCAGCC 

F6’H_pRNAi-

CCoAOMT/F6’H_Rev 
ACCAGGTCTCATCGTATTAGCCTCGTCGTCGGAGA 

CCoAOMT_pRNAi-

CCoAOMT/F6’H/COMT_Fwd 
ACCAGGTCTCAGGAGCTCTTGCTCTTCCTGATGATGG 

CCoAOMT_pRNAi-

CCoAOMT/F6’H/COMT_Rev 
ACCAGGTCTCAGCTGAACCGGAAGCATGCAAATCTC 

F6’H_pRNAi-

CCoAOMT/F6’H/COMT_Fwd 
ACCAGGTCTCACAGCCCAACACTTGCAGAATCAGCC 

F6’H_pRNAi-

CCoAOMT/F6’H/COMT_Rev 
ACCAGGTCTCAACGGATTAGCCTCGTCGTCGGAGA 

COMT_pRNAi-

CCoAOMT/F6’H/COMT_Fwd 
ACCAGGTCTCACCGTGCTCGACCTGCTTGAAATC 

COMT_pRNAi-

CCoAOMT/F6’H/COMT_Rev 
ACCAGGTCTCATCGTCCTCCTTCAAGAACTGCATC 
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A two-step reaction was used due to the size of the amplicons and number of products 

to undergo restriction-ligation. For the first step, the amplified PCR products were 

checked on gel electrophoresis and visualised under a UV transilluminator. The PCR 

products were then gel purified and assembled with BsaI and T4 ligase. The assembled 

products were then amplified with CCoAOMT_pRNAi-CCoAOMT/F6’H forward primer 

(FP) and F6’H_pRNAi-CCoAOMT/F6’H reverse primer (RP) for the double knock-down 

construct (pRNAi-CCoAOMT/F6’H) and CCoAOMT_pRNAi-CCoAOMT/F6’H/COMT FP 

and COMT_pRNAi-CCoAOMT/F6’H/COMT RP for the triple knock-down construct 

(pRNAi-CCoAOMT/F6’H/COMT) and checked on gel electrophoresis. 

The assembled PCR products were gel purified and then used in the second restriction-

ligation reaction with the pRNAi-GG vector. The assembled pRNAi-GG vectors were 

chemically transformed into MAX Efficiency™ DH5α™ Competent Cells (>1x109) 

(Thermo Fisher Scientific). Colony PCR was performed to identify the correct clones with 

pRNAi-GG specific primers (Table 4.2; Figure 4.6). The primers (P24 and P25) also 

identify the orientation of the intron, but intron orientation should not affect the silencing 

efficiency (Yan et al., 2012). The sequences were confirmed by PCR (Figure 4.7) and 

DNA sequencing with P22 and P23. 

 

Table 4.2 Primer sequences used to identify recombinants, intron orientation and 
sequencing for the pRNAi-GG vector (Yan et al., 2012). 

Primer Sequence (5’ – 3’) Description 

P21 ACCATTTACGAACGATAGCC Recombinants identification 

P22 GTAAAACGACGGCCAGTG Recombinants identification and sequencing 

P23 CGAATCTCAAGCAATCAAGC Recombinants sequencing 

P24 CATTTTAGCTTCCTTAGCTCC Recombinants and intron orientation identification 

P25 CATTTGGATTGATTACAGTTGG Recombinants and intron orientation identification 

 

 

Figure 4.6 The pRNAi-GG primers position and restriction sites. P21, P22, P24 and 
P25 are used in recombinants identification. P22 and P23 are used in recombinants 
sequencing. P24 and P25 can also be used to identify intron orientation. BamHI and SacI 
can also be used in intron orientation identification. 
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Figure 4.7 Gel electrophoresis results of recombinant pRNAi-GG with primers P21 
and P25. A) Antisense transformants of pRNAi-CCoAOMT/F6’H identified in colony PCR 
(Colonies 1-6). B) Antisense transformants of pRNAi-CCoAOMT/F6’H/COMT identified 
in colony PCR (Colonies 1-6). 

 

4.3.2 CASSAVA TRANSFORMATION AND GROWTH 

Cassava friable embryogenic calli (FEC) were provided by Dr Herve Vanderschuren from 

ETH-Zürich and were multiplied and transformed with Agrobacterium at the University of 

Bath (Bull et al., 2009). Cassava plantlets were successfully regenerated from the post-

transformation FEC after eight months of intensive care. Not all regenerated cassava 

plantlets will be transgenic which is why the plantlets must be screened through PCR to 

confirm that the insert is present with primers P21 and P25 (Figure 4.8). Southern blot 

was then performed on the transgenic cassava plantlets to determine independent lines 

through identifying insert location and insert copy number (Figure 4.9, Table 4.3). Three 

pRNAi-CCoAOMT/F6’H (2x) lines and five pRNAi-CCoAOMT/F6’H/COMT (3x) lines 

were then propagated in CBM agar. They were then transferred to soil (M2 medium + 

perlite, 3:1) 8-14 days after propagation depending on the rate of root growth. This was 

done in the growth room under controlled conditions (26°C, 16h light). One month after 

the plantlets have been transferred into soil, they were then transferred to the glasshouse 

(25-28°C, 30-50% relative humidity and 16h light) and transplanted into 1 L sized pots 

with the same soil composition. 35 plants were grown for each transgenic line with a total 

of 10 lines including wild-type (TMS60444), 35S-L (1x) line (F6’H RNAi transgenic line 
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obtained from Liu et al. (2017)), pRNAi-CCoAOMT/F6’H lines (3) and pRNAi-

CCoAOMT/F6’H/COMT (5). 

 

Figure 4.8 Confirmation of the RNAi insert by PCR using DNA from plantlets 
regenerated from transformed FEC with primers P21 and P25. A) pRNAi-
CCoAOMT/F6’H transgenic lines (1, 2, 4, 5, 6). B) Positive control (PP2A) for lines 1 – 
6; PCR failed for line 7. C) pRNAi-CCoAOMT/F6’H/COMT transgenic line (12); N is 
negative control with wt (TMS60444).  D) Positive control (PP2A) for lines 8 - 13; N is 
negative control with wt (TMS60444). 

 

 

 

 

 

 

L N 1 2 3 4 5 6 7 8 9 10 11 12 13 

L: DNA Molecular Weight Marker III-DIG labelled Roche.  
N: pRNAi-GG (Negative control) 
pRNAi-CCoAOMT/F6’H: 1-7 
pRNAi-CCoAOMT/F6’H/COMT: 8-13 

Figure 4.9 Southern blot to identify independent lines and transgene copy 
number. Southern blots results of HindIII-digested cassava genomic DNA of pRNAi-
CCoAOMT/F6’H and pRNAi-CCoAOMT/F6’H/COMT lines using insert specific probe 
(Table 2.1). Lanes 1-4 have multiple inserts and are the same line (clones). Lane 5 
failed. Lane 6 and 7 are have double inserts. Lanes 8,9 and 13 are the same line with 
double inserts. Lane 10 is a triple insert line. Lane 11 is a single insert line. Lane 12 is 
a multiple insert line. 



106 
 

Table 4.3 Cassava transgenic lines and the number of transgene insertion. 2x 
represents the double knock-down lines (pRNAi-CCoAOMT/F6’H) and 3x represents 
the triple knock-down lines (pRNAi-CCoAOMT/F6’H/COMT). 

Cassava Transgenic Line Transgene Copy Number 

2xA 7 

2xB 2 

2xE 3 

3xA 2 

3xB 3 

3xD 9 

3xE 1 

3xG 3 

 

 

 DISCUSSION 

Cassava is a difficult plant to transform due to its long lifecycle, high levels of genetic 

heterozygosity, variable flowering patterns and low seed set and germination (Jennings 

and Iglesias, 2002). Due to this, cassava transformation is performed with friable 

embryogenic calli (FEC) via Agrobacterium. This is widely used and shown to be the 

most efficient method to generate transgenic cassava. However, this method remains a 

labour-intensive and time-consuming procedure which took over a year to successfully 

regenerate plantlets from FEC to a sufficiently mature enough stage to be transferred to 

the glasshouse. Besides that, low regeneration of plantlets from somatic embryos (Baba 

et al., 2008) and highly variable numbers of transgenic events (Koehorst-van Putten et 

al., 2012) are the two main obstacles for cassava FEC transformation. Simultaneous 

gene-silencing through RNAi was the approach taken due to the efficiency and length 

taken to regenerate transgenic cassava plantlets after transformation.  

