

University of Bath

PHD

Modular Normalisation of Classical Proofs

Ralph, Benjamin

Award date:
2019

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Bath Research Portal

https://core.ac.uk/display/199210802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modular Normalisation of
Classical Proofs

submitted by

Benjamin Ralph

for the degree of

Doctor of Philosophy

of the

University of Bath

Department of Computer Science

February 2019

Copyright

Attention is drawn to the fact that copyright of this thesis rests with the author
and copyright of any previously published materials included may rest with
third parties. A copy of this thesis has been supplied on condition that anyone
who consults it understands that they must not copy it or use material from it
except as licenced, permitted by law or with the consent of the author or other
copyright owners, as applicable.

Signature of Author .

Benjamin Ralph

Abstract

The main contribution of this thesis is to present a study of two normalisation
theorems and proofs in classical logic: one propositional, one first-order. For
propositional logic, we show a local cycle removal procedure through reduc-
tions on merge contractions that ensures that proofs can be decomposed—that
contractions can be pushed to the bottom of a proof—in a straightforward way.
For first-order logic, we show how decomposition of proofs can correspond to
two presentations of Herbrand’s Theorem, and how we can use translations
into expansion proofs to give a new, indirect cut elimination theorem for first-
order logic.

In addition, an old but interesting cut elimination method for propositional
logic, the experiments method, is formally presented for the first time, and we
extend the theory of merge contractions to first-order logic.

1

2

Acknowledgements
Over the course of my PhD, the supervision of Alessio Guglielmi—a sort of
holy fool, for science—has been a strange kind of delight: at times exasperat-
ing, at times enlightening, but never, ever dull. Most importantly, Alessio gave
me what must have been the correct balance of advice and space to enable me
to grow as a mathematician and a person, for which I will be forever grateful.
To borrow his own words about his own supervisor: scientists and teachers like
Alessio are very rare and essential. I feel lucky to have met him.

I feel privileged that Andrea Aler Tubella has turned from a mentor to a col-
laborator, while also becoming a good friend. Working with her has never felt
like a chore, and has made me a much better mathematician.

Anupam Das has been an inspiration and a friend, always generous and enthu-
siastic. At the beginning of my PhD, a daunting and difficult time, his advice
was comforting and invaluable.

Visits to Michel Parigot in Paris with Alessio and Andrea to work on the first-
order calculus with indicated substitutions were also hugely formative and in-
structive. It’s a regret that only a hint of that work has made it into this thesis.

The wider deep inference community—Paola, Fanny, David, Alessio, Michel,
Tom, Lutz, Kai, Sonia, and others—have been a welcoming family both in Bath
and further afield. Likewise, the Mathfound group at Bath and the wider Com-
puter Science department have provided a stimulating and collegiate environ-
ment in which to work. My two examiners, Willem Heijltjes and Georg Moser
were a model of academic rigour and enthusiasm, engaging critically with my
work to help bring out the best thesis possible.

I’d like to thank my two flatmates, Sam and Kat, for indulging my quirks and
habits, and being such good company. I’ll miss my friends in Bath too, who
made me feel at home in a new city. I’ll also miss all those I met through Bath
Labour and Momentum, the local UCU branch, and Bath Students Against
Fees and Cuts, who, against the odds, made the city and university feel like
living, breathing, caring communities. Thanks also to Raisa, Luis and Lupe for
making New York feel like home whenever I visited.

I must also thank Jack for influencing this thesis more than he could have pos-
sibly imagined by introducing me to Herbrand’s Theorem, and patiently lis-
tening to my garbled explanations of my work on long walks.

I lived with my grandparents, David and Manon, for the final months in which
this thesis was written, and it’s remarkable how fondly I’ll look back on this
short period, given how stressful it should have been. Finally, I would like to
thank my parents, Chris and Anna, who have been a rock of love and support.

3

4

Contents

Introduction 9

I Propositional Logic 23

1 Open Deduction for CPL 25
1.1 Open Deduction . 25
1.2 Proof Systems for Classical Propositional Logic 34
1.3 The Atomic Flow . 39
1.4 The Experiments Method for Cut Elimination 42

2 Decomposition via Cycle Removal 49
2.1 Decomposition and Cycles . 49
2.2 Propositional Merge Contractions 57
2.3 Rewriting Systems for Merge Contractions 65
2.4 Cycle Removal with Merge Contractions 72

II First-Order Logic 83

3 Open Deduction for First-Order Logic 85
3.1 Open Deduction and First-Order Logic 85
3.2 First-Order Merge contractions 95

4 Herbrand Proofs and Expansion Proofs 105
4.1 Herbrand Proofs . 105
4.2 Expansion Proofs . 109
4.3 Translations between HNF and Expansion Proofs 115
4.4 Cut Elimination for Expansion Proofs 124
4.5 Cut Elimination for SKSq . 132

Conclusion 133

Bibliography 137

5

6 CONTENTS

List of Figures

1.1 CPL proof systems SKS,KS,SKSg and KSg 38
1.2 The rewriting system W in the atomic flow 41

2.1 The rewriting system C in the atomic flow. 51
2.4 System SKS4 . 59
2.5 System SKSm . 63

3.1 The “cube” of core classical proof systems. 90
3.2 The “cube” of medial-like/merge proof systems. 98

4.1 A KSh1 proof of a variant of the drinker’s formula 106
4.2 A Herbrand proof of the drinker’s formula 107
4.3 A proof of the drinker’s formula in HNF 113

7

8 LIST OF FIGURES

Introduction

‘Hence there can never be
surprises in logic.’

L. Wittgenstein [Wit61]

The fundamental compression mechanism for sequent calculus proofs is un-
derstood to be the cut; therefore the proof theoretic analogue to computation
is seen to be cut elimination. However, in classical logic—both propositional
and first-order—the complexity of cut elimination is greatly determined by the
position and behaviour of contractions in proofs. In particular, the centrality
of contractions on existential formulae to the structure of first-order proofs
has been highlighted in the body of the work that was initiated by Jacques
Herbrand in 1930 [Her30; Her71]. The fundamental result shows that all true
first-order formulae can be proved in two phases: a primary stage, in which
only certain contractions are allowed; followed by the rest of the proof. Cru-
cially, a bound on the contractive phase of the proof renders finding the rest of
the proof a decidable problem: contraction, therefore, can be seen as the locus
of undecidability in classical first-order logic.

Why then the traditional focus on cuts over contractions in traditional proof
theory? A compelling answer looks to the ‘Two Restrictions on Contraction’
identified by Kai Brünnler for sequent systems with multiplicative rules: that
contractions cannot be reduced to atomic form and that the contractive phase
of the proof cannot be isolated from the rest [Brü03b]. Move to a deep infer-
ence proof system, however, and these restrictions are lifted. Thus, whole new
avenues for proof theoretic inquiry are unlocked by a move to deep inference,
with classes of proofs and normal forms that were previously inexpressible,
and a finer level of analysis of processes of normalisation made possible. In
particular, we have classes of proofs, such as those guaranteed by Herbrand’s
Theorem, which are decomposed into contractive and non-contractive phases.
In deep inference systems for classical logic, every provable formula has a de-
composed proof; there are procedures that allow us to decompose all proofs
into this form. But what is a deep inference proof system?

A Brief History of Deep Inference

Deep inference started off as a personal research project of Alessio Guglielmi,
studying an ‘extreme form of linear logic’ that extends the notion of linearity

9

10 INTRODUCTION

beyond the formula-level to the level of the proof system itself [Gug]. Syn-
tactically, this is achieved by allowing the same means of composition for
derivations as formulae—obliterating the ‘object-level/meta-level’, or ‘struc-
tural connective/logical connective’ distinction common to proofs systems in
the Gentzen tradition. The theoretical direction of travel can be thought of as
opposed to that which begat hypersequent and display calculi [Avr87; Bel82;
CRW14]; deep inference is characterised by a reduction not a proliferation of
(structural) syntax. However an immediate motivation was the same: just as
extensions of the sequent calculus allow for more logics to be captured by cut-
free systems, it was very early on discovered that deep inference could be used
to capture a linear logic extended with process-algebra’s sequential composi-
tion, BV, conjectured to be equivalent to Christian Retoré’s Pomset Logic and
provably inexpressible in the sequent calculus [Gug07; Ret97; Tiu01; Tiu05].

The initial phase of development took place in Dresden between 1999 and
2003, culminating in one Master’s and two PhD theses that established the sub-
ject [Brü03a; Str03; Tiu01]. This first wave of research in deep inference proof
theory is perhaps epitomised by the discovery of proof systems with fully lo-
cal structural rules for classical [Brü06a; BT01], intuitionistic [Tiu06], linear
[Gug07; Str03], and modal [Brü09; SS04] logics. The ability to reduce cut to
atomic form led to whole new methods of cut elimination, such as splitting
[Brü03a; Gug07], while the reduction of contraction to atomic form was key to
work on computational interpretations of deep inference, such as the atomic
lambda calculus, a typed calculus with explicit sharing [GHP13]; the atomic
lambda-mu calculus, [Par92; He18]; and a Curry-Howard correspondence be-
tween interaction nets and a deep inference system for MELL [GM13].

The next wave of research in deep inference, at least for classical propositional
logic, was initiated by the discovery of the atomic flow by Tom Gundersen.
The idea is similar to that of Samuel Buss’s logical flow graphs [Bus91; Car02],
which were developed to reason about sequent calculus proofs ignoring cer-
tain inessential aspects of the proof, what Jean-Yves Girard described as the
‘bureaucracy of syntax’ [Gir89]. An atomic flow is a directed acyclic graph
with each node corresponding to an atomic structural rule and vertices corre-
sponding to atoms. Composition of flows matches composition of open deduc-
tion derivations: we can adjoin two flows vertically (assuming the respective
inputs and outputs match) or horizontally. However, unlike proof nets [Gir87;
LS05], atomic flows are not proof systems—there is no polynomial-time cor-
rectness condition for deciding whether a certain flow guarantees the proof of
a proposition.

The first major result for atomic flows was showing that normalisation of propo-
sitional proofs can be carried out at the level of the flow, with rewrites of
flows descending cleanly to rewrites of derivations [GG08; Gun09]. Global
flow transformations, in particular the path breaker, ensured that the rewriting
systems for the flows terminated [GGS10], with this approach being refined
by the use of threshold formulae to show that cut elimination need only in-
crease the size of a proof quasi-polynomially, with polynomial size cost con-
jectured [Bru+16; Jeř08]. More recently, further work on the proof complexity
of propositional logic has been carried out by Anupam Das and others, with at
least four interesting results in the following papers [Das14b; Das14a; Das15].

11

a ā

φ

a ā

−→

a ā

a

φ

ā

ā

φ

a

a

φ

ā

a ā

Figure 1: The ‘path breaker’ for a derivation with one atom. For technical
details see [GGP10].

In particular, the crucial role of contraction (and cocontraction) in managing
the complexity of propositional proofs has been explicated, with contraction-
cocontraction pairs, known as ‘sausages’, key to proof compression [Das15].

Most recently, the development of subatomic logic, chiefly by Andrea Aler
Tubella and Guglielmi, has unified the proof theory of a wide variety of logics
under a single scheme [AT17; ATG18]. By considering atoms not as fundamen-
tal objects of study for propositional proofs, but as self-dual non-commutative
connectives that can be interpreted back into a standard system, one can fit
structural, logical and equality rules for classical, linear, non-commutative and
modal logics into a remarkably uniform rule-shape. Furthermore, the regular-
ity of the rule-shape enables normalisation procedures—decomposition and
splitting—that can be described independent of a particular logic and applica-
ble to many at once.

Decomposition via Cycle Removal

The first part of this thesis looks at how the techniques developed for sub-
atomic systems can be specialised to classical propositional logic. The key ob-
stacle to normalization is the existence of infinite reduction paths for rewriting
systems that decompose proofs. Above, we described how global transforma-
tions on atomic flows can be used to convert derivations into forms where local
rewriting of flows is terminating. They do so by ensuring that there are no ‘cy-
cles’ between identities and cuts in flows, which, if they contain contractions,
can lead to infinite reduction sequences. Thus, we obtain the separation of cut

12 INTRODUCTION

(A{a} ∧B) ∨ (C ∧D{ā})
m

(A{a} ∨C) ∧ (B∨D{ā})

Figure 2: A ‘critical medial’ rule for a cycle

elimination into three separate procedures:

1. Cycle elimination

2. Decomposition of proofs into contractive and non-contractive phases.

3. Elimination of cuts in the linear fragment via splitting.

Unlike decomposition and splitting, cycle elimination via global transforma-
tions involves plugging parts of derivations into standard moulds, such as the
‘path breaker’ [GGP10]. These moulds provide a clean way to guarantee termi-
nation without the need to ‘look inside’ the derivation. In contrast, the reduc-
tions for decomposition involve permuting individual atomic contractions and
cocontractions around the derivation. The question then raised is whether we
can remove cycles in a similar way to decomposition, as a fully local procedure
carried out on atomic inference rules. Not quite: although the procedure we
show is ‘internal’ rather than ‘external’, it is not fully atomic. The procedure
we show stems from the observation that a certain linear rule, the ‘medial’
rule, is the only possible inference rule that is able to change the connective
linking an atom and its dual from disjunction to conjunction, a necessary in-
gredient for a cycle. Thus, if we can permute this ‘critical’ medial rule to the
bottom of the cycle, we can ‘break’ the cycle against the cut. Unfortunately, it
is not as straightforward to permute medial rules through a derivation as it is
for certain other rules, in particular structural rules.

Merge Contractions

To overcome the problem of permuting the medial rule through proofs, a new
rule generalising medials and atomic contractions is defined, the ‘merge con-
traction’, which can be permuted down to break the cycle. Once some theory
for merge contractions is developed, the cycle removal procedure itself be-
comes simple. What is a merge contraction, though? One way to think about
the underlying idea is by (coinductively) asking the question ‘to what extent
can two formulae A and B be contracted?’. If at least one of the two formulae
is atomic, the question can be answered immediately: ‘completely’ or ‘not at
all’. However if our two formulae are non-atomic, and have the same top-level
connective, we can reduce the question to ‘to what extent can the maximal
subformulae of A and B be contracted?’. Ignoring certain details that will be
covered in the body of the thesis, this is the basic idea behind the definition of

13

a∨ a
mc↓

a

A∨ f
mc↓

A

(A∧B)∨ (A∧C)
mc↓

A∧ (B∨C)

(A∧B)∨ (f∧ (C ∧D))
mc↓

A∨ (B∨ (C ∧D))

(∃xA∧∀yB)∨ (∃xA∧∀yD)
mc↓

∃xA∧∀y(B∧D)

Figure 3: Examples of merge contractions

the ‘merge set’ of A and B: the set of formulae that can be obtained by contract-
ing/merging A and B, including at a minimum A∨B. By allowing any element
of this merge set, C to be the conclusion of the merge contraction inference rule

A∨B
mc↓

C
, it turns out we can encapsulate an enormous amount of ‘contractive’

behaviour in a single inference rule: atomic contractions, medials, distributiv-
ity, unit equations, as well as a whole class of structured derivations combining
these inference rules. Furthermore, it turns out that the rewriting system for
atomic contractions that allows us to decompose proofs can be generalised to
merge contractions, for both propositional and first-order classical logic.

With this rewriting system for merge contractions, we are able to provide a
new proof for cycle elimination, similar but different to those in [ATGR17;
AT17]. However, it is expected that this new proof is merely the first applica-
tion of the concept, especially since we show that the rewriting system used can
be straightforwardly extended to first-order logic. A categorical treatment of
merge contractions is an obvious next step, as well as more ambitious normal-
isation theorems for the merge contraction rewriting system than those pre-
sented in this thesis.

Herbrand’s Theorem

In the second part of this thesis, we look at decomposition through the lens
of Herbrand’s Theorem. Like much of the development of first-order proof
theory, the work of Herbrand was done in the context of Hilbert’s Program,
an attempt by (overlapping) sections of the mathematical and philosophical
communities to rebuild faith in set theory, to retake ‘the paradise that Can-
tor created for us’ by formalising and proving the consistency of infinitary
mathematics by finitary means [Hil25]. Since a proof of consistency would
be provided by a sound, complete and decidable proof system for first-order
arithmetic, many leading mathematicians, including Herbrand, focussed their
energies on the newly-emerged field of proof theory. In essence, Herbrand’s
project was to find a concise representation of the content of first-order proofs
that was truly first-order, as opposed to merely propositional; to isolate the
minimal amount of non-propositional information that is contained in a first-
order proof. The importance of such a project, especially to the then embryonic
field of theoretical computer science, is that while propositional logic is decid-
able, full first-order logic is not. With this in mind, Hebrand’s Theorem can be

14 INTRODUCTION

∃a,b ∈ R(Q(a)∧Q(b)∧Q(ab))

↙ ↘

∃a,b(Q(a)∧Q(b)∧Q(ab)) ∨ ∃a,b(Q(a)∧Q(b)∧Q(ab))

↓ ↓

Q(
√

2)∧Q(
√

2)∧Q(
√

2
√

2
) ∨ Q(

√
2
√

2
)∧Q(

√
2)∧Q(2)

↓ ↓

Q(
√

2
√

2
) ∨ Q(

√
2
√

2
)

Figure 4: A demonstration of ∃a,b ∈ R(Q(a)∧Q(b)∧Q(ab)) in ‘Herbrand’ style.

seen as teasing out the kernel of undecidability from first-order logic.

To illustrate Herbrand’s Theorem, simple examples can be elucidatory. Take
the first-order translation of the sentence ‘There exists two irrational numbers
a and b such that ab is rational.’, which we will abbreviate (Q(a)∧Q(b)∧Q(ab))
For an intuitionist, a proof of the statement would have to be a pair of rationals
(a,b) that fit the bill. However, classical proofs can be more liberal: if for some
finite list of pairs (a1,b1), . . . , (an,bn), we can prove that

∨n
1(Q(ai)∧Q(bi)∧Q(abii))

is a true sentence, then we have proved the original statment. It turns out that
the second approach gives us a simpler proof than the first. For if we choose

a1 =
√

2, b1 =
√

2, a2 =
√

2
√

2
, b2 =

√
2, proving the required statement is sim-

ply shown to reduce to proving the classical propositional tautology that
√

2
√

2

is either rational or irrational. This strategy of proving existential formula by
expanding them into a finite disjunction of instantiations is the crux of Her-
brand’s Theorem. Unfortunately, Herbrand’s own statement of his theorem,
let alone the proof, is notoriously ‘hard to follow’ [HB74; Web14], with most
modern treatments reformulating the material. For example, we have the fol-
lowing statement of Herbrand’s theorem in a prominent, more recent exposi-
tion by Buss [Bus95]:

Herbrand’s Theorem. A first-order formula A is valid if and only if A has a Her-
brand proof. A Herbrand proof of A consists of a prenexification A? of a strong
∨-expansion of A plus a witnessing substitution σ for A? .

Herbrand’s theorem has also been stated and proven in a deep inference set-
ting, in [Brü06a]:

Herbrand’s Theorem. For each proof of a formula S in system SKSgr there is a
substitution σ , a propositional formula P , a context Q{ } consisting only of quanti-

15

fiers and a Herbrand proof:
KS∪{ai↑}

∀~xP σ
{n↓}

Q{P }
{gr↓}

S ′

{qc↓}
S

From these we can abstract a pattern of four key steps necessary for a Herbrand
Proof.

1. Expansion of existential subformulae.

2. Prenexification/elimination of universal quantifiers.

3. Term assignment.

4. Propositional tautology check.

This strategy is common to the two approaches. But we can also note the dif-
ference between the two formulations. One key difference between the two is
that, while Buss’s definition of a Herbrand proof is that it is a sui generis form of
proof, not a particular class of proof in a particular proof formalism, whereas
Brünnler’s is merely a subclass of proofs in a particular deep inference system.
In deep inference, each of the four conditions for the Herbrand Proof corre-
spond to certain first-order inference rules, rather than an ad hoc operation on
a first-order formula. Is this not possible in the sequent calculus?

Decomposition as Herbrand’s Theorem

The key to the difference between Buss’s and Brünnler’s Herbrand proofs is
due to one of the properties of proofs that Brünnler showed are possible in
deep inference but not sequent calculus systems. The second property is the
following:

‘Proofs can be separated into two phases (seen bottom-up): The lower phase only
contains instances of contraction. The upper phase contains instances of the other
rules, but no contraction. No formulae are duplicated in the upper phase.’ [Brü03b]

Brünnler shows that a standard sequent calculus proof system with multiplica-
tive rules cannot satisfy this property. The suggested way round this restriction
is to use systems with deep contraction. In fact, this restriction on sequent calcu-
lus systems is shown by Richard McKinley in [McK10] to create a gap in Buss’s
proof of Herbrand’s theorem in [Bus95]. The faulty proof assumes that if one
restricts contraction to only existential formulae, one retains completeness (as-
suming a multiplicative ∧R rule). That this is false can be seen by considering
the sequent below, where the application of any multiplicative ∧R rule leads
to an invalid sequent:

` ∀xA∧∀xB,
(
∃xĀ∨∃xB̄

)
∧

(
∃xĀ∨∃xB̄

)

16 INTRODUCTION

It is the inability of sequent systems to satisfy this proper that ensures that Her-
brand proofs can never be expressed as a subclass of sequent proofs. Moreover,
the first stage of a Herbrand proof is duplicating existential formulae, which
when translated into a bottom-up proof system is performed by contraction.
Therefore Herbrand proofs, in common with decomposed proofs, have con-
tractions at the bottom of their proofs; we can see Herbrand’s theorem as the
first-order instantiation of the more general proof theoretic procedure of de-
composition.

Another advantage that the move to deep inference gives us is the possibil-
ity to dramatically reduce the size of ‘Herbrand Disjunction’, the midsequent
between the first-order and propositional part of the proof. Using the lower
bounds on Herbrand expansion discovered by Richard Statman [Sta79], Mat-
thias Baaz and Alexander Leitsch showed that there are certain first-order for-
mulae whose prenexification increases the size of their Herbrand Expansion
nonelementarily [BL94]. Conversely, there are certain formulae for which de-
prenexification reduces the size of their Herbrand Expansion nonelementarily.
However, deprenexification is clearly not possible for proof systems with shal-
low inference, since quantifiers are pushed deep inside formulae. Baaz and
Juan Aguilera have shown that one can recover the complexity advantage by a
sequent system with locally unsound inference rules [AB16]. Yet, as they note,
including a family of deep inference rules that they call ‘quantifier shifts’ (but
were already present in Herbrand’s work as the ‘rules of passage’) is sufficient
for the speed-up, with no need for any local unsoundness. Thus, by adding
these rules of passage to a cut-free deep inference system, we obtain the non-
elementary proof-size reduction for certain formulae.

Decomposed Proofs as Expansion Proofs

Herbrand proofs are not the only way that Herbrand’s theorem has been rein-
terpreted. Another strand of research was initiated by the definition of ‘expan-
sion proofs’, which involve a generalisation of Herbrand’s Theorem to higher-
order logics [Mil87]. The idea is to enrich formulae, explicitly adding in con-
traction and instantiation information as syntax, so that they contain the Her-
brand disjunction attached to each first-order formulae as their ‘deep formula’.

One intuitive way to think about expansion proofs is as representations of
Coquand-style games [Coq95]: ∃loise, who can choose terms at existential
node, plays ∀belard, who chooses variables at universal nodes. Once all the
quantifiers are expanded, ∃loise wins if the resulting propositional formula is
a tautology, ∀belard otherwise. The first-order formula is true iff ∃loise has a
winning strategy.

However, the game described above is not complete for classical logic. For
classical proofs, we must give ∃loise the ability to ‘backtrack’, returning to any
previously expanded existential node at any point to choose another term. The
winning condition is now a disjunction over all of ∃loise’s choices. Since ∃loise
can only include free variables in her terms once ∀belard has played them,
this gives her access to more winning strategies, matching the fact that more
first-order sentences are true classically than intuitionistically.

17

∃x[P̄ x∨∀yP y]

∨

P̄ a ∀yP y

P b

b

a

∨

P̄ b ∀yP y

P c

c

b

Figure 5: An expansion proof of the drinker’s formula

As an example, we consider the drinker’s formula, ∃x∀y[P̄ x ∨ P y], as popu-
larised by Smullyan: ‘There is someone in the pub such that, if they are drink-
ing, then everyone in the pub is drinking.’ As the outermost quantifier is an ex-
istential, ∃loise moves first. At this point, there is no other move but to choose
a closed term at random. ∀belard then chooses a variable to play—clearly he
should not pick the same term as ∃loise. Assuming not, the resulting tautol-
ogy would at this point be something along the lines of P a∨ P̄ b, it seems as if
∃loise does not have a winning strategy. However, ∃loise is allowed to back-
track, choosing the variable ∀belard picks for her second existential witness.
This time, whatever ∀belard picks, the disjunction over the two choices will be
a tautology, say

(
P a∨ P̄ b

)
∨

(
P b∨ P̄ c

)
.

In the original presentation of expansion proofs, Miller provides translations
back and forth between his new formalism and the sequent calculus. However
expansion proofs did not enjoy all the usual features of a proof system. Firstly,
there is no account of the propositional aspect, just a tautology check. Obvi-
ously one could be given, but there is no natural analogue of expansion proofs
for classical propositional logic. This isn’t really a problem—the motivation
behind expansion proofs is certification of first-order proofs, and using a first-
order proof as a certificate for itself isn’t of much use. Secondly, there is no
means to compose proofs by cut and certainly no cut elimination.

In fact, proving cut elimination for expansion proofs (or similar structures) has
been a relatively active topic of research in recent years. In [Hei10], a system
of ‘proof forests’ is presented, a graphical formalism of expansion proofs with
cut and a local rewrite relation that performs cut elimination. Similar work has
been carried out in [McK13] and more recently in [AHW18]. A more categori-
cal approach has also been given in [Alc+17]. Instead of a sui generis formalism
for expansion proofs with cut, we show a class of deep-inference proofs that
closely correspond to expansion proofs and another to expansion proofs with
cuts, giving translations that are fully canonical in one direction, and partially
in the other. Although we do not provide a new method of cut elimination for
expansion proofs, we compare the different cut elimination methods given in
the above papers, and investigate how they might be implemented in a deep
inference proof system. Thus, expansion proofs, in a way, provide an ‘off-the-
shelf’ first-order analogy to atomic flows: they represent certain key informa-

18 INTRODUCTION

tion contained in a proof, and can be used to guide normalisation. The theory
is not yet fully complete, but the use of expansion proofs provides a more
geometric approach to first-order cut elimination for deep inference than the
approach described in [Brü06a], and is less particular to one proof system.

Thus, we have two different approaches to Herbrand’s theorem: Herbrand
proofs and expansion proofs. The first approach is from a more Hilbertian
line of proof theory, with links often made to model theory and Gentzen’s cut
elimination results; the other integrated with newer traditions, such as game
semantics and proof nets. However, apart from the definition of new inference
rules, no real syntactic innovations are needed to situate both these approaches
within deep-inference proof systems, showcasing their capacity to internally
describe a wide range of proof theoretic approaches.

The Horizon

While being fairly self-contained, this thesis also represents the first step in an
ambitious, somewhat inchoate project. The atomic flow and subatomic logic
have shown that the move to deep inference allows us fundamentally new ways
to think about the proof theory of a wide array of propositional logics, both in-
dividually and collectively. Thus far, the same cannot be said for predicate
logics. While a significant portion of deep-inference proof theory has been ex-
tended from propositional to first-order logics, including the work presented
in this thesis, much of this first-order work has been incremental, rather than
revolutionary. In particular, the material connecting deep inference proofs
to Herbrand proofs and expansion proofs suggests deep inference as a natu-
ral setting for certain branches of first-order proof theory, hopefully widening
the appeal of deep-inference proof theory to new proof-theoretic communities.
However, it is not claimed that these results represent any sort of Copernican
shift, no radically new approach to the subject. Nevertheless, it is hoped that
this thesis can act as a launching pad for more provocative and unexpected
work.

In collaboration with Guglielmi and Michel Parigot, investigations have been
conducted into a first-order proof system with explicit/indicated substitutions
over the course of the last few years, with some preliminary and provisional
definitions and theorems sketched out. Since, however, we have not yet been
able to coalesce some of the more ambitious topics of these discussions into
concrete definitions, theorems and proofs, it was decided to leave them out
from this thesis. The central idea is that it might be possible and desirable to
distinguish and detach two functions of quantifiers in derivations: their role in
closing free variables and their role in assigning terms to variables. In partic-
ular, it is suggested that the instantiation rule might be decomposed into two
types of rule: one choosing a term as a witness for the quantified variable; one
removing the quantifier and freeing the variable. These two roles are already
distinguished to a certain extent by Herbrand proofs: the prenexification phase
removes any locality from the binding of variables, whereas the instantiation
phase assigns witnesses.

Two analogies, from very different proof theoretic traditions, might be useful

19

[τ⇒ x]A
n↓

∃xA
−→

[τ⇒ x]A
ex↑

[τ→ x]

 A
rn↓
∃xA


ex↓

∃xA

Figure 6: The instantiation rule decomposed

here. The first is Girard’s analysis of intuitionistic implication A→ B as a com-
bination of linear implication and the bang exponential, !A(B [Gir87]. Here,
semantic concerns motivated a syntactic innovation that led the discovery to
a whole new class of logics. Similarly, it is possible that the addition of ex-
plicit/indicated substitutions to classical first-order logic may suggest the def-
inition of new logics, or new proof systems for old logics, perhaps intermediate
logics, for which hypersequent calculi have been defined [Avr91; CGT08].

The second is not as obvious, but an example from the proof theory of classi-
cal first-order logic: Hilbert’s ε-calculus [HB74], which has seen a renewal of
interest in recent years [AB16; AHW18; BLL18; Min08; MZ06]. The ε-calculus
was developed as a tool for proving the consistency of arithmetic, as part of
Hilbert’s program, discussed above. The two ε-theorems show that the usual
quantifiers can be jettisoned in favour of enriching the term structure, with
this ‘ε-substitution’ method allowing for a new consistency proof of first-order
arithmetic [Ack40]. This rearrangement of first-order information contained in
a proof has significant proof theoretic consequences, and it might be expected
that indicated/explicit substitutions might too. Of course, it would likely be
hubristic to claim that this project will have a comparable legacy to either of
these two innovations, but hopefully the analogies are useful in describing the
scope of this more ambitious project.

For now, investigations are proceeding into a new definition of analyticity
using indicated substitutions, leading to stronger decomposition theorems.
Looking further ahead, it is hoped that the use of indicated substitutions will
enable us to fully distinguish between the first-order and propositional aspects
of proofs, in a more thorough way than is achieved by the use of expansion
proofs. It is expected that extending the rules of passage to substitutions will
be key to the endeavour.

The results in this thesis may not seem particularly pertinent to this larger
project, but, since the means of normalisation and normal forms are likely to
be both extensions of those for classical propositional logic, and comparable to
those for classical first-order logic, understanding the theory of normalisation
and, in particular, decomposition for these logics will provide a stable platform
on which to proceed into more speculative research. Any paradigm shift is
preceded by the exhausting of the previous paradigm, finding out where the
old approach reaches its explicatory limits, discovering where precisely the
patient exhibits morbid symptoms.

20 INTRODUCTION

Summary

Part I

In Chapter 1, the deep inference formalism of open deduction is presented,
and the standard proof systems for classical propositional logic are set out.
Some standard theory for propositional logic is then presented—the reduc-
tion of structural rules to atomic form, and the isolation of identies and cuts—
culminating in a simple and interesting method for cut elimination: the exper-
iments method.

In Chapter 2, the proof theory of propositional logic is developed further: we
describe reduction systems for atomic weakening and contraction and show
that the barrier to strong normalisation for the contraction system is the exis-
tence of cycles in proofs. We then introduce contractive derivations and merge
contractions, developing some theory so that we are in a position to present a
method for eliminating cycles in proofs by permuting critical merge contrac-
tions down the proof.

Part II

In Chapter 3, we introduce first-order classical logic, and give the standard
proof systems. We then show that the basic theory of contractive derivations
and merge contractions extend to first-order logic in a straightforward way.

In Chapter 4, we present a study of Herbrand’s Theorem from the point of view
of deep inference. We describe a class of first-order proofs, Herbrand Proofs,
and state and prove Herbrand’s Theorem for cut-free first-order proofs in open
deduction as a transformation into a Herbrand proof. We introduce expansion
proofs, and a class of first-order proof that corresponds closely to them: proofs
in Herbrand Normal Form. We then show the translations between Expansion
Proofs and proofs in Herbrand Normal Form. Finally, we show cut elimination
for proofs in Herbrand Normal Form, and how it closely corresponds to cut
elimination for expansion proofs with cuts, also known as proof forests. This
culminates in a cut elimination procedure for first-order logic via Herbrand’s
Theorem.

A note on originality and collaboration

Only parts of this thesis are truly original and even less is solely my own work,
for the usual expository reasons and so that the fruits of productive collabo-
ration can be shared. The early material on open deduction for propositional
logic is a new treatment of standard material, and the idea behind the experi-
ments method was shown to me by Guglielmi, while the formal presentation is
essentially my own. Chapter 2 is a result of a long and fruitful collaboration be-
tween Aler, Guglielmi and myself, and the cycle removal procedure has taken
many forms over the last few years. An early, simpler version can be found in

21

[ATG18], and contractive derivations can be found in the original version of
Aler’s PhD thesis under the guise of generic contractions [AT16]. I do, however,
take credit for reworking these generic contractions as standalone inference
rules, merge contractions, even if the idea is borrowed from a rather different
setting, [Gug07]. Hence the focus on merge contractions in the cycle removal
procedure, with extensive theoretical grounding, and a further development
of their theory for first-order logic. However the basic idea for cycle removal is
not so different as in Aler’s thesis, and the presentation in the revised version
is more similar to that presented here, but with important differences [AT17].

First-order logic, and Herbrand’s theorem in particular was the original focus
of my PhD, and thus Part II contains the bulk of my original contributions to
deep inference proof theory. Although Brünnler laid exceptional foundations
for this work, I believe that the organisation of the first-order material, in par-
ticular the centrality of Herbrand’s Theorem and its use as a decomposition
theorem as a means for cut elimination, is essentially novel, as are the transla-
tions between proofs in Herbrand Normal Form and expansion proofs, which
have already been published separately [Ral18]. Straßburger has also shown
translations between expansion proofs and deep inference proofs for second-
order MLL, but I was not aware of this work until we discussed the work that
led to the paper in which my own ideas were first published [Str09; Str17b].
The cut elimination section is more of a summary and comparison of the work
in [Hei10], [McK13] and [AHW18], as is made clear in the text.

As a totality, it is hoped that this thesis provides a useful overview of the state-
of-the-art in the deep inference proof theory of classical logic, and will be both
a high-level and technical resource for those new to this field. It is clearly
not an exhaustive work, and readers are encouraged to attempt to fill in any
lacunae that they encounter and to upgrade conjectures to theorems.

Finally, it should be made unequivocally clear that any errors or misjudge-
ments are, of course, my sole and complete responsibility.

22 INTRODUCTION

Part I

Propositional Logic

23

Chapter 1

Open Deduction for Classical
Propositional Logic

1.1 Open Deduction

We present the open deduction proof formalism [BM08; GGP10], which has
sometimes been named the functorial calculus [Gun09]. Inevitably, this pre-
sentation of the fundamentals will borrow and differ from previous iterations,
especially [GGP10] and [Gun09], but not importantly so.

1.1.1 Prederivations and formulae

In the formalism of open deduction, it is helpful to think of derivations as on-
tologically prior to formulae, and so we define derivations—or prederivations,
to be precise—before we define formulae.

Definition 1.1. Let Σ = (A,U,C1,C2) be a signature, with A a set of atoms, U
a set of units, and Ci a set of logical operators of arity i, each equipped with
an involutive bijection, negation commonly denoted by ·̄. Then a prederivation
over Σ is inductively defined in the following way:

• All atoms a ∈A and all units u ∈ U are prederivations.