In order to compare the double and triple knock-down cassava lines with the F6’H knock-

down cassava plants generated by Liu et al. (2017), the same primers were used in this 

study for the F6’H gene family. Since CCoAOMT and COMT have only two members in 

their gene families and are highly identical to one another, the RNAi primers designed 

will target both members thus preventing leakage of gene expressions. Simultaneously 

knocking down genes through a single RNAi construct through pRNAi-GG (Yan et al., 

2012) has not been done in cassava before. This approach was chosen because 

separate transformation events to generate the double and triple knock-down mutants 

would be inefficient and unreliable due to the low transformation success rate and 
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regeneration of cassava plantlets from FEC. Due to the size of the inserts of 

approximately 300bp to 500bp in length per insert (two inserts for pRNAi-

CCoAOMT/F6’H and three for pRNAi-CCoAOMT/F6’H/COMT), the RNAi construct had 

to be made in two steps instead of one and had to be transformed into competent cells 

with at least greater than 1x109 efficiency due to the large plasmid size (approximately 

14,000bp).  

Since a different vector to what was used in the cassava transformation protocol 

developed by Bull et al. (2009), the protocol had to be modified. Hygromycin was used 

in the original protocol as hygromycin can achieve complete growth inhibition at low 

concentrations thus resulting in selection of a higher number of transformed callus lines. 

pRNAi-GG has nptII rather than hptII, which is why geneticin selection was used as 

cassava has high levels of inherent resistance to kanamycin that is usually used in nptII 

selection (Schöpke et al., 1996). The protocol uses the GUS assay to track 

transformation success but unfortunately, pRNAi-GG vector does not have the GUS 

gene, so this could not be done. Another issue faced was that the rooting test did not 

work well with geneticin selection as growth inhibition was not strong enough and 

resulted in non-transformed plants successfully developing roots. In response to this, all 

regenerated plantlets were analysed through PCR to determine and confirm integration 

of the genes of interest. Without the preliminary screening through the rooting test, more 

time was taken to extract DNA and analyse each plant through PCR. Although it took 

longer to generate transgenic cassavas due to the modifications to the protocol, three 

lines were successfully generated for pRNAi-CCoAOMT/F6’H (2x) and five lines were 

generated for pRNAi-CCoAOMT/F6’H/COMT (3x). 
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 DO THE TRANSGENIC CASSAVA PLANTS 

DIFFER IN TERMS OF GROWTH AND THE 

PPD RESPONSE? 

 

 INTRODUCTION 

In the previous chapters, three enzymes, CCoAOMT, F6’H and COMT, were identified 

as targets for silencing through RNAi. RNAi constructs were made with the intention to 

knock-down all members of the gene families encoding for said enzymes. CCoAOMT, 

F6’H and COMT are part of the phenylpropanoid metabolism, which is responsible for 

important secondary metabolites such as monolignols, flavonoids, coumarins, and many 

more. The hydroxycoumarin scopoletin, which is a product of the phenylpropanoid 

metabolism, has been shown to play a vital role in cassava PPD development, showing 

significant accumulation during PPD (Wheatley and Schwabe, 1985). Although this 

dramatic accumulation of scopoletin is not solely responsible for PPD, its oxidation by 

H2O2 and peroxidase to produce the blue-black pigment definitely plays an important role 

in the discolouration of cassava storage root (Beeching et al., 2000). Inhibiting the 

accumulation of scopoletin could delay PPD, which is why the enzymes (CCoAOMT, 

F6’H and COMT) responsible for the biosynthesis for scopoletin are targeted for 

silencing.  

As described in the previous chapter, pRNAi-CCoAOMT/F6’H (2x) and pRNAi-

CCoAOMT/F6’H/COMT (3x) transgenic lines were generated to understand the 

significance of the alternative pathways in scopoletin biosynthesis. These lines will be 

compared to the single knock-down line for F6’H generated by Liu et al. (2017). The 

model plant A. thaliana is a good reference to use in the study of scopoletin biosynthesis 

in cassava (Kai et al., 2006); although the two alternative pathways involved in scopoletin 

biosynthesis in cassava (Figure 5.1) have not been thoroughly explored in A. thaliana, it 

is likely that the major routes will be shared between them (Bayoumi et al., 2008; Kai et 

al., 2006) as the majority of pathways in the phenylpropanoid metabolism are conserved 

in higher plants (Tohge et al., 2013).  
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Figure 5.1 The biosynthesis of scopoletin through three alternative pathways in the 
phenylpropanoid metabolism. 

  



110 
 

When F6’H1 is knocked-out with a T-DNA insertion in A. thaliana, the mutant does not 

accumulate scopoletin (Kai et al., 2008). Unfortunately, this was not the case in cassava 

as the RNAi knock-down cassava lines did not completely inhibit scopoletin biosynthesis 

therefore PPD still occurred, albeit delayed (Liu et al., 2017). This is hypothesised to 

either be due to incomplete knock-down of F6’H as there are seven members in the gene 

family, or scopoletin is being synthesised through the alternative pathway where 

esculetin is methoxylated by COMT to produce scopoletin. To answer these questions, 

CCoAOMT and COMT were selected as targets for RNAi knock-down. T-DNA mutants 

for CCoAOMT (CCoAOMT1), COMT (COMT1) and double mutants for CCoAOMT and 

COMT (CCoAOMT1 COMT1) were generated in A. thaliana. The CCoAOMT1 mutants 

have collapsed xylem vessels and a lower stem lignin concentration, in particular, the 

reduction of guaiacyl (G) monomers, compared to wild-type plants (Do et al., 2007). It 

also has approximately 30% and 15% lower levels of scopoletin and scopolin in the roots, 

respectively (Kai et al., 2008). The COMT1 mutant lacked syringyl (S) unit lignin and had 

5-OH-G units derived from 5’-hydroxyconiferyl alcohol but, unlike CCoAOMT1, it did not 

show any reduction in lignin content (Goujon et al., 2003). In A. thaliana, CCoAOMT1 is 

involved in the 3-O-methylation of lignin subunits but is mainly responsible for the 

biosynthesis of G monomers with the cooperation of COMT1 to methylate the precursors 

of coniferyl alcohol. COMT1 is also involved in the biosynthesis of the S monomer by 

acting as a 5-O-methyltransfrase.  

Despite having changes to the lignin composition, the A. thaliana CCoAOMT1 and 

COMT1 mutants do not have significant phenotypic differences compared to the wild-

type plants under optimal growth conditions (Do et al., 2007). Unfortunately, this was not 

the case for the CCoAOMT1 COMT1 double mutant as the F2 progeny seedlings 

suffered developmental arrest 4 days post germination and turned yellow (Do et al., 

2007). The double mutants had significantly enriched H non-methoxylated units in the 

lignin composition and the biosynthesis of G and S subunits were severely affected, 

suggesting that CCoAOMT and COMT act cooperatively to methylate the C3 position. 

The double-mutant plantlets also lack isorhamnetin, which is the methylated form of 

quercetin, but this is unlikely to be the cause of the developmental defects as the tt4 

mutant which has a mutated chalcone synthase gene has normal development despite 

the absence of flavonoids (Shirley et al., 1995). It is still unknown as to why the double 

mutant suffers from developmental arrest, but CCoAOMT and COMT are likely to have 

an important role in plant development. Fortunately, unlike A. thaliana, the cassava 3x 

mutant lines did not appear to suffer from developmental arrest and were successfully 

transplanted into soil as mentioned in the previous chapter. The cassava triple RNAi 
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mutants are not complete knockouts like those in A. thaliana, which means there will still 

be residual gene activity that may explain why the mutants survived. The effects of the 

gene knock-down on cassava storage root development are still unknown but there are 

multiple lines of 3x transgenic cassava with different insert locations, which probably 

result in different expression levels of the RNAi construct. This should provide a range 

of transgenic lines with different phenotypes, so the most appropriate or useful lines can 

be selected for analysis. Besides developing a further understanding on the biosynthesis 

of scopoletin in cassava PPD regarding the importance of the alternative pathways, this 

study may also provide an insight to the roles of CCoAOMT and COMT in the 

development of cassava.  

 

  RESULTS 

5.2.1 DO THE TRANSGENIC CASSAVA PLANTS HAVE 

MORPHOLOGICAL DIFFERENCES? 

 HEIGHT 

35 plants were grown for each transgenic line with a total of 10 lines including WT line 

(TMS60444), 35S-L line (F6’H RNAi transgenic line obtained from Liu et al. (2017) that 

was renamed 1xA for convenience), pRNAi-CCoAOMT/F6’H lines (2xA, 2xB and 2xE) 

and pRNAi-CCoAOMT/F6’H/COMT (3xA, 3xB, 3xD, 3xE, 3xG). Plant height was 

measured at 5, 7 and 9 months before harvesting the plants to analyse PPD in the 

storage root. One-way ANOVA was performed on the transgenic plants (1xA, 2xA, 2xB, 

2xE, 3xA, 3xB, 3xD, 3xE and 3xG) in relation to the wild-type plants at 5, 7 and 9 months 

(Figure 5.2). The triple knock-down lines (3xA, 3xB, 3xD, 3xE, 3xG) showed significant 

difference at all ages and had a reduced growth rate compared to the wild-type control. 

There is especially high variation within the 3xA, 3xE and 3xG lines where a proportion 

of the plants have lost apical dominance and are severely stunted in growth (Figure 5.3). 

Some plants managed to recover from this problem and grew normally, whereas others 

remained dwarfed until 9 months, which was the time of harvest. This indicates that 

down-regulation of the three gene families, CCoAOMT, F6’H and COMT, can have 

adverse effects on plant development. 
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Figure 5.2 Height of cassava plants at 5, 7 and 9 months. Data were collected from 
10 plants for each line and the height shown is the average of 10 plants ± standard 
deviation (SD). Statistical analysis (One-way ANOVA) in relation to the wild-type:   
p<0.05 = *, p<0.01 = **, p<0.001 = ***. 
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Figure 5.3 Comparison of wild-type and 3x (pRNAi-CCoAOMT/F6’H/COMT) plants 
at 9 months old. A) 9 months old wild-type, 3xA plant with relatively normal growth and 
3xA plant with dwarfing and loss of apical dominance. B) Close-up of a 3xG plant with 
dwarfing and loss of apical dominance. 
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 LEAF SHAPE 

There were morphlogical differences observed in the leaf shape of the transgenic plants 

in comparison to the wild-type control plants. The leaves of 2x and 3x transgenic plants 

have a claw-like appearance (Figure 5.4) when they first emerge but may return to 

normal when older. The 1xA plants have a different leaf morphology where they have 

broader lobes and a darker green colour (Figure 5.5) which is consistent with the findings 

from Liu et al. (2017).  

 

 

Figure 5.4 Wild-type cassava and 3xD (pRNAi-CCoAOMT/F6’H/COMT D) 
transgenic cassava at 9 months old to show difference in leaf morphology. The 
3xD plant has claw-like leaves and appear smaller compared to the wild-type. 
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Figure 5.5 Comparison of wild-type cassava and 1xA (pRNAi-F6’H A) transgenic 
cassava leaf morphology. A) Side-by-side comparison between the wild-type plant 
and 1xA plant at 9 months old. B) Close-up pictures taken at 9 months comparing the 
leaf morphology between wild-type and 1xA transgenic cassava plants (Liu, 2016). 
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 ROOT WEIGHT 

The cassava plants were harvested at 9 months old and the roots were weighed before 

proceeding for PPD assessment. Fibrous roots were removed, and the storage roots 

were washed to remove soil and then weighed. All the transgenic lines showed 

significant reduction in weight where p<0.001 in comparison to the wild-type roots when 

tested with ANOVA (Figure 5.6). 3xA, 3xE and 3xG had the lowest weight of all the 

transgenic lines and there were plants from these lines where storage roots failed to 

develop. This could be related to the developmental issues these transgenic lines faced. 

Besides 1xA and 3xD, the other transgenic plants all had storage roots that were less 

than half the weight of the wild-type (116.1 ± 31).  

 

 

Figure 5.6 Weight of cassava lines storage root at 9 months. Storage roots were 
harvested from 9 plants per cassava line and fibrous roots were removed and then 
weighed. The weight shown is the average of 9 plants ± SD (standard deviation of 9 
samples). Statistical analysis (One-way ANOVA) was performed on the transgenic lines 
in relation to the WT control: p<0.05 = *, p<0.01 = **, p<0.001 = ***. 
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5.2.2 IS PPD AFFECTED BY THE DOWNREGULATION OF F6’H, 

CCOAOMT AND COMT? 

Storage roots of the 10 lines (WT, 1xA, 2xA, 2xB, 2xE, 3xA, 3xB, 3xD, 3xE, 3xG) of 

similar size were harvested, washed, weighed and then cut up into discs for PPD 

development. PPD discolouration was then evaluated as described in Chapter 2. The 

PPD score (%) was evaluated and normalised to the score at day 0 (Figure 5.7). Besides 

the triple knock-down lines 3xA and 3xE, the other RNAi transgenic lines show significant 

reduction in PPD symptoms over the 6 days (Figure 5.8). The lines that showed the 

largest reduction in terms of discolouration were 1xA, 2xA, 2xB, 3xB and 3xD, as their 

PPD scores were approximately half of the wild-type’s and the ANOVA test showed P 

values of less than 0.001 (***). 3xA and 3xE were the lines that experienced 

developmental issues and some plants remained dwarfed and developed very small 

storage roots, if any at all. The rate of PPD varied with the size of storage root which was 

why roots of the similar size were used in the experiment. Unfortunately, due to the lack 

of storage roots for lines 3xA and 3xE, the smaller roots had to be used for the PPD 

assessment. This may be the reason why the PPD score is higher than the other 

transgenic lines. The results between 3xA and 3xE with the other transgenic lines are 

hard to compare because of the inconsistency in root sizes. Although 3xG showed a 

significant difference to the wild-type control with a P value of less than 0.05, there was 

high variation within the 3xG population because like 3xA and 3xE, 3xG also had 

developmental issues where some plants lost apical dominance and remained stunted 

in growth. Unlike 3xA and 3xE, 3xG had some plants that produced storage roots that 

are of reasonable size which may be why difference in PPD was witnessed. Lines 3xA 

and 3xB had a decrease in PPD score from day 2 to day 4 although this should not be 

possible. This may be due to the high variation observed within the population and the 

lack of similar sized roots. Ideally, the stunted and non-stunted populations within the 

3xA and 3xD lines would be assessed separately, but unfortunately, there were not 

enough samples to make these comparisons. 
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Lines Day 2 Day 4 Day 6

1xA * *** ***

2xA ** *** ***

2xB * ** ***

2xE ** - ***

3xA - * -

3xB * *** ***

3xD ** ** ***

3xE - - -

3xG - * *  

Figure 5.7 The discolouration of the wild-type cassava compared with nine RNAi 
transgenic lines during the PPD time course. The table presents the statistical 
analysis (one-way ANOVA) in relation to the wild-type where * is p<0.05, ** is p<0.01 
and *** is p<0.001 in relation to the wild-type. 
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Figure 5.8 PPD development in the wild-type, 2xA and 3xB cassava storage roots. 
The pictures were taken at day 0 (fresh), day 2, day 4 and day 6 post-harvest. 

 

5.2.3 WAS THE ACCUMULATION OF SCOPOLETIN REDUCED IN 

TRANSGENIC CASSAVA LINES? 

Previous research has identified scopoletin as the major contributor to the discolouration 

observed in the storage roots during PPD. As a result of the PPD assessment conducted 

in 5.2.2, cassava lines (1xA, 2xA, 2xB, 3xB, 3xD) that had the lowest PPD score (%) and 

the wild-type control were selected for biochemical analysis through HPLC-MS to 

determine whether changes in scopoletin and scopolin accumulation were seen. Figure 

5.9 shows the difference in scopoletin accumulation in the six cassava lines mentioned. 

The one-way ANOVA analysis showed that except for 3xD at day 6, all the transgenic 

lines have significantly reduced scopoletin accumulation compared to the wild-type. The 

line with the least scopoletin accumulation throughout the PPD process is 1xA, followed 

by the double construct (pRNAi-CCoAOMT/F6’H) lines, 2xA and 2xB. The P-value for 

these three lines throughout day 0, 2 and 6 are less than 0.000 which meant the results 

are greatly significant. The triple knock-down (pRNAi-CCoAOMT/F6’H/COMT) lines 3xB 

and 3xD had a less drastic reduction in scopoletin accumulation. In the wild-type, 

scopoletin concentration increased greatly from day 0 to day 2 and then resumed a 

gradual increase until day 6. For 1xA, 2xA and 2xB lines, there was no spike in scopoletin 

accumulation, only a gradual increase which peaked at day 4 for 1xA and day 6 for 2xA 

and 2xB. On the other hand, 3xB had a significant increase from day 0 to day 2 which 
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then decreased in day 4 and the spiked up again on day 6. 3xD had significant scopoletin 

reduction until day 4 and then there was an increase in day 6 that was not significantly 

less than the wild-type. Although the glucoside scopolin was included in this analysis, 

there was no change in scopolin levels throughout the PPD timescale for all lines 

including the wild-type where it remained at 0 ng/mg. 

 

 

Lines Day 2 Day 4 Day 6

1xA *** *** ***

2xA *** *** ***

2xB *** *** ***

3xB *** *** **

3xD *** *** -  

Figure 5.9 Scopoletin concentration (ng/mg) of the 6 lines over the PPD time 
course. The table presents the statistical analysis (one-way ANOVA) in relation to the 
wild-type where * is p<0.05, ** is p<0.01 and *** is p<0.001 in relation to the wild-type. 
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5.2.4 DID THE RNAi CONSTRUCTS SUCCESSFULLY KNOCK-DOWN 

GENES OF INTEREST? 