If φ and ψ are prederivations, then:

• If • ∈ C1 then •φ is a prederivation.

• If ? ∈ C2 then φ? ψ is a prederivation.

•
φ

ψ
is a prederivation.

We denote the set of prederivations over Σ by PΣ, omitting the subscript when
we are talking about prederivations of an unspecified signature and when oth-

25

26 CHAPTER 1. OPEN DEDUCTION FOR CPL

erwise appropriate. We use ≡ for syntactic equality between two prederiva-
tions, since we will go on to define an equality relation = on formulae.

Negation is extended to PΣ in the following way:

• •φ ≡ •̄φ

• φ? ψ ≡ φ?̄ψ

•

φψ
 ≡ ψ

φ

Note that the extension of negation to prederivations is still an involutive bi-
jection.

Remark 1.2. Since we will only encounter unary and binary operators, we re-
strict our attention to these, although there is no principled reason to rule out
operators of higher arity.

Convention 1.3. Vertical composition of prederivations is associative.

φ

ψ

ξ

:≡
φψξ

 ≡
φψ


ξ

Definition 1.4. A formula is a prederivation with no instances of vertical com-
position, and we denote the set of formulae over Σ by FΣ, again omitting the
subscript when appropriate. We define two functions from P to F, pr (premise)
and cn (conclusion):

• pr(a) ≡ cn(a) ≡ a, for a ∈A;

• pr(u) ≡ cn(u) ≡ u, for u ∈ U;

• pr(•φ) ≡ •(pr(φ)), cn(•φ) ≡ •(cn(φ)), for • ∈ C1;

• pr(φ? ψ) ≡ pr(φ) ? pr(ψ), cn(φ? ψ) ≡ cn(φ) ? cn(ψ), for ? ∈ C2;

• pr

φψ
 ≡ pr(φ), cn

φψ
 ≡ cn(ψ)

We can now write a prederivation as
A
φ

B
, where pr(φ) ≡ A and cn(φ) ≡ B.

Definition 1.5. The sections of a prederivation, sec(φ) are defined in the fol-
lowing way. If A ∈ sec(φ), we say A is a section of φ.

• sec(a) = {a}, for a ∈A;

• sec(u) = {u}, for u ∈ U;

• sec(•φ) = {•A | A ∈ sec(φ)}, for • ∈ C1;

• sec(φ? ψ) = {A? B | A ∈ sec(φ),B ∈ sec(ψ)}, for ? ∈ C2;

• sec

φψ
 = sec(φ)∪ sec(ψ)

1.1. OPEN DEDUCTION 27

Definition 1.6. Given a signature Σ = (A,U,C1,C2) and functions | · | : A →
N, | · | : U→ N, we can define the size of a prederivation is a function | · | : PΣ→ N
defined in the following way:

• The size of atoms and units are already defined by the given functions.

•
∣∣∣•(φ)

∣∣∣ =
∣∣∣φ∣∣∣+ 1

•
∣∣∣φ? ψ∣∣∣ ∣∣∣φ∣∣∣+

∣∣∣ψ∣∣∣+ 1

•

∣∣∣∣∣∣ φ
ρ
ψ

∣∣∣∣∣∣ =
∣∣∣φ∣∣∣+

∣∣∣ψ∣∣∣
Definition 1.7. (Prederivation) contexts with n holes are certain inductively de-

fined functions κ

n︷ ︸︸ ︷
{ } . . . { } : Pn → P, where prederivation contexts with 0 holes

are identified with prederivations, and the identity function, denoted { }, is a
context with 1 hole. More complex contexts are built up in the same way as
prederivations, with application performed by replacing gaps with prederiva-
tions. We say that κ is a formula context if it contains no instances of vertical
composition. We say κ is a formula-like context if no hole is in the scope of
vertical composition.

The size of a context is calculated in the same fashion as prederivations, with
|{ }| = 0.

Example 1.8. Let Σ be the signature ({a, ā}, {t, f}, {�,♦}, {∧,∨}). Then

φ ≡
ā

�

 f

t
∧♦

 t

f


is a prederivation over Σ, with pr(φ) ≡ ā, cn(φ) ≡ �(t ∧ ♦(f)) and sec(φ) =
{ā,�(f∧♦t),�(f∧♦f),�(t∧♦t),�(t∧♦f)}.

We can also define the prederivation context with 2 holes κ1{ }{ } by:

κ1{ }{ } =
ā

� ({ } ∧ { })
,

with φ ≡ κ1

 f

t

♦
 t

f

.

κ1{ }{ } is neither a formula context nor formula-like, κ2{ } = �

 f

t
∧ { }

 is a

formula-like context and κ3{ }{ } =� ({ } ∧ { }) is a formula context.

We can also compute the negation of φ:

φ̄ ≡
♦

 f

t
∨�

 t

f


a

28 CHAPTER 1. OPEN DEDUCTION FOR CPL

1.1.2 Categorical Composition of Prederivations

We will now show another way to vertically compose two prederivations, if the
conclusion of the first is equal to the premise is the second. We call this cate-
gorical composition of prederivations, since this is its denotation in categorical
semantics of deep inference proof systems [Hug04; McK06].

Definition 1.9. Let φ,ψ ∈ P, with cn(φ) ≡ pr(ψ). Then the categorical composi-

tion of φ and ψ, denoted
φ
.....
ψ

is defined inductively as follows:

• If φ ∈A, then we define
φ
.....
ψ
≡ ψ

• If φ ≡ •φ′ , with • ∈ C1, then we must have that cn(φ) ≡ •A ≡ pr(ψ), for

A ∈ F. We either have ψ ≡ •(ψ′) or ψ ≡
ψ1

ψ2
. We deal with each case as

below:

φ
.....
ψ
≡ •

φ′.....ψ′
 or

φ
.....
ψ
≡

 φ......ψ1


ψ2

• If φ ≡ φ1 ? φ2, with ? ∈ C2 then we must have that cn(φ) ≡ (A1 ? A2) ≡

pr(ψ), for A1,A2 ∈ F. We either have ψ ≡ ψ1 ? ψ2 or ψ ≡
ψ1

ψ2
. We deal with

each case as below:

φ
.....
ψ
≡

φ1......
ψ1
?
φ2......
ψ2

 or
φ
.....
ψ
≡

 φ......ψ1


ψ2

• If φ ≡
φ1

φ2
, we define

φ
.....
ψ
≡

φ1φ2......
ψ


If ξ is the categorical composition of

A
φ

B
and

B
ψ

C
, we write

A
ξ

C
≡

A
φ

B
ψ

C

Lemma 1.10. Categorical composition of prederivations is associative.

1.1. OPEN DEDUCTION 29

Proof. Let φ,ψ and ξ be prederivations. We will prove by induction on |φ|+ |ξ |
that:

φ
...........ψ.....ξ

 ≡

φ.....ψ


...........
ξ

• If φ ≡ a ∈A, then clearly

a
...........ψ.....ξ

 ≡
ψ
.....
ξ

≡

 a.....ψ


...........
ξ

The cases where ψ ≡ a or ξ ≡ a are similar.

• If we have that ξ ≡
ξ1

ξ2
, then we have, by the IH

φ
...........ψ.....ξ

 ≡
φ

................
ψ
...........ξ1

ξ2


 ≡

φ
................
ψ.....ξ1


ξ2

 ≡

φ
...........ψ.....ξ1




ξ2

≡


φ.....ψ


...........
ξ1


ξ2

≡

φ.....ψ


...........ξ1

ξ2


The case where φ ≡

φ1

φ2
is symmetrical.

• If we have that ψ ≡
ψ1

ψ2
, then we have

φ
.................
ψ1

ψ2


............
ξ

 ≡
φ

.................
ψ1ψ2......
ξ


 ≡

 φ......ψ1

ψ2......
ξ

 ≡

 φ......ψ1


ψ2


.................
ξ

≡


φ

............ψ1

ψ2




.................
ξ

• φ ≡ •φ′ , ψ ≡ •ψ′ and ξ ≡ •ξ ′ then we have, by the IH, that:

φ
...........ψ.....ξ

 ≡ •

φ′
...........ψ′.....ξ ′


 ≡ •


φ′.....ψ′


...........
ξ ′

 ≡
φ.....ψ


...........
ξ

• If we have φ ≡ φ1 ? φ2, ψ ≡ ψ1 ? ψ2 and ξ ≡ ξ1 ? ξ2, then we have, by the
IH, that:

φ
...........ψ.....ξ

 ≡

φ1............ψ1......
ξ1

 ?
φ2............ψ2......
ξ2


 ≡


φ1......
ψ1


............
ξ1

?

φ2......
ψ2


............
ξ2

 ≡
φ.....ψ


...........
ξ

30 CHAPTER 1. OPEN DEDUCTION FOR CPL

Since cn(φ) ≡ pr(ψ) is a precondition for
φ
.....
ψ

being well-defined, we have ex-

hausted all the cases.

Remark 1.11. We can now define a category CΣ, with formula as objects and
prederivations fromA to B as morphisms. The identity morphism on a formula
is the formula itself, treated as a prederivation.

Lemma 1.12. If φ ≡ κ
ψξ

 then we can find a unique formula-like context θ{ }

and prederivations φ1,φ2 s.t.

φ ≡

φ1......................

θ

cnψprξ


......................

φ2

Proof. We proceed by structural induction on κ. If κ = { }, we take φ1 ≡ ψ and
φ2 ≡ ξ.

If κ{ } = •κ′{ }, then by the inductive hypothesis we can find:

φ′1......................

θ

cnψprξ


......................

φ′2

≡ κ′
ψξ


We then take φ1 ≡ •φ′1 and φ2 ≡ •φ′2.

If κ{ } = χ ? κ′{ }, then, similarly to above, we can find appropriate φ′1 and φ′2
such that we can take φ1 ≡ χ ? φ′1 and φ2 ≡ χ ? φ′2.

If κ{ } =
χ

κ′{ }
, then by the IH we can find φ′1 and φ′2 as above. We take φ1 ≡

χ
......
φ′1

and φ2 ≡ φ′2. If κ{ } =
κ′{ }
χ

we take φ1 ≡ φ′1 and φ2 ≡
φ′2......
χ

.

1.1.3 Sequential and Synchronal Form

We now introduce two canonical forms for derivations: sequential and syn-
chronal form.

Sequential form is essentially the calculus of structures [Brü06a; BT01] repre-
sented in open deduction. One way to think about a prederivation in sequen-
tial form is that it requires the vertical order on inference rules to be total. An
important use for sequential form is to provide an induction measure for open
deduction proofs, which are not always straightforward for two-dimensional
proofs.

Synchronal form, originally called Formalism A [Gug04], can be thought of as
a form where any non-essential vertical ordering between inference rules is

1.1. OPEN DEDUCTION 31

eliminated. Since the synchronisation reduction is confluent, a prederivation
in synchronal form is a canonical form for a class of prederivations [GGP10].

Definition 1.13. We write
φ

≡
ψ

if cn(φ) ≡ pr(ψ).

Definition 1.14. A prederivation φ is in sequential form if, for every possible

κ{ },ψ,ξ s.t φ ≡ κ
ψξ

, κ′{ } as in Lemma 1.12 is a formula context. Equiva-

lently, there are κi ,Ai ,Bi s.t. :

φ ≡

A
≡

κ1

A1

B1


≡

...
≡

κn

AnBn


≡
B

A prederivation is in synchronal form if, for every possible κ{ },ψ,ξ s.t φ ≡

κ

ψξ
, cn(ψ) . pr(ξ).

Definition 1.15. A reduction rule r is a partial function r : PΣ→ P s.t. if r(φ′) ≡
ψ′ , then φ′ and ψ′ have the same premise and conclusion. We write r : φ′→ ψ′ .

For every reduction rule r : φ′ → ψ′ we define the reduction →r such that
φ→r ψ iff φ′ is a subprederivation of φ and ψ is obtained from φ by replacing
φ′ by ψ′ .

We call a finite set R of reduction rules a rewriting system. We write φ→R ψ if
there is r ∈ R s.t. φ→r ψ. The reflexive transitive closure of→r is written→∗r
. Given a set S of prederivations, we say that rewriting system R is terminating
on S if there is no infinite chain φ→r1 φ1→r2 . . . with ri ∈ R for any φ ∈ S. If φ
is s.t. there is no ψ with φ→r ψ we say φ is normal for R, or that φ is in normal
form w.r.t. R.

Definition 1.16. We define the rewriting system Seq as containing the follow-
ing two rewrites S1 and S2, where κ is a formula-like context:

κ

A1

B1

 {A2}
≡

κ {B1}
A2

B2


S1←−−− κ

A1

B1

A2

B2

 S2−−−→
κ {A1}

A2

B2


≡

κ

A1

B1

 {B2}

32 CHAPTER 1. OPEN DEDUCTION FOR CPL

We define the rewriting system Syn as containing the single rewrite S3:

 Aφ
B


≡  B

ψ

C


S3−−−→

A
φ

B
ψ

C

If φ −→∗Seq ψ with ψ in sequential form, we say that ψ is a sequentialisation of
φ. If φ −→∗Syn ψ with ψ in synchronal form, we say that ψ is a synchronisation
of φ.

Proposition 1.17. Seq and Syn are terminating on PΣ for any signature Σ.

Remark 1.18. S3 is the left inverse of both S1 and S2.

Proposition 1.19. φ is in normal form w.r.t. Seq iff φ is in sequential form. φ is
in normal form w.r.t. Syn iff φ is in synchronal form.

Proposition 1.20 (Confluence of Syn). Assume φ −→∗Syn ψ1 and φ −→∗Syn ψ2,
with ψ1 and ψ2 in normal form w.r.t. Syn. Then ψ1 ≡ ψ2.

Proof. Since Syn is clearly terminating, we need only prove local confluence.
Let φ be a derivation with two Syn redexes

φ ≡ κ1



A1
ψ1

B1
≡
B1

ξ1

C1


and φ ≡ κ2



A2
ψ2

B2
≡
B2

ξ2

C2


Either the redexes overlap or they don’t:

φ ≡ κ3



A1
ψ1

B1
≡
B1

ξ1

C1





A2
ψ2

B2
≡
B2

ξ2

C2


or φ ≡ κ1



κ′2



A2
ψ2

B2
≡
B2

ξ2

C2


≡

B1
ξ1

C1


If they do not, the first case, then clearly we have local confluence. If they
do, then by Lemma 1.12, we can rewrite φ in the following way, which clearly

1.1. OPEN DEDUCTION 33

rewrites to the same prederivation whichever rewrite is performed first:

φ ≡ κ1



κ3


A2

B2


.....................

θ

 B2
≡
B2


.....................

κ4


B2

C2


≡

B1
ξ1

C1



(S3)2

−−−−→ φ ≡ κ1



κ3


A2

B2


....................
θ {B2}....................

κ4


B2

C2


....................
B1

ξ1

C1



1.1.4 Proof Systems and Derivations

Definition 1.21. An equality relation, =, for Σ, is an equivalence relation on F;
an inference rule ρ, for Σ, is a relation on F. If (A,B) ∈=, then we write A = B

and if (A,B) ∈ ρ, then
A

B
is an instance of ρ and we write

A
ρ
B

.

Remark 1.22. Inference rules are often defined in pairs: up-rules and down-
rules. Rules with the same name but opposite arrows, e.g. ρ ↓ and ρ ↑, are dual:
A

ρ↓
B

is an instance of ρ ↓ iff
B̄

ρ↑
Ā

is an instance of ρ ↑.

Definition 1.23. A proof system S for Σ is a finite set of inference rules for Σ

that necessarily includes an equality relation = for Σ.

Remark 1.24. For proof complexity purposes, it is important to stipulate that
inference rules are polynomially verifiable in the size of the premise and con-
clusion formulae. However since this condition is not used in this thesis, we
omit it from the definition.

Definition 1.25. A derivation in S or an S-derivation, where S is a proof system
for Σ, is a prederivation over Σ where every instance of vertical composition

ψ

χ
is such that

cnψ

prχ
is an instance of ρ, for ρ ∈ S. We write

A
φ S

B
or

A
φ {ρ1,...,ρn}
B

if

φ is an S-derivation, where S = {ρ1, . . . ,ρn,=}.

Definition 1.26. If S is a proof system with a true unit, i.e. t ∈ U, and φ is an S
derivation with pr(φ) ≡ t and cn(A), then we say φ is a proof of A, and we write
φ S

A
.

Remark 1.27. Since we are sticking to classical logic in this thesis, we will not
worry too much about what counts as a ‘true’ unit.

34 CHAPTER 1. OPEN DEDUCTION FOR CPL

Definition 1.28. An inference rule ρ is admissible for a proof system S if for

every proof
φ S∪{ρ}
A

there is a proof
φ′ S

A
.

Definition 1.29. An inference rule ρ is derivable for a proof system S if for

every instance
A

ρ
B

of ρ there is a derivation
A
φ S

B
.

Observation 1.30. If If ρ is derivable for S, then ρ is admissible for S. If ρ is
admissible (derivable) for S and S ⊆ S′ , then ρ is admissible (derivable) for S′ .

Definition 1.31. Proof systems S and S′ are equivalent if, for every formula A,

there is a proof
φ S

A
iff there is a proof

φ S′

A
.

Definition 1.32. Proof systems S and S′ are strongly equivalent if, for all for-

mulae A and B, there is a derivation
A
φ S

B
iff there is a derivation

A
φ S′

B
.

Observation 1.33. S and S′ are equivalent iff every rule ρ ∈ S is admissible for S′

and vice versa. S and S′ are strongly equivalent iff every rule ρ ∈ S is derivable
for S′ and vice versa.

1.2 Proof Systems for Classical Propositional Logic

We are now in a position to define the standard open deduction proof systems
for classical propositional logic (CPL). Since the development of the atomic
flow [GGP10; Gun09], SKS and its cut-free subsystem KS have been central to
the deep inference proof theory of CPL.

Definition 1.34. We define the signature for classical propositional logic Σ0 =
(A0, {t, f},∅, {∧,∨}), where A0 = {a, ā,b, b̄, c, c̄ . . . } is an inexhaustible supply of
positive and negative atoms, t̄ = f, t̄ = f and ∧̄ = ∨, ∨̄ = ∧.

Definition 1.35. The size of a CPL prederivation is defined by setting |a| = |t| =
|f| = 1 for every a ∈A0.

1.2.1 SKS

Definition 1.36. The proof system SKS for Σ0, consists of the following infer-
ence rules [Brü03a; GGP10]:

1.2. PROOF SYSTEMS FOR CLASSICAL PROPOSITIONAL LOGIC 35

• The structural rules:

atomic



t
ai↓
a∨ ā

a∨ a
ac↓

a

f
aw↓

a
identity contraction weakening

a∧ ā
ai↑

f

a
ac↑

a∧ a
a

aw↑
t

cut cocontraction coweakening


• The logical rules:

A∧ (B∨C)
s

(A∧B)∨C
(A∧B)∨ (C ∧D)

m
(A∨C)∧ (B∨D)

switch medial

• The equality relation is the minimal equivalence relation generated by
the following equalities:

A∧ t = A A∨ f = A

t∨ t = t f∧ f = f

A∧B = B∧A A∨B = B∨A
A∧ (B∧C) = (A∧B)∧C A∨ (B∨C) = (A∨B)∨C

Example 1.37. Below is a derivation in SKS, with premise t and conclusion
ā∨ a:

t
=

t
=

t
ai↓
ā∨ a

∨
f

aw↓
a

=

ā∨
a∨ a

ac↓
a

∧

t
ai↓

ā
ac↑

ā∧
ā

aw↑
t

∨ a

=
(ā∨ a)∧ (ā∨ a)

s

ā∨

a∧ (ā∨ a)
s

a∧ ā
ai↑

f
∨ a

=
a

Often, we employ a few simple abbreviations to minimize size and aid read-
ability. The below proof is identical to the one above except that it employs
some of these abbreviations: two switches are compressed into one 2s rule;
certain boxes are removed; in the conclusion we leave out parentheses from
the disjunction, due to associativity; and equality rules on units are omitted:

36 CHAPTER 1. OPEN DEDUCTION FOR CPL

t
ai↓
ā∨ a

∨
f

aw↓
a

=

ā∨
a∨ a

ac↓
a

∧

t
ai↓

ā
ac↑

ā∧
ā

aw↑
t

∨ a

=
(ā∨ a)∧ (ā∨ a)

2s

ā∨
a∧ ā

ai↑
f
∨ a

1.2.2 Other proof systems for CPL

The proof SKSg differs from SKS in two ways: firstly, the structural rules are
generic not atomic and, secondly, there is no medial, since it is derivable for
{w↓,c↓} (or {w↑,c↑} for that matter).

Definition 1.38. SKSg is defined to be the following inference rules, plus the
switch rule.

t
i↓
A∨ Ā

A∨A
c↓

A

f
w↓
A

identity contraction weakening

A∧ Ā
i↑

f

A
c↑
A∧A

A
w↑

t
cut cocontraction coweakening

,

The equality relation is the same as for SKS.

We now repeat some simple lemmas that establish the strong equivalence of
SKS and SKSg [BT01; Brü03a].

Proposition 1.39. The medial rule m is derivable for {w↓,c↓}.

Proof. We can replace every instance of medial

(A∧B)∨ (C ∧D)
m

(A∨C)∧ (B∨D)

with the following derivation
A

=

A∨
f

w↓
C

∧
B

=

B∨
f

w↓
D

∨


C
=

f
w↓
A
∨C
∧

D
=

f
w↓
B
∨D


c↓

(A∨C)∧ (B∨D)

.

1.2. PROOF SYSTEMS FOR CLASSICAL PROPOSITIONAL LOGIC 37

Lemma 1.40. The contraction rule c↓ is derivable for {ac↓,m}, i↓ is derivable for
{ac↓,s} and w↓ is derivable for {aw↓}.

Proof. We show the proof for contraction, the proofs for the other rules are

similar. We show that there is always a derivation
A∨A
{ac↓,m}
A

, by considering

four cases:

1. If A ≡ t or A = f, then we have
t∨ t

=
t

or
f∨ f

=
f

.

2. If A ≡ a, then we have
a∨ a

ac↓
a

.

3. If A ≡ A1 ∨A2 we have:

(A1 ∨A2)∨ (A1 ∨A2)
=
A1 ∨A1

{ac↓,m}
A1

∨
A2 ∨A2

{ac↓,m}
A2

4. If A ≡ A1 ∧A2 we have:

(A1 ∧A2)∨ (A1 ∧A2)
m
A1 ∨A1

{ac↓,m}
A1

∧
A2 ∨A2

{ac↓,m}
A2

Since |A1| , |A2| < |A|, the size of contracted formulae is suitable as an induction
measure.

Lemma 1.41. The cocontraction rule c↑ is derivable for {ac↑,m}, the cut rule i↑ is
derivable for {ac↑,s} and the coweakening rule w↑ is derivable for {aw↑}.

Proof. Dual to the above.

Proposition 1.42. The atomic system SKS and the generic system SKSg are strongly
equivalent.

Proof. As shown above, the medial rule is derivable for SKSg, and clearly the
atomic rules are derivable from the generic rules. The lemmas above show that
the generic structural rules of SKSg are derivable in SKS.

Definition 1.43. KS and KSg are, respectively, the systems SKS and SKSg with-
out the three ‘up’-rules.

KS and KSg are the standard cut-free/analytic systems for CPL. Thus, cut elim-
ination for SKS is best thought of as showing that the ‘up-rules’ are admissible
for KS.

38 CHAPTER 1. OPEN DEDUCTION FOR CPL

SKS

a∧ ā
ai↑

f

a
ac↑

a∧ a
a

aw↑
t

KS

t
ai↓
a∨ ā

a∨ a
ac↓

a

f
aw↓

a

A∧ [B∨C]
s

(A∧B)∨C
(A∧B)∨ (C ∧D)

m
[A∨C]∧ [B∨D]

SKSg

A∧ Ā
i↑

f

A
c↑
A∧A

A
w↑

t

KSg

t
i↓
A∨ Ā

A∨A
c↓

A

f
w↓
A

A∧ [B∨C]
s

(A∧B)∨C

Figure 1.1: CPL proof systems SKS,KS,SKSg and KSg

Remark 1.44. Raymond Smullyan defined an analytic proof system to be one
where every rule satisfies the subformula property: that the formulae in the
premise of an inference rule are subformulae of those in the conclusion [Smu65;
Smu68]. This property strictly limits the width of the proof search space, and
is closely linked to completeness. In the sequent calculus, the only rule without
this property is the cut rule, giving us an identification between cut-freeness
and analyticity. However, as discussed in a recent paper by Guglielmi and
Bruscoli, this identification breaks down for deep inference: KS does not en-
joy anything resembling the subformula property [BG16]. We therefore have
two options for the notion in deep inference: directly define analyticity as cut-
freeness, or redefine it in the spirit of Smullyan’s original definition. In the
paper, the authors explore the latter option. Here, we identify analyticity with
cut-freeness.

In terms of proof complexity, KS polynomially simulates cut-free Gentzen sys-
tems, e.g. LK− (but not vice versa) while SKS is polynomially equivalent to
Gentzen systems with cut LK [BG09; Das15]. It is an open question whether
KS polynomially simulates SKS, although it is known that the system KS∪{ac↑}
quasi-polynomially simulates SKS [Bru+16; Das15; Jeř08]. Thus, from the
point of view of proof complexity, there is a reasonable but not exact analogy
between ‘cut-freeness’ in Gentzen and deep inference systems.

Theorem 1.45 (Cut Elimination for CPL). KS and SKS are equivalent (but not
strongly equivalent).

In practice, this theorem reduces to the admissibility of just the ai↑ rule.

Proposition 1.46. Each up-rule ρ ↑ ∈ SKS or SKSg is derivable for {ρ ↓,ai↑,ai↓,s}:

Proof.

A
ρ↑
B

−→

A

A∧
t

i↓
B̄

ρ↓
Ā
∨B

s
A∧ Ā

i↑
f
∨B

B

As i↓ is derivable for {ai↓,s}, and i↑ for {ai↑,s} this proves the proposition.

1.3. THE ATOMIC FLOW 39

1.3 The Atomic Flow

“In fact it is not excessive to say
that a logic is essentially a set of
structural rules!”

J. Y. Girard [Gir89]

We now introduce the atomic flow, a geometric invariant of proofs in SKS and
its subsystems.

We will spare the reader a detailed technical introduction to atomic flows here,
but many can be found elsewhere[Das15; GGS10; Gun09]. At a high level,
an atomic flow is a directed acyclic graph built up from six types of vertices
(corresponding to the six atomic structural rules) which can be equipped with a
polarity assignment (but need not be [Das15]). The edges trace the atoms in an
SKS derivation, and vertical and horizontal composition of flows correspond
to composition of derivations.

t
ai↓
a∨ ā

a∨ a
ac↓

a

f
aw↓

a

a∧ ā
ai↑

f

a
ac↑

a∧ a
a

aw↑
t

t

a∨ ā
m

(a∨ t)∧ (t∨ ā)
s

(a∨ t)∧ ā
s
a∧ ā
f
∨ t
∨ t

t

ā∨ a
∨

f

a
=

ā∨
a∨ a
a

∧

t

ā

ā∧
ā

t

∨ a

=
(ā∨ a)∧ (ā∨ a)

s2

ā∨
a∧ ā
f
∨ a

a

a∧ a
∨

b

b∧ b
m

(a∨ b)∧ (a∨ b)

∧
a

a∧ a

A central use of atomic flows is to define rewrite rules for SKS derivations.
While one could in theory make do without the atomic flow to define rewriting
systems on SKS derivations, in practice they allow for a much simpler and
more elegant theory.

A simple rewriting result for SKS that is made clear by the use of atomic flows
is that (co)weakenings can be permuted to the bottom (top) of a derivation
using the rules defined below [Das15].

40 CHAPTER 1. OPEN DEDUCTION FOR CPL

Definition 1.47. We define the following reduction rules for SKS:

aw↓−ac↓ :

f
aw↓

a
∨ a

ac↓
a

−→
f∨ a

=
a

−→

aw↓−ac↑ :

f
aw↓

a
ac↑

a∧ a
−→

f
aw↓

a
∧

f
aw↓

a
−→

aw↓−ai↑ :

f
aw↓

a
∧ ā

ai↑
f

−→
f∧

ā
aw↑

t
=

f

−→

aw↓−aw↑ :

f
aw↓

a
aw↑

t

−→

f
=
f∧ (f∨ t)

s
(f∧ f)∨ t

=
t

−→

And their duals:

ac↑−aw↑ :

a
ac↑

a
aw↑

t
∧ a

−→
a

=
t∧ a

−→

ac↓−aw↑ :

a∨ a
ac↓

a
aw↑

t

−→
a

aw↑
t
∨

a
aw↑

t
−→

ai↓−aw↑ :

t
ai↓

a
aw↑

t
∨ ā

−→
t

=

t∨
f

aw↓
ā

−→

And the trivial reductions:

aw↓− ρK :
K

 f
aw↓

a


ρ

K ′ {a}
−→

K {f}
ρ

K ′
 f
aw↓

a


ρK −aw↑ :

K ′ {a}
ρ

K

 a
aw↑

t

 −→
K ′

 a
aw↑

t


ρ

K {t}

1.3. THE ATOMIC FLOW 41

−→ −→ −→

−→ −→ −→

−→

Figure 1.2: The rewriting system W in the atomic flow

We define the rewriting system W = {aw↓ − ac↓,aw↓ − ac↑,aw↓ − ai↑,aw↓ −
aw↑,ac↑−aw↑,ac↓−aw↑,ai↓−aw↑,aw↓− ρK ,ρK −aw↑}

Proposition 1.48. The rewriting system W is terminating.

Proof. By observing the corresponding flow reductions, it is easy to see that
the non-trivial reductions of W remove edges of atomic flows. Since every
application of a non-trivial reduction rule reduces the number of edges of the
associated flow to a derivation, and the trivial rules reduce the number of rules
below weakenings and above coweakenings, termination is clear.

Proposition 1.49. Let
A
φ S

B
be a derivation, where {aw↓,aw↑} ⊆ S ⊆ SKS. Then we

can find a derivation of the following form:

A
φ′ S∪{s}
B

≡

A
{aw↑}

A′

(S\{aw↓,aw↑})∪{s}
B′

{aw↓}
B

Proof. It is clear that proofs of the above form are exactly those proofs in nor-
mal form w.r.t. W. We apply W to φ, and, since it is terminating, we will even-
tually reach φ′ of the required form. Note that the aw↓ − aw↑ rewrite rule can
introduce switches into derivations where they were not before present.

Remark 1.50. By adding the inference rule
f

u
t

to a proof system (it is derivable

for {s} or {m}), we can guarantee that if φ→∗W ψ, then |ψ| ≤ |φ|.

Proposition 1.51. aw↑ is admissible for all {s} ⊆ S ⊆ SKS.

Proof. Immediate from applying Proposition 1.49 to a proof, since t cannot be
the premise of an aw↑ instance.

42 CHAPTER 1. OPEN DEDUCTION FOR CPL

Admissibility of coweakening gives us a nice way to prove a useful proposition
about KS.

Proposition 1.52. Given a proof
φ KS

K{A∧B}, we can construct two proofs,
φl KS

K{A} and

φr KS

K{B} . We can then construct the following proof of A∧B:

φl KS

K{A} ∧
φr KS

K{B}
{s,ac↓,m,aw↑}

K{A∧B}

Proof. Take
φ′l KS

K


A∧

B
w↑

t
=

A

 and

φ′r KS

K


A

w↑
t
∧B

=
B


Reduce the coweakenings to atomic form, and then eliminate them from each
proof with Proposition 1.51.

The second part is easy to show by induction on K{ }. There is nothing to do
for the base case and the two inductive steps are given below.

(K ′{A} ∧C)∧ (K ′{B} ∧C)
=
K ′{A} ∧K ′{B}

IH

K ′{A∧B}
∧

C ∧C{aw↑}
C

 and

(K ′{A} ∨C)∧ (K ′{B} ∨C)
s2

K ′{A} ∧K ′{B}
IH

K ′{A∧B}
∨

C ∨C{ac↓,m}
C



1.4 The Experiments Method for Cut Elimination

1.4.1 Elimination of the ‘up’-rules.

For both propositional and predicate logic cut elimination is fairly straight-
forward: one can achieve it by translation into the sequent calculus, using
Gentzen’s Hauptsatz [Gen64] and translating back into a deep inference sys-
tem [Brü03a]. However, as well as this method being inelegant and uninter-
esting, it has been shown that there are cut elimination methods for SKS that
can be done in quasipolynomial time [Bru+16; Jeř08], whereas all known cut
elimination methods for shallow inference systems require exponential time.
The experiments method we describe below does not give these complexity ad-
vantages, but, beyond a certain elegance, achieves a sort of confluence for cut
elimination, given certain provisos. Although this method of cut elimination
has not been published before, it has been informally described by Guglielmi
and others in talks [Gug+10; RG15].

1.4. THE EXPERIMENTS METHOD FOR CUT ELIMINATION 43

1.4.2 Experiments

Before proceeding to the elimination of ai↑, we need a few preliminary lemmas.

Lemma 1.53. For any formula contextK{ } and any formulaA there are derivations

K{t} ∧A
{s}

K{A}
and

K{A}
{s}

K{f} ∨A

.

Proof. We show that we can construct
K{t} ∧A

{s}
K{A}

by induction on the size of K{ }.

If K{ } = { } then the derivations are simply
t∧A

=
A

and
A

=
f∨A

.

The two inductive steps are as follows:

K{t}
.....................
B∨K ′{t}

∧A
s

B∨
K ′{t} ∧A
IH {s}
K ′{A}

..................................
K{A}

and

K{t}
.....................
B∨K ′{t}

∧A
=

B∧
K ′{t} ∧A
IH {s}
K ′{A}

..................................
K{A}

The proof for
K{A}
{s}

K{f} ∧A
is dual.

Lemma 1.54. Given an SKS (or any system {s} ⊆ S ⊆ SKS) derivation
A
φ SKS

B
, we

can construct derivations of the following form:

A
=

A∧
t

ai↓
a1 ∨ ā1

∧ . . .∧
t

ai↓
an ∨ ān

φ′ SKS\{ai↓,ai↑}

B∨
b1 ∧ b̄1

ai↑
f

∨ . . .∨
bn ∧ b̄n

ai↑
f

=
B

Proof. We will just show that ai↓ rules can be pushed up: ai↑ rules can be
pushed down in exactly the same way, dually. We proceed by induction on the

44 CHAPTER 1. OPEN DEDUCTION FOR CPL

number of ai↓ instances in φ. The inductive step is as follows:

φ −→∗Seq

A
φ1 SKS

K

 t
ai↓
an ∨ ān


φ2 SKS\{ai↓}
B

Lem 1.53−−−−−−−−→

A
=

A
φ1 SKS

K {t}
∧

t
ai↓
an ∨ ān

{s}
K {an ∨ ān}

φ2

B

IH−−→

A
=

A

A∧
t

ai↓
a1 ∨ ā1

∧ . . .∧
t

ai↓
an−1 ∨ ān−1

φ′1 SKS\{ai↓}
K{t}

∧
t

ai↓
an ∨ ān

{s}
K {an ∨ ān}

φ2

B

−→

A

A∧
t

ai↓
a1 ∨ ā1

∧ . . .∧
t

ai↓
an ∨ ān

φ′ SKS\{ai↓}
B

We are now ready to prove our cut elimination result with the Experiments
method. The general idea is that for each cut, we create two versions of the

proof, the intuition being that for each cut
a∧ ā

ai↑
f

, either a or ā is ‘true’ (in the

Tarskian sense), and each version corresponds to one of these possibilities. We
then use an identity and a contraction to disjunct the two proofs, creating a
proof with one fewer cut instance.