To investigate whether the two RNAi construct (pRNAi-CCoAOMT/F6’H and pRNAi-

CCoAOMT/F6’H/COMT) successfully knocked-down gene expression for the respective 

genes of interest, quantitative gene expression of CCoAOMT, F6’H and COMT were 

obtained through qRT-PCR. The relative expression was calculated using the Livak 

method, also known as ∆∆CT, and was presented as relative quantity (2-∆∆Ct). The relative 

quantity (RQ) method normalises the CT value of the target (CCoAOMT, F6’H and 

COMT) against the housekeeping gene, ubiquitin 10 (Moreno et al., 2011). 

The F6’H gene family in cassava comprises seven members and the RNAi constructs 

aim to target all of them and downregulate their expression. Due to the high similarity 

between the F6’H gene members, it was impossible to design primers to differentiate 

between the individual genes and a pair of primers capable of targeting all of the genes 

was used (Liu et al., 2017). Figure 5.10 shows the relative quantity (RQ) of the F6’H 

family in the six cassava lines (wild-type, 1xA, 2xA, 2xB, 3xB and 3xD) and the results 

from the one-way ANOVA analysis. At day 0, the RQ for F6’H was around 0 for the wild-

type and transgenic lines. The RQ of wild-type cassava then increased to 90.6 ± 10.4 on 

day 2 and peaked on day 4 at 150.2 ± 7.9. There was no difference at day 0 but all the 

transgenic lines showed significant reduction in RQ from day 2 onwards except 3xD at 

day 6 where the RQ was similar to the wild-type. 1xA and 3xB lines had the greatest 

reduction in expression compared to the wild-type with the RQ at day 4 being 12.2 ± 2.4 

and 10.8 ± 1.8 respectively. 2xA and 2xB also showed significant difference with a P-

value of at least less than 0.05. 3xD had good reduction in expression on day 2 but 

caught up to the wild-type at day 6 (p>0.05).  
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Lines Day 0 Day 2 Day 4 Day 6

1xA - *** *** ***

2xA - *** *** ***

2xB - * *** **

3xB - *** *** ***

3xD - *** *** -  

Figure 5.10 Relative quantification (2-∆∆Ct) of F6’H transcripts in transgenic and wild-
type storage roots over the PPD timescale using qRT-PCR. RQ is calculated based 
on CT mean values obtained from three biological replicates, normalised to the reference 
gene (Ubq10) and the control (WT day 0). The table presents the statistical analysis 
(one-way ANOVA) where * is p<0.05, ** is p<0.01 and *** is p<0.001 in relation to the 
wild-type. 

 

CCoAOMT has two genes which are highly identical hence, like F6’H, it is not possible 

to design primers to target specific genes. A primer pair designed to target both genes 

was used (Table 2.1). There was no significant difference between all the transgenic 

lines and the wild-type (Figure 5.11). There were no significant changes in the gene 

expression level of CCoAOMT in any lines, including the wild-type throughout the PPD 

period. In comparison to F6’H which saw a huge spike in RQ during PPD where it peaked 

at day 4 at 150.2 ± 7.9 for the wild-type roots, the highest RQ for CCoAOMT was line 

2xB at day 6 with an RQ of 8.2 ± 4.5, which was significantly lower than the RQ observed 

for all F6’H samples. 2x and 3x transgenic lines will have these genes knocked-down but 
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due to the lack of expression throughout the PPD timescale, it is hard to determine to 

what extent the genes had been downregulated.  

 

 

Figure 5.11 Relative quantification (2-∆∆Ct) of CCoAOMT transcripts in transgenic 
and wild-type storage roots over the PPD timescale using qRT-PCR. RQ is 
calculated based on CT mean values obtained from three biological replicates, 
normalised to the reference gene (Ubq10) and the control (WT day 0). No significant 
difference was observed in any lines in relation to the wild-type. 

 

COMT is also encoded by two highly identical genes which is why, like F6’H and 

CCoAOMT, a primer pair has been designed to target both members (Table 2.1). Like 

CCoAOMT, there was no significant difference in the RQ values between the transgenic 

roots and wild-type roots over the PPD time course (Figure 5.12). A significant change 

in RQ values for COMT was not seen throughout the PPD process and the maximum 

RQ value was below 10, similar to the results of CCoAOMT.  



124 
 

 

Figure 5.12 Relative quantification (2-∆∆Ct) of COMT transcripts in transgenic and 
wild-type storage roots over the PPD timescale using qRT-PCR. RQ is calculated 
based on CT mean values obtained from three biological replicates, normalised to the 
reference gene (Ubq10) and the control (WT day 0). No significant difference was 
observed in any lines in relation to the wild-type. 

 

 DISCUSSION 

With the aim to reduce scopoletin accumulation by inhibiting genes responsible for the 

biosynthesis of scopoletin, the genes of interest (CCoAOMT, F6’H and COMT) were 

targeted by RNAi constructs (pRNAi-F6’H (1x), pRNAi-CCoAOMT/F6’H (2x) and pRNAi-

CCoAOMT/F6’H/COMT (3x)). These RNAi transgenic lines (1xA, 2xA, 2xB, 2xE, 3xA, 

3xB, 3xD, 3xE and 3xG) were generated and data were collected on the phenotype of 

the transgenic plants, storage root PPD progression, scopoletin concentration 

throughout PPD and gene expression analysis of said genes.  

The results show that all three RNAi constructs have significant results on delaying PPD 

development, with some lines having better results than others. Of all the lines 

generated, only six lines (1xA, 2xA, 2xB, 3xB and 3xD) were selected for further analyses 

as they showed the best improvement in PPD symptoms. Two lines (3xA and 3xE) from 

the triple knock-down plants did not show a significant delay in PPD in comparison to the 

wild-type control. 3xA, 3xE and 3xG had the lowest weight and height compared to all 
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the other lines and suffered from developmental problems where a proportion of plants 

lost apical dominance and were stunted in growth. The plants that lost apical dominance 

had a bush-like appearance due to the development of the axillary buds (Figure 5.3). 

Some plants managed to recover and continued growing but others remained dwarfed. 

This resulted in a high variation within the population of 3xA, 3xE and 3xG as some 

plants were relatively normal but others were less than half of the height of the normal 

plants (Figure 5.3). This was unexpected as the plants within a line were clones that 

were propagated from an individual plant. Besides that, these lines had different insert 

locations and copy numbers and other 3x lines with the same construct (pRNAi-

CCoAOMT/F6’H/COMT) such as 3xB and 3xD did not have this phenotype. This could 

be due to somaclonal variation as these plants were regenerated from friable 

embryogenic calli (FEC) and there have been studies that showed phenotypic effects on 

first generation plants (Larkin and Scowcroft, 1981). Although this is a possibility which 

could be solved by growing subsequent generations of plants through conventional stem 

cuttings, it is unlikely to be the case as only plants from the 3x RNAi construct where 

CCoAOMT, F6’H and COMT are knocked-down simultaneously that have this 

phenotype. This suggests that the phenotype observed is due to the knock-down of said 

genes, specifically CCoAOMT and COMT.  

CCoAOMT and COMT are involved in the biosynthesis of the monolignols coniferyl 

alcohol (guaiacyl (G lignin)) and sinapyl alcohol (syringyl (S lignin)). When CCoAOMT 

was knocked-out in A. thaliana using T-DNA insertion, the mutant plant had a collapsed 

xylem and lower stem lignin content but did not face any severe drawbacks to its fitness 

(Kai et al., 2008; Do et al., 2007). The COMT T-DNA mutant had no morphological 

differences but had reduced sinapoylmalate levels and was lacking in S subunits (Goujon 

et al., 2003). The study by Do et al. (2007) showed that when these two genes 

(CCoAOMT1 and COMT1) were knocked-out simultaneously in the A. thaliana double-

mutant, the mutant was arrested in the plantlet stage (day 4 post-germination). 

CCoAOMT and COMT are involved in the methylation steps necessary for the 

biosynthesis of monolignols (G and S units) and the ccomt1 comt1 double mutant is 

mainly composed of p-hydroxylphenyl (H) units and severely lacking in G and S units. It 

is suggested that CCoAOMT1 and COMT1 act together to methylate the monolignols’ 

phenolic ring (C3 position) in A. thaliana. Besides that, they are also involved in the 

biosynthesis of isorhamnetin and sinapoyl malate. It is still uncertain as to what causes 

the developmental issues experienced by the ccomt1 comt1 double mutant, but the early 

growth arrest of the double mutant suggests that these enzymes are essential for plant 

development.  
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Bonawitz and Chapple (2013) studied enzymes in the phenylpropanoid pathway leading 

to lignin biosynthesis with the aim to understand causes of dwarfing and developmental 

abnormalities observed in lignin biosynthetic mutants. Lignin is essential for normal plant 

development and A. thaliana mutants lacking in lignin fibres are unable to stand erect 

but do not have a dwarf phenotype (Mitsuda et al., 2007; Zhong et al., 1997). This 

suggests that loss of lignin in fibres is not the cause of dwarfism. There are suggestions 

that dwarfism may be due to the collapse of water-transporting cells caused by the 

negative pressure generated by transpiration in xylems with reduced lignin content 