Theorem 1.55 (Cut Elimination with the Experiments method). ai↑ is admissi-
ble for all systems KS ⊆ S ⊆ SKS\{ai↑}

Proof. We proceed by induction on the number of distinct atoms inφ for which
there is at least one instance of ai↓.

1. Let
φ S

A
. First, we use Lemma 1.54 to push the ai↓ rules to the top of the

1.4. THE EXPERIMENTS METHOD FOR CUT ELIMINATION 45

proof, to give us:
{ai↓}

(ai ∨ āi)n
ψ S\{ai↓}
A

where (ai ∨ āi)n ≡ ((a1 ∨ ā1)∧ . . .∧ (an ∨ ān)) with the ai not necessarily
distinct.

2. Pick an arbitrary atom a in ψ s.t. there is at least one instance of ai↑
involving a. Replace every such instance of ai↑ like so:

a
f
f
∧

ā
aw↑

t
=

f

Note that we have an unsound rule, f. We can use the following rewrites
to push it to the top of ψ (along with similar trivial reductions to W):

aw↓− f :

f
aw↓

a
f
f

−→ f −→

ac↓− f :

a∨ a
ac↓

a
f
f

−→
a

f
f
∨

a
f
f

−→

ac↓− f :

a
ac↑

a
f
f
∧ a

−→

a
f
f

=

f∧
f

aw↓
a

−→

If f reaches the top of ψ, it must hit an ai↓ rule. We perform the following
rewrite each time this occurs:

ai↓− f :

t
ai↓

a
f
f
∨ ā

−→
ā

=
f∨ ā

−→

We now have a derivation of the following form (if necessary, aw↑ can be
removed by Proposition 1.51):

(ā)j

ψ− S

A
≡

(ā)j

{ai↓}

(ai ∨ āi)n−j
ψ′ S\{ai↓}
A

Similarly, we can construct
(a)j

ψ+ S

A

46 CHAPTER 1. OPEN DEDUCTION FOR CPL

3. We now combine ψ+ and ψ− together to make a new proof:

φ′ ≡

{ai↓,ac↓}

(ā)j

ψ− S

A
∨

(a)j

ψ+ S

A

{ac↓,m}
A

As φ′ contains cuts on all the atoms in φ except a, we are done.

Proof of Theorem 1.45 (Cut Elimination for CPL). Immediate from Theorem 1.55
and Proposition 1.46.

We can also use the experiments without an inductive argument, to get a cut-
free proof that is in some sense canonical. Instead of working on one atom at a
time we consider all atoms involved in cuts at once: (a1, . . . , an). Then, for each
of the 2n truth assignments Ai : A→ U, we construct a cut-free derivation(

bj
)
m(i,1) ∧

(
b̄k

)
m(i,2)

φi S\{ai↑}
A

where bj ∈ {aj | Ai(aj) = t} and bk ∈ {ak | Ai(ak) = f}. We can then construct a
cut-free proof of A:

T Tφ KS(
aj

)
m(1,1) ∧ (āk)

m(1,2)

φ1 S\{ai↑}
A

∨ . . .∨

(
aj

)
m(2n,1) ∧ (āk)

m(2n,2)

φ2n S\{ai↑}
A

{ac↓,m}
A

where T Tφ is a proof of the relevant truth-table tautology, as in [Das14b, Lemma
8.2].

It is simple to check that the f reduction system is confluent, so the cut-free
proof is essentially canonical up to commutativity of the φi .

Example 1.56. Below we show the experiments method on a proof with one
atomic cut.

1.4. THE EXPERIMENTS METHOD FOR CUT ELIMINATION 47

t

ā∨
a
∨

fa

ā∨
a∨

a

a

∧

t

ā

ā∧
āt

∨
a

(ā∨
a)∧

(a∨
ā)

s
2

a
f
f
∧
āt

=
f

∨
a∨

ā

−→

ā

ā∨
f ∨

ff

ā∨
f∨

f

f

∧

t

ā

ā∧
āt

∨
a

(ā∨
f)∧

(a∨
ā)

s
2

ā∨
f∧

āt

f

∨
a

↗
↘

t

ā∨
a
∨

fa

ā∨
a∨

a

a

∧

t

ā

ā∧
āt

∨
a

(ā∨
a)∧

(a∨
ā)

s
2

a∧
ā

f
∨
a∨

ā

↘
↗

t

ā∨
a
∨

fa

ā∨
a∨

a

a

∧

t

ā

ā∧
āt

∨
a

(ā∨
a)∧

(a∨
ā)

s
2

at
∧

ā
f
f

=
f

∨
a∨

ā

−→

t

ā∨
a
∨

fa

ā∨
a∨

a

a

∧

a

f

f∧
fāt

∨
a

(ā∨
a)∧

(a∨
f)

s
2

ā∨
at
∧
f

f

∨
a

t

a∨
ā

t

ā∨
a
∨

fa

ā∨
a∨

a

a

∧

a

f

f∧
fāt

∨
a

(ā∨
a)∧

(a∨
f)

s
2

ā∨
at
∧
f

f

∨
a

∨

ā

ā∨
f ∨

ff

ā∨
f∨

f

f

∧

t

ā

ā∧
āt

∨
a

(ā∨
f)∧

(a∨
ā)

s
2

ā∨
f∧

āt

f

∨
a

ā∨
ā

ā
∨
a∨

a

a

48 CHAPTER 1. OPEN DEDUCTION FOR CPL

ā
a

a
ā

a

−→

ā

ā

ā
a

↗
↘

ā
a

a
ā

ā
a

ā
a

a

a
ā

ā

ā
a

ā
a

↘
↗

ā
a

ā
a

−→
ā

a

a
ā

a

Chapter 2

Decomposition via Cycle
Removal

In the previous chapter, we showed how cuts can be reduced to atomic form
and then eliminated from an open deduction proof. In this chapter, we will
not focus on cut elimination itself, but on decomposition: pushing contractions
to the bottom of a proof.

To do so, we define a rewriting system of atomic contractions, whose nor-
mal forms are precisely decomposed proofs. However, unlike the weakening
rewriting system W we saw in the last chapter, this rewriting system is not even
weakly normalising. We isolate the source of infinite reduction sequences—a
certain sort of cycle in proofs—and show how we can obtain a cycle-free proof
on which the contraction rewriting system is strongly normalizing.

2.1 Decomposition and Cycles

Much of the material in the following section originates in [GG08], reworked
in numerous subsequent papers and again here.

First, we will define the rewriting system we will use to decompose proofs.

49

50 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

Definition 2.1. We define the following reduction rules for SKS:

ac↓−ac↑ :

a∨ a
ac↓

a
ac↑

a∧ a
−→

a
ac↑

a∧ a
∨

a
ac↑

a∧ a
m

a∨ a
ac↓

a
∧

a∨ a
ac↓

a

ac↓−ai↑ :

a∨ a
ac↓

a
∧ ā

ai↑
f

−→

(a∨ a)∨
ā

ac↑
ā∧ ā

2s
a∧ ā

ai↑
f
∨

a∧ ā
ai↑

f
=

f

ac↓−aw↑ :

a∨ a
ac↓

a
aw↑

t

−→
a

aw↑
t
∨

a
aw↑

t
=

t

And their duals:

ai↓−ac↑ :

t
ai↓

a
ac↑

a∧ a
∨ ā

−→

t
=

t
ai↓
a∨ ā

∧
t

ai↓
a∨ ā

2s

(a∧ a)∧
ā∨ ā

ac↓
ā

aw↓−ac↑ :

f
aw↓

a
ac↑

a∧ a
−→

f
=

f
aw↓

a
∧

f
aw↓

a

Last, we define the trivial family of reduction rules:

ac↓− ρH :
H

 a∨ a
ac↓

a


ρ

H ′ {a}
−→

H {a∨ a}
ρ

H ′
 a∨ a
ac↓

a


ρH −ac↑ :

H ′ {a}
ρ

H

 a
ac↑

a∧ a

 −→
H ′

 a
ac↑

a∧ a


ρ

H {a∧ a}

These simply correspond to drawing the (co)contraction node lower (higher)
in the atomic flow.

Definition 2.2. We define rewriting system C for SKS as the rewriting system
given by the reduction rules of Definition 2.1.

2.1. DECOMPOSITION AND CYCLES 51

−→

−→ −→

−→ −→

Figure 2.1: The rewriting system C in the atomic flow.

Observation 2.3. Applying C to a proof may increase the size exponentially,
through the crossings of contractions and cocontractions as shown in Figure
2.2. We call the contraction-cocontraction pairs on the left sausages.

Definition 2.4. Let φ be a SKS derivation in the following form:

A
{ac↑}

A′

SKS\{ac↓,ac↑}
B′

{ac↓}
B

We say that φ is decomposed.

Proposition 2.5. A derivation φ is decomposed iff it is in normal form w.r.t. C.

Definition 2.6. Let φ be a SKS derivation in the following form:

A
{aw↑}

A′

{ac↑}
A′′

SKS\{ac↓,ac↑,aw↓,aw↑}
B′′

{ac↓}
B
{aw↓}
B

We say that φ is strongly decomposed.

52 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

... −→∗C
...

...
...

...

Figure 2.2: Exponential blow-up caused by sausages.

Proposition 2.7. A derivation φ is strongly decomposed iff it is in normal form
w.r.t. C and W.

2.1.1 ai-cycles

Unlike with W, C does not obviously terminate. In fact, it is not difficult to find
infinite reduction sequences for C: these turn out to be exactly those proofs
that contain a particular kind of cycle in their atomic flow. For precision, we
need to develop a little more theory for atomic flows.

Definition 2.8. Given an edge ε in an atomic flow, we define up(ε) as the upper
vertex it is connected to, and lo(ε) as the lower vertex it is connected to.

Definition 2.9. Given a sequence of distinct edges ε1, . . . ,εn such that lo(εi) =
up(εi+1) for 1 ≤ i < n, we say that ε1, . . . ,εn is a straight path of length n from
up(ε1) to lo(εn), and that εn, . . . ,ε1 is a straight path of length n from lo(εn) to
up(ε1).

Given a sequence of edges ε1, . . . ,εn, we say that ε1, . . . ,εn is a path of length n
from vertex v1 to vertex v2 if it is a straight path from v1 to v2 or if there exists
a vertex v labelled by ai↑ or ai↓ such that ε1, . . . ,εh is a straight path from v1 to
v, εh , εh+1, and εh+1, . . . ,εn is a path from v to v2.

Definition 2.10. A path from v to v is called an ai-cycle.

A path of length n is maximal if no path containing its edges as a subsequence
has length greater than n. A path of length n from v is maximal from v if no
path from v containing its edges as a subsequence has length greater than n.

We can now define the measure used to prove termination of C.

Definition 2.11. Let v be a vertex labelled with ac↓ in a flow, with no path
from v we define its rank as the sum of the lengths of the maximal from v
paths ε1, . . . ,εn such that up(ε1) = v.

Dually, given a vertex v labelled with ac↑ in a flow, we define its rank as the
sum of the lengths of the maximal from v paths ε1, . . . ,εn such that lo(ε1) = v.

2.1. DECOMPOSITION AND CYCLES 53

Remark 2.12. Clearly, a vertex that is part of a ai-cycle has “infinite rank”, in a
sense. But, since paths are defined to be finite, we do not formally define the
notion of infinite rank. Therefore the definition of rank only makes sense for
cycle-free flows.

Definition 2.13. We say that a derivation contains an ai-cycle if its atomic flow
contains an ai-cycle.

2.1.2 Termination of C

We can easily see that if we repeatedly perform rewrites exclusively on a con-
traction inside an ai-cycle, such as in Figure 2.3, then the rewriting procedure
will not terminate.

In the absence of such cycles however, the rewriting always terminates. We
give a sketch of the proof, a more precise version can be found in [GG08] and
elsewhere.

Theorem 2.14. The rewriting system C is terminating on the set of ai-cycle-free
derivations.

Proof. (Sketch) First, we observe that it is clear by inspection of the reduction
rules that the rank of (co)contractions not involved in the reduction stays the
same.

Given an ai-cycle-free derivation φ, we consider the lexicographic order on
(r,d). r is the sum of the ranks of the contractions and cocontractions in φ, and
d is the sum of the number of rules below each contraction and the number of
rules above each cocontraction when sequentialising φ.

We describe how each application of a reduction of C reduces (r,d):

• Applications of the rules ac↓−ac↑, ac↓−ai↓ and ai↓−ac↑ reduce r in the
absence of ai-cycles as is shown in the proof of Theorem 7.2.3 of [Gun09].

• Applications of the rules ac↓ − aw↑ and aw↓ − ac↑ reduce r since they
remove contractions and cocontractions.

• Applications of the rules ac↓ − ρH and ρH − ac↑ trivially maintain r and
reduce d.

Evidently, ai-cycles are removed through cut-elimination, since they are caused
by the connection of a cut and an introduction. In this paper we will present
a local procedure to remove cycles that does not involve cut-elimination, thus
proving the independence of decomposition from cut-elimination.

To improve this decomposition result, it can also be shown that (co)weakenings
can be permuted to the bottom (top) of a derivation using rewriting system W
above [Das15].

Note that the reductions of system W do not introduce atomic (co)contractions
or medials. Thus, we get the following theorem.

54 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

→C →C →C . . .

Figure 2.3: A flow that does not terminate under C.

Theorem 2.15. Given an SKS derivation φ from A to B not containing ai-cycles,
we can obtain a strongly decomposed derivation φ from A to B.

Proof. By applying system C followed by system W to φ.

2.1.3 n-Multicycles and Unicycles

To ease proofs later, we show how to reduce complex cycles to those with a
single ai↓ rule and a single ai↑ rule, where the ai↑ rule is not shared by any
other cycles.

Definition 2.16. We say that an ai-cycle is a unicycle when it only crosses a
single ai↓ node and a single ai↑ node. We say that an ai-cycle is an n-multicycle
when it crosses n distinct ai↓ nodes and n distinct ai↑ nodes.

Example 2.17. Each flow in Figure 2.3 contains one unicycle.

The cycle below is a 3-multicycle.

Whereas in unicycles it is clear that the the logical relation between the two
atom occurrences involved in the cycle must change from a conjunction ∨ to
a disjunction ∧, in multicycles it is not necessarily so. It is however easy to
transform multicycles into unicycles using standard SKS derivation transfor-
mations.

Lemma 2.18. Given a derivation φ with an n-multicycle (n > 1), there exists a
derivation ψ where the multicycle is replaced by n unicycles. We do so by collapsing
multiple identities on one atom into one.

Proof. We show that a derivation with an n-multicycle can be converted into a
derivation with an n1-multicycle and a n2 unicycle, with n1 + n2 = n. Clearly,

2.1. DECOMPOSITION AND CYCLES 55

the lemma follows from this. Let
A
φ

B
be a derivation with an n-multicycle. We

denote by a, ā,a, ā positive and negative instances of the same atom, in the same
cycle, but use the colours to distinguish different instances of the identity rule.

By Lemma 1.54, we can construct:

A∧
t

ai↓
a∨ ā

∧
t

ai↓
a∨ ā

φ′

B

.

Thus, we take ψ to be:

ψ ≡
A∧

t
ai↓

a
ac↓

a∧ a
∨

ā
ac↓

ā∧ ā
m

(a∨ ā)∧ (a∨ ā)
φ′

B

.

In this way, we transform an n-multicycle into an n1-multicycle and an n2-
multicycle that share an identity:

1 1 2 2

(n1 − 1)

(n2 − 1)

−→
1 1 2 2

(n1 − 1)

(n2 − 1)

Lemma 2.19. Given a derivation φ with n unicycles with different identities that
share a cut, there exists a derivation ψ with the same premise and conclusion where
they are replaced by n unicycles that do not share a cut.

Proof. We will show that if we have a derivation with one instance of n unicy-
cles sharing a cut, we can construct a derivation with at most n − 1 unicycles
sharing a cut. The lemma clearly follows from this.

For there to be more than one unicycle sharing a cut, each edge of the cut
must contract at least once. If there are cocontractions between both cuts and
contractions, we use the ac↓−ac↑ rewrite to permute the contraction down to
the cut—since this does not change any paths, it cannot affect the cycles. Then,
once the contraction is directly above the cut, we apply the ac↓ − ai↑ rewrite
once:

56 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

...
...

...
...

m (n−m)

−→

...

m

...
...

...

(n−m)

Proposition 2.20. Let φ be an SKS derivation. We can construct a derivation φ′

with the same premise and conclusion such that:

1. φ′ contains no n-multicycles for n ≥ 2.

2. No atomic cut in φ is a node in more than one cycle.

Proof. Immediate from Lemmas 2.18 and 2.19.

Our strategy for removing cycles is based on a simple observation: that at the
top of the cycle, the positive and negative occurrence of the atom are intro-
duced with an ∨ between them, whereas at the bottom of the cycle the occur-
rences are destroyed with a ∧. Therefore, in a unicycle, there must be at least
one point in the derivation where the relation between a and ā changes from
∨ to ∧. A cursory inspection of SKS shows that the medial rule is the only
inference rule that could possibly cause this change. In fact, the medial rule
has been shown to be, in a certain sense, the canonical inference rule with this
behaviour [DS16].

Definition 2.21. Let φ be a derivation containing a unicycle, represented by
the ai-cycle ε1, . . . ,εn in its atomic flow. The critical medial for this unicycle is
the lowest instance of a rule

(A{a} ∧B)∨ (C ∧D{ā})
m

(A{a} ∨C)∧ (B∨D{ā})

in φ where the occurrences of a and ā are represented in the atomic flow by
one of the edges belonging to the ai-cycle ε1, . . . ,εn.

(A{a} ∧B)∨ (C ∧D{ā})
m

(A{a} ∨C) ∧ (B∨D{ā})

2.2. PROPOSITIONAL MERGE CONTRACTIONS 57

Following this observation, a strategy one can take to remove cycles becomes
clear: we can permute the critical instances of the medial rule downwards (or
upwards) in a proof. When the corresponding cut is reached, it is ‘broken’ by
the critical medial, and the cycle can then be removed by performing stan-
dard deep inference rewriting techniques. It is by no means obvious that this
suffices to remove cycles, but we will show that it in fact does.

Together with Andrea Aler Tubella and Alessio Guglielmi, two procedures to
remove critical medials, and therefore ai-cycles, from derivations have been
found, effectively showing the independence of decomposition and cut elimi-
nation. The original procedure is shorter, but particular to propositional logic
and not of great interest in itself, published in [ATGR17]. Here we show a sec-
ond procedure that is more complex, but has greater mathematical interest and
generalisability. The idea has already been presented in Aler Tubella’s thesis
[AT17] (and a journal paper is also in preparation [ATGR18]), but the method
shown here is sufficiently different to warrant a full treatment—in particular,
the concept of the merge contraction is developed in far greater detail than in
previous work.

2.2 Propositional Merge Contractions

In what follows we will present a rewriting system that will allow us to per-
mute critical medials downwards in a derivation. Since medials cannot be per-
muted downwards past instances of the rules ac↓ and certain equality rules,
we will permute them in the guise of a more general inference rule that we
call a merge contraction: they are rules that correspond to particular nestings of
instances of m, ac↓ and = and which permute with every SKS rule.

2.2.1 Merge contractions and contractive derivations

In order to motivate merge contractions and also to greatly simplify the case
analysis of the reduction rules, we will exploit a common feature of most deep
inference systems: that we can provide proof systems where all rules besides
the atomic ones can be expressed by a single inference rule shape [ATG18]

Definition 2.22. An inference rule has the medial shape if it is in the following
form:

(A α B) β (C α′ D)

(A β C) α (B β′ D)

where A,B,C,D are formulae and α,β,α′ ,β′ are connectives.

Definition 2.23. We define four new rules, each having the medial shape:

(A∨B)∨ (C ∨D)
∨c↓

(A∨C)∨ (B∨D)

(A∧B)∧ (C ∧D)
∧c↑

(A∧C)∧ (B∧D)
(A∨B)∧ (C ∨D)

s↓
(A∧C)∨ (B∨D)

(A∨B)∧ (C ∧D)
s↑

(A∧C)∨ (B∧D)

58 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

Definition 2.24. The proof system SKS4 is defined to be the six atomic struc-
tural rules of SKS, together with {s↓,s↑,m,∨c↓,∧c↑}. The equality rule is re-
stricted to the unit equations f ∨A = A = t ∧A.

Proposition 2.25. In the presence of the SKS equality rule, ∨c↓,∧c↑ are derivable
for the empty set of rules, and s↓ and s↑ are all derivable for {s}.

Proof. Derivability of ∨c↓ and ∧c↑ is clear by associativity and commutativity
of ∨ and ∧. The rules s↓ and s↑ are each derivable from two applications of
the rule s.

Proposition 2.26. In a SKS derivation, we can replace every instance of ∨ asso-
ciativity and commutativity by instances of the rule ∨c↓ and unit equality rules
(without commutativity we need left and right versions). Dually we can replace ev-
ery instance of ∧ associativity and commutativity by instances of the rule ∧c↑ and
unit equality rules.

In addition, s is derivable for both s↓ and s↑ in the presence of either the SKS or
SKS4 equality rule, i.e. only using unit equations.

Proof. We perform the following three rewrites, along with their duals, which
we omit:

(A∨B)∨C
=
A∨ (B∨C)

−→
(A∨B)∨

C
=
f∨C

∨c↓
A∨ f

=
A
∨ (B∨C)

A∨B
=
B∨A

−→

A∨B
=

(f∨A)∨ (B∨ f)
∨c↓

(f∨B)∨ (A∨ f)
=

B∨A

(A∨B)∧C
s
A∨ (B∧C)

−→

(A∨B)∧C
=

(A∨B)∧ (f∨C)
s↓

(A∨ f)∨ (B∧C)
=

A∨ (B∧C)

We could in fact go further, encompassing even atomic rules to this rule shape
by employing the subatomic methodology [AT17; ATG18]. In what follows, we
define a rule, merge contraction that has the same behaviour as atomic contrac-
tions in decomposition, but corresponds to a generalised notion of a contractive
derivation. This is in fact true in greater generality for a whole class of nestings,
as is proved sub-atomically in [AT17]: those results will be presented and ex-
panded in publications to come, but not in this thesis. Here, our focus is more
on the definition and dynamics of merge contractions, especially since they
generalise naturally to first-order logic. However, it should be noted that the

2.2. PROPOSITIONAL MERGE CONTRACTIONS 59

t
ai↓
a∨ ā

a∧ ā
ai↑

f

(A∨B)∧ (C ∨D)
s↓

(A∧C)∨ (B∨D)

(A∧B)∧ (C ∨D)
s↑

(A∧C)∨ (B∧D)

(A∧B)∨ (C ∧D)
m

(A∨C)∧ (B∨D)

a∨ a
ac↓

a

a
ac↑

a∧ a

f
aw↓

a

a
aw↑

t

(A∨B)∨ (C ∨D)
∨c↓

(A∨C)∨ (B∨D)

(A∧B)∧ (C ∧D)
∧c↑

(A∧C)∧ (B∧D)

Figure 2.4: System SKS4

procedure we are presenting comes directly from the study of decomposition
in subatomic systems.

Remark 2.27. Since s↑ is derivable for {s} and s for {s↓,=}, s↑ is derivable for
{∨c↓,∧c↑,s↓}. Symmetrically, s↓ is derivable for {∨c↓,∧c↑,s↑}. We choose to
include both in the system purely for simplicity and symmetry when present-
ing the rewriting rules.

In what follows we will present rewriting rules that will allow us to permute
critical medials downwards in a derivation. Since instances of medial cannot
be permuted with instances of ac↓ and ∨c↓ that take as premise part of the
conclusion of the medial, we introduce the notion of a (co)contractive derivation,
that bundles together nested instances of medial and instances of ac↓ and ∨c↓
occurring below it. We also introduce an inference rule, merge (co)contraction,
that is sound precisely when its premise and conclusion are the premise and
conclusion of a (co)contractive derivation. The concept of the merge is found in
[Gug07], in the context of the BV proof system. Here we adapt and repurpose
the notion for SKS4.

Definition 2.28. The set of contractive derivations is the minimal set of C↓ =
{ac↓,m,∨c↓} derivations that satisfy each of the three properties below:

CD1 A formula A∨B is a contractive derivation.

CD2
f∨ f

=
f
,

t∨ t
=

t
and

a∨ a
ac↓

a
are contractive derivations.

CD3
f∨A

=
A

and
A∨ f

=
A

are contractive derivations.

60 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

CD4 If
A1 ∨B1
φ1 C↓
C1

and
A2 ∨B2
φ2 C↓
C2

are contractive derivations then both

(A1 ∧A2)∨ (B1 ∧B2)
m
A1 ∨B1
φ1 C↓
C1

∧
A2 ∨B2
φ2 C↓
C2

and

(A1 ∨A2)∨ (B1 ∨B2)
∨c↓

A1 ∨B1
φ1 C↓
C1

∨
A2 ∨B2
φ2 C↓
C2

are contractive derivations.

The set of cocontractive derivations is defined dually.

Definition 2.29. Given two formulae A,B and ? ∈ {∨,∧}, we define their ?-
merge set M?(A,B) as the minimum set that satisfies the following conditions

M1 For any A and B, A? B ∈M?(A,B).

M2 For any atom or unit a, a ∈M?(a,a).

M3 For any A, A ∈M∨(A, f),A ∈M∨(f,A),A ∈M∧(A, t) and A ∈M∧(t,A).

M4 For α∈ {∨,∧}, if C1 ∈M?(A1,B1) and C2 ∈M?(A2,B2), then

C1 α C2 ∈M?(A1 α A2,B1 α B2)

.

If C ∈M?(A,B), we say C is a ?-merge of A and B. We call

MP
? (A,B);=M?(A,B)\{A? B}

the proper ?-merge set of A and B. If C ∈MP
? (A,B), then we say C is a non-trivial

?-merge of A and B.

Proposition 2.30. There exists a contractive derivation
A∨B
φ C↓
C

iff C ∈ M∨(A,B).

Dually there exists a cocontractive derivation
C
φ C↑
A∧B

iff C ∈M∧(A,B)..

Proof. We first prove the left to right direction by induction on the size of φ.

• Clearly M1 covers every contractive derivation generated by CD1, M2
covers every contractive derivation generated by CD2 and M3 covers ev-
ery contractive derivation generated by CD3.

• Let φ be a contractive derivation with at least one inference rule that is
not ac↓ or =. By CD4 it must be of the form

(A1 ∧A2)∨ (B1 ∧B2)
m
A1 ∨B1
φ1 C↓
C1

∧
A2 ∨B2
φ2 C↓
C2

or

(A1 ∨A2)∨ (B1 ∨B2)
∨c↓

A1 ∨B1
φ1 C↓
C1

∨
A2 ∨B2
φ2 C↓
C2

2.2. PROPOSITIONAL MERGE CONTRACTIONS 61

withφ1 andφ2 contractive derivations. By the inductive hypothesis, C1 ∈
M∨(A1,B1) and C2 ∈M∨(A2,B2). Therefore, in both cases C = (C1 α C2) ∈
M∨(A,B) =M∨(A1 α A2,B1 α B2) by M4.

To prove the right to left direction we proceed by structural induction on C:

• If C is an atom or unit a, then a must be in M∨(A,B) by virtue of M2, so

it must be the case that A ≡ B ≡ a. Therefore, by CD2, φ ≡
a∨ a

c↓
a

is a

suitable contractive derivation.

• If C is not an atom, then either C ≡ [A∨B] and is in the ∨-merge set by
virtue of M1, in which case we take φ ≡ A∨B as our contractive deriva-
tion, by CD1. C could also be in the merge set by virtue of M3, in which

case we can takeφ ≡
f∨A

=
A

orφ ≡
A∨ f

=
A

, by CD3. If it is neither of these,

then it must be the case that C ≡ [C1 α C2], with A ≡ A1 α A2, B ≡ B1 α B2
where α ∈ {∨,∧} and C1 ∈M∨(A1,B1) and C2 ∈M∨(A2,B2). By the induc-

tive hypothesis, there are contractive derivations
A1 ∨B1
φ1 C↓
C1

and
A2 ∨B2
φ2 C↓
C2

.

We can therefore combine these with m or ∨c↓ to form:

φ ≡

(A1 ∧A2)∨ (B1 ∧B2)
m
A1 ∨B1
φ1 C↓
C1

∧
A2 ∨B2
φ2 C↓
C2

or φ ≡

(A1 ∨A2)∨ (B1 ∨B2)
∨c↓

A1 ∨B1
φ1 C↓
C1

∨
A2 ∨B2
φ2 C↓
C2

which are contractive derivations by CD4.

We prove the dual likewise.

Corollary 2.31. C ∈M∨(A,B) iff C̄ ∈M∧(Ā, B̄)

Proof. Immediate from the fact that each contractive derivation is clearly the
negation of a cocontractive derivation and vice versa.

Given the above characterisation of contractive derivations where the conclu-
sion is a ∨-merge of the premise, we can characterise contractive derivations
with a single inference rule, merge (co)contraction.

Definition 2.32.
A∨B

mc↓
C

is a merge contraction if C ∈ MP
∨(A,B).

C
mc↑

A∧B

is a merge cocontraction if C ∈ MP
∧(A,B). If

A∨B
mc↓

C
is an instance of merge

contraction, we call the minimal contractive derivation
A∨B
φ C↓
C

guaranteed by

Proposition 2.30 the associated derivation to
A∨B

mc↓
C

.

62 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

Remark 2.33. As A ∈ MP
∨(A,A), general contractions

A∨A
c↓

A
are a special in-

stance of merge contractions, i.e., for any formula A there is a merge contrac-
tion

A∨A
mc↓

A

and its associated derivation
A∨A
φ C↓
A

The size of the associated derivations is quadratic in the size of A.

Every instance of medial is also an instance of both a merge contraction and
a merge cocontraction by M1 and M4, with the associated derivations being
the medials themselves. Similarly, every instance ∨c↓ is also an instance of a
merge contraction, and every instance of ∧c↑ is also an instance of a merge
cocontraction, also by M1 and M4.

Definition 2.34. We define SKSm to be:

(SKS4\{ac↓,ac↑,m,∨c↓,∧c↑})∪ {mc↓,mc↑}

as shown in Figure 2.5. There is a map µ : SKSm → SKS4, defined such that
every merge contraction maps onto its associated derivation. There are two
obvious maps from SKS4 to SKSm: νmin : SKS4 → SKSm, which maps every
instance of ac↓, m and ∨c↓ each to a single instance of mc↓ and νmax : SKS4→
SKSm which maps maximal contractive derivations to merge contractions.

As can be seen in the example below, µ is the left inverse map to both νmin and
νmax. It would seem as if one could construe νmin and νmax as the left and right
adjoint functors to µ, but this is beyond the scope of this thesis.

Convention 2.35. From now on, since the translation between the two proof
systems is so straightforward, we will often just refer to SKS when, strictly, we
should refer to SKS4.

There is one final way we can characterise a merge contraction: as a contraction
on contexts.

Definition 2.36. If K{ } is a context with n-holes, and A1, . . . ,An,B1, . . . ,Bn are
formulas, then

K{A1} . . . {An} ∨K{B1} . . . {Bn}
cc↓

K{A1 ∨B1} . . . {An ∨Bn}
and

K{A1 ∧B1} . . . {An ∧Bn}
cc↑
K{A1} . . . {An} ∧K{B1} . . . {Bn}

are instances of inference rules, called context contraction and context cocontrac-
tion respectively.

First, we show that every context contraction is also a merge contraction.

Proposition 2.37. If

K{A1} . . . {An} ∨K{B1} . . . {Bn}
cc↓

K{A1 ∨B1} . . . {An ∨Bn}

2.2. PROPOSITIONAL MERGE CONTRACTIONS 63

t
ai↓
a∨ ā

a∧ ā
ai↑

f
identity cut

f
aw↓

a

a
aw↑

t
weakening coweakening

A∨B
mc↓

C

C
mc↑

A∧B
merge contraction merge cocontraction

(A∨B)∧ (C ∨D)
s↓

(A∧C)∨ (B∨D)

(A∧B)∧ (C ∨D)
s↑

(A∧C)∨ (B∧D)
switch (down) switch (up)

Figure 2.5: System SKSm

is a valid instance of a context contraction then

K{A1} . . . {An} ∨K{B1} . . . {Bn}
mc↓

K{A1 ∨B1} . . . {An ∨Bn}

is a valid instance of a merge contraction.

Proof. By structural induction on K{ }. If K{ } ≡ { }, then by M1,
A1 ∨B1

mc↓
A1 ∨B1

is

a valid merge contraction. If K{ } ≡ a, for some atom a, then by M2,
a∨ a

mc↓
a

is

valid merge contraction. Now assume

K1{A1} . . . {Ak} ∨K1{B1} . . . {Bk}
cc↓

K1{A1 ∨B1} . . . {Ak ∨Bk}
and

K2{Ak+1} . . . {An} ∨K2{Bk+1} . . . {Bn}
cc↓

K2{Ak+1 ∨Bk+1} . . . {An ∨Bn}

are valid instances of context contractions. By the IH, they are also instances
of merge contractions. Thus, by M4,

(K1{A1} . . . {Ak} α K2{Ak+1} . . . {An})∨ (K1{B1} . . . {Bk} α K2{Bk+1} . . . {Bn})
mc↓

K1{(A1 ∨B1)} . . . {(Ak ∨Bk)} α K2{(Ak+1 ∨Bk+1)} . . . {(An ∨Bn)}

is a valid instance of a merge contraction, for α∈ {∧,∨}.

Now, we show that every merge contraction is a context contration. However
the natural definition for context contractions, which we have given above,
does not quite match up to our merge contraction definition: they are equiv-
alent to merge contractions with out the M3 rule. However, we only need to
add a minor condition to get a working equivalence between the two inference
rules.

64 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

Proposition 2.38. If
A∨B

mc↓
C

is a valid instance of a merge contraction, then there

is some n s.t. we can find a context K{ } . . . { } and formulae A1, . . . ,An,B1, . . . ,Bn s.t.
A ≡ K{A1} . . . {An}, B ≡ K{B1} . . . {Bn},

K{A1} . . . {An} ∨K{B1} . . . {Bn}
cc↓

K{A1 ∨B1} . . . {An ∨Bn}

is a valid instance of a context contraction, and C ≡ K{C1} . . . {Cn}, where either
Ci ≡ Ai ∨Bi , Ci ≡ Ai and Bi ≡ f, or Ci ≡ Bi and Ai ≡ f.

Proof. We proceed by case analysis on
A∨B

mc↓
C

. If C ∈ M∨(A,B) due to M1,

then we choose K{ } = { }. If C ∈M∨(A,B) due to M2, then we choose K{ } = a.
If C ∈ M∨(A,B) due to M3, then the condition on units means that we can
choose K{ } = { }. If C ∈ M∨(A,B) due to M4, then we proceed by induction
on the size of A. The base cases consist of the previous three cases. Assume
now that A = [A1 α A2], B = [B1 α B2] and C = [C1 α C2], with C1 ∈M∨(A1,B1)
and C2 ∈ M∨(A2,B2). Then, by the IH, we have A1 ≡ K1{A11} . . . {A1m}, B1 ≡
K1{B11} . . . {B1m}, C1 ≡ K1{C11} . . . {C1m},A1 ≡ K2{A21} . . . {A2n}, B2 ≡ K2{B21} . . . {B2n},
C2 ≡ K2{C21} . . . {C2n} where the Ci are as in proposition statement. Thus, we
can take K{ } . . . { } ≡ K1{ } . . . { } α K2{ } . . . { }, which is a context with m+n holes.
Then

K{A11} . . . {A1m}{A21} . . . {A2n} ∨K{B11} . . . {B1m}{B21} . . . {B2n}
cc↓

K{A11 ∨B11} . . . {A1m ∨B1m}{A21 ∨B21} . . . {A2n ∨B2n}

is a valid instance of a context contraction.

Example 2.39. In the center below is a SKS derivation, with a SKSm derivation
either side. The maps µ,νmin and νmax between them are shown. Note that the
derivation in the center is the associated derivation to the merge contraction
on the left.

(a∧ b)∨ (a∧ c)
mc↓

a∧ (b∨ c)

(a∧ b)∨ (a∧ c)
m

a∨ a
ac↓

a
∧ (b∨ c)

(a∧ b)∨ (a∧ c)
mc↓

a∨ a
mc↓

a
∧ (b∨ c)µ µ

νmax νmin

We can rewrite the derivations on the left and right with context contractions
instead of merge contractions, where K1{ } = a∧ { }, K2{ }{ } = { } ∧ { } and K3 = a

K1{b} ∨K1{c}
cc↓

K1{b∨ c}
and

K2{a}{b} ∨K2{a}{c}
cc↓

K2

 K3 ∨K3
cc↓

K3

 {b∨ c}
Any proposition in the merge set M∨(A,B) can be derived from both A and B,
and in fact we can define a canonical derivation of just weakenings that does
so, which we call the projective derivations associated to M∨(A,B).

2.3. REWRITING SYSTEMS FOR MERGE CONTRACTIONS 65

Definition 2.40. If C ∈ M∨(A,B), we define the projective derivations
A

πA {aw↓}
C

and
B

πB {aw↓}
C

associated to M∨(A,B) as follows:

• If C ≡ A∨B, we take πA ≡

A
=

A∨
f
{aw↓}
B

and πB ≡

B
=
f
{aw↓}
A

∨B

• If C ≡ A ≡ B ≡ a with a a unit or an atom, we take πA ≡ a and πB ≡ a.

• If A ≡ C and B ≡ f, then we take πA ≡ A and πB ≡
f
{aw↓}
B

, and vice versa if

A ≡ f and B ≡ C.

• If C ≡ C1 α C2, A ≡ A1 α A2, B ≡ B1 α B2 where α ∈ {∨,∧} and C1 ∈
M∨(A1,B1) and C2 ∈M∨(A2,B2), we take

ψA ≡
A1

πA1 {aw↓}

C1

α
A2

πA2 {aw↓}

C2

and ψB ≡
B1

πB1 {aw↓}

C1

α
B2

πB2 {aw↓}

C2

,

where πA1
, πB1

are the projective derivations associated to M∨(A1,B1)
and πA2

, πB2
are the projective definitions associated to M∨(A2,B2).

2.3 Rewriting Systems for Merge Contractions

We will now present reduction rules to permute merge contraction instances
downwards in a SKSm proof. By having associativity and commutativity fit
into a single rule scheme and uniting all contractive rules (m, ∨c↓ and ac↓)
as merge contractions, we greatly reduce the ways in which rules can overlap,
leaving us with very few rewrites to define. Of course, we could translate these
rewrites into SKS or SKS4, but doing so would be at the cost of many more
cases to consider in the rewrites and a much more complex termination proof.

The general nature of these reduction rules means that they can be defined for
a variety of systems to permute a variety of rules [AT17], and fit into a wider
normalisation theory [ATG18]. A general study on decomposition utilising
merge contractions will be provided in publications to come.

2.3.1 Three useful lemmas involving merges

First, we define a precise notion of subformula for merges, to avoid counting
“accidental” subformulae later on. We will then state and prove three useful
lemmas involving merges, which will allow us to permute merge contractions
past other rules more simply.

66 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

Definition 2.41. Let K{D} ∈M∨(A,B). We say that D is a K-subformula in A or
B in the following cases:

M1 If K{D} ≡ K ′{D} ∨B and A ≡ K ′{D} then D is a K-subformula of A. If
K{D} ≡ A∨K ′{D} and B ≡ K ′{D} then D is a K-subformula of B.

M3 If K{D} ≡ A, then D is a K-subformula of A.

M4 If K1{D1} ∈ M∨(A1,B1) and D1 is a K1-subformula of A1 (resp. B1), then
for all C2 ∈M∨(A2,B2), D1 is a K-subformula of A1 α A2 (resp. B1 α B2),
where K{ } = K1{ } α C2.

Remark 2.42. It should be straightforward to observe that ifD is aK-subformula
of A, then it is a subformula of A. The notion of K-subformula is essentially
that of a subformula occurence, but we redefine it here for those not familiar
with the notion.

Lemma 2.43. Let A,B,C be formulae with C ∈ MP
∨(A,B). Let KC{ } and PC be

s.t. C ≡ KC{PC} and PC is not a KC-subformula of A or B. Then we can find
contexts KA{ },KB{ } and formulae PA, PB s.t. A factorises as KA{PA}, B as KB{PB},
PC ∈M∨(PA, PB) and for any QA,QB, if QC ∈M∨(QA,QB), then

KC{QC} ∈M∨(KA{QA},KB{QB}) .

Alternatively, we can always find KA{ }, KB{ }, PA and PB s.t.

A∨B
mc↓

KC {PC}
≡

KA {PA} ∨KB {PB}
mc↓

KC {PC}

and, for any QC ∈M∨(QA,QB),

KA {QA} ∨KB {QB}
mc↓

KC {QC}

is a valid instance of mc↓.

Proof. We proceed by induction on the size of KC{ }. If KC{ } = { }, then we have
KA{ } = KB{ } = { }, PA ≡ A and PB ≡ B.

Now assume KC{ } =D α K ′C{ }. Since A , f , B (as PC is not a KC-subformula of
A or B) and C , A∨B, we must have that C ≡ D α K ′C{PC} ∈M

P
∨(A,B) by virtue

of M4, with A ≡ A1 α A2, B ≡ B1 α B2, D ∈M∨(A1,B1) and K ′C{PC} ∈M∨(A2,B2).

If K ′C{PC} ≡ (A2 ∨B2) and PC , (A2 ∨B2) then clearly PC is a K ′C-subformula
of A2 (or B2) and therefore also a KC-subformula of A (or B). Therefore, if
K ′C{PC} ≡ (A2 ∨B2) then PC ≡ (A2 ∨B2), and we can factorise A as A1 α {A2} and
B as B1 α {B2}. It is straightforward to check that all the conditions hold.

If we have that K ′C{PC} , (A2 ∨B2), then K ′C{PC} ∈ M
P
∨(A2,B2) and, by the IH,

we have A2 ≡ KA2
{PA} and B2 ≡ KB2

{PB} with all the appropriate conditions.
Thus, we can factorise A as A1 α KA2

{PA} and B as B1 α KB2
{PB}. By the IH,

PC ∈M∨(PA, PB).

LetQC ∈M∨(QA,QB). By the IH,K ′C{QC} ∈M∨(KA2
{QA},KB2

{QB}). SoKC{QC} ≡
D α K ′C{QC} ∈M∨(A1 α KA2

{QA},B1 α KB2
{QB}) ≡M∨(KA{QA},KB{QB}).

2.3. REWRITING SYSTEMS FOR MERGE CONTRACTIONS 67

Lemma 2.44. Assume we have A ∈M∨(A1,A2),B ∈M∨(B1,B2) and C ∈MP
∨(A,B).

Then we can find C1,C2 s.t. C1 ∈ MP
∨(A1,B1) and C2 ∈ MP

∨(A2,B2) s.t. C ∈
MP
∨(C1,C2). Alternatively, we always can find C1 and C2 s.t. the following rewrite

is valid.

(A1 ∨B1)∨ (A2 ∨B2)
mc↓

A∨B
mc↓

C

−→
A1 ∨B1

mc↓
C1

∨
A2 ∨B2

mc↓
C2

mc↓
C

Proof. We proceed by structural induction on C.

If C ≡ a, where a is an atom or unit, then clearly A1,A2,B1,B2 ∈ {a, f}, with
at least one of the four not equal to f if a , f. Thus it is straightforward to
appropriately choose C1,C2 from {a, f}.

If C ≡D1 α D2, then either:

M3 A ≡D1 α D2, B ≡ f (WLOG). Clearly, B1 ≡ B2 ≡ f. Thus we can take C1 ≡ A1
and C2 ≡ A2, since D1 α D2 ∈MP

∨(A1,A2).

M4 A ≡ E1 α E2, B ≡ F1 α F2 with D1 ∈M∨(E1,F1) and D2 ∈M∨(E2,F2). There
are lots of different permutations possible at this point, but they boil
down to 4 fundamentally different cases:

• A1 ≡ E1 α E2, B1 ≡ F1 α F2 and A2 ≡ B2 ≡ f. In this case, we can set
C1 ≡D1 α D2 and C2 ≡ f. Symmetrically, if A1 ≡ B1 ≡ f, A2 ≡ E1 α E2
and B2 ≡ F1 α F2, then we can set C1 ≡ f and C2 ≡D1 α D2.

• A1 ≡ E1 α E2, B1 ≡ f, A2 ≡ f and B2 ≡ F1 α F2 or A1 ≡ f, B1 ≡ F1 α F2,
A2 ≡ E1 α E2 and B2 ≡ f. In both these cases, we can set C1 ≡ E1 α E2,
C2 ≡ F1 α F2.

• A1 ≡ A11 α A12, B1 ≡ F1 α F2, A2 ≡ A21 α A22 and B2 ≡ f α f (B2 is
chosen as f α f not f for a technical reason, it is not important). It
must be the case that C1 ≡ C11 α C12 and C2 ≡ C21 α C22 for some
C11,C12,C21,C22, s.t. C11 ∈ M∨(A11,F1), C12 ∈ M∨(A12,F2), C21 ∈
M∨(A21, f), C22 ∈M∨(A22, f),D1 ∈M∨(C11,C21), andD2 ∈M∨(C12,C22).
We will show how to find C11 and C21; finding C12 and C22 is anal-
ogous.

– If D1 ≡ E1 ∨F1, then we can take C11 ≡ A11 ∨F1 and C12 ≡
A21 ∨ f.

– IfD1 , E1 ∨F1, thenD1 ∈MP
∨(E1,F1) and, by the IH, we can find

G1 ∈ MP
∨(A11,F1) and G2 ∈ MP

∨(A21, f) with D1 ∈ MP
∨(G1,G2).

Clearly we can set C11 ≡ G1 and C21 ≡ G2.

Any other case where exactly one of A1,B1,A2,B2 is equal to f (or
f α f) is analogous.

• A1 ≡ A11 α A12, B1 ≡ B11 α B12, A2 ≡ A21 α A22 and B1 ≡ B21 α
B22. It must be the case the C1 ≡ C11 α C12 and C2 ≡ C21 α C22 for
some C11,C12,C21,C22, s.t. C11 ∈ M∨(A11,B11), C12 ∈ M∨(A12,B12),
C21 ∈M∨(A21,B21), C22 ∈M∨(A22,B22), D1 ∈M∨(C11,C21) and D2 ∈

68 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

M∨(C12,C22). We will show how to find C11 and C21, finding C12
and C22 is analogous.

– If D1 ≡ E1 ∨F1, then we can take C11 ≡ A11 ∨B11 and C12 ≡
A21 ∨B21.

– IfD1 , E1 ∨F1, thenD1 ∈MP
∨(E1,F1) and, by the IH, we can find

G1 ∈MP
∨(A11,B11) and G2 ∈MP

∨(A21,B21) with D1 ∈MP
∨(G1,G2).

Clearly we can set C11 ≡ G1 and C21 ≡ G2.

Lemma 2.45. Assume we have B ∈ MP
∨(A1,A2) and B ∈ MP

∧(C1,C2). Then we
can find B1,B2,B3,B4 s.t. A1 ∈MP

∧(B1,B2), A2 ∈MP
∧(B3,B4), C1 ∈MP

∨(B1,B3) and
C2 ∈MP

∨(B2,B4). Alternatively, we can always find B1,B2,B3,B4 s.t. the following
rewrite is valid (although in practice the medial would be absorbed into one of the
merge (co)contractions):

A1 ∨A2
mc↓

B
mc↑

C1 ∧C2

−→

A1
mc↑

B1 ∧B2
∨

A2
mc↑

B3 ∧B4
m

B1 ∨B3
mc↓

C1
∧

B2 ∨B4
mc↓

C2

Proof. We proceed by structural induction on B.

If B ≡ a, where a is an atom or unit, then clearly A1,A2,C1,C2 ∈ {a, f, t}. It is
straightforward to select appropriate Bi from {a, f, t}.

If B ≡D1 α D2, then either:

M3A A1 ≡ D1 α D2 and A2 ≡ f (WLOG). Then we can set B1 ≡ C1, B2 ≡ C2,
B3 ≡ f and B4 ≡ f.

M3C C1 ≡ D1 α D2 and C2 ≡ t (WLOG). Then we can set B1 ≡ A1, B2 ≡ t,
B3 ≡ A2 and B4 ≡ t.

M4 A1 ≡ (A11 α A12), A2 ≡ (A21 α A22), C1 ≡ (C11 α C12) and C2 ≡ (C21 α C22),
with D1 ∈ M∨(A11,A21), D2 ∈ M∨(A12,A22), D1 ∈ M∧(C11,C21) and D2 ∈
M∧(C12,C22).

EitherD1 ≡ A11 ∨A21,D1 ≡ C11 ∧C21 orD1 ∈MP
∨(A11,A21)∩MP

∧(C11,C21).

• If D1 ≡ A11 ∨A21, then C11 ≡ C111 ∨C112 and C21 ≡ C211 ∨C212,
with A11 ∈M∧(C111,C211) and A21 ∈M∧(C112,C212).

• IfD1 ≡ C11 ∧C21, thenA11 ≡ A111 ∧A112 andA21 ≡ A211 ∧A212 with
C11 ∈M∨(A111,A211) and C21 ∈M∨(A112,A212).

• If D1 ∈ MP
∨(A11,A21) ∩ MP

∧(C11,C21), then by the IH, we can find
D11,D12,D13 and D14 as in the statement of the lemma.

Depending on which case holds, we can now set (B11,B21,B31,B41) ≡
(A111,A112,A211,A212), (C111,C211,C112,C212) or (D11,D12,D13,D14). In
the same way, we can find appropriate (B12,B22,B32,B42) from D2. It is
then straightforward to see that setting Bi ≡ Bi1 α Bi2 gives us suitable
Bi .

2.3. REWRITING SYSTEMS FOR MERGE CONTRACTIONS 69

Remark 2.46. The fact that atomic contractions are simply special cases of
merge contractions is illustrated by the two lemmas above. The first is analo-
gous to a rewrite of a non-atomic contraction and a contraction to three atomic
contractions:

c↓−ac↓ :

(a∨ a)∨ (a∨ a)
c↓

a∨ a
ac↓

a

−→
a∨ a

ac↓
a
∨

a∨ a
ac↓

a
ac↓

a

Lemma 3.38 :

(A1 ∨B1)∨ (A2 ∨B2)
mc↓

A∨B
mc↓

C

−→
A1 ∨B1

mc↓
C1

∨
A2 ∨B2

mc↓
C2

mc↓
C

−→

whereas the second mirrors the interaction between an atomic contraction and
cocontraction.

ac↓−ac↑ :

a∨ a
ac↓

a
ac↑

a∧ a
−→

a
ac↑

a∧ a
∨

a
ac↑

a∧ a
m

a∨ a
ac↓

a
∧

a∨ a
ac↓

a

Lemma 3.39 :

A1 ∨A2
mc↓

B
mc↑

C1 ∧C2

−→

A1
mc↑

B1 ∧B2
∨

A2
mc↑

B3 ∧B4
m

B1 ∨B3
mc↓

C1
∧

B2 ∨B4
mc↓

C2

−→

2.3.2 Permuting rules through merge contractions

We are now ready to prove a major theorem: that a merge contraction can
be permuted past any other rule in SKSm. Not only does the move to SKSm
greatly reduce the number of cases we need to consider, but we are now able to
push medials—in particular, critical medials—past all other rules, in the guise
of a merge contraction.

70 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

Theorem 2.47. Assume we have a merge contraction above a rule ρ ∈ SKSm in a
context, with PC not a KC-subformula of A or B:

A∨B
mc↓

KC

 PC
ρ
QC


Then we can find sentences PA, PB,QA,QB, contexts KA{ },KB{ } and derivations
φ1,φ2 ∈ SKSm s.t. the following is a valid derivation:

KA


PA

φ1

QA

∨KB

PB

φ2

QB


mc↓

KC {QC}

Proof. By Lemma 3.37, we can find KA,KB,C1,C2 so that we have:

KA {PA} ∨KB {PB}
mc↓

KC

 PC
ρ
QC


One general case is very straightforward:

Eq If PA ≡ PB ≡ PC , then, by Lemma 3.37, we can set φ1 ≡ φ2 ≡
PC

ρ
QC

.

We now prove case by case on ρ that we can find QA,QB,φ1 and φ2

• If ρ ∈ {ai↓,ai↑,aw↓,aw↑}, then we can observe that every possible (non-
KC-subformula) case falls under Eq.

• If ρ = mc↓, with PC ≡ R∨ S and QC ≡ T , then we have two extra cases
beyond Eq to consider:

– PA ≡ R,QA ≡ S. Then, by Lemma 3.37 we have:

KA {R} ∨KB {S}
mc↓

KC

 R∨ S
mc↓

T

 −→
KA {R} ∨KB {S}

mc↓
KC {T }

– PA ≡ R1 ∨ S1,QA ≡ R2 ∨ S2, with R ∈M∨(R1,R2) and S ∈M∨(S1,S2).
By Lemma 3.38, we can find T1 and T2 s.t.:

KA {(R1 ∨ S1)} ∨KB {(R2 ∨ S2)}
mc↓

KC

 R∨ S
mc↓

T

 −→
KA

 R1 ∨ S1
mc↓

T1

∨KB
 R2 ∨ S2
mc↓

T2


mc↓

KC {T }

• If ρ = mc↑ with PC ≡ T and QC ≡ R∧ S, then there is one extra case
beyond Eq to consider:

2.3. REWRITING SYSTEMS FOR MERGE CONTRACTIONS 71

– PA ≡ TA, PB ≡ TB, with T ∈M∨(T1,T2). By Lemma 3.39, we can find
RA,RB,SA,SB s.t.:

KA {TA} ∨KB {TB}
mc↓

KC

 T
mc↑

R∧ S

 −→
KA

 TA
mc↑

RA ∧ SA

∨KB TB
mc↑

RB ∧ SB


mc↓

KC {R∧ S}

• If ρ ∈ {s↓,s↑}, then, if Eq does not apply, we must have a LHS of the form:

KA {(P5 ∧ P6)} ∨KB {(P7 ∧ P8)}
mc↓

KC

 (P1 α P2)∧ (P3 ∨ P4)
s↓

(P1 ∧ P3)∨ (P2 β P4)


with (α,β) ∈ {(∨,∧), (∧,∨)}, P1 α P2 ∈ M∨(P5, P7) and P3 ∨ P4 ∈ M∨(P6, P8).
Therefore, using projective derivations, we can construct:

KA


P5

πP5
P1 α P2

∧
P6

πP6
P3 ∨ P4

s↓
(P1 ∧ P3)∨ (P2 β P4)

∨KB


P7
πP7
P1 α P2

∧
P8

πP8
P3 ∨ P4

s↓
(P1 ∧ P3)∨ (P2 β P4)


mc↓

KC {(P1 ∧ P3)∨ (P2 β P4)}

Definition 2.48. In the following definition, α,β,δ,ε ∈ {∨,∧}.

We define the following rewrite rules for SKSm:

r1 :

(A1 α A2)∨ (B1 α B2)
mc↓

C1 α C2
∧ (D β E)

ρ
(C1 ∧D) δ (C2 ε E)

−→

((A1 α A2)∨ (B1 α B2))∧
(D β E)

mc↑
(D β E)∧ (D β E)

s↑
(A1 α A2)∧ (D β E)

ρ
(A1 ∧D) δ (A2 ε E)

∨
(B1 α B2)∧ (D β E)

ρ
(B1 ∧D) δ (B2 ε E)

mc↓
(C1 ∧D) δ (C2 ε E)

where ρ is an instance of ∧c↑, s↓ or s↑.

r2 :

(A1 α A2)∨ (B1 α B2)
mc↓

C1 α C2
∨ (D β E)

ρ
(C1 ∨D) δ (C2 ∨E)

−→

((A1 α A2)∨ (B1 α B2))∨

(D β E)∨
f
{aw↓}

(D β E)


∨c↓

(A1 α A2)∨ (D β E)
ρ

(A1 ∨D) δ (A2 ∨E)
∨

(B1 α B2)∨ (D β E)
ρ

(B1 ∨D) δ (B2 ∨E)
mc↓

(C1 ∨D) δ (C2 ∨E)

where ρ is an instance of m or ∨c↓.

s :

A∨B
mc↓

KC

 PC
ρ
QC

 −→
KA


PA

φ1

QA

∨KB

PB

φ2

QB


mc↓

KC {QC}
where ρ is an instance of any rule, PC is not a KC-subformula of A or B and the
RHS is given as in Theorem 2.47.

72 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

We also define the trivial reductions:

t1 :
K

 A∨B
mc↓

C


ρ

K ′{C}
−→

K{A∨B}
ρ

K ′
 A∨B
mc↓

C


t2 :

A∨B
mc↓

KC

 PC
ρ
QC

 −→
KA

 PC
ρ
QC

∨B
mc↓

KC {QC}

Where ρ is an instance of any rule, and PC is a KC-subformula of A.

t3 :

A∨B
mc↓

KC

 PC
ρ
QC

 −→
A∨KB

 PC
ρ
QC


mc↓

KC {QC}

Where ρ is an instance of any rule, and PC is a KC-subformula of B.

We define the rewriting system M = {r1, r2, s, t1, t2, t3}.

2.4 Cycle Removal with Merge Contractions

We will now show we can use the rewriting system M to remove cycles from
a proof. To prove termination we will focus on removing the critical merge
medials, rather than cycles themselves. We do so by defining the image of
critical medials in SKSm.

Definition 2.49. Let φ be an SKS proof with a critical medial m. We call the
image of m in νmin : SKS→ SKSm or νmax : SKS→ SKSm a critical merge con-
traction.

By removing the critical merge contractions in an SKSm proof one at a time,
we can afford to create new cycles, as long as they do not create any new criti-
cal merge contractions, since, if all critical merge contractions are eliminated,
there can be no more cycles.

Given an SKSm derivation, there can be several merge contractions to which
we can apply the reduction rules of system M. However, since our goal is
to permute critical medials downwards until there are no cycles left in the
derivation there is a clear strategy to choose which merge contractions will be
permuted.

Proposition 2.50. Let φ be an SKS derivation with a unicycle. Let φ′ ≡ νmax(φ)
(or νmin(φ), it doesn’t matter). Then φ′ has a critical merge contraction to which a
reduction rule of system M can be applied.

Proof. Given a SKS derivation φ with a unicycle, there must be a critical me-
dial. Since µ is the left inverse of νmax, the merge contraction that the medial
is mapped to must be a critical merge contraction.

2.4. CYCLE REMOVAL WITH MERGE CONTRACTIONS 73

We can apply a reduction of rule of system M to it since there is at least one
rule below it: the cut belonging to the unicycle.

2.4.1 Termination

Our strategy for removing ai-cycles is as follows:

1. Ensure that all cycles are unicycles, and that no two cycles share a cut, by
Proposition 2.20. Therefore every cycle will have a well-defined critical
medial.

2. Convert the proof to SKSm, and permute the critical merge contractions
down using the rewrite system M.

3. When the critical merge contraction for a cycle is permuted past the
(unique) atomic cut that is a node in that cycle, in application of rewrite
s, it will break the cycle. To ensure that this rewriting does indeed break
the cycle and doesn’t simply create a a 2-multicycle, we need to make
sure that edges 1 and 2 are not connected by an atomic identity, however
since no two cycles share an atomic cut, this cannot be the case.

1 2 −→ 1

2

We will show termination of the procedure by proving we can remove criti-
cal merge contractions one by one, assuming all cycles are unicycles and no
two cycles share a cut. Since termination can be understood from the changes
induced on the flow of the derivation by the cycle-elimination procedure, we
will accompany the proof of the following Theorem 2.52 with a study of the
changes on flows that each rewriting rule of system M produces. An accurate
formal bound for the complexity cost of the procedure has yet to be estab-
lished, but the study of the flow changes is expected to provide us with the
necessary intuition to obtain it.

Lemma 2.51. If the edge of a cycle is bifurcated by rewrite r1 then, although new
cycles are created, no new critical merge contractions are created, and the two con-
ditions in Proposition 2.20 are preserved.

Proof. We need to consider two cases: where one edge of a cycle is bifurcated
and where both are.

• If only one edge of a cycle is bifurcated, since the critical merge contrac-
tion for the cycle is above the bifurcation, it is the critical merge contrac-

74 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

tion for both new cycles as well.

∨
m
∧

−→

∨
m
∧

• If two edges of the cycle are bifurcated, we must be in the following situ-
ation:

P

 t

a∨ ā


S


A∨B

M
C
∧K{a}{ā}

ρ
F{a}{ā}


T

a∧ āf


−→

P

 t

a∨ ā



S



(A∨B)∧
K{a}{ā}

mc↑
K{a}{ā} ∧K{a}{ā}

s↑
A∧K{a}{ā}

ρ
F{a}{ā}

∨
B∧K{a}{ā}

ρ
F{a}{ā}

M
F{a}{ā}


T

a∧ āf


−→

1 8

2 3
6 7

4 5

In this case, the critical merge contraction for the original cycle (on the
left) is now the critical merge contraction for the cycles (1,2,4,5,6,8) and
(1,3,4,5,7,8) where a and ā are of the same color. M is the critical merge
contraction for the cycles (1,2,4,5,7,8) and (1,3,4,5,6,8) where a and ā
are of different colors. Thus, although we do add cycles, we do not add
critical merge contractions.

We now have all the pieces in play to prove our main theorem.

Theorem 2.52. Let φ be an SKSm derivation with no multicycles and where no
two cycles with different identities share a cut. If φ contains n critical merge con-
tractions, then exists a derivation ψ with the same premise and conclusion with

2.4. CYCLE REMOVAL WITH MERGE CONTRACTIONS 75

n − 1 critical merge contractions. Furthermore, ψ contains no multicycles and no
two cycles with different identities share a cut.

Proof. We consider the lowest critical merge contraction of φ, that we call M.
We apply a reduction of system M to permute M downwards in φ. We repeat
this process until we obtain a derivation ψ where M is not a critical merge
contraction as it has been permuted below the cuts of the cycles whose critical
medials it contained.

At every application of a reduction of M, the number of inference rules below
M is decreased: the procedure therefore terminates, and at the end of itM will
no longer be critical. We only need to show that we do not create multicycles,
cycles with different identities that share a cut, or new critical merge contrac-
tions. We will show this by considering ten different cases, most of which will
be illustrated with reference to their flows.

We will enclose the parts of the flow that belong to the critical merge contrac-
tion in a red box and we will call ρ the rule instance below the critical merge
contraction.

1. Instances of r1 do not change the links between the existing edges of a
flow. They may bifurcate previously “single” edges, in which case we
know from Lemma 2.51 that no new critical merge contractions are cre-
ated.

(A1 α A2)∨ (B1 α B2)
mc↓

C1 α C2
∧ (D β E)

ρ
(C1 ∧D) δ (C2 ε E)

−→

((A1 α A2)∨ (B1 α B2))∧
(D β E)

mc↑
(D β E)∧ (D β E)

s↑
(A1 α A2)∧ (D β E)

ρ
(A1 ∧D) δ (A2 ε E)

∨
(B1 α B2)∧ (D β E)

ρ
(B1 ∧D) δ (B2 ε E)

mc↓
(C1 ∧D) δ (C2 ε E)

−→

Potential complexity is generated in the cycle-removing procedure by
turning straight edges into ‘sausages’

2. Instances of r2 do not change the links between the existing edges of a
flow. They introduce some contractions where one edge is connected to a

76 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

weakening. Therefore the application of this rule cannot create new cy-
cles (i.e. create new critical merge contractions) or change the identities
or cuts of cycles.

(A1 α A2)∨ (B1 α B2)
mc↓

C1 α C2
∨ (D β E)

ρ
(C1 ∨D) δ (C2 ∨E)

−→

((A1 α A2)∨ (B1 α B2))∨

(D β E)∨
f
{aw↓}

(D β E)


mc↓

(A1 α A2)∨ (D β E)
ρ

(A1 ∨D) δ (A2 ∨E)
∨

(B1 α B2)∨ (D β E)
ρ

(B1 ∨D) δ (B2 ∨E)
mc↓

(C1 ∨D) δ (C2 ∨E)

−→

The size of the proof after the cycle elimination will not be increased sig-
nificantly by the application of these reductions, since the weakenings
can be pulled down, and the edges that have been connected to a weak-
ening node will return to simply being straight edges.

3. For all instances of s where ρ = aw↓ or ρ = aw↑, Eq applies. This dupli-
cates (co)weakenings, with no risk of affecting cycles.

A∨B
mc↓

C

 a
aw↑

t

 −→
A

πA {aw↓}

C

 a
aw↑

t

 ∨
B

πB {aw↓}

C

 a
aw↑

t


mc↓

C {t}

−→

4. For all instances of s where ρ = ai↓, Eq applies. This changes a sin-
gle identity into two identities and two contractions, and may introduce
some contractions where one edge is connected to a weakening.

2.4. CYCLE REMOVAL WITH MERGE CONTRACTIONS 77

KA {t} ∨KB {t}
mc↓

KC

 t
ai↓
a∨ ā

 −→
KA

 t
ai↓
a∨ ā

∨KB t
ai↓
a∨ ā


mc↓

KC {a∨ ā}

−→

This reduction could only introduce a cycle if the instance of ai↓ being
permuted was part of a cycle. This is however not a possible case since
we are permuting the lowermost critical merge contraction, and if the
instance of ai↓ was part of a cycle there would be a critical merge con-
traction that is lower.

5. For all instances of s where ρ = ai↑, Eq applies. This duplicates cuts and
removes atomic contractions:

KA {(a∧ ā)} ∨KB {(a∧ ā)}
mc↓

KC

 a∧ ā
i↑

f

 −→
KA

 a∧ ā
i↑

f

∨KB a∧ ā
i↑

f


mc↓

KC {f}

−→

If a and ā are of the same color are in a cycle, then the critical merge
contraction for the cycle is above the subderivation that we are rewriting,
and remains the critical medial for the cycle. If a and ā of different colors
belong to a cycle, then M is its critical merge contraction, and the cycle
is broken through this reduction: since there are no cycles with different
identities sharing a cut, the other two edges cannot be connected.

−→

Therefore the application of this rule reduces or maintains the number
of critical merge contractions), and does not create multicycles or cycles
with different identities that share a cut.

78 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

6. Applications of s where ρ = mc↓ do not change the flow significantly in
any of the three cases:

• In the Eq case, and in the second of the two extra cases, the critical
merge contraction is permuted beneath the other, duplicating it but
making no major change to the flow.

KA {(R∨ S)} ∨KB {(R∨ S)}
mc↓

KC

 R∨ S
mc↓

T

 −→
KA

 R∨ S
mc↓

T

∨KB R∨ S
mc↓

T


mc↓

KC {T }

KA {(R1 ∨ S1)} ∨KB {(R2 ∨ S2)}
mc↓

KC

 R∨ S
mc↓

T

 −→
KA

 R1 ∨ S1
mc↓

T1

∨KB R2 ∨ S2
mc↓

T2


mc↓

KC {T }

−→

• In the first additional case, the merge contraction below simply gets
absorbed by the critical merge contraction.

KA {R} ∨KB {S}
mc↓

KC

 R∨ S
mc↓

T

 −→
KA {R} ∨KB {S}

mc↓
KC {T }

−→

7. Applications of s where ρ = mc↑ change the flow a little, but do not
change the paths through the sub flow. Both the cases can be treated

2.4. CYCLE REMOVAL WITH MERGE CONTRACTIONS 79

together:

KA {T } ∨KB {T }
mc↓

KC

 T
mc↓

R∨ S

 −→
KA

 T
mc↑

R∧ S

∨KB T
mc↑

R∧ S


mc↓

KC {R∧ S}

KA {TA} ∨KB {TB}
mc↓

KC

 T
mc↓

R∨ S

 −→
KA

 TA
mc↑

RA ∧ SA

∨KB TB
mc↑

RB ∧ SB


mc↓

KC {R∧ S}

−→

8. Instances where ρ ∈ {s↓,s↑} can be treated together, as the flows are in-
distinguishable.

• If Eq holds, the flow changes but all the paths are the same:

KA {((P1 α P2)∧ (P3 ∨ P4))} ∨KB {((P1 α P2)∧ (P3 ∨ P4))}
mc↓

KC

 (P1 α P2)∧ (P3 ∨ P4)
s↓

(P1 ∧ P3)∨ (P2 β P4)



−→
KA

 (P1 α P2)∧ (P3 ∨ P4)
s↓

(P1 ∧ P3)∨ (P2 β P4)

∨KB (P1 α P2)∧ (P3 ∨ P4)
s↓

(P1 ∧ P3)∨ (P2 ∨ P4)


mc↓

KC {(P1 ∧ P3)∨ (P2 β P4)}

−→

• If not, then we have the rewriting involving projective derivations,
which, since it does not introduce any new paths, cannot cause prob-
lems:

KA {(P5 ∧ P6)} ∨KB {(P7 ∧ P8)}
mc↓

KC

 (P1 α P2)∧ (P3 ∨ P4)
s↓

(P1 ∧ P3)∨ (P2 β P4)

 −→

80 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

KA


P5

πP5
P1 α P2

∧
P6

πP6
P3 ∨ P4

s↓
(P1 ∧ P3)∨ (P2 β P4)

∨KB


P7
πP7
P1 α P2

∧
P8

πP8
P3 ∨ P4

s↓
(P1 ∧ P3)∨ (P2 β P4)


mc↓

KC {(P1 ∧ P3)∨ (P2 β P4)}

P5 P6 P7 P8

−→

πP5
πP6

πP7
πP8

9. Instances of the trivial reductions t1, t2 or t3 do not change the flow of
the derivation and therefore cannot produce new cycles.

σ
−→

σ

To eliminate all cycles from a derivation, one simply performs the procedure n
times, once for each critical merge contraction.

Theorem 2.53. Given an SKS derivation φ, we can construct an SKS derivation ψ
with the same premise and conclusion containing no ai-cycles.

Proof. Given a derivation φ, we transform all its multicycles into unicycles by
applying Lemma 2.18. If any two cycles share a cut, we apply Lemma 2.19.
Call this proof φ′ . Take χ ≡ νmax(φ′). We can eliminate every critical merge
contraction from χ with an application of Theorem 2.52, obtaining χ′ . Finally
we take ψ ≡ µ(χ′), which will be free of cycles.

2.4. CYCLE REMOVAL WITH MERGE CONTRACTIONS 81

A complete example of the removal of a cycle with a similar procedure can be
found in [AT16].

We can now prove a full decomposition result.

Theorem 2.54. Given an SKS derivation φ of A to B, we can obtain a strongly
decomposed derivation φ from A to B.

Proof. Immediate from Theorems 2.53 and 2.15.

Note that we could define a variation of decomposition for proofs in SKSm
itself, if we add a rewrite to “minimize” merge contractions, so that any rewrite
in C can be replicated in SKSm.

Definition 2.55. We define the following rewrite for derivations in SKSm,

m : φ −→ νmin(µ(φ))

In addition, we define mc↓ − ai↑ and mc↑ − ai↓ to be identical to ac↓ − ai↑ and
ac↑ − ai↓ respectively, except with different labels for the contractions. We
define M+ = M∪ {m,mc↓−ai↑,mc↑−ai↓}.

Proposition 2.56. If φ −→C ψ, then νmin(φ) −→M+ νmin(ψ).

Theorem 2.57. For every proof φ in SKSm, there is a proof ψ and a reduction
sequence φ −→∗M+ ψ, such that

ν(ψ) ≡

SKS\{ac↓,ac↑}
B′

{ac↓}
B

Proof. We follow the strategy of “do cycle removal then do decomposition”.