(Jones et al., 2001; Piquemal et al., 1998). However, it is unlikely that C3’H, C4H and 

CCoAOMT/COMT A. thaliana mutants that arrest at seedlings would be due to vascular 

collapse as the negative pressure generated through transpiration would unlikely be 

enough to cause it (Bonawitz and Chapple, 2013). Other experimental observations 

showed that A. thaliana mutants blocked at different steps of the phenylpropanoid 

metabolism did not have the same morphological phenotype. If lignin deficiency was the 

sole cause of dwarfism, mutants would expectedly fall within a phenotypic spectrum of 

mild to severe dwarfism depending on the level of lignin deficiency (Bonawitz and 

Chapple, 2013). However, this is not the case as different mutants show varied 

morphological features such as differences in leaf colour and shape, seedling 

morphology, apical dominance and fertility. For example, HCT-deficient and C3’H-

deficient A. thaliana plants that are blocked at sequential steps of the phenylpropanoid 

pathway display a similar degree of dwarfing but are very morphologically distinguishable 

from one another (Besseau et al., 2007; Hoffmann et al., 2004; Franke et al., 2002a; 

Franke et al., 2002b). Like the cassava transgenic plants, C3’H-deficient A. thaliana 

plants show a near complete loss of apical dominance whereas the HCT-deficient plants 

have strong apical dominance. Besides that, C3’H-deficient plants are sterile unlike HCT-

deficient plants which have fertile flowers, though relatively few in numbers (Hoffmann 

et al., 2004; Franke et al., 2002a). Although these phenotypes may be due to differences 

in lignin composition, it remains highly possible that these phenotypes come from the 

loss or disruption of other phenylpropanoid secondary metabolites (Bonawitz and 

Chapple, 2013). 

Phenylpropanoid metabolism is responsible for many secondary metabolites in addition 

to lignin such as flavonoids, suberin, coumarins which include scopoletin, 

hydroxycinnamates and many more (Vogt, 2010; Lepiniec et al., 2006; D’Auria and 

Gershenzon, 2005). These secondary metabolites are essential to different aspects of 

plant fitness such as reproduction, defence and stress responses but they do not appear 

to be the cause of dwarfing (Bonawitz and Chapple, 2013). An alternative explanation is 



127 
 

that blocking the phenylpropanoid pathway usually leads to the accumulation of pathway 

intermediates, products or derivatives. For example, C4H-deficient plants 

hyperaccumulate cinnamoylated compounds; C3’H-deficient plants hyperaccumulate p-

coumaroyl esters, anthocyanins and flavanols (Franke et al., 2002a); and 5-

hydroxyguaiacyl substituted compounds in COMT-deficient plants (Vanholme et al., 

2010). Some of these intermediates are cytotoxic and may inhibit growth at high 

concentrations, or the hyperaccumulation of these compounds may interfere with 

signalling pathways involved in plant development (Bonawitz and Chapple, 2013). 

Flavonols, for example, have been shown to inhibit polar auxin transport (Brown et al., 

2001) but the study by Li et al. (2010) show that they are not responsible for the dwarfing 

phenotype. Nevertheless, it is a possibility that the hyperaccumulation of some other 

pathway product is responsible for the growth inhibition, either through auxin inhibition 

or some other mechanism. These metabolites may have different biological activity or 

toxicity effects which is why the hyperaccumulation of these products may cause 

variation in their morphological phenotypes (Bonawitz and Chapple, 2013). The 

disruption of auxin signalling is a valid hypothesis as the phenylpropanoid mutants show 

phenotypes (short petiole, changes in leaf morphology and loss of apical dominance) 

that correlate with cell elongation inhibition, which is an auxin-regulated process 

(Cleland, 1987).  

Relating back to the cassava triple knock-down mutants with loss of apical dominance 

and dwarf phenotype, the studies mentioned provide a few alternative explanations to a 

rather complicated problem. The cassava mutants have the genes knocked-down with 

RNAi and not knocked-out like in the A. thaliana examples which may be why the 

transgenic plants are able to grow past the plantlet stage unlike the ccomt1 comt1 T-

DNA knock-out mutants (Do et al., 2007). The difference between a T-DNA insertion 

mutant and RNAi transgenic is that in the former, the gene is knocked-out and no mRNA 

is produced, while in the latter the mRNA is produced but is titrated out by the production 

of the RNA from the RNAi construct, which leads to its destruction. Therefore, if the RNAi 

construct is inserted into a transcriptionally active region of the genome, there could be 

a 100% reduction of the mRNA, however if it is inserted into a transcriptionally inactive 

part of the genome, the reduction of the mRNA may be incomplete.  

Six lines of the triple RNAi transgenic cassava with copy numbers ranging from one to 

nine were generated but despite having the same transgene, these lines had different 

phenotypes. Within the population of 3xA, 3xE and 3xG, despite all plants in the 

individual line being genetically identical, a proportion of plants had the dwarfing and loss 

of apical dominance phenotype whereas other plants continued to grow normally. Firstly, 
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each line will have some variation, whether it can be observed with the eye or not, as the 

insert location will affect the expression of the transgene. The genomic DNA surrounding 

the transgene may have local regulatory elements such as an enhancer that could 

interact with the regulatory elements in the transformation construct that controls 

transcription thus changing the expression profile of the transgene (Kohli et al., 2010). 

Secondly, the transgene copy number affects the stability of the transgene. It is natural 

to assume that with increasing transgene copies, the transgene product will increase 

accordingly. However, studies have shown that the higher the copy number, the more 

likely it is for the transgene to be epigenetically silenced through DNA methylation at the 

locus. For example, the experiment conducted by Meyer et al. (1992) where the maize 

AI gene was introduced into petunia plants that produced white flowers. The expression 

of the transgene would produce pelargonidin, giving red pigment to the white flowers. 

The experiment showed that red flowers mostly appeared on plants with only a single 

transgene copy, whereas plants with multiple copy numbers of the transgene had 

variegated or white flowers. On the other hand, some studies in cereals show that 

multiple transgene copies do not necessarily lead to epigenetic silencing and may even 

enhance expression levels in correlation to its copy number. (Gahakwa et al., 2000; 

Stoger et al., 1998). An explanation for these contrasting results is that epigenetic 

silencing may be triggered by extremely high levels of expression of the transgene, which 

may correlate with the transgene copy number (Schubert et al., 2004; Vaucheret et al., 

1998; Lindbo et al., 1993).  

Coming back to the transgenic cassava plants, the lines which had the dwarfing and loss 

of apical dominance phenotype all had less than three transgene copies. This could be 

because the transgene(s) may have integrated in a local environment which is favourable 

for transgene expression which resulted in a high transgene expression level. As the 

product of the transgene is the RNA construct which will lead to silencing of the genes 

CCoAOMT, F6’H and COMT, the higher the expression level of the transgene, the 

greater the silencing effect on said genes. As mentioned previously, CCoAOMT and 

COMT are required for healthy plant development (Do et al., 2007) therefore the 

silencing of these genes will have adverse effects on the plant’s development (dwarfing 

and loss of apical dominance). A plausible explanation for why a proportion of plants 

within the line did not have this phenotype or have managed to recover from this initial 

growth defect may be due to epigenetic silencing. The high expression levels of the 

transgene in these plants may have triggered silencing which is why the plant can 

recover from the phenotype caused by CCoAOMT/COMT-deficiency. This can also be 

used to explain why lines 3xB and 3xD did not show phenotypes associated with 
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CCoAOMT/COMT-deficiency. 3xB had three transgene copies like 3xG but perhaps due 

to an unfavourable insert location, the gene expression levels could be lower than 3xG, 

or the transgene could have been silenced before the CCoAOMT/COMT-deficiency 

could affect the plants’ fitness. 3xD had nine transgene copies and was very likely to 

have been silenced which meant the transgene product which would cause RNAi 

silencing of said genes would not be produced in levels as high as the other lines 

therefore phenotype associated with CCoAOMT/COMT-deficiency was not observed.  

For the double RNAi knock-down lines 2xA, 2xB and 2xE, there were no loss in fitness 

but there were differences in leaf morphology which could be due to the deficiency of 

CCoAOMT/F6’H or somaclonal variation. These results are consistent with the study by 

Do et al. (2007) where A. thaliana CCoAOMT mutant, ccomt1, had no morphological 

difference in comparison to the wild-type. Like the 3x plants, there will be differences in 

expression levels of the transgene due to the same reasons therefore the gene 

expressions of the CCoAOMT and F6’H will differ in each line.  

Previous studies have shown that scopoletin accumulation has a positive correlation with 

root discolouration which is an accurate representative of deterioration (Fathoni, 2017; 

Liu, 2016). Most of the transgenic lines had significant improvements in deterioration 

compared to the wild-type. The results obtained from the 3xA, 3xE and 3xG plants with 

developmental problems are not reliable due to the poor fitness of the plants causing 

reduced storage root development. Liu (2016) showed that storage root sizes affected 

PPD development, with smaller roots showing a higher degree of discolouration than 

larger roots of the same line. The six lines with the lowest PPD score (least amount of 

discolouration) were 1xA, 2xA, 2xB, 3xB and 3xD. These lines were selected for 

biochemical analysis to determine scopoletin concentration and gene expression 

analyses to find out how successful the transgene was at silencing said genes of interest. 

The biochemical analysis data showed that these six lines, which had significant 

reduction in PPD score compared to the wild-type, had significant reduction in scopoletin 

accumulation, except for 3xD at day 6. This could be because the knock-down was 

incomplete or insufficient to inhibit scopoletin biosynthesis in the later stage of PPD 

where scopoletin accumulation was approximately fifteen times the concentration of 

fresh root (day 0) samples.  

Finally, gene expression levels of CCoAOMT, F6’H and COMT for the six lines were 

determined through qRT-PCR using relative quantity (RQ). The results showed that only 

F6’H was upregulated during PPD which made sense as studies have shown that F6’H 

is the main enzyme responsible for scopoletin biosynthesis, with the A. thaliana F6’H1 
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mutant failing to accumulate scopoletin (Kai et al., 2008). When F6’H was knocked-down 

in cassava (1xA), scopoletin accumulation was significantly reduced thus delaying PPD 

symptoms (Liu et al., 2017). The results in this chapter confirms this and provides 

evidence that COMT does not play a major role in scopoletin biosynthesis in PPD 

development as the gene expression of COMT remained at a very low expression level 

in both the wild-type and the transgenic lines. CCoAOMT was targeted for RNA silencing 

because it was hard to target all members of the F6’H family and it would be easier to 

target CCoAOMT instead. This would potentially produce a bottleneck effect where 

feruloyl CoA production would be reduced thus in turn reducing scopoletin biosynthesis. 

Although the 2x and 3x transgenic lines did manage to reduce F6’H expression therefore 

showing significant reduction in scopoletin accumulation and PPD discolouration, the line 

showing the greatest delay in PPD and scopoletin accumulation was the 1xA single copy 

number line generated by Liu et al. (2017). Some possible reasons for why 2x and 3x 

lines were not able to knock-down gene expression of F6’H to the extent that 1xA 

managed to may be because to achieve the same level of silencing as F6’H in 1xA, the 

plant may suffer from fitness problems due to deficiency in CCoAOMT for 2x lines and 

CCoAOMT/COMT in 3x lines. 2x and 3x lines with high silencing activity may have 

suffered from developmental issues and failed to develop storage roots or may not have 

made it past the plantlet stage due to early growth arrest. In order to get a viable 

phenotype, some degree of silencing of the multiple RNAi construct may be necessary, 

therefore all targeted genes would be affected in parallel. Due to CCoAOMT and COMT 

having a more important role than F6’H in plant development, the degree of silencing of 

the transgene to permit viability may be higher than that which would be obtained were 

F6’H be targeted alone, hence the 1xA line had a greater reduction in F6’H gene 

expression than the 2x and 3x transgenic lines.  

Overall, this study has demonstrated that the F6’H gene family is actively involved in the 

biosynthesis of scopoletin as shown by Liu et al. (2017) and that the alternative pathway 

with COMT does not contribute towards the accumulation of scopoletin throughout PPD 

development. It also shows the importance of CCoAOMT and COMT in cassava 

development and why the manipulation of phenylpropanoid enzymes are risky and 

potentially detrimental to plant fitness. This investigation was conducted in a controlled 

environment (glasshouse) and in 1 L pots therefore the results obtained may differ from 

if the plants were grown in the field, which would include various environmental stresses 

such as pests, temperature, water availability and others. In conclusion, field trials would 

be necessary to determine how these plants will behave in real-life scenarios and give 

clearer insights into the PPD process.  
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 GENERAL DISCUSSION 

 

This study aims to further the understanding of scopoletin biosynthesis in cassava during 

the PPD process. Building upon results from previous studies, this investigation was 

designed to extend that work to provide a deeper insight into PPD development with the 

ultimate goal to extend the shelf-life of cassava for the benefit of resource-poor farmers. 

The strategy used was centred on reducing the accumulation of scopoletin by inhibiting 

scopoletin biosynthesis through silencing genes involved using RNAi. There are three 

alternative pathways to scopoletin biosynthesis within the general phenylpropanoid 

metabolism. The dominant pathway involves the 6’-hydroxylation of feruloyl CoA by F6’H 

to synthesise scopoletin. The alternative pathways both involve the O-methylation of 

esculetin into scopoletin by COMT.  

Scopoletin accumulation was successfully reduced when F6’H genes were knocked-

down with RNAi (1x) which resulted in delayed PPD development (Liu et al., 2017). 

However, scopoletin still accumulated in the F6’H mutants, and this was hypothesised to 

be due to an incomplete knock-down of F6’H genes or, alternatively, scopoletin was 

being synthesised through the alternative pathways (Liu, 2016). The attempt to answer 

this was to generate transgenic cassava lines to simultaneously silence CCoAOMT, F6’H 

with a double RNAi construct (2x) and CCoAOMT, F6’H and COMT with a triple RNAi 

construct (3x). Using A. thaliana as a reference, the homologous genes for CCoAOMT, 

F6’H and COMT were identified in cassava. Wild-type, 1x, 2x and 3x cassava were 

generated and storage roots were harvested. 1x, 2x and 3x transgenic cassava all had 

significantly reduced scopoletin accumulation and PPD discolouration throughout the 

PPD response. The 3x transgenic plants also had some interesting phenotypes that 

could be due to the silencing of said genes. Only F6’H showed significant increase in 

gene expression during PPD; CCoAOMT and COMT had no significant changes in gene 

expression levels throughout the PPD response in both wild-type and transgenic cassava 

plants, suggesting that these genes did not contribute towards scopoletin biosynthesis 

during PPD. This would confirm that scopoletin is biosynthesised mainly from the 

dominant pathway and the alternative pathway does not contribute to the accumulation 

of scopoletin observed during the PPD response.  
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 THE ROLE OF SCOPOLETIN IN PLANTS 

Scopoletin plays a major role in the development of PPD in cassava storage roots and 

by reducing scopoletin accumulation, the discolouration that is observed during PPD has 

been successfully delayed (Fathoni, 2017; Liu et al., 2017). The blue-black discolouration 

is the most visible aspect of PPD and is likely to be due to the oxidation of scopoletin 

and other phenolics by peroxidase and H2O2 (Wheatley and Schwabe, 1985; Edwards 

et al., 1997). Due to the reactive nature of scopoletin, it is stored as an inactive glucoside 

known as scopolin. Scopoletin is actively accumulated through de novo synthesis and 

the deglycosylation of its inactive glucoside, scopolin. Although scopoletin contributes 

towards the short shelf-life of cassava, it is beneficial to the plant because of its probable 

antioxidant function and antifungal and antimicrobial  properties (Rodríguez et al., 2000). 

Reducing scopoletin biosynthesis may have adverse effect on the fitness of the plant 

and make it more susceptible to fungal and bacterial attacks. Scopoletin acts as a 

phytoalexin in plants including cassava, tobacco, A. thaliana and sunflower (Helianthus 

annuus). The biosynthesis of scopoletin can be triggered by entomo-chemical or 

mechanical stimulation (Blagbrough et al., 2010; Kai et al., 2006). Many coumarin-

derived compounds including scopoletin have antifungal properties, especially against 

Fusarium species (Ojala et al., 2000; Giesemann et al., 1986). For example, scopoletin 

can inhibit the germination of a range of fungi (Olson and Roseland, 1991); in tobacco, 

scopoletin levels increase in the upper stems and leaves upon fungal infection which is 

not observed in the absence of stress (Reuveni and Cohen, 1978). The study by 

Gutiérrez-Mellado et al. (1996) shows that scopoletin biosynthesis is triggered by stress 

as only sunflowers growing in the wild accumulated scopoletin in comparison to plants 

grown in a controlled environment suite. The mechanism of the antifungal activity is 

rather complicated, it involves the interaction and inhibition of DNA and enzymatic 

activities which involves the substitution of functional groups on the aromatic rings 

(Sardari et al., 2000).  

Besides that, another study has shown that the scopoletin biosynthesis pathway and 

scopoletin is crucial for iron (Fe) mobilisation. Fe is a mineral nutrient that is essential for 

healthy plant growth; plants have evolved mechanisms to increase the solubility of Fe so 

that Fe can be extracted from Fe-deficient soil and soil with an alkaline pH (Römheld and 

Marschner, 1984). In A. thaliana, the scopoletin pathway is reprogrammed to produce 

and secrete coumarins, in particular fraxetin, with Fe-mobilising properties upon Fe-

deficiency. This is especially important for plants in alkaline soil as free ion activity is very 

low and can lead to Fe chlorosis. Scopoletin plays an important role as it is hydroxylated 

at the C8 position by scopoletin 8-hydroxylase (S8H) to produce fraxetin. S8H is induced 
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by low Fe availability and proceeds to convert scopoletin into fraxetin, which is secreted 

into the soil solution to aid in Fe uptake (Tsai et al., 2018). The study also showed that 

when the A. thaliana mutant F6’H1 was grown in Fe-deficient soil, it suffered from 

severely reduced growth with significant difference of P<0.0001 from the wild-type. 