It is expected that a stronger result is true for derivations in SKSm.

Conjecture 2.58. M+ is weakly normalizing for SKSm. Therefore every derivation
can be reduced to the following form:

A
{mc↑}

A′

SKSm\{mc↓,mc↑}
B′

{mc↓}
B

82 CHAPTER 2. DECOMPOSITION VIA CYCLE REMOVAL

Part II

First-Order Logic

83

Chapter 3

Open Deduction for
First-Order Logic

3.1 Open Deduction and First-Order Logic

3.1.1 The signature for classical first-order logic

Definition 3.1. We define V = {x0,x1, . . . } and C = {c,c0, c1, . . . } to be infinite sets
of variables and constants, respectively. For each n, we define Fn = {f n0 , f

n
1 , . . . }

to be an infinite set of n-ary function symbols.

We define the terms of FOL, T, in the following way:

• All variables x ∈ V are terms.

• All constants a ∈ C are terms.

• If t1, . . . , tn are all terms, and fn ∈ Fn, then Fn(t1, . . . , tn) is a term.

A term is closed if it contains no variables.

Definition 3.2. For each n, we define Pn = {P n0 , P
n
1 , . . . } to be an infinite set of

n-ary predicate symbols. We define the set of atoms of first-order logic to be
A1 = {P ni (t1, . . . , tn) | i,n ∈ N, ti ∈ T}.

We define Q = {∀x0,∀x1, . . . } ∪ {∃x0,∃x1, . . . }, to be an infinite set of logical oper-
ators of arity 1, s.t. for every v ∈ V, ∀v,∃v ∈ Q, with ∀̄v = ∃v and ∃̄v = ∀v

Definition 3.3. We define the signature for FOL, Σ1 = (A1, {t, f},Q, {∧,∨}).

Convention 3.4. In practice, we will use x,y,z for variables, a,b,c for constants,
f ,g,h for functions of any arity and P ,Q,R for predicate symbols of any arity,
all with or without subscripts and superscripts.

Definition 3.5. The size of a term, denoted |t|, is defined as follows:

• |x| = 1 for every x ∈ V

• |a| = 1 for every a ∈ C

85

86 CHAPTER 3. OPEN DEDUCTION FOR FIRST-ORDER LOGIC

• fn(t1, . . . , tn) = max(t1, . . . , tn) + 1 for every fn ∈ Fn, ti ∈ T.

The set of free variables of a term, FV (t) is defined as follows:

• FV (x) = {x},

• FV (a) = ∅,

• FV (fn(t1, . . . , tn)) =
⋃

(FV (ti)) for every fn ∈ Fn, ti ∈ T.

If t ∈ T and x ∈ V, then [t ⇒ x] denotes a substitution. If t′ ∈ T, then we write
[t⇒ x]t′ to denote the term defined in the following way:

• [t⇒ x]x = t,

• If x , y, [t⇒ x]y = y.

• [t⇒ x]a = t,

• [t⇒ x](fn(t1, . . . , tn)) = fn([t⇒ x]t1, . . . , [t⇒ x]tn)

Definition 3.6. The size of a FOL derivation is determined by the following
functions:

• |t| = |f| = 1,

•
∣∣∣P ni (t1, . . . , tn)

∣∣∣ =
(
Σn1 |ti |

)
+ 1,

The set of free variables of a FOL derivation is defined in the following way:

• FV (t) = FV (f) = ∅,

• FV (P ni (t1, . . . , tn)) =
⋃

(FV (ti)),

• FV (∀vφ) = FV (∃vφ) = FV (φ)\{v},

• FV (φ∧ψ) = FV (φ∨ψ) = FV

 φ
ρ
ψ

 = FV (φ)∪FV (ψ).

We say that a FOL derivation φ is closed if FV (φ) = ∅.

We write [t⇒ x]φ to denote the derivation defined in the following way:

• [t⇒ x]t ≡ t, [t⇒ x]f ≡ f,

• [t⇒ x]P ni (t1, . . . , tn) ≡ P ni ([t⇒ x]t1, . . . , [t⇒ x]tn),

• [t⇒ x](∀xφ) ≡ ∀xφ, [t⇒ x](∃xφ) ≡ ∃xφ

• If x , y, [t⇒ x](∀xφ) ≡ ∀x([t⇒ x]φ), [t⇒ x](∃xφ) ≡ ∃x([t⇒ x]φ)

• [t⇒ x](φ∧ψ) ≡ [t⇒ x]φ∧ [t⇒ x]ψ, [t⇒ x](φ∨ψ) ≡ [t⇒ x]φ∨ [t⇒ x]ψ

• [t⇒ x]

 φ
ρ
ψ

 =
[t⇒ x]φ

ρ
[t⇒ x]ψ

Convention 3.7. If K{ } is a first-order context andA a first-order formula, [t⇒
x]K{A} only denotes a substitution onK{ }, [t⇒ x](K{A}) denotes a substitution
on all of K{A}. We will also abuse notation a little sometimes, writing, for
example, [x⇒ c]A for A′ if [c⇒ x]A′ ≡ A and c does not appear in A′ .

3.1. OPEN DEDUCTION AND FIRST-ORDER LOGIC 87

3.1.2 Proofs systems for FOL: SKSgq, SKSq, KSgq and KSq

We are now ready to introduce the basic open deduction proof systems for
FOL, as defined in [Brü03a; Brü06b]. As for propositional logic, there are two
systems with atomic structural rules, and two with general structural rules;
there are two systems with cut, and two cut-free systems.

Definition 3.8. We define four proof systems for FOL,

• SKSgq, a general first-order system with cut;

SKSgq = SKSg+

[t⇒ x]A
n↓
∃xA

∀x(A∨B)
u↓
∀xA∨∃xB

∀xA
n↑

[t⇒ x]A

∃xA∧∀xB
u↑
∃x(A∧B)

• SKSq, an atomic first-order system with cut;

SKSq = SKS+

[t⇒ x]A
n↓
∃xA

∀x(A∨B)
u↓
∀xA∨∃xB

∃xA∨∃xB
m1↓ ∃x(A∨B)

∀xA∨∀xB
m2↓ ∀x(A∨B)

∀xA
n↑

[t⇒ x]A

∃xA∧∀xB
u↑
∃x(A∧B)

∀x(A∧B)
m1↑∀xA∧∀xB

∃x(A∧B)
m2↑∃xA∧∃xB

• KSgq, a general, cut-free first-order system;

KSgq = KSg+
[t⇒ x]A

n↓
∃xA

∀x(A∨B)
u↓
∀xA∨∃xB

• KSq an atomic cut-free first-order system.

KSq = KS+
[t⇒ x]A

n↓
∃xA

∀x(A∨B)
u↓
∀xA∨∃xB

∃xA∨∃xB
m1↓ ∃x(A∨B)

∀xA∨∀xB
m2↓ ∀x(A∨B)

For the rules n↓ and n↑, we insist that x < FV (t).

All the above systems extend the equality relation from CPL with the following
equations:

∀xA = ∀z([z⇒ x]A) ∀x∀yA = ∀y∀xA ∀xB = B
∃zA = ∃z([z⇒ x]A) ∃x∃yA = ∃y∃xA ∃xB = B

where x < FV (B)

Definition 3.9. We say that a FOL derivation is regular if no variable is used in
two different quantifiers.

88 CHAPTER 3. OPEN DEDUCTION FOR FIRST-ORDER LOGIC

Convention 3.10. While we often insist for lemmas and theorems that deriva-
tions be regular, unless variable hygiene is necessary for a particular proof we
will often violate regularity when depicting proofs. For example, technically

a contraction should have three sets of quantifiers, e.g.
∃xP x∨∃yP y

c↓
∃zP z

, but, in

practice, we would usually write this as
∃xP x∨∃xP x

c↓
∃xP x

.

3.1.3 The Rules of Passage

We now introduce eight inference rules, the rules of passage (also known as
retract rules [Brü06a]), originally described by Herbrand [Her30; Her71]. Since
they are essentially used in Herbrand’s work as rewriting rules, they can be
considered deep inference rules avant la lettre.

Definition 3.11. The following eight rules are the rules of passage

∀x(A∨B)
r1↓
∀xA∨B

∀x(A∧B)
r2↓
∀xA∧B

∃x(A∨B)
r3↓
∃xA∨B

∃x(A∧B)
r4↓
∃xA∧B

∃xA∧B
r1↑
∃x(A∧B)

∃xA∨B
r2↑
∃x(A∨B)

∀xA∧B
r3↑
∀x(A∧B)

∀xA∨B
r4↑
∀x(A∨B)

where x ∈ FV (B).

We refer to the down rules collectively as RP↓ = {r1↓,r2↓,r3↓,r4↓}, the up rules
as RP↑ = {r1↑,r2↑,r3↑,r4↑} and all the rules of passage as RP = RP↓ ∪RP↑.

The rules of passage allow for prenexification and deprenexification of for-
mulae. Since there are formulae whose cut-free sequent calculus proofs are
non-elementarily shorter than their prenexified forms [AB16; BL94; Sta79],
adding the four rules {r1↑,r2↑,r3↑,r4↑} to a cut-free first-order system leads to
significantly shorter proofs.

Proposition 3.12. There is no elementary function bounding the length of the
shortest KSq proof of a formula in terms of its shortest KSq∪RP↑ proof.

Proof. Immediate from the same reasoning about the size of Herbrand disjunc-
tions in [AB16].

Although the ‘up’ rules of passage drastically change the power of proof sys-
tems from a complexity point of view, the ‘down’ rules of passage are all simply
derivable for the cut-free FOL system KSq, with the exception of r2↓, which is
shown to be admissible without too much difficulty.

The r1↓ rule is roughly equivalent to the u↓ rule.

Proposition 3.13. r1↓ is derivable for {u↓}, and u↓ is derivable for {r1↓,n↓}.

3.1. OPEN DEDUCTION AND FIRST-ORDER LOGIC 89

Proof.

∀x(A∨B)
r1↓
∀xA∨B

−→
∀x(A∨B)

u↓

∀xA∨
∃xB

=
B

∀x(A∨B)
u↓
∀xA∨∃xB

−→
∀x A∨

B
n↓
∃xB

r1↓
∀xA∨∃xB

The r2↓ rule—an invertible rule, it should be noted—is in fact immediately
derivable from a first-order medial-like up rule.

Proposition 3.14. r1↓ is derivable for {m2↑}.

Proof.

∀x(A∧B)
r2↓
∀xA∧B

−→
∀x(A∧B)

m2↑

∀xA∨
∀xB

=
B

However, it is only admissible, not derivable for KSq.

Proposition 3.15. r1↓ is admissible for KSq.

Proof. If we have a proof
KSq

K

 ∀x(A∧B)
φ
∀xA∧B)

, by extending Proposition 1.52 to

KSq (which is straightforward), we create:

φl KSq

K {∀xA} and
φr KSq

K {∀xB}

Clearly, since x < FV (B), we can construct
φ′r KSq

K {B} by deleting all instances of

∀x. We then can construct:

φl KSq

K {∀xA} ∧
φ′r KSq

K {B}
{s,ac↓,m,m1↓,m2↓,aw↑}

K{∀xA∧B}

using a slight adaptation of the second part of Proposition 1.52. Then we elim-
inate aw↑ using W, which works just as well in a first-order setting.

Proposition 3.16. r3↓ and r4↓ are derivable for {n↓}, and, dually, r3↑ and r4↑ for
{n↑}.

90 CHAPTER 3. OPEN DEDUCTION FOR FIRST-ORDER LOGIC

A∧ (B∨C)
s

(A∧B)∨C
(A∧B)∨ (C ∧D)

m
(A∨C)∧ (B∨D)

t
ai↓
a∨ ā

a∨ a
ac↓

a

f
aw↓

a

a∧ ā
ai↑

f

a
ac↑

a∧ a
a

aw↑
t ∀xA

n↑
[t⇒ x]A

∃xA∧∀xB
u↑
∃x(A∧B)

∀x(A∧B)
m1↑∀xA∧∀xB

∃x(A∧B)
m2↑∃xA∧∃xB

[t⇒ x]A
n↓
∃xA

∀x[A∨B]
u↓
∀xA∨∃xB

∃xA∨∃xB
m1↓ ∃x[A∨B]

∀xA∨∀xB
m2↓ ∀x[A∨B]

KS

SKS

KSq

SKSq

A∧ (B∨C)
s

(A∧B)∨C

t
i↓
A∨ Ā

A∨A
c↓

A

f
w↓
A

A∧ Ā
i↑

f

A
c↑
A∧A

A
w↑

t ∀xA
n↑

[t⇒ x]A

∃xA∧∀xB
u↑
∃x(A∧B)

[t⇒ x]A
n↓
∃xA

∀x[A∨B]
u↓
∀xA∨∃xB

KSg

SKSg

KSgq

SKSgq

Figure 3.1: The “cube” of core classical proof systems. The three di-
mensions are cut-free/cut-full (S), atomic/general structural rules (g), and
propositional/first-order (q).

Proof.

∃x(A∨B)
r3↓
∃xA∨B

−→
∃x

A
n↓
∃xA

∨B

=
∃xA∨B

∃x(A∧B)
r4↓
∃xA∧B

−→
∃x

A
n↓
∃xA

∧B

=
∃xA∧B

3.1.4 Preliminary Results

We now restate and reprove certain lemmas and propositions that can almost
all be found in [Brü03a] and [Brü06a]. There is no problem with their origi-
nal exposition, but they will be useful to have on hand in the open deduction
formalism rather than the calculus of structures.

3.1. OPEN DEDUCTION AND FIRST-ORDER LOGIC 91

Strong Equivalence of SKSgq and SKSq

As we showed in Proposition 1.42, the atomic CPL system SKS is strongly
equivalent to the general CPL system SKSg. We can easily obtain the same
strong equivalence result for the atomic FOL system SKSq and the general
FOL system SKSgq, by extending Lemma 1.40 for each identity, contraction
and weakening. We then need to show that m1↓ and m2↓ are derivable for
{w↓,c↓}.

Lemma 3.17. i↓ is derivable for {ai↓,s,u↓}.

Proof. We have one further inductive case than in Lemma 1.40 to consider:

t
i↓
∀xA∨∃xĀ

−→
∀x

t
i↓
A∨ Ā

u↓
∀xA∨∃xĀ

Lemma 3.18. c↓ is derivable for {ac↓,m,m1↓,m2↓}.

Proof. We have two further inductive cases than in Lemma 1.40 to consider:

∃xA∨∃xA
c↓

∃xA
−→

∃xA∨∃xA
m1↓

∃x
A∨A

c↓
A

∀xA∨∀xA
c↓

∀xA
−→

∀xA∨∀xA
m2↓

∀x
A∨A

c↓
A

Lemma 3.19. w↓ is derivable for {aw↓}.

Proof. We have two further inductive cases than in Lemma 1.40 to consider:

f
w↓
∃xA

−→

f
=

∃x
f

w↓
A

f
w↓
∀xA

−→

f
=

∀x
f

w↓
A

Lemma 3.20. m1↓ and m2↓ are derivable for {w↓,c↓}.

Proof.

∃xA∨∃xB
m1↓ ∃x(A∨B)

−→
∃x

A
=

A∨
f

w↓
B

∨∃x
B

=

B∨
f

w↓
A

c↓
∃x(A∨B)

92 CHAPTER 3. OPEN DEDUCTION FOR FIRST-ORDER LOGIC

∀xA∨∀xB
m2↓ ∀x(A∨B)

−→
∀x

A
=

A∨
f

w↓
B

∨∀x
B

=

B∨
f

w↓
A

c↓
∀x(A∨B)

Proposition 3.21. The atomic system SKSq and the general SKSgq are strongly
equivalent.

Proof. Follows from Propositions 3.17, 3.18, 3.20 and 3.19, as well as their
dualised versions.

Admissibility of n↑

An important property of the cut-free system KSgq is that n↑, universal quan-
tifier instantiation, is directly admissible, without having to resort to admissi-
bility via cut elimination, and in a way that does not have any significant proof
complexity cost.

Proposition 3.22. n↑ is admissible for KSgq

Proof. We show that we can n↑ permute up past all other rules. The five reduc-
tions we need to consider are the following:

ρ −n↑1 :

K {∀xA}
 B
ρ
C


=

K

 ∀xA
n↑

[t⇒ x]A

 {C}
−→

K

 ∀xA
n↑

[t⇒ x]A

 {B}
=

K {[t⇒ x]A}
 B
ρ
C


ρ −n↑2 :

∀xK
 A
ρ
B


n↑

[t⇒ x]K {B}
−→

∀xK {A}
n↑

[t⇒ x]K

 A
ρ′

B


ρ −n↑3 :

K {∀xA}
ρ

K ′
 ∀xA
n↑

[t⇒ x]A

 −→
K

 ∀xA
n↑

[t⇒ x]A


ρ
K ′ {[t⇒ x]A}

c↓−n↑ :

K {∀xA} ∨K {∀xA}
c↓

K

 ∀xA
n↑

[t⇒ x]A

 −→
K

 ∀xA
n↑

[t⇒ x]A

∨K  ∀xA
n↑

[t⇒ x]A


c↓

K {[t⇒ x]A}

u↓−n↑ :

∀x(A∨B)
u↓

∀xA
n↑

[t⇒ x]A
∨∃xB

−→
∀x(A∨B)

n↑

[t⇒ x]A∨
[t⇒ x]B

n↓
∃xB

3.1. OPEN DEDUCTION AND FIRST-ORDER LOGIC 93

Clearly, the ρ − n↑1 reduction is always straightforward. ρ − n↑2 is straightfor-
ward in most cases, except if ρ = n↓, where we should be careful with substi-
tutions:

∀xK
 [t2⇒ y]A
n↓

∃yA


n↑

[t1⇒ x]K {∃yA}
−→

∀xK {[t2⇒ y]A}
n↑

[t1⇒ x]K {[t2⇒ y]A}
=

[t1⇒ x]K

 [[t1⇒ x]t2⇒ y][t1⇒ x]A
n↓

∃y[t1⇒ x]A


=

[t1⇒ x](K {∃yA})

ρ − n↑3 is also straightforward except if ρ = n↓, where we should be dually
careful with substitutions:

[t1⇒ x]K {∀yA}
n↓

∃xK
 ∀yA
n↑

[t2⇒ y]A

 −→

[t1⇒ x]K {∀yA}
=

[t1⇒ x]K

 ∀y[t1⇒ x]A
n↑

[[t1⇒ x]t2⇒ y][t1⇒ x]A


=

[t1⇒ x]K {[t2⇒ y]A}
n↓

∃xK {[t2⇒ y]A}

Elimination of the “up” rules as cut elimination

In propositional logic, cut elimination is performed by reducing cut to atomic
form with switches and then eliminating the atomic cuts. Unfortunately, this
strategy does not cleanly lift to first-order logic, since, to reduce cut to atomic
form, other “up” rules are needed. Instead, we show that we can reduce the
instances of cut in a proof to two types: closed atomic cuts and closed quantifier
cuts. Quantifier cuts are those where the principal formula has a quantifier as
its outermost connective; closed cuts are those with no free variables.

Definition 3.23. We say that an instance of a rule ρ in a FOL proof is closed if
its premise and conclusion are both closed formulae.

Proposition 3.24. Let
φ SKSq

A
. Then we can construct

φ′ KSq∪{i↑}
A

, where every

instance of i↑ is closed.

φ SKSq

A
−→ φ′ KSq∪{i↑}

A

Proof. Similar to Proposition 1.46, except we need to make sure that the i↑ is

94 CHAPTER 3. OPEN DEDUCTION FOR FIRST-ORDER LOGIC

closed. We do so by including a context around ρ ↓ s.t. K{A} is a closed formula.

K

 A
ρ↑
B

 −→

K {A}
=

K {A} ∧
t

i↓

K̄

 B̄
ρ↓
Ā

∨K {B}
s

K {A} ∧ K̄
{
Ā
}

i↑
f

∨K {B}

Definition 3.25. We define the rules qi↓ and qi↑ to be instances of i↓ and i↑
where the principal formulae have a quantifier as their outermost connective:

t
qi↓
∃xA∨∀xĀ

and
∃xA∧∀xĀ

qi↑
f

Lemma 3.26.
φ KSq∪{i↑}
A

−→ φ′ KSq∪{ai↑,qi↑}
A

with all ai↑,qi↑ closed.

Proof. Clearly, i↑ is derivable for {ai↑,qi↑,s}.

We can now go one step further and separate proofs into two parts: a lower
part containing only quantifier cuts, and a top part containing all the other
inference rules, including atomic cuts. This makes cut elimination a lot more
manageable, and also will allow for useful translations later on in the thesis.

Lemma 3.27. For any first-order formula context K{ } and any formula A, with no
free variables in A bound by K{ }, there are derivations

K{t} ∧A
{s,n↑,u↑}

K{A}
and

K{A}
{s,n↓,u↓}

K{f} ∨A
.

Proof. We have two additional inductive steps to prove, in addition to those in
1.53:

K {t}
...................
∀xK ′ {t}

∧A
=

∀x′
∀xK ′ {t}

n↑
[x′⇒ x]K ′ {t}

∧A

IH {s,n↑,u↑}
[x′⇒ x]K ′ {A}

=
K ′ {A}

and

K {t}
...................
∃xK ′ {t}

∧
A

=
∀xA

u↑

∃x
K ′ {t} ∧A
IH {s,n↑,u↑}
K ′ {A}

=
K {A}

3.2. FIRST-ORDER MERGE CONTRACTIONS 95

Lemma 3.28. Let
φ KSq∪{ai↑,qi↑}
A

be a proof with all ai↑,qi↑ closed. Then we can

construct a proof

φ′ KSq∪{ai↑}

A∨
∃xA1 ∧∀xĀ1

qi↑
f

∨ . . .∨
∃xAn ∧∀xĀn

qi↑
f

=
A

where all the ai↑,qi↑ are still closed.

Proof. This is essentially a one-way version of Lemma 1.54, for first-order logic,
using Lemma 3.27 instead of Lemma 1.53.

These lemmas lead us to the following proposition, which sets us up for the
next section.

Proposition 3.29. Every proof SKSq proofφ ofA can be separated into a quantifier-
cut-free top half, with parallel closed quantifier-cuts in the bottom half:

φ SKSq

A
−→

KSq∪{ai↑}
A′

{qi↑}
A

Proof. By Lemmas 3.24, 3.26 and 3.28.

3.2 First-Order Merge contractions

We now introduce first-order systems with merge contractions. Unlike for
propositional logic, we do not have a particular use for them in the course
of normalization for first-order logic. However, we think it is worth extend-
ing the definitions and basic theory to first-order logic, as we expect further
research in this area.

3.2.1 SKSq4 and First-order Contractive Derivations

Before defining merge contractions for first-order logic, we need to extend
the propositional system with mostly “medial-shaped” rules to FOL. Since the
first-order rules in SKSq are in fact well suited for merges, we simply extend
SKS4 with them.

96 CHAPTER 3. OPEN DEDUCTION FOR FIRST-ORDER LOGIC

Definition 3.30. We define the variant of SKSq with medial-shaped proposi-
tional rules SKSq4 as follows.

SKSq4 = SKS4 +

[t⇒ x]A
n↓
∃xA

∀x(A∨B)
u↓
∀xA∨∃xB

∃xA∨∃xB
m1↓ ∃x(A∨B)

∀xA∨∀xB
m2↓ ∀x(A∨B)

∀xA
n↑

[t⇒ x]A

∃xA∧∀xB
u↑
∃x(A∧B)

∀x(A∧B)
m1↑∀xA∧∀xB

∃x(A∧B)
m2↑∃xA∧∃xB

In addition, we also restrict the equality relation as we do for SKS4

Definition 3.31. The set of first-order contractive derivations, usually just re-
ferred to as contractive derivations if unambiguous, is the minimal set of C1↓ =
{ac↓,m,∨c↓,m1↓,m2↓} derivations that satisfy each of the three properties be-
low:

CD1 A formula A∨B is a contractive derivation.

CD2
f∨ f

=
f
,

t∨ t
=

t
and

a∨ a
ac↓

a
are contractive derivations.

CD3
f∨A

=
A

and
A∨ f

=
A

are contractive derivations.

CD4 If
A1 ∨B1
φ1 C1↓
C1

and
A2 ∨B2
φ2 C1↓
C2

are contractive derivations then both

(A1 ∧A2)∨ (B1 ∧B2)
m
A1 ∨B1
φ1 C1↓
C1

∧
A2 ∨B2
φ2 C1↓
C2

and

(A1 ∨A2)∨ (B1 ∨B2)
∨c↓

A1 ∨B1
φ1 C1↓
C1

∨
A2 ∨B2
φ2 C1↓
C2

are contractive derivations.

CD5 If
A∨B
φ C1↓
C

is a contractive derivation, then both

∀xA∨∀xB
m1↓

∀x
A∨B
φ C1↓
C

and

∃xA∨∃xB
m2↓

∃x
A∨B
φ C1↓
C

are contractive derivations.

The set of first-order cocontractive derivations is defined dually.

We also define first-order merge sets:

Definition 3.32. Given two first-order formulae A,B and ? ∈ {∨,∧}, we define
their ?-merge set M?(A,B) as the minimum set that satisfies the following con-
ditions

3.2. FIRST-ORDER MERGE CONTRACTIONS 97

M1 For any A and B, A? B ∈M?(A,B).

M2 For any atom or unit a, a ∈M?(a,a).

M3 For any A, A ∈M∨(A, f),A ∈M∨(f,A),A ∈M∧(A, t) and A ∈M∧(t,A).

M4 For α∈ {∨,∧}, if C1 ∈ M?(A1,B1) and C2 ∈ M?(A2,B2), then C1 α C2 ∈
M?(A1 α A2,B1 α B2).

M5 For Q ∈ {∀,∃}, if C ∈M?(A,B) then QxC ∈M?(QxA,QxB).

Remark 3.33. Note that if A,B,C are quantifier-free, then whether C ∈M∨(A,B)
or not cannot depend on M5. We therefore do not alter our notation for merges
in first-order logic. On the other hand, not all first-order merges need use M5.
However, if C ∈ M∨(A,B) without any use of M5, then C is in M∨(A,B) for
“propositional” reasons.

Proposition 3.34. There exists a first-order contractive derivation
A∨B
φ C1↓
C

iff C ∈

M∨(A,B). Dually there exists a cocontractive derivation
C
φ C1↑
A∧B

iff C ∈M∧(A,B).

Proof. Simple extension of Proposition 2.30

We can now define a first-order proof system with merge (co)contractions.
Again, since the instances of propositional merge (co)contraction are exactly
the quantifier-free instances of first-order merge (co)contraction, we use the
same notation as in propositional logic.

Definition 3.35. We define the first-order system with merge contractions:

SKSmq = SKSm+

[t⇒ x]A
n↓
∃xA

∀x(A∨B)
u↓
∀xA∨∃xB

∀xA
n↑

[t⇒ x]A

∃xA∧∀xB
u↑
∃x(A∧B)

We extend the maps from the systems with merges to the regular systems in
the obvious way: µ : SKSm → SKS becomes µ : SKSmq → SKSmq, the maps
νmax,νmin : SKS→ SKSm become νmax,νmin : SKSq→ SKSmq

3.2.2 Reductions for first-order merges

We now show that the lemmas that allow us to permute merge contractions
past other inference rules extend to first-order logic. We repeat the statements
of the lemmas, even though they are the same as the propositional case, if in-
terpreted as referring to first-order formulas and merges. The proofs usually
involve just one extra case: we will only give this, not repeating the proposi-
tional parts.

98 CHAPTER 3. OPEN DEDUCTION FOR FIRST-ORDER LOGIC

(A∧B)∨ (C ∧D)
m

(A∨C)∧ (B∨D)

(A∨B)∧ (C ∨D)
s↓

(A∧C)∨ (B∨D)

(A∨B)∨ (C ∨D)
∨c↓

(A∨C)∨ (B∨D)

t
ai↓
a∨ ā

a∨ a
ac↓

a

f
aw↓

a

a∧ ā
ai↑

f

a
ac↑

a∧ a
a

aw↑
t

(A∧B)∧ (C ∨D)
s↑

(A∧C)∨ (B∧D)

(A∧B)∧ (C ∧D)
∧c↑

(A∧C)∧ (B∧D)

∀xA
n↑

[t⇒ x]A

∃xA∧∀xB
u↑
∃x(A∧B)

∀x(A∧B)
m1↑∀xA∧∀xB

∃x(A∧B)
m2↑∃xA∧∃xB

[t⇒ x]A
n↓
∃xA

∀x(A∨B)
u↓
∀xA∨∃xB

∃xA∨∃xB
m1↓ ∃x(A∨B)

∀xA∨∀xB
m2↓ ∀x(A∨B)

KS4

SKS4

KSq4

SKSq4

(A∨B)∧ (C ∨D)
s↓

(A∧C)∨ (B∨D)

(A∧B)∨ (C ∧D)
m

(A∨C)∧ (B∨D)

t
ai↓
a∨ ā

A∨B
mc↓

C

f
aw↓

A

a∧ ā
ai↑

f

C
mc↑

A∧B
a

aw↑
t

(A∧B)∧ (C ∨D)
s↑

(A∧C)∨ (B∧D)

∀xA
n↑

[t⇒ x]A

∃xA∧∀xB
u↑
∃x(A∧B)

[t⇒ x]A
n↓
∃xA

∀x(A∨B)
u↓
∀xA∨∃xB

KSm

SKSm

KSmq

SKSmq

Figure 3.2: The “cube” of medial-like/merge proof systems. The three dimen-
sions are cut-free/cut-full (S), medial-shape/merge contractions (4/m), and
propositional/first-order (q). Taken together with the proof systems of Figure
3.1, a hypercube of proof systems is formed.

3.2. FIRST-ORDER MERGE CONTRACTIONS 99

Definition 3.36. Let K{D} ∈M∨(A,B). We say that D is a K-subformula in A or
B in the following cases:

M1 If K{D} ≡ K ′{D} ∨B and A ≡ K ′{D} then D is a K-subformula of A. If
K{D} ≡ A∨K ′{D} and B ≡ K ′{D} then D is a K-subformula of B.

M3 If K{D} ≡ A, then D is a K-subformula of A

M4 If K1{D1} ∈ M∨(A1,B1) and D1 is a K1-subformula of A1 (resp. B1), then
for all C2 ∈M∨(A2,B2), D1 is a K-subformula of A1 α A2 (resp. B1 α B2),
where K{ } = K1{ } α C2.

M5 If K{D} ∈M∨(A,B) with D a K-subformula of A, then we have that D is a
QxK-subformula of QxA.

Lemma 3.37. Let A,B,C be formulae with C ∈ MP
∨(A,B). Let KC{ } and PC be

s.t. C ≡ KC{PC} and PC is not a KC-subformula of A or B. Then we can find
contexts KA{ },KB{ } and formulae PA, PB s.t. A factorises as KA{PA}, B as KB{PB},
PC ∈M∨(PA, PB) and for any QA,QB, if QC ∈M∨(QA,QB), then

KC{QC} ∈M∨(KA{QA},KB{QB}) .

Alternatively, we can always find KA{ }, KB{ }, PA and PB s.t.

A∨B
mc↓

KC {PC}
≡

KA {PA} ∨KB {PB}
mc↓

KC {PC}

and, for any QC ∈M∨(QA,QB),

KA {QA} ∨KB {QB}
mc↓

KC {QC}

is a valid instance of mc↓.

Proof. Assume KC{ } = QxK ′C{ }. Again, since PC is not a KC-subformula of A
or B, we know that A , f , B. Therefore we must have C ∈MP

∨(A,B) by virtue
of M5 with A ≡QxA′ , B ≡QxB′ and K ′C{PC} ∈M∨(A′ ,B′).

If K ′C{PC} ≡ A
′ ∨B′ then, by the same reasoning as before, it must be the case

that PC ≡ A′ ∨B′ . Therefore we can factorise A as Qx{A′} and B as Qx{B′}, with
all the conditions clearly holding.

If K ′C{PC} , A∨B then K ′C{PC} ∈M
P
∨(A,B) and, by the IH, we have A′ ≡ KA′ {PA}

and B′ ≡ KB′ {PB} with all the appropriate conditions and we can factorise A as
QxKA′ {PA} and B as QxB′ ≡ KB′ {PB}. Again, it is straightforward to see that all
the conditions hold.

Lemma 3.38. Assume we have A ∈M∨(A1,A2),B ∈M∨(B1,B2) and C ∈MP
∨(A,B).

Then we can find C1,C2 s.t. C1 ∈ MP
∨(A1,B1) and C2 ∈ MP

∨(A2,B2) s.t. C ∈
MP
∨(C1,C2). Alternatively, we always can find C1 and C2 s.t. the following rewrite

is valid.

(A1 ∨B1)∨ (A2 ∨B2)
mc↓

A∨B
mc↓

C

−→
A1 ∨B1

mc↓
C1

∨
A2 ∨B2

mc↓
C2

mc↓
C

100 CHAPTER 3. OPEN DEDUCTION FOR FIRST-ORDER LOGIC

Proof. If C ≡ QxC′ , then the cases where any of A,A1,A2,B,B1 or B2 are f are
as before. If not, then it must be the case that A ≡QxA′ and B ≡QxB′ and that
A1 ≡ QxA′1, A2 ≡ QxA′2, B1 ≡ QxB′1 and B2 ≡ QxB′2. We can therefore use the
IH to find C′1 and C′2, setting C1 ≡QxC1 and C2 ≡QxC2.

Lemma 3.39. Assume we have B ∈ MP
∨(A1,A2) and B ∈ MP

∧(C1,C2). Then we
can find B1,B2,B3,B4 s.t. A1 ∈MP

∧(B1,B2), A2 ∈MP
∧(B3,B4), C1 ∈MP

∨(B1,B3) and
C2 ∈MP

∨(B2,B4). Alternatively, we can always find B1,B2,B3,B4 s.t. the following
rewrite is valid (although in practice the medial would be absorbed into one of the
merge (co)contractions):

A1 ∨A2
mc↓

B
mc↑

C1 ∧C2

−→

A1
mc↑

B1 ∧B2
∨

A2
mc↑

B3 ∧B4
m

B1 ∨B3
mc↓

C1
∧

B2 ∨B4
mc↓

C2

Proof. If B ≡ QxB′ , then the cases where A1 or A2 are f and C1 or C2 are as
before. If not, then it must be the case that A1 ≡QxA′1, A2 ≡QxA′2, C1 ≡QxC′1
and C2 ≡ QxC′2. We can therefore use the IH to find B′1,B

′
2,B
′
3 and B′4, setting

each Bi as QxB′i .

Lemma 3.40. Let [t⇒ x]C ∈M∨(A,B). Then we can find A′ and B′ s.t. A ≡ [t⇒
x]A′ , B ≡ [t⇒ x]B′ and C ∈M∨(A′ ,B′).

Proof. Two cases we can do instantly:

M1 Assume [t ⇒ x]C ≡ A∨B. Then C ≡ [C1.C2], and we can set A′ ≡ C1 and
B′ ≡ C2.

M3 Assume, without loss of generality (WLOG), that [t⇒ x]C ≡ A and B ≡ f.
We set A′ ≡ C, B′ ≡ f.

If neither of these two cases hold, we proceed by induction on C, considering
each of the remaining three cases for [t⇒ x]C ∈M∨(A,B):

M2 Assume [t ⇒ x]C ≡ A ≡ B ≡ P (t1, ..., tn). Then C ≡ P (t′1, ..., t
′
n), with [t ⇒

x]t′i ≡ ti . Thus we can set A′ ≡ B′ ≡ P (t′1, ..., t
′
n).