Due to the cassava plants being grown in a controlled environment, they have not been 

exposed to the environmental stresses field-grown cassava would experience. The 

controlled environment will have its own stresses, especially since cassava thrives in a 

high humidity environment and there have been some issues with the maintenance of 

the humidity level; this may lead to different observations as a result. Scopoletin is 

involved in plant defence, especially in antifungal and antimicrobial activities, and in Fe 

mobilisation. The transgenic cassava plants with lower scopoletin accumulation may be 

more susceptible to fungal attacks and may not do as well in the field, especially in 

alkaline soil with low Fe levels, in comparison to wild-type plants. Although reducing 

scopoletin biosynthesis may extend the shelf-life of cassava, if this comes at the cost of 

yield, it won’t be a plausible solution. To address these potential problems, field trials will 

be necessary.  

 

 THE ROLE OF CCOAOMT, F6’H AND COMT 

CCoAOMT, F6’H and COMT are enzymes within the general phenylpropanoid 

metabolism but hold a special interest in this study because they are involved in the 

biosynthesis of scopoletin. The phenylpropanoid metabolism produces many secondary 

metabolites and is highly conserved in the majority of higher plant species because it 

arose early in the evolution of terrestrial plants, aiding the adaptation of plants to the new 

environment out of water. One of the more obvious key benefits of the phenylpropanoid 

metabolism is the production of monolignols, also known as hydroxycinnamyl alcohols, 

which are the building blocks of lignin. This gave plants the ability to grow upright and 

transport water through the vascular system. Other secondary metabolites that are 

produced through the phenylpropanoid metabolism are phenolic compounds such as 

flavonoids which are divided into six subclasses: flavones, flavanones, flavonols, 

flavanols, isoflavones and anthocyanidins. The most significant function of phenolics is 

UV photo-protection where flavonoids counteracts UV-B induced oxidative damage by 

reducing ROS production. (Kusano et al., 2011; Landry et al., 1995). Other roles of 

phenolic compounds include biotic stress response as phytoalexins against pathogens 

and herbivores, abiotic stress such as high carbon and nitrogen deficient growth 

conditions, flower pigmentation for the attraction of insect pollinators and many others 
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(Samanta et al., 2011). As mentioned above, the coumarin scopoletin plays an important 

role in Fe mobilisation in which it is hydroxylated by S8H to form fraxetin. When F6’H1 

was knocked-out in A. thaliana, the mutant suffered from Fe-deficiency and had 

significantly reduced growth. This may well be the case as well for the transgenic 

cassava plants with significantly lower scopoletin accumulation compared to the wild-

type.  

Lignin is made through the dehydrogenative polymerisation of three monolignols known 

as p-coumaroyl alcohol, coniferyl alcohol and sinapyl alcohol, which respectively give 

rise to p-hydroxyphenyl (H), guiacyl (G) and syringyl (S) units of the lignin polymer. 

CCoAOMT and COMT are responsible for the biosynthesis of the G and S units of the 

lignin polymer. These two enzymes are involved in the methylation of the lignin 

precursors; CCoAOMT is responsible for the 3-O-methylation of lignin precursors and 

cooperates with COMT to yield G monomers. In addition, COMT acts as a 5-O-

methytransferase to synthesise S units (Do et al., 2007). When these genes 

(CCoAOMT1 and COMT1) were knocked-out by T-DNA insertions in A. thaliana, the 

double mutant ccomt1 comt1 had reduced G and S lignin and was composed mainly of 

H non-methoxylated units. The ccomt1 comt1 plantlet also suffered from growth arrest 

at 4 days old. This was hypothesised to be due to either the lack of lignin in the xylem 

thus leading to vascular collapse caused by the negative pressure generated by 

transpiration; or the hyperaccumulation of pathway intermediates, products or 

derivatives which may be cytotoxic or interfere with signalling pathways involved in plant 

development (Bonawitz and Chapple, 2013). 

In cassava, CCoAOMT has two genes, MeCCoAOMT1 and MeCCoAOMT2, F6’H has 

seven genes, MeF6’H1 – MeF6’H7, and COMT has two genes, MeCOMT1 and 

MeCOMT2. Due to the high similarities between gene members within the gene family, 

they were ideal to be silenced by siRNA as this can down-regulate multiple genes that 

share similar sequences (Jackson et al., 2006). As discussed in chapter 5, the transgenic 

cassava plants had significant reduction in scopoletin accumulation and delayed PPD 

symptoms. And similar to the A. thaliana double mutant ccomt1 comt1, the triple knock-

down (3x) cassava plants where CCoAOMT, F6’H and COMT had been knocked-down 

through RNAi suffered developmental issues, such as loss of apical dominance and 

dwarfism. Although the double and triple knock-down transgenic plants may not be the 

solution for PPD due to developmental issues, they have provided an insight into the 

biosynthesis of scopoletin. This study confirms that scopoletin is biosynthesised 

predominantly through the major pathway through F6’H and the alternative pathways via 

COMT hardly contribute towards the accumulation of scopoletin observed during PPD. 
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In addition, the study by Fathoni (2017) showed that despite knocking down the genes 

for scopoletin-glucosyltransferase, which are responsible for the glucosylation of 

scopoletin to scopolin, and up-regulating scopolin beta-glucosidase, which is responsible 

for the deglucosylation of scopolin back into scopoletin, scopoletin still accumulated 

during PPD. This suggested that scopoletin is mainly synthesised de novo during PPD 

and not through the deglucosylation of scopolin. Reducing the expression of genes 

involved in scopoletin biosynthesis had a significantly negative effect on the yield (mass) 

of the storage root. Even the single F6’H knock-down line, which showed no 

developmental issues except the morphologically different leaves, had significantly 

(p<0.001) reduced mass compared to the wild-type.  

This study was only conducted in a controlled glasshouse environment and cassava 

plants were grown in 1 L pots for 9 months to allow the storage root to mature sufficiently 

for experimental purposes. The transgenic plants may behave differently under field 

conditions where they will be able to grow to full maturity and be exposed to biotic and 

abiotic stresses. This will especially be important for the single F6’H knock-down as no 

visible negative phenotype was observed, but this might be different in the field especially 

if it is grown on alkaline soil with a low availability of Fe.  Therefore, no accurate 

conclusion can be drawn from this study alone without a field study.  

 

 APPROACH TO SOLVING PPD 

This study has focused on understanding PPD through the inhibition of scopoletin 

accumulation, to develop strategies to control PPD. Unfortunately, scopoletin is 

biosynthesised through the phenylpropanoid metabolism which is involved in many 

aspects of plant fitness. Through the results obtained, though scopoletin has been 

reduced and PPD successfully delayed, this came at the cost of the plant’s health and 

the yield (height and weight) of the cassava crop, which is significantly reduced in 

comparison to the wild-type. This suggests that perhaps attempting to prevent PPD 

through the inhibition of scopoletin may not be feasible. 

A large-scale proteomic study conducted by Vanderschuren et al. (2014) on cassava 

PPD found that the majority of over-represented proteins’ molecular function included 

antioxidant and redox activities, suggesting that oxidative stress is an important process 

that is involved in, and possibly, induces PPD and drives its progression. The study 

identified the glutathione/ascorbate cycles as having key roles, especially the enzyme 

ascorbate peroxidase 3 (APX3) that had upregulated protein levels 6 hours post-harvest. 
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Unfortunately, APX3 is constrained by the availability of ascorbate, which may be why 

the accumulation of H2O2 is observed during PPD development (Xu et al., 2013; Reilly 

et al., 2003). Enzymes that use glutathione to detoxify H2O2 such as glutathione 

peroxidases (GPX) have also been detected during PPD but their activity did not 

significantly change throughout the PPD process. Transgenic cassava with an 

overexpression of the A. thaliana cytosolic GPX in the storage roots were generated and 

showed a significant delay in PPD symptoms from 6 hours until 48 hours after harvest. 

The increase in GPX activity seemed to limit lipid peroxidation and decrease the 

accumulation of H2O2 during the PPD progression (Vanderschuren et al., 2014).  

 

Figure 6.1 The mode of action of enzymatic ROS scavenging (Apel and Hirt, 2004). 

 

In addition to scopoletin biosynthesis and reactive oxygen species detoxification, another 

pathway of interest associated with PPD development is the biosynthesis of ethene. 

Ethene is involved in wound response signalling and triggers defensive compounds. 

Ethene is biosynthesised using L-Methionine (L-Met) as a substrate by two enzymes, S-

adenosyl-L-methionine (SAM) synthetase and ACC synthase, and the final step is 

catalysed by ACC oxidase (Wang et al., 2002). Both SAM synthetase and ACC oxidase 

showed significant upregulation during PPD, which was consistent with the increase in 

ethene biosynthesis, but ACC synthase which converts SAM into ACC was not detected 

in the proteomics study (Vanderschuren et al., 2014). The activation of the Met pathway 

also correlates with the increase in ethene biosynthesis but this may be due to protein 

synthesis which occurs during PPD (Beeching et al., 1998). As ethene biosynthesis is 

consistent with the development of PPD, perhaps reducing the production of ethene 

would delay PPD; but this may interfere with responses to biotic and abiotic stresses and 

affect plant fitness.  
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 FUTURE DIRECTIONS FOR CASSAVA PPD 

This study has determined that the alternative pathway where esculetin is methoxylated 

into scopoletin by COMT does not contribute to the de novo synthesis of scopoletin 

during PPD; it has been suggested that the majority of scopoletin accumulated during 

the PPD progression is through de novo synthesis and not through the deglucosylation 

of scopolin (Fathoni, 2017). This study has also confirmed that F6’H genes are the main 

contributors to scopoletin biosynthesis, and that the down-regulation of these genes have 

successfully reduced scopoletin accumulation and delayed PPD progression. The use 

of RNAi to completely knock-out F6’H activity was unsuccessful due to the large gene 

family size; perhaps simultaneous targeting of the F6’H genes using RNAi or other gene 

silencing techniques such as CRISPR-Cas9 would be a better choice to completely 

inhibit F6’H activity. Field trials will also have to be implemented to get reliable results as 

environmental factors are important in terms of cassava development and may affect 

how the roots respond to PPD especially since scopoletin is involved in plant defence 

and Fe uptake.  

Scopoletin undoubtedly plays an important role in the development of PPD in cassava, 

especially the aspect of discolouration. However, the biosynthesis of scopoletin is part 

of the phenylpropanoid metabolism and through this study in cassava and other studies 

in A. thaliana, the manipulation of the genes in the phenylpropanoid pathway will likely 

negatively impact the plant’s fitness. An aspect that may be worth investigating is the 

hydroxylation of scopoletin into fraxetin by scopoletin 8-hydroxylase (S8H) as the study 

showed that scopoletin and scopolin concentration in the roots of A. thaliana with an 

upregulation of S8H was lower than the wild-type. This suggests that S8H activity seems 

to mediate the biosynthesis of fraxetin/fraxin pair at the expense of scopoletin/scopolin 

(Tsai et al., 2018). This may be interesting to investigate if cassava possesses the same 

mechanism in which fraxetin is used to mobilise Fe in Fe-deficient alkaline soil. 

In conclusion, this study has not only added to the understanding of scopoletin 

biosynthesis in cassava PPD development, but also demonstrates the importance of the 

phenylpropanoid metabolism in plant development. 
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APPENDICES 

 

Appendix I. Southern blot reagents (McCabe et al., 1997). 

 

20x SSC 1 L 

300 nM Sodium citrate dehydrate 88.23 g 

3 M NaCl 175.32 g 

pH 7.6, autoclave and store at RT  

 
20% SDS 1 L 

Sodium dodecyl sulphate 200 g 

Store at RT  

 
Depurination solution 1 L 

250 nM HCl (37%) 25 mL 

MilliQ water 975 mL 

Store at RT  

 
Denaturation solution  1 L 

500 nM NaOH 20 g 

1.5 M NACl 87.66 g 

 
Neutralisation solution 1 L 

1mM EDTA 0.37 g 

500 mM Tris 60.57 g 

1.5 M NaCl 87.66 g 

ph 7.2, autoclave and store at RT  

 
W1 solution 1 L 

0.1% SDS 5 mL 

2x SSC 100 mL 

MilliQ water 895 mL 

Prepare fresh, store at RT  

 
W2 solution 1 L 

0.1% SDS 5 mL 

0.2x SSC 10 mL 

MilliQ water 985 mL 

Prepare fresh, store at RT  

 
W3 solution 1 L 

0.1% SDS 5 mL 

0.1x SSC 5 mL 

MilliQ water 990 mL 

Prepare fresh, store at RT  
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WB solution 1 L 

0.3% Tween20 3 mL 

B1 solution 997 mL 

Prepare fresh, store at RT  

 
B1 solution 1 L 

150 mM NaCl 8.77 g 

100 mM Maleic acid 11.6 g 

pH 7.5, autoclave and store at RT  

 
B2 solution 250 mL 

Blocking powder 2.5 g 

B1 solution 250 mL 

Prepare fresh  

 
B3 solution 100 mL 

50 mM MgCl₂ 2.5 mL 

100 mM Tris-HCl (pH 9.5) 5 mL 

100 mM NaCl 5.85 g 

MilliQ water 92.5 mL 

Prepare fresh  
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Appendix II. Scores and E-values of cassava candidate genes using A. 

thaliana as a reference. 

 

Cassava Candidate 
Genes Arabidopsis thaliana Reference Genes 

PAL 
PAL1 (At2g37040) PAL2 (At3g53260) PAL3 (At5g04230) PAL4 (At3g10340) 

Score Identity 
(%) 

E-
value Score Identity 

(%) 
E-

value Score Identity 
(%) 

E-
value Score Identity 

(%) 
E-

value 
Manes.08G008400.1 

(cassava4.1_002628m.g) 1236.1 85.2 0.0 1259.6 86.0 0.0 1042.0 73.8 0.0 1152.1 80.3 0.0 
Manes.10G047500.1 

(cassava4.1_034377m.g) 1232.6 84.5 0.0 1243.0 84.3 0.0 1070.5 75.0 0.0 1180.6 81.7 0.0 
Manes.09G063700.1 

(cassava4.1_028434m.g) 1222.2 83.5 0.0 1242.3 84.2 0.0 1031.9 72.1 0.0 1141.0 79.1 0.0 
Manes.07G098700.1 

(cassava4.1_002709m.g) 1206.8 83.1 0.0 1220.7 82.9 0.0 1059.7 73.8 0.0 1177.5 81.2 0.0 
Manes.04G018000.1 

(cassava4.1_002591m.g) 1165.2 79.5 0.0 1179.9 80.2 0.0 1033.1 72.8 0.0 1122.8 79.4 0.0 
Manes.16G098200.1 

(cassava4.1_003117m.g) 870.2 64.5 0.0 886.3 63.9 0.0 818.5 59.3 0.0 874.4 64.3 0.0 
C4H 

C4H (At2g30490) 
Score Identity (%) E-value 

Manes.18G126900.1 
(cassava4.1_005978m.g) 827.0 85.9 0.0 

4CL 
4CL1 (At1g51680) 4CL2 (At3g21240) 4CL3 (At1g65060) 4CL4 (At3g21230) 

Score Identity 
(%) 

E-
value Score Identity 

(%) 
E-

value Score Identity 
(%) 

E-
value Score Identity 

(%) 
E-

value 
Manes.11G071800.1 

(cassava4.1_005006m.g) 807.7 75.9 0.0 819.7 75.6 0.0 530.4 64.9 0.0 666.0 63.6 0.0 
Manes.04G095300.1 

(cassava4.1_005014m.g) 790.4 74.3 0.0 798.5 72.2 0.0 525.8 63.6 0.0 648.3 61.8 0.0 
Manes.09G127000.1 

(cassava4.1_004658m.g) 674.9 64.0 0.0 716.8 63.5 0.0 627.9 82.9 0.0 568.2 55.6 0.0 
Manes.08G066200.1 

(cassava4.1_004136m.g) 630.9 60.5 0.0 676.4 59.7 0.0 586.6 66.0 0.0 540.8 54.4 0.0 
Manes.14G151400.1 

(cassava4.1_027178m.g) 558.1 68.6 0.0 576.6 68.7 0.0 465.7 64.2 4.60E-
160 459.5 57.0 1.50E-

156 
HCT 

HCT (At5g48930) 
Score Identity (%) E-value 

Manes.11G067800.1 
(cassava4.1_008045m.g) 755.7 82.4 0.0 

Manes.04G101700.1 
(cassava4.1_008063m.g) 750.7 81.3 0.0 

C3'H 
C3'H (At2g40890) 

Score Identity (%) E-value 
Manes.08G063400.1 

(cassava4.1_005910m.g) 853.2 82.1 0.0 
CCoAOMT 

CCoAOMT (At4g34050) 
Score Identity (%) E-value 

Manes.10G078800.1 
(cassava4.1_011832m.g) 453.4 86.7 7.40E-162 

Manes.07G075700.1 
(cassava4.1_014783m.g) 446.4 85.5 4.60E-159 

COMT 
COMT (At5g54160) 

Score Identity (%) E-value 
Manes.01G043700.1 

(cassava4.1_010187m.g) 612.5 79.1 0.0 
Manes.01G043600.1 

(cassava4.1_010203m.g) 606.3 78.0 0.0 