M4 Assume [t⇒ x]C ≡ (C1 α C2),A ≡ (A1 α A2), B ≡ (B1 α B2), C1 ∈M∨(A1,B1)
and C2 ∈ M∨(A2,B2). Clearly, C1 ≡ [t ⇒ x]C′1 and C2 ≡ [t ⇒ x]C′2, with
C ≡ (C′1 α C′2). Thus, by the IH, we can find A′1,A

′
2,B
′
1,B
′
2 s.t. C′1 ∈

M∨(A′1,B
′
1) andC′2 ∈M∨(A′2,B

′
2). ThusC ≡ (C′1 α C

′
2) ∈M∨((A′1 α A

′
2), (B′1 α

B′2)) =M∨(A′ ,B′).

M5 Assume [t ⇒ x]C ≡ QyC1, A ≡ QxA1, B ≡ QxB1 and C1 ∈ M∨(A1,B1).
If x = y then [t ⇒ x]C ≡ C and there is nothing to do. If x , y, then
[t⇒ x]C ≡ Qy[t⇒ x]C1, and, by the IH, we can find A′1 and B′1 s.t. C1 ∈
M∨(A′1,B

′
1). Therefore, C ≡QyC1 ∈M∨(QyA′1,QyB

′
1).

We can now reprove the theorem that states that merge contractions can be
permuted past all other rules, if they are in the scope of the conclusion. Again,

3.2. FIRST-ORDER MERGE CONTRACTIONS 101

we repeat the statement of the theorem, but only include the extra cases for the
proof.

Theorem 3.41. Assume we have a merge contraction above a rule ρ ∈ SKSmq in a
context, with PC not a KC-subformula of A or B:

A∨B
mc↓

KC

 PC
ρ
QC


Then we can find sentences PA, PB,QA,QB, contexts KA{ },KB{ } and derivations
φ1,φ2 ∈ SKSmq s.t. the following is a valid derivation:

KA


PA

φ1

QA

∨KB

PB

φ2

QB


mc↓

KC {QC}

• If ρ = n↓ then we have the general case below to consider:

KA {PA} ∨KB {PB}
mc↓

KC

 [t⇒ x]PC
n↓
∃xPC


By Lemma 3.40 we can find P ′A and P ′B s.t.

KA

 PA
n↓
∃xP ′A

∨KB PB
n↓
∃xP ′B


mc↓

KC {∃xPC}

is valid.

• If ρ = n↑ then we again have a general case to consider:

KA {PA} ∨KB {PB}
mc↓

KC

 ∀xPC
ρ

[t⇒ x]PC


Since ∀xPC is not a KC-subformula of A or B, it must be the case that
PA ≡ ∀xP ′A and PB ≡ ∀xP ′B.

• If ρ = u↓ then, since PC is not a KC-subformula of A or B, we must have
the following:

KA {∀xPA} ∨KB {∀xPB}
mc↓

KC

 ∀x
(
PC1
∨ PC2

)
u↓
∀xPC1

∨∃xPC2


we now have a number of cases to consider:

102 CHAPTER 3. OPEN DEDUCTION FOR FIRST-ORDER LOGIC

– If we have PA ≡ PC1
∨ PC2

and PB ≡ f (WLOG), then we can construct:

KA

 ∀x
(
PC1
∨ PC2

)
u↓
∀xPC1

∨∃xPC2

∨KB
 ∀xf=

f


mc↓

KC
{
∀xPC1

∨∃xPC2

}
– If we have PA ≡ PC1

and PB ≡ PC2
, then we can construct:

KA
{
∀xPC1

}
∨KB


∀xPC2n↑

[c⇒ x]PC2n↓
∃xPC2


mc↓

KC
{
∀xPC1

∨∃xPC2

}
– If we have PA ≡ PA1

∨ PA2
and PB ≡ PB1

∨ PB2
, then we can construct:

KA

 ∀x
(
PA1
∨ PA2

)
u↓
∀xPA1

∨∃xPA2

∨KB
 ∀x

(
PB1
∨ PB2

)
u↓
∀xPB1

∨∃xPB2


mc↓

KC
{
∀xPC1

∨∃xPC2

}
• If ρ = r1↓ then, since PC is not a KC-subformula of A or B, we must have

the following:
KA {∀xPA} ∨KB {∀xPB}

mc↓

KC

 ∀x
(
PC1
∨ PC2

)
u↓
∀xPC1

∨ PC2


we now have a number of cases to consider:

– If we have PA ≡ PC1
∨ PC2

and PB ≡ f (WLOG), then we can construct:

KA

 ∀x
(
PC1
∨ PC2

)
u↓
∀xPC1

∨ PC2

∨KB
 ∀xf

=
∀xf∨ f


mc↓

KC
{
∀xPC1

∨ PC2

}
– If we have PA ≡ PC1

and PB ≡ PC2
, then PC2

must be free for x, so we
can construct:

KA
{
∀xPC1

}
∨KB


∀xPC2n↑

[c⇒ x]PC2n↓
∃xPC2


mc↓

KC
{
∀xPC1

∨∃xPC2

}
– If we have PA ≡ PA1

∨ PA2
and PB ≡ PB1

∨ PB2
, then we can construct:

KA

 ∀x
(
PA1
∨ PA2

)
u↓
∀xPA1

∨∃xPA2

∨KB
 ∀x

(
PB1
∨ PB2

)
u↓
∀xPB1

∨∃xPB2


mc↓

KC
{
∀xPC1

∨∃xPC2

}

3.2. FIRST-ORDER MERGE CONTRACTIONS 103

• If ρ = u↑, we must have that the following:

KA
{(
PA1
∧ PA2

)}
∨KB

{(
PB1
∧ PB2

)}
mc↓

KC

 ∀xPC1
∧∃xPC2u↑

∃x
(
PC1
∧ PC2

) 
It must be the case that PA1

≡ f, PB1
≡ f or both PA1

≡ ∀xP ′A1
and PB1

≡
∀xP ′B1

, with PC1
∈ M∨(P ′A1

, P ′B1
). Similarly, either PA2

≡ f, PB2
≡ f or both

PA2
≡ ∀xP ′A2

and PB2
≡ ∀xP ′B2

, with PC2
∈M∨(P ′A2

, P ′B2
). We will show two

cases, the rest are similar:

– If PA1
≡ f, PB1

≡ ∀xPC1
, PA2

≡ ∃xPC2
and PB2

≡ f then we can construct:

KA


f

=
∀xf
∧∃xPC2

u↑
∃x

(
f∧ PC2

)
∨KB


∀xPC1

∧
f

=
∃xf

u↑
∃x

(
PC1
∧ f

)


mc↓
KC

{
∃x

(
PC1
∧ PC2

)}
– If PA1

≡ ∀xP ′A1
, PB1

≡ ∀xP ′B1
, PA2

≡ ∀xP ′A2
and PB2

≡ ∀xP ′B2
then we

can construct:

KA

 ∀xP ′A1
∧∃xP ′A2u↑

∃x
(
P ′A1
∧ P ′A2

) ∨KB
 ∀xP ′B1

∧∃xP ′B2u↑
∃x

(
P ′B1
∧ P ′B2

) 
mc↓

KC
{
∃x

(
PC1
∧ PC2

)}
Finally, we define two more reductions needed

r3 :

∃xA∨∃xB
mc↓

∃xC
∧∀xD

u↑
∃x(C ∧D)

−→

(∃xA∨∃xB)∧
∀xD

mc↑
∀xD ∧∀xD

s↑
∃xA∧∀xD

u↑
∃x(A∧D)

∨
∃xB∧∀xD

u↑
∃x(B∧D)

mc↓
∃x(C ∨D)

r4 :

∀xA∨∀xB
mc↓

∀xC
∧∃xD

u↑
∃x(C ∧D)

−→

(∀xA∨∀xB)∧
∃xD

mc↑
∃xD ∧∃xD

s↑
∀xA∧∃xD

u↑
∃x(A∧D)

∨
∀xB∧∃xD

u↑
∃x(B∧D)

mc↓
∃x(C ∨D)

Definition 3.42. We define the rewriting system for SKSmq,

M1 = {r1, r2, r3, r4, s, t1, t2, t3,m,mc↓−ai↑,mc↑−ai↓}

.

104 CHAPTER 3. OPEN DEDUCTION FOR FIRST-ORDER LOGIC

As with M+, we expect that M1 is weakly normalising.

Conjecture 3.43. M1 is weakly normalising for derivations in SKSmq. Therefore
every derivation can be decomposed in the following way:

A
{mc↑}

A′

SKSmq\{mc↓,mc↑}
B′

{mc↓}
B

Chapter 4

Herbrand Proofs and
Expansion Proofs

4.1 Herbrand Proofs

As discussed in the introduction, we will present two different conceptions of
representing the “Herbrand content” of a proof: Herbrand proofs and expan-
sion proofs. For each we define both a deep inference proof system—KSh1
and KSh2—and a class of proofs in each system that corresponds to Herbrand
or expansion proofs, respectively. First, we will present KSh1 and Herbrand
proofs.

4.1.1 KSh1 and Herbrand Proofs

As discussed in the introduction, Herbrand proofs consist of the following four
steps:

1. Expansion of existential subformulae.

2. Prenexification/elimination of universal quantifiers.

3. Term assignment.

4. Propositional tautology check.

In [Brü06a], it is shown that all four of these steps can be carried out by infer-
ence rules in a deep inference system. To do so, we need to define a contraction
rule that only operates on existential formulae.

Definition 4.1. We define the rule qc↓ to restrict contraction just to existential
formulae:

∃xA∨∃xA
qc↓

∃xA
Proposition 4.2. c↓ is derivable for {ac↓,m,qc↓,m2↓} and qc↓ is derivable for
{ac↓,m,m1↓,m2↓}.

105

106 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

t
=

∀y1∀y2

t
ai↓
P y1 ∨ P̄ y1

∨
(

f
aw↓

P̄ c
∨

f
aw↓

P y2

)
= (

P̄ c∨ P y1

)
∨

(
P̄ y1 ∨ P y2

)
r1↓

∀y1

(
P̄ c∨ P y1

)
∨

∀y2

(
P̄ y1 ∨ P y2

)
n↓
∃x2∀y2

(
P̄ x2 ∨ P y2

)
r1↓

∀y1

(
P̄ c∨ P y1

)
n↓
∃x1∀y1

(
P̄ x1 ∨ P y1

) ∨∃x2∀y2

(
P̄ x2 ∨ P y2

)
qc↓

∃x∀y
(
P̄ x∨ P y

)
Figure 4.1: A KSh1 proof of the “drinker’s formula”

Proof. Straightforward.

Definition 4.3. We define an alternate cut-free proof system for FOL, KSh1:

KSh1 = KS+

∀x[A∨B]
r1↓

[∀xA∨B]

∀x(A∧B)
r2↓

(∀xA∧B)

[t⇒ x]A
n↓
∃xA

∃x[A∨B]
r3↓

[∃xA∨B]

∃x(A∧B)
r4↓

(∃xA∧B)

∃xA∨∃xA
qc↓

∃xA

with the same equality relation as SKSq. Following [Brü06a], we define a Her-
brand proof in the context of KSh1 in the following way.

Definition 4.4. A closed KSh1 proof is a Herbrand proof if it is in the following
form:

KS

∀~x[~t⇒ ~y]B
{n↓}

Q{B}
RP↓

A′

{qc↓}
A

where Q{ } is a context consisting only of quantifiers and B is quantifier-free,
and RP↓ refers to the four “down” rules of passage.

Theorem 4.5 (Herbrand’s Theorem for cut-free proofs [Brü06a]). Let
φ KSq

A
.

Then we can construct a Herbrand Proof of A.

Remark 4.6. This proposition and proof are essentially the same proof of Her-
brand’s Theorem from a cut-free system in [Brü06a, Theorem 4.2]. However,

4.1. HERBRAND PROOFS 107

t
=

∀y1∀y2

t
ai↓
P y1 ∨ P̄ y1

∨
(

f
aw↓

P̄ c
∨

f
aw↓

P y2

)
= (

P̄ c∨ P y1

)
∨

(
P̄ y1 ∨ P y2

)
n↓

∃x1

∀y1

(
P̄ x1 ∨ P y1

)
∨

(
P̄ y1 ∨ P y2

)
n↓

∃x2

∀y2

((
P̄ x1 ∨ P y1

)
∨

(
P̄ x2 ∨ P y2

))
r1↓ (

P̄ x1 ∨ P y1

)
∨∀y2

(
P̄ x2 ∨ P y2

)
r3↓ (

P̄ x1 ∨ P y1

)
∨∃x2∀y2

(
P̄ x2 ∨ P y2

)
r1↓

∀y1

(
P̄ x1 ∨ P y1

)
∨∃x2∀y2

(
P̄ x2 ∨ P y2

)
r3↓

∃x1∀y1

(
P̄ x1 ∨ P y1

)
∨∃x2∀y2

(
P̄ x2 ∨ P y2

)
qc↓

∃x∀y
(
P̄ x∨ P y

)
Figure 4.2: A Herbrand proof of the drinker’s formula

the proof is worth reworking in the open deduction formalism, and also since
its relation to cut elimination is different: in Brünnler’s paper it is a corollary to
cut elimination, whereas here we are using it to organise the part of the proof
that does not contain first-order cuts into a useful form.

Before proving the theorem, we state and prove a crucial lemma.

Lemma 4.7. We can carry out the following proof transformation:

φ KSq\{m1↓}
A

−→

KS∪{n↓}
Q{AP }

RP↓
A

where Q{ } is a sequence of quantifiers and AP is the formula obtained by removing
all quantifiers from A.

Proof. We proceed by induction on the length of φ, with the base case being
trivial. If the final rule in φ is in KS, the inductive step is also trivial [Brü06a].
By Proposition 3.13, we can replace u↓ with {r1↓,n↓}, with r1↓ simply getting
absorbed into RP↓. Thus we are left with just m2↓ and n↓ to deal with.

We can eliminate instances of m2↓ in the following way:

φ KSq\{m1↓}

K

 ∀xA∨∀y[y⇒ x]B
m2↓ ∀x(A∨B)

 IH−−→

φ′ KS∪{n↓}

Q1 {∀xQ2 {∀yQ3 {AP ∨ [y⇒ x]BP }}}
RP↓

K

 ∀xA∨∀y[y⇒ x]B
m2↓ ∀x(A∨B)


−→

108 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

φ′ KS∪{n↓}

Q1

∀xQ2

 ∀yQ3 {AP ∨ [y⇒ x]BP }
n↑

Q3 {AP ∨BP }


RP↓

K {∀x(A∨B)}

Prop. 3.22
−−−−−−−−−→

φ′ KS∪{n↓}

Q1 {∀xQ2 {Q3 {AP ∨BP }}}
RP↓

K {∀x(A∨B)}

Instances of n↓ are permuted above the rules of passage:

φ KSq\{m1↓}

K

 [t⇒ x]A
n↓
∃xA

 IH−−→

φ KS∪{n↓}

Q1 {Q2 {[t⇒ x]AP }}
RP↓

K

 [t⇒ x]A
n↓
∃xA


−→

φ KS∪{n↓}

Q1

 Q2 {[t⇒ x]AP }
n↓
∃xQ2 {[t⇒ x]AP }


RP↓

K {∃xA}

Proof of Theorem 4.5. We work in stages, creating one section of the Herbrand
Proof at a time.

1. First of all, we refactorise the contractive rules, {ac↓,m,qc↓,m2↓}, into
{ac↓,m,m1↓,m2↓}. Then, we use the following rewrites to permute qc↓
down the proof:

qc↓− ρ1 :
K

 ∃xA∨∃xA
qc↓

∃xA


ρ

K ′ {∃xA}
−→

K {∃xA∨∃xA}
ρ

K ′
 ∃xA∨∃xA
qc↓

∃xA


qc↓− ρ2 :

∃xA∨∃xA
qc↓

∃x
A

ρ
B

−→
∃x

A
ρ
B
∨∃x

A
ρ
B

qc↓
∃xB

Each of these reductions, if applied to the bottommost instance of qc↓,
reduces the number of rules below the bottommost instance of qc↓.

2. By Lemma 4.7 we can now separate the remaining proof into a top half
with KS∪ {n↓}, and a bottom half consisting of RP↓.

3. Since every other first-order rule is now eliminated from the proof, it is
straightforward to permute n↓ rules down the proof.

Remark 4.8. The proof of Theorem 4.5 works exactly the same if KS is supple-
mented by an atomic cut rule, ai↑. Therefore, as Brünnler notes, only cuts with
quantified eigenformulae need be eliminated to prove Herbrand’s Theorem.

Proposition 4.9. Given a Herbrand proof φ of A, we can construct a proof of A in
the cut-free FOL system KSq.

Proof. Immediate from Propositions 3.13, 3.15, 3.16, and 4.2.

4.2. EXPANSION PROOFS 109

4.2 Expansion Proofs

4.2.1 Introduction

In [Mil87], Miller generalises the concept of the Herbrand expansion to higher
order logic, representing the witness information in a tree structure, and ex-
plicit transformations between these ‘expansion proofs’ and cut-free sequent
proofs are provided. Miller’s presentation of expansion proofs lacked some of
the usual features of a formal proof system, crucially composition by an elim-
inable cut, but extensions in this direction have been carried out by multiple
authors. In [Hei10], Heijltjes presents a system of ‘proof forests’, a graphical
formalism of expansion proofs with cut and a local rewrite relation that per-
forms cut elimination. Similar work has been carried out by McKinley [McK13]
and more recently by Hetzl and Weller [HW13] and Alcolei et al. [Alc+17].

4.2.2 Expansion Trees

Remark 4.10. In this section, we will frequently use ? in place of ∧ and ∨, and
Q in place of ∀ and ∃ if both cases can be combined into one. For clarity, we
will sometimes distinguish between connectives in expansion trees, ?E , and in
formulae/derivations, ?F .

Definition 4.11. We define expansion trees, the two functions Sh (shallow) and
Dp (deep) from expansion trees to formulae, a set of eigenvariables EV(E) for
each expansion tree, and a partial function Lab from edges to terms, following
[Mil87], [Hei10] and [CHM16]:

• Every literal A (including the units t and f) is an expansion tree. Sh(A) :≡
A, Dp(A) :≡ A, and EV(A) = ∅.

• If E1 and E2 are expansion trees with EV(E1)∩EV(E2) = ∅, then E1 ? E2 is
an expansion tree, with Sh(E1 ?E E2) :≡ Sh(E1) ?F Sh(E2), Dp(E1 ?E E2) :≡
Dp(E1) ?F Dp(E2), and EV(E1 ? E2) = EV(E1)∪EV(E2). We call ? a ?-node
and each unlabelled edge ei connecting the ?-node to Ei a ?-edge. We
represent E1 ? E2 as:

?

E1
e1

E2
e2

• If E′ is an expansion tree s.t. Sh(E′) ≡ A and x < EV(E′), then E = ∀xA+xE′

is an expansion tree with Sh(E) :≡ ∀xA, Dp(E) :≡ Dp(E′), and EV(E) :=
EV(E′)∪ {x}. We call ∀xA a ∀-node and the edge e connecting the ∀-node
and E′ a ∀-edge, with Lab(e) = x. We represent E as:

∀xA

E′

xe

110 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

• If t1, . . . , tn are terms (n ≥ 0), and E1, . . . ,En are expansion trees s.t. x <
EV(Ei) and EV(Ei)∩EV(Ej) = ∅ for all 1 ≤ i < j ≤ n, and Sh(Ei) ≡ [ti ⇒ x]A,
then E = ∃xA+t1 E1 +t2 · · ·+tn En is an expansion tree, where Sh(E) :≡ ∃xA,
Dp(E) :≡ Dp(E1) ∨ · · · ∨ Dp(En) (with Dp(E) ≡ f if n = 0), and EV(E) =⋃n

1 EV(Ei). We call ∃xA an ∃-node and each edge ei connecting the ∃-
node with Ei an ∃-edge, with Lab(ei) = ti . We represent E as:

∃xA

E1

e1 t1 · · ·

En

en tn

Remark 4.12. Let ρ be a permutation of [1 . . .n]. We consider the expansion
trees ∃xA+t1 E1 +t2 · · ·+tn En and ∃xA+tρ(1) Eρ(1) · · ·+tρ(n) Eρ(n) equal. Our trees are
also presented the other way up to usual, e.g. [Hei10]. This is so that they are
the same way up as the deep inference proofs we will translate them to below.

Definition 4.13. Let E be an expansion tree and let <−E be the relation on the
edges in E defined by:

• e <−E e
′ if the node directly below e is the node directly above e′ .

• e <−E e
′ if e is an ∃-edge with Lab(e) = t, x ∈ FV (t), e′ is a ∀-edge and

Lab(e′) = x. In this case, we say e′ points to e.

The dependency relation of E, <E , is the transitive closure of <−E .

Definition 4.14. An expansion tree E is correct if <E is acyclic and Dp(E) is a
tautology. We can then call E an expansion proof of Sh(E).

Example 4.15. Below is an expansion tree E, with Sh(E) ≡ ∃x∀y
(
P̄ x∨ P y

)
and

Dp(E) ≡
(
P̄ c∨ P y1

)
∨

(
P̄ y1 ∨ P y2

)
. The tree is presented with all edges explicitly

named, to define the dependency relation below, as well as the labels for the
∃-edges and ∀-edges.

∃x∀y[P̄ x∨ P y]

∀y1[P̄ c∨ P y1]

∨

P̄ c
e1

P y1

e2

y1e5

ce7

∀y2[P̄ y1 ∨ P y2]

∨

P̄ y1

e3

P y2

e4

y2 e6

e8y1

The dependency relation is generated by the following inequalities: e3, e4 <
e6 < e8 and e1, e2 < e5 < e7 and e8 < e5. e5 points to e8. As this dependency
relation is acyclic and

(
P̄ c∨ P y1

)
∨

(
P̄ y1 ∨ P y2

)
is a tautology, E is correct, and

thus an expansion proof.

4.2. EXPANSION PROOFS 111

4.2.3 Expansion Proofs with Cut

Definition 4.16. If E,E1, . . . ,En are expansion trees, with Sh(Ei) ≡ ∃xAi ∧∀xĀi
for each Ei , then EC = E +⊥(E1, . . . ,En) is an expansion tree with cut. We call ⊥
the cut node, and each edge ei connecting ⊥ and Ei a cut edge. If FV (∃xAi) = ∅,
then we say ei is a closed cut edge. We represent EC as:

E +
⊥

E1

e1

En

en

We extend the deep and shallow functions to expansion trees with cuts: Sh(E+
⊥(E1, . . . ,En)) ≡ A, Dp(E +⊥(E1, . . . ,En)) ≡Dp(E)∨Dp(E1)∨ . . .∨Dp(En).

Extending the notion of correctness to expansion trees with cut is straightfor-
ward.

Definition 4.17. The dependency relation for expansion trees with cut is the
same as that for expansion trees, with the following addition to the definition
of <−E :

• e <−E e
′ if e is a cut edge connecting ⊥ and Ei , Sh(Ei) ≡ ∀yAi ∧∃yĀi , x ∈

FV (Ai), e′ is a ∀-edge and Lab(e′) = x. We still say that e′ points to e.

The correctness criteria for expansion trees with cuts are the same for expan-
sion trees, giving us expansion proofs with cut.

Remark 4.18. If every cut edge is closed for an expansion tree with cut, then
the correctness criteria is exactly the same as for the expansion tree obtained
by replacing the cut node with a series of ∧ nodes.

At this point, we are close to being able to borrow the cut elimination method
from Heijltjes’ Proof Forests formalism [Hei10]. However, proof forests are only
a subclass of what we define as expansion trees here. Therefore it will be useful
to properly define this subclass, as well as the class of expansion proof with
closed cuts, which will be another useful subclass later on. However, there
is one further difference between our expansion proofs and the proof forests
of Heijltjes. While the graphical structure of his (prenex) expansion trees is
the same as ours, the correctness condition is different, defined in terms of the
propositional validity of switchings of expansion trees. Since, however, this
correctness criterion is equivalent to ours on prenex expansion trees, we need
not define this different criterion in detail.

Definition 4.19. A prenex expansion tree is an expansion tree where noQ-node
is above a ?-node.

If E = E1 ∨ . . .∨En with Ei prenex expansion trees, then E is a forest-style expan-
sion tree. If E is correct it is a forest-style expansion proof.

If E = E′ + ⊥(E1 ∧F1, . . . ,En ∧Fn) with E′ a forest-style expansion tree, and
E1,F1, . . . ,En,Fn are prenex expansion trees, then E is a forest-style expansion
tree with cut. If Fc is correct, then it is a forest-style expansion proof with cut.

112 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

If E is an expansion tree with cut with every cut edge closed, we say that E is
a expansion tree with closed cut. If Fc is correct, then it is a expansion proof with
closed cut.

Convention 4.20. We consider every expansion tree/proof to also be an expan-
sion tree/proof with cut.

Theorem 4.21. Let E = E′ +⊥(E1 ∧F1, . . . ,En ∧Fn) be an expansion tree with cut,
with Sh(Fc) ≡ A and where E′ ,Ei and Fi are all correct. Then we can construct from
it a cut-free expansion proof EF = EF1

∨ . . .∨EFn where EFi are prenex expansion
trees and Sh(EF) ≡ A.

Proof. [Hei10, Proposition 16 and Theorem 21]

4.2.4 KSh2 and Herbrand Normal Form

To aid the translation between open deduction proofs and expansion proofs,
we introduce a slightly different cut-free proof system to KSh1. It involves two
new rules.

Definition 4.22. We define the rule h↓, which we call a Herbrand expander and
the rule ∃w↓, which we call existential weakening:

∃xA∨ [t⇒ x]A
h↓

∃xA
f

∃w↓
∃xA

For technical reasons again, we insist that [t⇒ x]A is in fact [t⇒ x]A′ , where
A′ is an α-equivalent formula to A with fresh variables for all quantifiers, but
for simplicity we will usually denote it A.

Remark 4.23. Unlike the n↓ rule, the h↓ Herbrand expander rule is invertible.
Similar rules have been used in first-order sequent calculus systems for au-
tomated reasoning, such as Kanger’s LC [DV01; Kan57] and also in sequent
systems for translation to expansion proofs [AHW18].

Definition 4.24. We define the alternate cut-free system for FOL KSh2:

KSh2 = KS+

∀x[A∨B]
r1↓

[∀xA∨B]

∃xA∨ [t⇒ x]A
h↓

∃xA
∀x(A∧B)

r2↓
(∀xA∧B)

f
∃w↓
∃xA

+

∀xA = ∀z{z⇒ x}A ∃zA = ∃z[z⇒ x]A
∀x∀yA = ∀y∀xA ∃x∃yA = ∃y∃xA
∀xt = t = ∃xt ∀xf = f = ∃xf

Where z does not occur in A for the top two equalities.

Remark 4.25. The ∃w↓ rule is derivable for KSh2\{∃w↓}, but we explicitly in-
clude it so that we can restrict weakening instances in certain parts of proofs.

4.2. EXPANSION PROOFS 113

t
=

∀y1∀y2
t

ai↓
P y1 ∨ P̄ y1

∨
(

f
aw↓

P̄ c
∨

f
aw↓

P y2

)
=

∀y1

∀y2

 f
w↓
∃x∀y

(
P̄ x∨ P y

)∨ (
P̄ y1 ∨ P y2

)∨ (
P̄ c∨ P y1

)
r1↓

∀y2

(
∃x∀y

(
P̄ x∨ P y

)
∨

(
P̄ y1 ∨ P y2

))
r1↓
∃x∀y

(
P̄ x∨ P y

)
∨∀y2

(
P̄ y1 ∨ P y2

)
h↓

∃x∀y
(
P̄ x∨ P y

) ∨
(
P̄ c∨ P y1

)
r1↓

∃x∀y
(
P̄ x∨ P y

)
∨∀y1

(
P̄ c∨ P y1

)
h↓

∃x∀y
(
P̄ x∨ P y

)
Figure 4.3: A proof of the drinker’s formula in HNF

Definition 4.26. If φ is a closed KSh2 proof in the following form, where ∀~x is
a list of universal quantifiers with distinct variables, and Lo(φ) is regular and
in sequential form, we say φ is in Herbrand Normal Form (HNF):

Up(φ) KS

∀~xHφ(A)
{∃w↓}

∀~xH+
φ(A)

Lo(φ) {r1↓,r2↓,h↓}
A

Hφ(A), the Herbrand disjunction of A according to φ, or just the Herbrand dis-
junction of A, contains no quantifiers, whereas H+

φ(A), the expansive Herbrand
disjunction of A according to φ, may contain quantifiers. Up(φ) is called the
upper part of φ, and Lo(φ) the lower part of φ.

We also define proofs in HNF with cut. Notice that the cuts do not necessarily
need to be at the bottom of the proof, and need not be closed.

Definition 4.27. We define KSh2c = KSh2∪ {qi↑}, an alternate first-order sys-
tem with cut.

Definition 4.28. If φ is a closed KSh2c proof in the following form, then we
say φ is in Herbrand Normal Form with Cut (HNFC)

Up(φ) KS

∀~xHφ(A)
{∃w↓}

∀~xH+
φ(A)

Lo(φ) {r1↓,r2↓,h↓,qi↑}
A

114 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

In this thesis, we will only ever translate between proofs in HNF and Herbrand
proofs when they are cut-free or with closed cuts. Therefore a cut free transla-
tion between the two forms suffices.

Proposition 4.29. A formula A has a proof in HNF (KSh2) if and only if it has a
Herbrand proof (KSh1).

Proof. Let φ be a proof of A in HNF. As Hφ(A) is the Herbrand expansion of
A, it is straightforward to construct a Herbrand proof for A: one can infer
the necessary n↓ and qc↓ rules by comparing Hφ(A) and A. Now let φ be a
Herbrand Proof. The order of the quantifiers in Q{ } (as in Definition 4.4) is
used to build the HNF proof. Thus, we proceed by induction on the number
of quantifiers in Q{ }. If there are none, it is obviously trivial. We split the
inductive step into two cases.

First, consider φ1 of the form shown, where P is a quantifier-free context and
Q{ } = ∀zQ′{ }. Clearly φ2 is also a Herbrand proof, so by the IH the proof φ3
in HNF is constructible, from which we can construct φ4.

KS

∀z∀~xB{~y⇐ ~t}
{n↓}

∀zQ′{B}
RP↓

P {∀zC′}
{qc↓}

P {∀zC}

KS

∀~xB{~y⇐ ~t}
{n↓}

Q′{B}
RP↓

P {C′}
{qc↓}

P {C}

Upφ3 KS

∀~xHφ3
P {C}
{∃w↓}

∀~xH+
φ3
P {C}

Lo(φ3) {r1↓,r2↓,h↓}

P {C}

∀zUpφ3 KS

∀z∀~xHφ3
P {C}
{∃w↓}

∀z∀~xH+
φ3
P {C}

∀zLoφ3 {r1↓,r2↓,h↓}

∀zP {C}
{r1↓,r2↓}

P {∀zC}
φ1 φ2 φ3 φ4

In the same way, we consider the case where Q{ } = ∃zQ′{ }. Below we only
show the case where there is no contraction acting on ∃zC, but the case with
such a contraction is similar.

KS

∀~xB{~y⇐ ~t}{z⇐ t}
{n↓}

∃zQ′{B}
RP↓

P {∃zC′}
{qc↓}

P {∃zC}

KS

∀~xB{~y⇐ ~t}{z⇐ t}
{n↓}

Q′{B}{z⇐ t}
RP↓

P {C′{z⇐ t}}
{qc↓}

P {C{z⇐ t}}

Up(φ3) KS

∀~xP {D{z⇐ t}}
{∃w↓}

∀~xP {D+{z⇐ t}}
Lo(φ3) {r1↓,r2↓,h↓}

P {C{z⇐ t}}

Up(φ3) KS

∀~xP {D{z⇐ t}}
{∃w↓}

∀~xP {∃zC ∨D+{z⇐ t}}
Lo(φ3) {r1↓,r2↓,h↓}

P

 ∃zC ∨C{z⇐ t}
h↓

∃zC


φ1 φ2 φ3 φ4

where P {D{z ⇐ t}} ≡ Hφ3
(P {C{z ⇐ t}}) and P {D+{z ⇐ t}} ≡ H+

φ3
(P {C{z ⇐ t}}).

4.3. TRANSLATIONS BETWEEN HNF AND EXPANSION PROOFS 115

4.3 Translations Between Proofs in HNF and Expan-
sion Proofs

Above, we gave translations between Herbrand proofs in KSh1 and KSh2 proofs
in HNF. We will now give a translations between KSh2c proofs in HNFC and
expansion proofs with cut, thus giving us a link between deep inference Her-
brand proofs and expansion proofs. In the paper [Ral18], we showed transla-
tions between Herbrand proofs and cut-free expansion proofs. Here, we will
show translations between Herbrand proofs with cut and expansion proofs
with cut, but these will be conservative extensions of the cut-free translations,
so we use the same terminology.

4.3.1 HNFC to Expansion Proofs

Before stating and proving the main theorem, we will define the map π1 from
KSh2c proofs to expansion proofs with cut (from now on in this section we will
often omit “with cut” if unambiguous), and then prove some lemmas to help
prove that the dependency relation in all expansion proofs in the range of π1
is acyclic.

Remark 4.30. We extend the notion and syntax of contexts from derivations
to expansion trees with cut. For this to make sense, a context can only take
expansion trees with the same shallow formula.

Definition 4.31. We define a map π′1 from the lower part of KSh2c proofs in
HNFC to expansion trees in the following way, working from the bottom.

On the conclusion of φ, we define π′1 as follows:

• π′1(B? C) = π′1(B) ? π′1(C)

• π′1(∀xB) = ∀xB+x π′1(B)

• π′1(∃xB) = ∃xB

The r1↓ and r2↓ rules are ignored by expansion trees, each h↓ rule adds a
branch to a ∃-node, and each qi↓ rule adds another cut edge:

• If φ ≡
K

 ∀x(B∨C)
r1↓
∀xB∨C


φ′

A

then π′1 (φ) = π′1

K{∀xB∨C}φ′

A

.

• If φ ≡
K

 ∀x(B∧C)
r2↓
∀xB∧C


φ′

A

then π′1 (φ) = π′1

K{∀xB∧C}φ′

A

.

116 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

• If π′1

K{∃xB}φ

A

 = Kπ1
(∃xB+τ1 E1 + · · ·+τn En), then:

π′1


K

 ∃xB∨ [τn+1⇒ x]B
h↓

∃xB


φ

A

 = Kπ1
(∃xB+τ1 E1 + · · ·+τn+1 En+1)

where En+1 = π′1([τn+1⇒ x]B).

• If π′1

K {f}φ

A

 = E +⊥(E1, . . . ,En), then:

π′1


K

 ∃xB∧∀xB
qi↑

f


φ

A

 = E +⊥(E1, . . . ,En,π
′
1(∃xB∧∀xB))

We then define the map π1 from KSh2 proofs in HNF to expansion trees as
π1(φ) = π′1(Lo(φ)).

To show that π1(φ) is an expansion proof, we need to prove that ∀~xHφ(A) is
a tautology and <E is acyclic. As ∀~xHφ(A) has a proof in KS it is a tautology.
Thus all that is needed is the acyclicity of <E . To do so, we define the following
partial order on variables in the lower part of KSh2c proofs in HNFC.

Definition 4.32. Let φ be a proof in HNFC. Define the partial order <φ on the
variables of occurring in Lo(φ) to be the minimal partial order such that y <φ x
if K1{Q1xK2{Q2yB}} is a section of Lo(φ).

Proposition 4.33. <φ is well-defined for all KSh2c proofs in HNFC.

Proof. Let φ be a proof of A in HNF, as in Definition 4.26. As Lo(φ) only con-
tains h↓,r1↓,r2↓ and qi↑ rules and no α-substitution, if a variable v occurs in
Lo(φ) then v occurs in ∀xH+

φ(A). Notice also that none of h↓,r1↓,r2↓ or qi↑ can
play the role of ρ in the following scheme:

K{Q1v1A1}{Q2v2A2}
ρ
K1{Q1v1{K2Q2v2B}}

.

Therefore, if K1{Q1xK2{Q2yB}} is a section of Lo(φ), then ∀xH+
φ(A) is of the

formK3{Q1xK4{Q2yC}}, i.e. no dependencies can be introduced below ∀xH+
φ(A).

Thus x <φ y iff. ∀xH+
φ(A) can be written L1{Q1xL2{Q2yC}} for some L1{ },L2{ }

and C and is therefore a well-defined partial order.

We now need to make sure the partial order <φ works in the same way as the
dependency relation on the expansion proof: that pointing and the descendant
relation induces the correct ordering on variables.

4.3. TRANSLATIONS BETWEEN HNF AND EXPANSION PROOFS 117

Lemma 4.34. Let φ be an KSh2c proof in HNFC and e′ an ∀-edge in π1(φ) that
points to the ∃-edge e. If Lab(e′) = y and the ∃-node below e is ∃xA, then x <φ y.

Proof. Since we have an ∃-node ∃xA in π1(φ) with an edge labelled t below it,
there must be the following h↓ rule in φ:

K

 ∃xA∨ [τ⇒ x]A
h↓

∃xA


Since e points to e′ , y must occur freely in t. As φ is closed, y cannot be a
free variable in K{∃xA∨ [τ⇒ x]A}. Thus K{ }must be of the form K1{∀yK2{ }}.
Therefore x <φ y.

Lemma 4.35. Let φ be an KSh2c proof in HNFC and e′ an ∀-edge in π1(φ) that
points to the cut-edge e. If Lab(e′) = y, E is the expansion tree below the cut edge e
with Sh(E) ≡ A∧ Ā and Qx is some quantifier appearing in A (with Q̄x appearing
in Ā), then x <φ y.

Proof. The cut-edge e in π1(φ) corresponds to some cut K

 A∧ Ā
qi↑

f

 in φ.

Since e′ points to e, we know that y ∈ FV (A). But we also know that φ is a
closed proof. Therefore K{ } = K1{∀yK2{ }}, and x <φ y.

Lemma 4.36. Let φ be an KSh2c proof in HNFC, e a ∀-edge of π1(φ) labelled by x
and e′ an ∃-edge above an ∃-node ∃yA. If e is a descendant of e′ then x <φ y.

Proof. Sh(π1(φ)) ≡ K1{∃yK2∀x{B}} (for some K1{ },K2{ }, and B) is the conclu-
sion of φ, so x <φ y.

Lemma 4.37. Let φ be an KSh2c proof in HNFC, Eφ = π1(φ) and e and e′ be (not
necessarily distinct) ∀-edges in Eφ s.t. e <Eφ e

′ , Lab(e) = x and Lab(e′) = x′ . Then
x <φ x

′ .

Proof. As e <Eφ e
′ , there must be a chain

eq0
<−Eφ · · · <

−
Eφ
ep1

<−Eφ eq1
<−Eφ · · · <

−
Eφ
epm <

−
Eφ
eqm <

−
Eφ
· · · <−Eφ epn

where eq0
= e and epn = e′ , eqi points to epi , and eqi is a descendant of epi+1

in the
expansion tree. If eqi points to epi , then either epi is an ∃-node or a cut node.

If epi is an ∃-node, then by Lemma 4.34, we know that if ∃xpi is the node above
pi and Lab(eqi) = xqi , then xpi <φ xqi . By Lemma 4.36, since eqi−1

is a descendant
of epi in the expansion tree, xqi−1

<φ xpi , so we have xqi−1
<φ xqi .

If epi is a cut node, then we know that, since eqi−1
is a descendent of epi , by

Lemma 4.35, xqi−1
<φ xqi .

Therefore, we have that eq0
<φ eqn−1

. Since eqn−1
must be a descendent of epn , we

have that x = eq0
<φ epn = x′ .

We are now ready to prove the main theorem of this subsection: using our
defined partial order to show that the dependency relation on the expansion
tree is acyclic.

118 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

Theorem 4.38. Let φ be a KSh2c proof of A in HNFC. Then we can construct an
expansion proof with cut Eφ = π1(φ), with Sh(Eφ) ≡ A, and Dp(Eφ) ≡Hφ(A).

Proof. As described above, we only need to show that the dependency relation
of Eφ is acyclic. Assume there were a cycle in <Eφ . Clearly, it could not be
generated by just by travelling up the expansion tree. Thus, there is some ∀-
edge e and an ∃-edge or cut edge e′ such that e points to e′ and e <Eφ e

′ <Eφ e.
But then, if Lab(e) = x, by Lemma 4.37, x <φ x. But this contradicts Proposition
4.33. Therefore <Eφ is acyclic.

4.3.2 Expansion Proofs to HNFC

For the translation from expansion proofs to KSh2c proofs in HNFC, we show
that we can progressively build up a KSh2c proof by working through the
“minimal” nodes of an expansion proof. Unlike the previous translation, there
is not necessarily a unique proof corresponding to each expansion proof, but a
total order on universally quantified variables that respects <E is sufficient to
give a unique proof up to equalities.

Convention 4.39. We will not tend to omit “with cut” in this section, as there
are a few points where the distinction between cut-free and cut-full expansion
proofs is important.

First, we need to relax the definition of expansion trees in a few ways, so we
have objects that can correspond to incomplete HNF proofs.

Definition 4.40. A weak expansion tree is defined in the same way as in Defini-
tion 4.11 except that the first condition is weakened to allow any formula to be
a leaf of the tree. A weak expansion tree with an acyclic dependency relation
is correct regardless of whether its deep formula is a tautology.

A weak expansion tree with cut E +⊥(E1, . . . ,En) is just an expansion tree with
cut where E and Ei are allowed to be weak expansion trees.

Definition 4.41. We define the expansive deep formula Dp+(E) for (weak) ex-
pansion trees, which is defined in the same way as the usual deep formula
except that:

Dp+(∃xA+t1 E1 +t2 · · ·+tn En) :≡ ∃xA∨Dp+(E1)∨ . . .∨Dp+(En)

Now, we define minimal edges and nodes of expansion trees, so that we have a
strategy to translate the tree node by node.

Definition 4.42. A minimal edge of a (weak) expansion tree (with cut) E is an
edge that is minimal w.r.t. to <E .

If all the edges below a node are minimal, we say that the node is a minimal
node.

Lemma 4.43. If E is a weak expansion proof with cut with no minimal edges below
existential nodes and no minimal universal and cut nodes, then it has a minimal ?
node.

4.3. TRANSLATIONS BETWEEN HNF AND EXPANSION PROOFS 119

Proof. Assume E is a weak expansion proof with no minimal edges below ex-
istential nodes and no minimal universal or cut nodes. Clearly, there must be
must be at least one minimal edge e0, and by the assumption it must be below a
node ?0. Let e′0 be the other edge below ?0. If e′0 is minimal, we are done. If not,
pick some minimal edge e1 < e

′
0, which again, with e′1 < e

′
0, must be below some

?1. For each e′i that is not minimal, we can find e′i+1 < e
′
i . As E is finite, this

sequence cannot continue indefinitely, so eventually we will find two minimal
edges en and e′n below ?n.

Now, we show that we can delete minimal nodes of (weak) expansion trees,
converting the deleted information to a part of an HNF proof.

Lemma 4.44. Let E = KE{∀xA +x A}, with Dp+(E) ≡ K{A}, be a correct weak ex-
pansion tree with a minimal ∀-edge labelled by x (which we will call e). Then there

is a derivation
∀xK{A}

{r1↓,r2↓}
K{∀xA}

.

Proof. We proceed by induction on the height of the node ∀xA in E. If ∀xA is
the bottom node, then K{A} ≡ A and we are done. Let E be an expansion tree
where ∀x is not the bottom node. There are three possible cases to consider. In
each case, E1 = KE1 {∀xA+x A} is an expansion tree with Dp+(E1) ≡ K1{A} and,

by the inductive hypothesis, we have a derivation
∀xK1{A}

{r1↓,r2↓}
K1{∀xA}

.

1. E = (E1 ? E2), with Dp+(E) ≡ K1{A} ?Dp+(E2). As e is minimal, it cannot
point to any edge in E2. Therefore B :≡ Dp+(E2) is free for x. Therefore
we can construct the derivations:

∀x(K1{A} ∨B)
r1↓
∀xK1{A}

{r1↓,r2↓}
K1{∀xA}

∨B
and

∀x(K1{A} ∧B)
r2↓
∀xK1{A}

{r1↓,r2↓}
K1{∀xA}

∧B

2. E = ∀y(Sh(E1)) +y E1. As Dp+(E) ≡Dp+(E1), we are already done.

3. E = ∃yK0{A0} +t1 E1 · · · +tn En, with Dp+(Ei) ≡ Bi :≡ [ti ⇒ y](K0{A0}) and
in particular B1 ≡ K1{A}. Thus Dp+(E) ≡ ∃yB0 ∨K1{A} ∨B2 ∨ . . .∨Bn.
Again, e cannot point to any edge in any of the E′i , so we can construct:

∀x(∃yB0 ∨K1{A} ∨B2 ∨ . . .∨Bn)
r1↓

∀x(∃yB0 ∨K1{A})
r1↓ ∃yB0 ∨

∀xK1{A}
{r1↓,r2↓}

K1{∀xA}

 ∨ (B2 ∨ . . .∨Bn)

120 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

Lemma 4.45. Let E = E0 +⊥(E1, . . . ,En), with expansive deep formula Dp+(E) ≡
Dp+(E0)∨Dp+(E1)∨ . . .∨Dp+(En), Dp+(Ei) ≡ Ai , and Ak ≡ K{B} for some partic-
ular 0 ≤ k ≤ n, be a correct weak expansion tree with cut, s.t. the ∀-edge labelled by
x (which we will call e) is minimal w.r.t. <E .

Then there is a derivation:

∀xA0 ∨A1 ∨ . . .∨K{B} ∨An
{r1↓,r2↓}

A0 ∨A1 ∨ . . .∨K{∀xB} ∨An

Proof. Since x is minimal w.r.t. <E , it is certainly minimal w.r.t <Ek . Therefore,

by Lemma 4.44, we can construct the derivation
∀xK{B}

{r1↓,r2↓}
K{∀xB}

. Therefore, we can

also construct the derivation:

∀x(A0 ∨A1 ∨ . . .∨Ak ∨ . . .∨An)
{r1↓}

A0 ∨A1 ∨ . . .∨
∀xK{B}

{r1↓,r2↓}
K{∀xB}

∨ . . .∨An

We are now ready to define the map form expansion proofs to HNF proofs.

Definition 4.46. We define the map πLo
2 : EPC→HNFC:

πLo
2 (E) ≡

∀~xDp+(E)
{h↓,r1↓,r2↓,qiU }

Sh(E)

• If E is just a leaf A, πLo
2 (E) ≡ A.

• If E = KE{B1 ?E1
C1} . . . {Bn ?En Cn}, where Ei are all the ?-nodes s.t. the

edges between ?Ei and Bi and between ?Ei and Ci are minimal, then we
define πLo

2 (E) ≡ πLo
2 (E′), with E′ = KE{B1 ?F1

C1} . . . {Bn ?Fn Cn}, which is a
correct weak expansion tree with cut. Pictorially:

?

B1 C1

?

Bn Cn
. . .E = KE

E′ = KE{B1 ? C1} . . . {Bn ? Cn}

• Assume E has no minimal ? edges. If

E = KE{∃x1A1 +t
1
1 E1

1 · · ·+
t
m1
1 Em1

1 } . . . {∃xnAn +t
1
n E1

n · · ·+t
mn
n Emnn }

with

Dp+(E) ≡ K{∃xA1 ∨A1
1 ∨ . . .∨A

m1
1 } . . . {∃xAn ∨A

1
n ∨ . . .∨A

mn
n }

4.3. TRANSLATIONS BETWEEN HNF AND EXPANSION PROOFS 121

and all edges ejii minimal for 1 ≤ i ≤ n and ki < ji ≤mi (where 1 ≤ ki ≤mi),
then

E′ = KE{∃x1A1 +t
1
1 E1

1 · · ·+
t
k1
1 Ek1

1 } . . . {∃xnAn +t
1
n E1

n · · ·+t
kn
n Eknn }

is a correct weak expansion tree with cut with

Dp+(E) ≡ K{∃xA1 ∨A1
1 ∨ . . .∨A

k1
1 } . . . {∃xAn ∨A

1
n ∨ . . .∨A

kn
n }

and we can define:

πLo
2 (E) ≡

K


∃xA1 ∨A1

1 ∨ . . .∨A
m1
1

{h↓}

∃xA1 ∨A1
1 ∨ . . .∨A

k1
1

 . . .

∃xAn ∨A1

n ∨ . . .∨A
mn
n

{h↓}

∃xAn ∨A1
n ∨ . . .∨A

kn
n


= ..

πLo
2 (E′)

Pictorially:

∃xA

E1
1

· · ·
Ek1

1

· · ·

Em1
1

∃xA

E1
1

· · ·
Ek1

1

· · ·

Em1
1

E = KE . . .

∃xA

E1
1

· · ·

Ek1
1

∃xA

E1
1

· · ·

Ek1
1

E′ = KE . . .

• Assume E does not have any minimal ? nodes or ∃ edges. Let E = E0 +
⊥(E1, . . . ,Ek , . . . ,En) with the cut edges ej for 1 ≤ j ≤ k all minimal. Then
E′ = (E0∨E1∨ . . .∨Ek) +⊥(Ek+1, . . . ,En) is a correct (weak) expansion tree
with cut with

Sh(E′) ≡ (Sh(E0)∨ Sh(E1)∨ . . .∨ Sh(Ek)) and Dp+(E′) ≡Dp+(E)

and we can define

πLo
2 (E) ≡

πLo
2 (E′)

...

A∨
A1 ∧ Ā1

qi↑
f

∨ . . .∨
Ak ∧ Āk

qi↑
f

=
A

Pictorially:

⊥

E1

· · ·

Ek Ek+1

· · ·

En
E =

E0

∨

E0 E1

· · ·

Ek

⊥

Ek+1

· · ·

En
E′ =

122 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

• Assume E is a weak expansion proof with cut with no minimal ? or cut
node, and no minimal ∃ edge. Then E = KE{∀xA+x A} for some minimal
∀ node, and by Lemma 4.45, E′ = KE{∀xA} is a correct weak expansion
tree with cut and we can define:

πLo
2 (E) ≡

∀xDp+(E)
{r1↓,r2↓}

Dp+(E′)
=
πLo

2 (E′)

Pictorially:

∀xA

A

E = KE E′ = KE{∀xA}

Theorem 4.47. If E is an expansion proof with cut where Sh(E) ≡ A, then we can
construct an KSh2c proof φ of A in HNFC, where Hφ(A) ≡Dp(E).

Proof. As Dp(E) is a tautology, there is a proof
π

Up
2 (E) KS

∀~xDp(E)
and clearly there is

a proof
Dp(E)

{∃w↓}
Dp+(E)

. Thus, assuming we have some strategy for picking minimal

∀-nodes, we can define π2 from expansion proofs to KSh2c proofs in HNF as:

π2(E) ≡

π
Up
2 (E) KS

∀~xDp(E)
{∃w↓}

∀~xDp+(E)

πLo
2 (E) {r1↓,r2↓,h↓,qi↑}

Sh(E)

Observation 4.48. For all expansion proofs with cut E we have:

π
Up
2 (E) ≡Up(π2(E)) and πLo

2 (E) ≡ Lo(π2(E)).

Remark 4.49. Although π2 as defined here is a big improvement on the π2
defined in [Ral18], there is still a small element of choice involved. If one
thinks game semantically, π2 is equivalent to constructing a proof by ∃loise
playing every possible move on her turn (it is fairly obvious that it doesn’t make
any significant difference in which order she makes these moves), followed
by ∀belard choosing one possible move on his. Clearly which move ∀belard
chooses affects the proof that will be constructed. Still, what we might call
“∃loise canonicity” is an advance on what is possible in the sequent calculus,
unless one adds some extra syntax, such as focussing [CHM16].

4.3. TRANSLATIONS BETWEEN HNF AND EXPANSION PROOFS 123

We could make progress towards “∀belard canoncity” by replacing r1↓ and
r2↓ with a general retract rule, such as in [Brü06a], but then we lose a certain
amount of fine-grainedness in the proofs.

The translation for expansion proofs with closed cut is actually a lot more
straightforward, since we can separate the cuts from h↓,r1↓ and r2↓.

Corollary 4.50. If E is an expansion proof with closed cuts s.t. Sh(E) ≡ A, then we
can construct a proof

π3(E) ≡

π
Up
3 (E) KS

∀~xDp(E)
{∃w↓}

∀~xDp+(E)

πLo
3 (E) {r1↓,r2↓,h↓}

A∨B
{qi↑}
A

where B ≡ (∀xA1 ∧∃xA1)∨ . . .∨ (∀xAn ∧∃xAn)

Proof. Instead of translating the expansion proof with cut, we replace the ⊥
node with a series of ∨ nodes, to give an expansion proof E′ with Sh(E′) ≡
Sh(E)∨ (∀xA1 ∧∃xA1)∨ . . .∨ (∀xAn ∧∃xAn) and Dp(E′) ≡ Dp(E). Then, we just
take

π3(E) ≡
π2(E′) {h↓,r1↓,r2↓}

A∨
∀xA1 ∧∃xA1

qi↑
f

∨ . . .∨
∀xAn ∧∃xAn

qi↑
f

Of course, if the expansion proof is cut free, so is the deep inference proof.

Corollary 4.51. Let E be a cut-free expansion proof with Sh(E) ≡ A. Then we can
construct a proof φE in HNF of A.

Proof. Clearly π2(E) is cut-free if E is.

Having translations back and forth between expansion proofs and deep infer-
ence proofs gives us access to simple ways to prove certain properties. For
example, we can show how to eliminate switches from the lower part of HNF
proofs.

Proposition 4.52. The switch rule is admissible for the lower part of an HNF proof,
i.e. if there is a proof in HNF,

φ ≡

Up(φ) KS

Hφ(A∧ (B∨C))
{∃w↓}

H+
φ(A∧ (B∨C))

Lo(φ) {r1↓,r2↓,h↓,qi↑}
K {A∧ (B∨C)}

124 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

we can construct:

φ′ ≡

Up(φ′) KS

Hφ′ ((A∧B)∨C)
{∃w↓}

H+
φ′ ((A∧B)∨C)

Lo(φ′) {r1↓,r2↓,h↓,qi↑}
K {(A∧B)∨C}

Proof. Take Eφ = π1(φ). Eφ = KE{EA ∧ (EB ∨EC)}, with Sh(EA) ≡ A, Sh(EB) ≡ C
and Sh(EC) ≡ C. Define E′ = KE{(EA ∧EB)∨EC}. Clearly Sh(E′) ≡ K{(A∧B)∨C}.
We need to check if E′ is correct. Clearly, any dependency cycle in E′ could eas-

ily be transformed into a cycle in E. We have from φ a proof
KS

K ′{A′ ∧ (B′ ∨C′)}
where A′ ≡ Dp(A), B′ ≡ Dp(B) and C′ ≡ Dp(C). Therefore we have Up(φ′) ≡

KS

K ′
 A′ ∧ (B′ ∨C′)
s

(A′ ∧B′)∨C′

, so E′ is correct. Therefore we can construct φ′ ≡ π2(E′).

Corollary 4.53. i↑ is admissible for proofs in HNFC when in the lower part, i.e, if
we have a proof

φ ≡

KS

Hφ(A)
{∃w↓}

H+
φ(A)
{r1↓,r2↓,h↓,qi↑,i↑}
A

we can construct a proof in HNFC

φ′ ≡

KS

Hφ′ (A)
{∃w↓}

H+
φ′ (A)
{r1↓,r2↓,h↓,qi↑}
A

Proof. As seen previously i↑ is derivable for {ai↑,qi↑,s}. We can simply push
instances of ai↑ up through the lower part of the proof, and eliminate them in
the upper part by propositional cut elimination.

By Proposition 4.52, we can eliminate any switches that are generated.

4.4 Cut Elimination for Expansion Proofs

Unfortunately, providing a new cut elimination procedure for expansion proofs
has proven to be beyond the scope of this thesis. However, there are a number
of “off the shelf” procedures in the literature. McKinley’s Herbrand nets are
proof nets for the sequent calculus, and so Herbrand net cut reductions adhere

4.4. CUT ELIMINATION FOR EXPANSION PROOFS 125

closely to those in the sequent calculus [McK13]. The cut reductions for Heijl-
tjes’s proof forests diverge from the sequent calculus, borrowing more from
game semantical techniques [Hei10]. However, a key ingredient for weak nor-
malisation is a different correctness condition to standard expansion trees, and
thus it is not clear that some of the techniques made possible by this adjusted
correctness condition—such as the pruning of proof forests—would translate
naturally into either sequent calculus or deep inference. The unpublished
work of Aschieri et al. gives a much more syntactic cut elimination procedure
for Miller-style expansion proofs [AHW18]. Unlike in McKinley and Heijltjes’s
papers, expansion trees are not limited to prenex formulae, although there is
no prima facie reason why an extension to all first-order formulae would not be
possible for these cut elimination procedures as well.

Theorem 4.54. Let E be an expansion proof with cut. We can obtain a cut-free
expansion proof E′ with Sh(E′) = Sh(E).

Proof. Using the techniques from [Hei10], [McK13] or [AHW18].

We will now look more closely at cut reduction for expansion proofs, and how
it might be interpreted in HNFC proofs. We will follow the taxonomy of Heijl-
tjes, who identifies four reduction steps: propositional, disposal, logical, and
structural. We will look at each of them briefly, for now ignoring the vari-
able conditions, and seeing what they would naively correspond to in a deep
inference system.

The propositional step corresponds to the elimination of quantifier-free cuts;
we have already shown that we need not worry about these as they can
be permuted into the upper part of a proof in HNFC and eliminated.

The disposal step can be imitated by a w↓ − qi↑, followed by eliminating w↑
with a first-order version of the W reduction system:

f
w↓
∃xA

∧∀xĀ
qi↑

f

−→
f∧

∀xĀ
w↑

t
=

f

The logical step is equivalent to a n↓−qi↑ reduction, followed by eliminating
the n↑ rule that is produced by, e.g. Lemma 3.22.

126 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

[t⇒ x]A
n↓
∃xA

∧∀xĀ
qi↑

f

−→
[t⇒ x]A∧

∀xĀ
n↓

[t⇒ x]Ā
i↑

f

The structural step is equivalent to a qc↓ − qi↑ rewrite, followed by eliminat-
ing qc↑ with a first-order version of the C reduction system.

∃xA∨∃xA
qc↓

∃xA
∧∀xĀ

qi↑
f

−→
(∃xA∨∃xA)∧

∀xA
qc↑
∀xA∧∀xA

2s
∃xA∧∀xĀ

qi↑
f

∨
∃xA∧∀xĀ

qi↑
f

We will now discuss in more detail the disposal, logical and structural step,
and the issues they present in the various versions of expansion trees with cut.

4.4.1 The disposal step

At first glance, this wouldn’t seem to cause any issues. However, the version
presented by Heijltjes for proof forests is in fact unsound for the expansion
proofs as we present them. Consider the following expansion proof, created by
using a witness from the universal quantifier opposite a weakened existential:

⊥

∧

∃z ∀w

Q̄w

w

∃x[P̄ x∨∀yP y]

∨

P̄ w ∀y1P y1

P y1

y1

w

∨

P̄ y1 ∀y2P y2

P y2

y2

y1

4.4. CUT ELIMINATION FOR EXPANSION PROOFS 127

It is easily seen to be a correct expansion tree, and therefore we are able to
construct a proof in HNFC corresponding to it:

∀w

∀y1∀y2
KS(

f∧ Q̄w
)
∨

((
Pw∨ P̄ y1

)
∨

(
P y1 ∨ P̄ y2

))
r1↓

(
f

∃w↓
∃zQz

∧ Q̄w
)
∨

∀y1

∀y2
((
Pw∨ P̄ y1

)
∨

(
P y1 ∨ P̄ y2

))
r1↓ (

Pw∨ P̄ y1
)
∨
∀y2

(
P y1 ∨ P̄ y2

)
∨

f
∃w↓
∃x∀y

(
P x∨ P̄ y

)
h↓

∃x∀y
(
P x∨ P̄ y

)
r1↓

∀y1
(
Pw∨ P̄ y1

)
∨∃x∀y

(
P x∨ P̄ y

)
h↓

∃x∀y
(
P x∨ P̄ y

)
r1↓

∀w
(
∃zQz∧ Q̄w

)
r2↓
∃zQz∧∀wQ̄w

qi↑
f

∨∃x∀y
(
P x∨ P̄ y

)

However, if we perform the proof forestry disposal step, since all dependents
of the tree opposite a weakened existential must be deleted, we are left with
the following, clearly incorrect, expansion tree.

∃x(P̄ x∨∀yP y)

So why is the disposal step not unsound for proof forests? The immediate rea-
son is that the correctness condition is different: it is more tightly bound to
the cut reduction procedure, and therefore both expansion trees, considered
as proof forests, are incorrect. The moral reason why they are considered in-
correct is because the class of expansion trees corresponding to HNFC proofs
is slightly larger than the class of expansion trees corresponding to sequent
calculus proofs. Whereas a (multiplicative) sequent calculus cut permanently
splits the context in two, after which the two contexts cannot interact, in deep
inference this is not the case. A sequent calculus proof corresponding to the
above expansion tree would have to illegally weaken on an empty sequent to
give the existential formula, whereas in deep inference this is not the case.

`
Weak
` ∃zQz

DF

` Q̄w,∃x(P̄ x∨∀yP y)
∀R
` ∀wQ̄w,∃x(P̄ x∨∀yP y)

Cut
` ∃x(P̄ x∨∀yP y)

In [McK13], this problem is circumvented by simply disallowing weakening
from the sequent system and insisting that each existential node have at least
one branch (warning that ”[w]eakening is notoriously difficult to handle well
in proof nets”). In [AHW18] implicit weakenings on existential formulae cor-
respond to existential nodes with one branch (with the label the quantified
variable). The cut reduction involves renaming any dependent terms, and so is
strictly different to the proof forestry disposal step.

128 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

Clearly, if we are to have a sound disposal step, we cannot use the disposal
step as found in [Hei10]. Instead of deleting the dependent parts of eliminated
tree, we must rename them. In HNFC, we can mimic this by permuting the
∃w↓ rule down and through the cut:

∃w↓− ρK :
K

 f
∃w↓
∃xA


ρ

K ′ {∃xA}
−→

K {f}
ρ

K ′
 f
∃w↓
∃xA


∃w↓−qi↑ :

f
w↓
∃xA

∧∀xĀ
qi↑

f

−→
f∧

∀xĀ
w↑

t
=

f

Instead of pushing the coweakening up as one, we reduce it to atomic form,
pushing the atomic coweakenings up the proof using W (no new rewrites are
needed), and remove the vacuous quantifiers. We can then replace all the uni-
versally quantified variables with fresh constants.

4.4.2 Logical Step

Of course, since KSh2 does not contain qc↓ or n↓, but a single rule that com-
bines both, h↓, there is not as clean a distinction between the logical and struc-
tural steps as there is in [Hei10]. In fact, [AHW18] and [McK13] make no
distinction between them, treating the reductions generally. We will separate
the two steps to focus on two issues that can be seen as particular to the logical
step and the structural step: bridges and duplication, respectively.

First, we deal with bridges. A naive cut elimination strategy would involve
permuting h↓ rules down until they hit a cut.

h↓− r1↓1 :
∀y

∃xA∨ [t⇒ x]A
h↓

∃xA
∨B

r1↓
∀y∃xA∨B

−→

∀y((∃xA∨ [t⇒ x]A)∨B)
r1↓

∀y
∃xA∨ [t⇒ x]A

h↓
∃xA

∨B

h↓− r1↓2 :
∀y

∃xA∨ [t⇒ x]A
h↓

∃xA
∨B

r1↓
∃xA∨∀yB

−→
∀y((∃xA∨ [t⇒ x]A)∨B)

r1↓
∃xA∨ [t⇒ x]A

h↓
∃xA

∨∀yB

h↓− r2↓1 :
∀y

∃xA∨ [t⇒ x]A
h↓

∃xA
∧B

r2↓
∀y∃xA∧B

−→

∀y((∃xA∨ [t⇒ x]A)∧B)
r2↓

∀y
∃xA∨ [t⇒ x]A

h↓
∃xA

∧B

h↓− r2↓2 :
∀y

∃xA∨ [t⇒ x]A
h↓

∃xA
∧B

r2↓
∃xA∧∀yB

−→
∀y((∃xA∨ [t⇒ x]A)∧B)

r2↓
∃xA∨ [t⇒ x]A

h↓
∃xA

∧∀yB

4.4. CUT ELIMINATION FOR EXPANSION PROOFS 129

Note, however, that for h↓ − r1↓2 and h↓ − r2↓2, if t contains y, these rewrites
will be invalid, thus stalling cut elimination. If the expansion proof is gener-
ated from an HNFC proofs by π2, this configuration will not be common, since
all possible cut, existential and binary connective “moves” will be “played”
simultaneously before any universal moves. However, it is a possible configu-
ration that can arise, in particular if we have an existential node that points to
a universal node the other side of cut to it. This is the problem identified as
bridges in [Hei10].

Example 4.55. Below is part of a HNFC and it’s corresponding expansion tree
that resists normalisation due to a bridge.

⊥

∧

∃y

P t(x)

t(x)

∀x

P̄ x

x

∀x
∃yP y ∨ P t(x)

h↓
∃yP y

∧ P̄ x

r2↓
∃yP y ∧∀xP̄ x

qi↑
f

Note that if we set t(x) = x, then this is a dualised version of the proof of the
drinker’s formula.

The solution to bridges in [Hei10] is for the correctness condition to essentially
ignore any tree with a bridge. Thus they can be “pruned” safely. [McK13]
avoids the problem altogether, by adapting the cut elimination procedure to
make sure that bridges can never be formed in Herbrand nets. Since bridges
are not possible in expansion proofs translated from sequent calculus proofs,
due to the eigenvariable condition, the class of Herbrand nets considered can
exclude the possibility of bridges. In [AHW18], bridges are broken by the re-
naming policy in their cut reduction step. It is not clear which of these strate-
gies, if any, can make a suitable transition into KSh2c proofs, although, since
pruning relies on a different correctness condition to the expansion tree norm,
it is unlikely that it could be translated with ease.

4.4.3 The Structural Step

Once the problem of bridges is solved, and we are able to permute h↓ rules to
their respective cuts, we can permute the h↓ rule through the cut.

∃xA∨ [t⇒ x]A
h↓

∃xA
∧∀xĀ

qi↑
f

−→
(∃xA∨ [t⇒ x]A)∧

∀xĀ
h↑
∀xĀ∧ [t⇒ x]Ā

2s
∃xA∧∀xĀ

qi↑
f

∨
[t⇒ x]A∧ [t⇒ x]Ā

i↑
f

We would then need to permute the h↑ rule up through the proof, duplicat-
ing the proof above the universal quantifier. We can sketch the operation on
expansion trees that this would mirror, again ignoring dependencies for now.

130 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

⊥

∧

∃x

EA

t

∀x

EĀ

x

−→

⊥

∧

∃x

EA

t

∀x

EĀ

x

∧

E′A E′
Ā

We can get a better idea of how the operation might work by looking more
closely at h↑ elimination. The inference rule can be eliminated from HNF
proofs, but at the cost of leaving contractions behind.

Lemma 4.56. h↑ is admissible for the lower part of proofs in HNF, leaving behind
c↓ instances.

Proof. We can permute instances of h↑ up a proof in the following way

r1↓−h↑ :

∀x(A∨B)
r1↓

∀xA
h↑
∀xA∧ [t⇒ x]A

∨B
−→

∀x(A∨B)
h↑

∀x(A∨B)
r1↓
∀xA∨B

∧ ([t⇒ x]A∨B)

2s

(∀xA∧ [t⇒ x]A)∨
B∨B

c↓
B

r2↓−h↑ :

∀x(A∧B)
r2↓

∀xA
h↑
∀xA∧ [t⇒ x]A

∧B
−→

∀x(A∧B)
h↑

∀x(A∧B)
r1↓
∀xA∧B

∧ ([t⇒ x]A∧B)

=

(∀xA∧ [t⇒ x]A)∧
B∧B

w↑
B

h↓−h↑1 :
∀yK

 ∃xA∨ [t1⇒ x]A
h↓

∃xA


h↑
∀yK {∃xA} ∧ [t2⇒ y]K {∃xA}

−→

∀yK {∃xA∨ [t1⇒ x]A}
qc↑

∀yK
 ∃xA∨ [t1⇒ x]A
h↓

∃xA

∧∀yK  ∃xA∨ [t1⇒ x]A
h↓

∃xA


h↓−h↑2 :

∃xK {∀yA} ∨ [t1⇒ x]K {∀yA}
h↓

∃xK
 ∀yA
h↑
∀yA∧ [t2⇒ y]A

 −→

∃xK
 ∀yA
h↑
∀yA∧ [t2⇒ y]A

∨ [t1⇒ x]K

 ∀yA
h↑
∀yA∧ [t2⇒ y]A


h↓

∃xK {∀yA∧ [t2⇒ y]A}

4.4. CUT ELIMINATION FOR EXPANSION PROOFS 131

Checking the variable conditions in h↓−h↑1 and h↓−h↑2 is essentially the same
as in the proof for Proposition 3.22.

Clearly, these rewrites leave s,c↓ and w↑ instances in the proof. We have shown
that switch and coweakening are admissible, leaving c↓.

At this stage it is not exactly clear how best to deal with the contractions—the
obvious direction for a solution is for them to be absorbed into the hD rules
somehow. Clearly, eliminating them will involve duplicating part of the ex-
pansion proof. But, as McKinley notes, there are choices to make about how
much of the expansion proof/proof forest should be duplicated by the reduc-
tion step. The modified correctness condition in [Hei10] allows for a smaller
amount of copying than in [McK13] or [AHW18], but the fine-grainedness of
using r1↓ and r2↓ instead of eigenvariables could also give us access to a more
compact cut reduction relation. On the other hand, the fact that HNF proofs
include a prenexification, forcing a total ordering on the quantifiers, might
mean that superfluous information is duplicated.

132 CHAPTER 4. HERBRAND PROOFS AND EXPANSION PROOFS

4.5 Cut Elimination for SKSq

Making use of a cut elimination proof for expansion proofs, we can now prove
the main theorem of the thesis.

Theorem 4.57 (Cut elimination for SKSq). The first-order proof systems SKSq

and KSq are weakly equivalent, i.e. if there is a proof with cut
φ SKSq

A
then there is

a cut-free proof
ψ KSq

A
.

Proof. Let
φ SKSq

A
. By Proposition 3.29 we can reduce all the up-rules to ai↑

and qi↑, pushing all instances of qi↑ to the bottom of the proof.

By Theorem 4.5, taking into account Remark 4.8, we can construct a Herbrand
proof φ2 of A∧B where B ≡

(
∀x1B1 ∧∃x1B̄1

)
∨ . . .∨

(
∀xnBn ∧∃xnB̄n

)
.

By Theorem 1.55, we can eliminate ai↑ from the upper part of the Herbrand
Proof to form φ3. By Proposition 4.29, we can construct a proof φ4 of A∧B in
HNF.

By Theorem 4.38, we can construct an expansion proof with cut ECφ4
. By The-

orem 4.54, we can eliminate the cuts from ECφ4
to give Eφ5

, and then translate
back into a proof in HNF of A, φ5 by Theorem 4.51. By Proposition 4.29, we
can translate this back into a KSh1 proof φ6, and finally back into KSq with
Proposition 4.9.

φ SKSq

A
Prop 3.29
−−−−−−−−→

φ1 KSq∪{ai↑}
A∧B
{qi↑}
A

Thm 1.55−−−−−−−−→

φ2 KSh1∪{ai↑}
A∧B
{qi↑}
A

Thm 4.5−−−−−−−→

φ3 KSh1

A∧B
{qi↑}
A

Prop 4.29
−−−−−−−−→

φ4 KSh2

A∧B
{qi↑}
A

Thm 4.38−−−−−−−−→
ECφ4 EPC

A
Thm 4.54−−−−−−−−→

Eφ5 EP

A

Thm 4.47−−−−−−−−→ φ5 KSh2

A
Prop 4.29
−−−−−−−−→ φ6 KSh1

A
Prop 4.9
−−−−−−−→ ψ KSq

A

Conclusion

In this thesis, we have stated and proven three main theorems, each using a
key proof-theoretic technology. In the first chapter, we prove propositional
cut elimination by the experiments method, with the atomic flow providing
an important framework. In the second chapter, decomposition for proposi-
tional proofs is reduced to cycle removal, which is performed with the use of
a new rule: the merge contraction. Finally, in the fourth chapter, we show
first-order cut elimination, with the key step being translations to and from
expansion proofs. Of these three main strands, the last stands out in being the
only one to substantially use logical technology developed outside the deep
inference community. The first two results are, on the other hand, rather more
parochial. Thus, we will suggest a few points of comparison with the wider
logical literature, focussing in particular on the propositional material in the
thesis, which has less direct contact with this literature. These comparisons
will hopefully point towards future research directions, to the benefit of proof
theory and logic more generally both within and without the deep inference
community.

The Experiments Method and its Relations

A significant justification for the move to deep inference from Gentzen-style
proof systems is the greater freedom in composing proofs and derivations. Us-
ing these freedoms, we are able to achieve a certain confluence in proof seman-
tics for propositional logic, with methods such as the experiments. Thus, it will
be useful to compare this method to techniques and innovations in more es-
tablished proof systems that also aim at confluence of normalisation, or other
means of achieving canonicity.

The Mix Rule

When eliminating cut from sequent calculus proofs, the standard technique
for permuting the cut rule past a weakening on each cut formula is to delete
one side of the proof and the cut with it. Since we have two choices, we have a

133

134 CONCLUSION

clear counterexample to confluence of the cut elimination procedure.

Π1

Γ
weak

Γ ,A

Π2

∆
weak

Ā,∆
cut

Γ ,∆

=⇒
Π1

Γ
weak

Γ ,∆

/
Π2

∆
weak

Γ ,∆

This situation, known as the Lafont counterexample [GTL89], is one where the
formalism seems to force an arbitrary choice during normalisation, a problem
that does not arise if we move to deep inference [Gug02]. Therefore we have
access to cut elimination procedures such as the experiments method, which
offer a form of canonicity unavailable to simple sequent systems.

Since, for the sequent calculus, the implicit connective between two proofs
is always conjunction, there is seemingly no way to encode a normalisation
method like the experiments, which relies on a disjunction on proofs. How-
ever, the addition of the mix rule goes someway towards solving this problem
[Gen64; Pla01].

` Γ ` ∆
Mix

` Γ ,∆
The mix rule acts as a sort of meta level weakening, converting the implicit
conjunction between two sequent calculus proofs into a disjunction at the level
of the sequent. Thus we can envisage a version of the experiments method in
the sequent calculus using the mix rule:

∆1

` Γ1,B

∆2

` Γ2,B . . .

∆n

` Γn,B
Mixn−1

` Γ1,Γ2, . . . ,Γn,B, . . . ,B
Conn−1

` Γ1,Γ2, . . . ,Γn,B

Some important differences remain, though. First, although the mix rule can
allow disjunctive rather than conjunctive connection of proofs, the structure of
a sequent-calculus proof remains tree-like rather than fully two-dimensional.
Thus, the truth-table tautology at the top of an experiments proof cannot be
used in the same way, and this “experiments” method will not suffice as a cut
elimination method as it currently is. Second, the mix rule does not change
the implicit meta-connective between sequent calculus proofs, it only acts as a
weakening of that connective from a conjunction to a disjunction at the point at
which those proofs converge. Each proof joined together needs a valid premise,
unlike when two deep inference proofs are disjunctively joined.

Quine’s Method

A more further afield comparison to the experiments method can be made
to Quine’s method for minimising Boolean functions (later extended by Mc-
Cluskey) [Qui52; Qui55; MJ56]. The problem of finding the simplest Boolean

135

function equivalent to any given function has obvious analogies with the search
for canonical proofs. The key to Quine’s method is finding the prime implicants
of a formula φ, that is the formulae that imply φ while subsuming no shorter
formulae that also imply φ. Finding the prime implicants of a formula (in dis-
junctive normal form) is carried out by alternating two steps: dropping any
superfluous clauses; and finding and adding the consensus of two clauses, con-
structed by removing dual atoms from each clause and then joining them in
conjunction.

Since Quine’s method has a different goal to the experiments, a direct compar-
ison is not reasonable. However, there are interesting superficial similarities.
On a general level, both methods are searching for a canonical object: Boolean
functions and cut-free proofs, respectively. On a more technical level, finding
the consensus of two clauses involves creating a new clause which has an atom
deleted from one clause and its dual deleted from another, just as we create
two experiments by deleting alternately an atom and its dual from a proof, in
a certain way.

Graphical proof systems

Next, we will discuss two interesting graphical proof systems developed in
recent years: Yves Lafont’s interaction nets and Dominic Hughes’ combinato-
rial proofs. Each of these formalisms satisfy the Cook-Reckhow criteria for a
formal proof system [CR79], that the proof system must be sound, complete
and be checkable in polynomial time. Our interest in graphical proof sys-
tems stems from their suitability as “bureaucracy-free” canonical proof ob-
jects [Gir89; BL05]. These proof systems are interesting in their own right,
of course, but also because of the possibility of inter-translatability with more
syntactically burdened proof systems, with such translations often giving clear
indication of what proofs it is reasonable to identify semantically.

Interaction nets

We will first introduce a comparison that is already recognised and studied:
between atomic flows and interaction nets. Just as atomic flows are a graphi-
cal formalism that arise from classical deep inference proof theory, interaction
nets were developed out of the proof theory of linear logic, specifically their
proof nets [Laf89]. Much like the atomic flow, rewrites govern the behaviour of
interaction nets, with many of the rewrites—duplication, for example— essen-
tially the same as those for the atomic flow. However, an important difference
should be stressed: whereas interaction nets form a local and strongly conflu-
ent model of computation, the atomic flow itself is not sufficient for compu-
tation, since they do not form a proof system according to the Cook-Reckhow
criteria described above. Instead, the atomic flow gives us access to certain
aspects of SKS proof theory that would not be feasible without it.

Additionally, the presentation of merge contractions as context contractions
suggests a comparison with context sharing (or partial sharing) in sharing

136 CONCLUSION

graphs for optimal reduction. Sharing graphs, a particular subclass of inter-
action nets, have been shown to implement optimal reduction in the lambda
calculus, where both one value can be shared in multiple contexts, and multi-
ple values can be shared in a single shared context [Lam90; GAL92]. Clearly,
there is some superficial similarity to the context contractions (shown to be
equivalent to merge contractions) here, where we could choose to distinguish
between context contractions with non-trivial contexts (i.e. at least one hole)
and regular contractions, mirroring the distinction between context sharing
and value sharing. Thus, it might be interesting to investigate Curry-Howard
correspondences from proof systems with merge contractions, building on the
work already carried out on the atomic lambda calculus [GHP13].

A more formalised link between deep inference and interaction nets is pro-
vided by Stéphane Gimenez and George Moser: a Curry-Howard correspon-
dence between a linear logic-based system and a typed variant of sharing graphs,
[GM13]. Furthermore, preliminary work has been carried out investigating the
possibility of atomic graphs, extending the Curry-Howard correspondence es-
tablished between deep inference intuitionistic logic and the atomic lambda
calculus to sharing graphs [GHP13; SS17].

Combinatorial Proofs

Finally, we discuss a second graphical proof system: Dominic Hughes’s com-
binatorial proofs [Hug06]. Here, proof objects are almost purely algebraic: a
proof of φ consists of a graph homomorphism h : C → G(φ), where G(φ) is a
graph associated with φ and C a coloured graph. Crucially for this compari-
son, G(φ) does not respect the tree structure of φ but represents the logical re-
lations between atoms in a formula, similar to the relation webs of Guglielmi’s
BV [Gug07]. In this way, combinatorial proofs can be thought of as a form
of “deep” inference, although it is perhaps more accurate to describe it as a
formalism that transcends the “deep/shallow” binary.

Recently, work towards first-order combinatorial proofs has been published by
Hughes [Hug18], as well as work by Straßburger extending the notion to that of
combinatorial flows [Str17a]. Combinatorial proofs have also been investigated
as canonical proofs across a range of propositional proof systems, including
sequent calculus, analytic tableaux, and resolution [AS18]—if we are to sug-
gest certain deep inference proof systems or classes of deep inference proofs as
canonical, combinatorial proofs offer us a benchmark.

Bibliography

[AB16] Juan P Aguilera and Matthias Baaz. “Unsound Inferences Make
Proofs Shorter”. In: arXiv preprint arXiv:1608.07703 (2016).

[Ack40] Wilhelm Ackermann. “Zur widerspruchsfreiheit der zahlentheo-
rie”. In: Mathematische Annalen 117.1 (1940), pp. 162–194. issn:
0025-5831.

[AHW18] Federico Aschieri, Stefan Hetzl, and Daniel Weller. “Expansion
Trees with Cut”. Unpublished Work. arXiv preprint. 2018. url:
https://arxiv.org/abs/1802.08076.

[Alc+17] Aurore Alcolei et al. “The true concurrency of Herbrand’s theo-
rem”. Unpublished Work. Submitted. 2017.

[AS18] Matteo Acclavio and Lutz Straßburger. “From syntactic proofs to
combinatorial proofs”. In: International Joint Conference on Auto-
mated Reasoning. Springer, 2018, pp. 481–497.

[AT16] Andrea Aler Tubella. “A study of normalisation through subatomic
logic”. Original Version. Thesis. University of Bath, 2016. url: https:
//aalertubelladotcom.files.wordpress.com/2017/02/thesis.

pdf.
[AT17] Andrea Aler Tubella. “A study of normalisation through subatomic

logic”. Revised Version. Thesis. University of Bath, 2017. url: https:
//aalertubelladotcom.files.wordpress.com/2017/02/thesis.

pdf.
[ATG18] Andrea Aler Tubella and Alessio Guglielmi. “Subatomic Proof Sys-

tems: Splittable Systems”. In: ACM Trans. Comput. Logic 19.1 (2018),
pp. 1–33. issn: 1529-3785. doi: 10.1145/3173544.

[ATGR17] Andrea Aler Tubella, Alessio Guglielmi, and Benjamin Ralph. “Re-
moving Cycles from Proofs”. In: 26th EACSL Annual Conference
on Computer Science Logic (CSL 2017). Ed. by Valentin Goranko
and Mads Dam. Vol. 82. Leibniz International Proceedings in In-
formatics (LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2017, 9:1–9:17. isbn: 978-3-95977-045-3. doi: 10 . 4230 /
LIPIcs .CSL .2017 . 9. url: http :/ /cs . bath. ac. uk /ag /p /
RCP.pdf.

[ATGR18] Andrea Aler Tubella, Alessio Guglielmi, and Benjamin Ralph. “Re-
moving Cycles with Merge Contractions”. Unpublished Work. Un-
published Draft. 2018.

[Avr87] Arnon Avron. “A constructive analysis of RM”. In: The Journal of
symbolic logic 52.4 (1987), pp. 939–951. issn: 0022-4812.

137

https://arxiv.org/abs/1802.08076
https://aalertubelladotcom.files.wordpress.com/2017/02/thesis.pdf
https://aalertubelladotcom.files.wordpress.com/2017/02/thesis.pdf
https://aalertubelladotcom.files.wordpress.com/2017/02/thesis.pdf
https://aalertubelladotcom.files.wordpress.com/2017/02/thesis.pdf
https://aalertubelladotcom.files.wordpress.com/2017/02/thesis.pdf
https://aalertubelladotcom.files.wordpress.com/2017/02/thesis.pdf
https://doi.org/10.1145/3173544
https://doi.org/10.4230/LIPIcs.CSL.2017.9
https://doi.org/10.4230/LIPIcs.CSL.2017.9
http://cs.bath.ac.uk/ag/p/RCP.pdf
http://cs.bath.ac.uk/ag/p/RCP.pdf

138 BIBLIOGRAPHY

[Avr91] Arnon Avron. “Hypersequents, logical consequence and interme-
diate logics for concurrency”. In: Annals of Mathematics and Artifi-
cial Intelligence 4.3-4 (1991), pp. 225–248. issn: 1012-2443.

[Bel82] Nuel D Belnap. “Display logic”. In: Journal of philosophical logic
11.4 (1982), pp. 375–417. issn: 0022-3611.

[BG09] Paola Bruscoli and Alessio Guglielmi. “On the Proof Complexity
of Deep Inference”. In: ACM Transactions on Computational Logic
(TOCL) 10.2 (2009), p. 14. issn: 1529-3785. doi: 10.1145/1462179.
1462186. url: <GotoISI>://WOS:000266012100007.

[BG16] Paola Bruscoli and Alessio Guglielmi. On Analyticity in Deep Infer-
ence. Web Page. 2016. url: http://cs.bath.ac.uk/ag/p/ADI.
pdf.

[BL05] Kai Brünnler and Stéphane Lengrand. “On two forms of bureau-
cracy in derivations”. In: (2005).

[BL94] Matthias Baaz and Alexander Leitsch. “On skolemization and proof
complexity”. In: Fundamenta Informaticae 20.4 (1994), pp. 353–
379. issn: 0169-2968.

[BLL18] Matthias Baaz, Alexander Leitsch, and Anela Lolic. “A Sequent-
Calculus Based Formulation of the Extended First Epsilon Theo-
rem”. In: International Symposium on Logical Foundations of Com-
puter Science. Springer, 2018, pp. 55–71.

[BM08] Kai Brünnler and Richard McKinley. “An algorithmic interpreta-
tion of a deep inference system”. In: International Conference on
Logic for Programming Artificial Intelligence and Reasoning. Springer,
2008, pp. 482–496.

[Bru+16] Paola Bruscoli et al. “Quasipolynomial Normalisation in Deep In-
ference Via Atomic Flows and Threshold Formulae”. In: Logical
Methods in Computer Science 12.1 (2016), 5:1–30. issn: 1860-5974.
doi: Artn510.2168/Lmcs-12(1:5)2016. url: http://cs.bath.
ac.uk/ag/p/QuasiPolNormDI.pdf.

[Brü03a] Kai Brünnler. Deep inference and symmetry in classical proofs. Logos
Verlag, 2003. isbn: 3832504486.

[Brü03b] Kai Brünnler. “Two restrictions on contraction”. In: Logic Journal
of IGPL 11.5 (2003), pp. 525–529. issn: 1367-0751. url: http://
cs.bath.ac.uk/ag/kai/RestContr.pdf.

[Brü06a] Kai Brünnler. “Cut elimination inside a deep inference system for
classical predicate logic”. In: Studia Logica 82.1 (2006), pp. 51–71.
issn: 0039-3215. url: http://cs.bath.ac.uk/ag/kai/q.pdf.

[Brü06b] Kai Brünnler. “Locality for classical logic”. In: Notre Dame Journal
of Formal Logic 47.4 (2006), pp. 557–580. issn: 0029-4527.

[Brü09] Kai Brünnler. “Deep sequent systems for modal logic”. In: Archive
for Mathematical Logic 48.6 (2009), pp. 551–577. issn: 0933-5846.

[BT01] Kai Brünnler and Alwen Tiu. “A local system for classical logic”.
In: Logic for Programming, Artificial Intelligence, and Reasoning. Vol. 2250.
Springer, 2001, pp. 347–361. isbn: 3540429573. doi: 10.1007/3-
540-45653-8_24.

[Bus91] Samuel R Buss. “The undecidability of k-provability”. In: Annals
of Pure and Applied Logic 53.1 (1991), pp. 75–102. issn: 0168-0072.
doi: 10.1016/0168-0072(91)90059-U.

https://doi.org/10.1145/1462179.1462186
https://doi.org/10.1145/1462179.1462186
<Go to ISI>://WOS:000266012100007
http://cs.bath.ac.uk/ag/p/ADI.pdf
http://cs.bath.ac.uk/ag/p/ADI.pdf
https://doi.org/Artn 5 10.2168/Lmcs-12(1:5)2016
http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf
http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf
http://cs.bath.ac.uk/ag/kai/RestContr.pdf
http://cs.bath.ac.uk/ag/kai/RestContr.pdf
http://cs.bath.ac.uk/ag/kai/q.pdf
https://doi.org/10.1007/3-540-45653-8_24
https://doi.org/10.1007/3-540-45653-8_24
https://doi.org/10.1016/0168-0072(91)90059-U

BIBLIOGRAPHY 139

[Bus95] Samuel R Buss. “On Herbrand’s theorem”. In: Logic and Computa-
tional Complexity. Springer, 1995, pp. 195–209. isbn: 3540601783.

[Car02] Alessandra Carbone. “The cost of a cycle is a square”. In: The Jour-
nal of Symbolic Logic 67.1 (2002), pp. 35–60. issn: 1943-5886. doi:
10.2178/jsl/1190150028. url: <GotoISI>://WOS:000174333800003.

[CGT08] Agata Ciabattoni, Nikolaos Galatos, and Kazushige Terui. “From
axioms to analytic rules in nonclassical logics”. In: 23rd Annual
IEEE Symposium on Logic in Computer Science. IEEE, 2008, pp. 229–
240. isbn: 0769531830.

[CHM16] Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller. “A multi-focused
proof system isomorphic to expansion proofs”. In: Journal of Logic
and Computation 26.2 (2016), pp. 577–603. issn: 0955-792X. doi:
10.1093/logcom/exu030. url: http://dx.doi.org/10.1093/
logcom/exu030.

[Coq95] Thierry Coquand. “A Semantics of Evidence for Classical Arith-
metic”. In: Journal of Symbolic Logic 60.1 (1995). Qt521 Times Cited:55
Cited References Count:15, pp. 325–337. issn: 0022-4812. doi: Doi10.
2307/2275524. url: <GotoISI>://WOS:A1995QT52100018.

[CR79] Stephen A Cook and Robert A Reckhow. “The relative efficiency
of propositional proof systems”. In: The Journal of Symbolic Logic
44.01 (1979), pp. 36–50. issn: 1943-5886.

[CRW14] Agata Ciabattoni, Revantha Ramanayake, and Heinrich Wansing.
“Hypersequent and display calculi–a unified perspective”. In: Stu-
dia Logica 102.6 (2014), pp. 1245–1294. issn: 0039-3215.

[Das14a] Anupam Das. “On the pigeonhole and related principles in deep
inference and monotone systems”. In: Joint Meeting of the 23rd
EACSL Annual Conference on Computer Science Logic (CSL) and the
29th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). 2014.

[Das14b] Anupam Das. “The complexity of propositional proofs in deep in-
ference”. Thesis. University of Bath, 2014.

[Das15] Anupam Das. “On the Relative Proof Complexity of Deep Infer-
ence Via Atomic Flows”. In: Logical Methods in Computer Science
11.1 (2015), 4:1–27. issn: 1860-5974. doi: 10.2168/LMCS-11(1:
4)2015. url: http://arxiv.org/pdf/1502.05860.pdf.

[DS16] Anupam Das and Lutz Straßburger. “On linear rewriting systems
for Boolean logic and some applications to proof theory”. In: Log-
ical Methods in Computer Science 12 (2016).

[DV01] Anatoli Degtyarev and Andrei Voronkov. “Kanger’s choices in au-
tomated reasoning”. In: Collected papers of Stig Kanger with Essays
on his Life and Work. Springer, 2001, pp. 53–67.

[GAL92] Georges Gonthier, Martín Abadi, and Jean-Jacques Lévy. “The ge-
ometry of optimal lambda reduction”. In: Proceedings of the 19th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM, 1992, pp. 15–26. isbn: 0897914538.

[Gen64] Gerhard Gentzen. “Investigations into logical deduction”. In: Amer-
ican philosophical quarterly 1.4 (1964), pp. 288–306. issn: 0003-
0481.

[GG08] Alessio Guglielmi and Tom Gundersen. “Normalisation Control
in Deep Inference Via Atomic Flows”. In: Logical Methods in Com-

https://doi.org/10.2178/jsl/1190150028
<Go to ISI>://WOS:000174333800003
https://doi.org/10.1093/logcom/exu030
http://dx.doi.org/10.1093/logcom/exu030
http://dx.doi.org/10.1093/logcom/exu030
https://doi.org/Doi 10.2307/2275524
https://doi.org/Doi 10.2307/2275524
<Go to ISI>://WOS:A1995QT52100018
https://doi.org/10.2168/LMCS-11(1:4)2015
https://doi.org/10.2168/LMCS-11(1:4)2015
http://arxiv.org/pdf/1502.05860.pdf

140 BIBLIOGRAPHY

puter Science 4.1 (2008), 9:1–36. issn: 1860-5974. doi: 10.2168/
LMCS-4(1:9)2008. url: http://arxiv.org/pdf/0709.1205.pdf.

[GGP10] Alessio Guglielmi, Tom Gundersen, and Michel Parigot. “A Proof
Calculus Which Reduces Syntactic Bureaucracy”. In: Proceedings
of the 21st International Conference on Rewriting Techniques and Ap-
plications (Rta’10) 6 (2010), pp. 135–150. issn: 1868-8969. doi: 10.
4230/LIPIcs.RTA.2010.135. url: <GotoISI>://WOS:000392014100011.

[GGS10] Alessio Guglielmi, Tom Gundersen, and Lutz Straßburger. “Break-
ing Paths in Atomic Flows for Classical Logic”. In: Logic in Com-
puter Science (LICS), 2010 25th Annual IEEE Symposium on. IEEE,
2010, pp. 284–293. isbn: 1424475880. doi: 10.1109/LICS.2010.
12. url: http://www.lix.polytechnique.fr/~lutz/papers/
AFII.pdf.

[GHP13] Tom Gundersen, Willem Heijltjes, and Michel Parigot. “Atomic
lambda calculus: A typed lambda-calculus with explicit sharing”.
In: Proceedings of the 2013 28th Annual ACM/IEEE Symposium on
Logic in Computer Science. IEEE Computer Society, 2013, pp. 311–
320. isbn: 0769550207.

[Gir87] Jean-Yves Girard. “Linear logic”. In: Theoretical computer science
50.1 (1987), pp. 1–101. issn: 0304-3975.

[Gir89] Jean-Yves Girard. “Towards a geometry of interaction”. In: Con-
temporary Mathematics 92.69-108 (1989), p. 6.

[GM13] Stéphane Gimenez and Georg Moser. “The Structure of Interac-
tion”. In: CSL. Vol. 23. 2013, pp. 316–331.

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types.
Vol. 7. Cambridge University Press Cambridge, 1989.

[Gug] Alessio Guglielmi. Deep Inference. Web Page. url: alessio.guglielmi.
name/res/cos.

[Gug+10] Alessio Guglielmi et al. Geometric Normalisation with Atomic Flows.
Web Page. 2010. url: http://cs.bath.ac.uk/ag/t/GNAF.pdf.

[Gug02] Alessio Guglielmi. On Lafont’s counterexample. Web Page. 2002.
url: http://cs.bath.ac.uk/ag/p/AG5.pdf.

[Gug04] Alessio Guglielmi. Formalism A. Web Page. 2004. url: http://
iccl.tu-dresden.de/guglielm/p/AG11.pdf.

[Gug07] Alessio Guglielmi. “A system of interaction and structure”. In:
Acm Transactions on Computational Logic 8.1 (2007). issn: 1529-
3785. doi: Artn110.1145/1182613.1182614. url: <GotoISI> :
//WOS:000244402200001.

[Gun09] Tom Erik Gundersen. “A general view of normalisation through
atomic flows”. Thesis. University of Bath, 2009. url: https://
tel . archives - ouvertes . fr / file / index / docid / 509241 /

filename/thesis.pdf.
[HB74] David Hilbert and Paul Bernays. Grundlagen der Mathematik II.

Springer, 1974.
[He18] Fanny He. “The Atomic Lambda-Mu Calculus”. Thesis. University

of Bath, 2018.
[Hei10] Willem Heijltjes. “Classical proof forestry”. In: Annals of Pure and

Applied Logic 161.11 (2010), pp. 1346–1366. issn: 0168-0072. doi:
DOI10.1016/j.apal.2010.04.006. url: <GotoISI> ://WOS:
000280890300003.

https://doi.org/10.2168/LMCS-4(1:9)2008
https://doi.org/10.2168/LMCS-4(1:9)2008
http://arxiv.org/pdf/0709.1205.pdf
https://doi.org/10.4230/LIPIcs.RTA.2010.135
https://doi.org/10.4230/LIPIcs.RTA.2010.135
<Go to ISI>://WOS:000392014100011
https://doi.org/10.1109/LICS.2010.12
https://doi.org/10.1109/LICS.2010.12
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf
alessio.guglielmi.name/res/cos
alessio.guglielmi.name/res/cos
http://cs.bath.ac.uk/ag/t/GNAF.pdf
http://cs.bath.ac.uk/ag/p/AG5.pdf
http://iccl.tu-dresden.de/guglielm/p/AG11.pdf
http://iccl.tu-dresden.de/guglielm/p/AG11.pdf
https://doi.org/Artn 1 10.1145/1182613.1182614
<Go to ISI>://WOS:000244402200001
<Go to ISI>://WOS:000244402200001
https://tel.archives-ouvertes.fr/file/index/docid/509241/filename/thesis.pdf
https://tel.archives-ouvertes.fr/file/index/docid/509241/filename/thesis.pdf
https://tel.archives-ouvertes.fr/file/index/docid/509241/filename/thesis.pdf
https://doi.org/DOI 10.1016/j.apal.2010.04.006
<Go to ISI>://WOS:000280890300003
<Go to ISI>://WOS:000280890300003

BIBLIOGRAPHY 141

[Her30] Jacques Herbrand. “Recherches sur la théorie de la démonstra-
tion”. Thesis. University of Paris, 1930.

[Her71] Jacques Herbrand. Logical writings. Springer, 1971. isbn: 9027701768.
[Hil25] David Hilbert. “On the Infinite”. In: From Frege to Gödel: a source

book in mathematical logic, 1879-1931. Harvard University Press,
1925, pp. 369–392. isbn: 0674324498.

[Hug04] Dominic Hughes. “Deep inference proof theory equals categorical
proof theory minus coherence”. Unpublished Work. Unpublished.
2004.

[Hug06] Dominic JD Hughes. “Proofs without syntax”. In: Annals of Mathe-
matics 164.3 (2006). 243zl Times Cited:6 Cited References Count:27,
pp. 1065–1076. issn: 0003-486X. url: <GotoISI>://WOS:000251835700009.

[Hug18] Dominic JD Hughes. “Unification nets: canonical proof net quan-
tifiers”. In: arXiv preprint arXiv:1802.03224 (2018).

[HW13] Stefan Hetzl and Daniel Weller. “Expansion trees with cut”. In:
arXiv preprint arXiv:1308.0428 (2013).

[Jeř08] Emil Jeřábek. “Proof Complexity of the Cut-free Calculus of Struc-
tures”. In: Journal of Logic and Computation 19.2 (2008), pp. 323–
339. issn: 0955-792X. doi: 10.1093/logcom/exn054. url: http:
//users.math.cas.cz/~jerabek/papers/cos.pdf.

[Kan57] Stig Kanger. “Provability in logic, Stockholm studies in Philoso-
phy, vol. 1”. In: Alynquist & Wiksell (1957).

[Laf89] Yves Lafont. “Interaction nets”. In: Proceedings of the 17th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM, 1989, pp. 95–108. isbn: 0897913434.

[Lam90] John Lamping. “An algorithm for optimal lambda calculus reduc-
tion”. In: Proceedings of the 17th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages. ACM, 1990, pp. 16–
30. isbn: 0897913434.

[LS05] François Lamarche and Lutz Straßburger. “Naming proofs in clas-
sical propositional logic”. In: Typed Lambda Calculi and Applica-
tions. Springer, 2005, pp. 246–261. isbn: 3540255931.

[McK06] Richard McKinley. “Categorical models of first-order classical proofs”.
Thesis. University of Bath, 2006.

[McK10] Richard McKinley. “A sequent calculus demonstration of Herbrand’s
theorem”. In: arXiv preprint arXiv:1007.3414 (2010).

[McK13] Richard McKinley. “Proof nets for Herbrand’s Theorem”. In: ACM
Transactions on Computational Logic (TOCL) 14.1 (2013), pp. 1–31.
issn: 1529-3785. doi: 10.1145/2422085.2422090.

[Mil87] Dale A. Miller. “A compact representation of proofs”. In: Studia
Logica 46.4 (1987), pp. 347–370. issn: 1572-8730. doi: 10.1007/
BF00370646. url: https://doi.org/10.1007/BF00370646.

[Min08] Grigori Mints. “Cut elimination for a simple formulation of ep-
silon calculus”. In: Annals of Pure and Applied Logic 152.1-3 (2008).
279tw Times Cited:1 Cited References Count:14, pp. 148–160. issn:
0168-0072. doi: DOI10.1016/j.apal.2007.11.008. url: <GotoISI>:
//WOS:000254378600010.

[MJ56] Edward J McCluskey Jr. “Minimization of Boolean functions”. In:
Bell system technical Journal 35.6 (1956), pp. 1417–1444. issn: 0005-
8580.

<Go to ISI>://WOS:000251835700009
https://doi.org/10.1093/logcom/exn054
http://users.math.cas.cz/~jerabek/papers/cos.pdf
http://users.math.cas.cz/~jerabek/papers/cos.pdf
https://doi.org/10.1145/2422085.2422090
https://doi.org/10.1007/BF00370646
https://doi.org/10.1007/BF00370646
https://doi.org/10.1007/BF00370646
https://doi.org/DOI 10.1016/j.apal.2007.11.008
<Go to ISI>://WOS:000254378600010
<Go to ISI>://WOS:000254378600010

142 BIBLIOGRAPHY

[MZ06] Georg Moser and Richard Zach. “The epsilon calculus and Her-
brand complexity”. In: Studia Logica 82.1 (2006), pp. 133–155. issn:
0039-3215.

[Par92] Michel Parigot. “Lambda-mu calculus: an algorithmic interpreta-
tion of classical natural deduction”. In: Logic programming and au-
tomated reasoning. Springer, 1992, pp. 190–201. isbn: 354055727X.

[Pla01] Jan von Plato. “A proof of Gentzen’s Hauptsatz without multicut”.
In: Archive for Mathematical Logic 40.1 (2001), pp. 9–18. issn: 0933-
5846.

[Qui52] Willard V Quine. “The problem of simplifying truth functions”.
In: The American mathematical monthly 59.8 (1952), pp. 521–531.
issn: 0002-9890.

[Qui55] Willard V Quine. “A way to simplify truth functions”. In: The
American Mathematical Monthly 62.9 (1955), pp. 627–631. issn:
0002-9890.

[Ral18] Benjamin Ralph. “A Natural Proof System for Herbrand’s Theo-
rem”. In: International Symposium on Logical Foundations of Com-
puter Science. Springer, 2018, pp. 289–308.

[Ret97] Christian Retoré. “Pomset logic: a non-commutative extension of
classical linear logic”. In: Typed Lambda Calculi and Applications.
Springer, 1997, pp. 300–318. isbn: 3540626883.

[RG15] Benjamin Ralph and Alessio Guglielmi. Confluent and Natural Cut
Elimination in Classical Logic. Web Page. 2015. url: people.bath.
ac.uk/bdr25/papers/natconpres.

[Smu65] Raymond M Smullyan. “Analytic natural deduction”. In: The Jour-
nal of Symbolic Logic 30.02 (1965), pp. 123–139. issn: 1943-5886.

[Smu68] Raymond M Smullyan. “Analytic cut”. In: The Journal of Symbolic
Logic 33.4 (1968). C7746 Times Cited:10 Cited References Count:4,
pp. 560–564. issn: 0022-4812. doi: Doi10 . 2307 / 2271362. url:
<GotoISI>://WOS:A1968C774600006.

[SS04] Charles Stewart and Phiniki Stouppa. “A Systematic Proof Theory
for Several Modal Logics”. In: Advances in modal logic 5 (2004),
pp. 309–333.

[SS17] David R Sherratt and Marco Solieri. “Towards Atomic Graphs”.
Unpublished Work. 2017. url: https://people.bath.ac.uk/
drs32/files/TowardsAtomicGraphs_2017-06-24.pdf.

[Sta79] Richard Statman. “Lower bounds on Herbrand’s theorem”. In: Pro-
ceedings of the American Mathematical Society (1979), pp. 104–107.
issn: 0002-9939.

[Str03] Lutz Straßburger. “Linear logic and noncommutativity in the cal-
culus of structures”. Thesis. Technischen Universität Dresden, 2003.

[Str09] Lutz Straßburger. “Some observations on the proof theory of sec-
ond order propositional multiplicative linear logic”. In: Interna-
tional Conference on Typed Lambda Calculi and Applications. Springer,
2009, pp. 309–324. doi: 10.1007/978-3-642-02273-9_23.

[Str17a] Lutz Straßburger. “Combinatorial flows and their normalisation”.
In: LIPIcs-Leibniz International Proceedings in Informatics. Vol. 84.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. isbn: 3959770472.

[Str17b] Lutz Straßburger. Deep Inference, Expansion Trees, and Proof Graphs
for Second Order Propositional Multiplicative Linear Logic. Report.

people.bath.ac.uk/bdr25/papers/natconpres
people.bath.ac.uk/bdr25/papers/natconpres
https://doi.org/Doi 10.2307/2271362
<Go to ISI>://WOS:A1968C774600006
https://people.bath.ac.uk/drs32/files/TowardsAtomicGraphs_2017-06-24.pdf
https://people.bath.ac.uk/drs32/files/TowardsAtomicGraphs_2017-06-24.pdf
https://doi.org/10.1007/978-3-642-02273-9_23

BIBLIOGRAPHY 143

Computer Science [cs]/Logic in Computer Science [cs.LO]Reports.
Inria Saclay Ile de France, 2017. url: https://hal.inria.fr/
hal-01526831.

[Tiu01] Alwen Tiu. “Properties of a logical system in the calculus of struc-
tures”. Thesis. Technische Universität Dresden, 2001.

[Tiu05] Alwen Tiu. “A system of interaction and structure II: The need for
deep inference”. In: arXiv preprint cs/0512036 (2005).

[Tiu06] Alwen Tiu. “A local system for intuitionistic logic”. In: Logic for
Programming, Artificial Intelligence, and Reasoning. Springer, 2006,
pp. 242–256. isbn: 3540482814.

[Web14] Jack Webb. “On Herbrand’s Theorem”. Thesis. University of Ox-
ford, 2014.

[Wit61] Ludwig Wittgenstein. Tractatus Logico-Philosophicus. Routledge and
Kegan Paul, 1961.

https://hal.inria.fr/hal-01526831
https://hal.inria.fr/hal-01526831

	Introduction
	I Propositional Logic
	Open Deduction for CPL
	Open Deduction
	Proof Systems for Classical Propositional Logic
	The Atomic Flow
	The Experiments Method for Cut Elimination

	Decomposition via Cycle Removal
	Decomposition and Cycles
	Propositional Merge Contractions
	Rewriting Systems for Merge Contractions
	Cycle Removal with Merge Contractions

	II First-Order Logic
	Open Deduction for First-Order Logic
	Open Deduction and First-Order Logic
	First-Order Merge contractions

	Herbrand Proofs and Expansion Proofs
	Herbrand Proofs
	Expansion Proofs
	Translations between HNF and Expansion Proofs
	Cut Elimination for Expansion Proofs
	Cut Elimination for SKSq

	Conclusion
	Bibliography

