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ABSTRACT   Although electricity access is lowest in developing countries, the academic literature on generation 

expansion planning (GEP) has been informed almost exclusively by challenges in industrialised countries. This 

paper presents the first multi-objective, long-term energy planning optimisation model tailored towards national 

power systems with little existing power infrastructure. Location, type, capacity and timing of all generation and 

transmission additions are determined. Specifically, three novel generalisations of standard generation planning are 

introduced: (1) an expansion of the demand constraints to allow for industrial and household electrification rates 

below 100%, (2) a minimisation of sub-national electrification inequality in conjunction with minimising system 

costs considering environmental constraints, and (3) an integration of distribution infrastructure, explicitly including 

both on-grid and off-grid electrification. The model was successfully applied to the previously unexplored Ugandan 

national power system case. The results suggest that it is cost-optimal to maintain high sub-national electricity access 

inequality to meet Uganda’s 80% electrification target in 2040. Yet due to high optimal shares of locationally flexible 

solar energy, equal access rates across all districts can be achieved by increasing discounted system cost by only 

3%. This paper fundamentally challenges the Ugandan government’s focus on nuclear energy and grid-based 

household electrification. Instead, it calls for solar concentrated power as a baseload option in the future and a focus 

on off-grid electrification which the model selects for the majority of household connections in 2040 even in a high-

demand scenario. 
,  

Keywords: Long-term energy planning, multi-objective mixed integer linear programming, sub-Saharan Africa, generation 
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NOMENCLATURE 

Indices and sets 

𝑐 ∈ 𝐶 geospatial cells 

𝑐𝑐 ∈ 𝐶𝑐 ⊆ 𝐶 cells which are connected to the grid in 

baseline time t0 

𝑐𝑛 ∈ 𝐶𝑛 ⊆ 𝐶 cells which are not connected to the grid in 

baseline time t0 

𝑐𝑒𝑐 ∈ 𝐶𝑒𝑐 ⊆ 𝐶 cells which are crucial economic hubs for 

the country 

𝑔 ∈ 𝐺 generation technologies 

𝑙 ∈ 𝐿 transmission lines between two adjacent 

cells 

𝑙𝑒 ∈ 𝐿𝑒 ⊆ 𝐿 transmission lines between two adjacent 

cells which exist in baseline time t0 

𝑙𝑛 ∈ 𝐿𝑛 ⊆ 𝐿 transmission lines between two adjacent 

cells which do not exist in baseline time t0 

𝑙𝑑 ∈ 𝐿𝐷 direction of flow along a transmission line 

(either from or to a specific cell) 
 

𝑝 ∈ 𝑃 generation plants 

𝑝𝑜𝑓𝑓 ∈ 𝑃𝑜𝑓𝑓 ⊆ 𝑃 off-grid generation plants 

𝑝𝑜𝑛 ∈ 𝑃𝑜𝑛 ⊆ 𝑃 on-grid generation plants 

𝑝𝑛𝐺 ∈ 𝑃𝑛𝐺 ⊆ 𝑃𝑜𝑛 potential new on-grid plants located in any 

cell cn 

𝑝𝑜𝑆 ∈ 𝑃𝑜𝑆 ⊆ 𝑃𝑜𝑛  on-grid solar PV and solar thermal plants  

𝑝𝐼 ∈ 𝑃𝐼 ⊆ 𝑃𝑜𝑛 on-grid plants where capacity can only be 

added once during the planning horizon  

𝑝𝑣𝑜𝑙 ∈ 𝑃𝑣𝑜𝑙 ⊆ 𝑃𝑜𝑛 on-grid plants with volatile electricity output 

(solar PV and wind) 

𝑠𝑝 ∈ 𝑆𝑃 all (pnG,ln) tuples where line ln is part of the 

shortest path from pnG to the grid 

𝑡 ∈ 𝑇 = {𝑡1, … , 𝑇} planning times, ranging from the first 

planning time t1 to final time T.  

𝑡𝑡 ∈ 𝑇𝑡 ⊃ T, 

𝑇𝑡 = {𝑡0, 𝑡1, … , 𝑇} 

total set of times, ranging from baseline time 

t0 (status quo) to final time T. 
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Scalars 

CFTrans maximum capacity factor of transmission 

lines [%] 

CLkV conversion loss from increasing the voltage 

from distribution to transmission level [%] 

DOMSh annual distribution operation and 

maintenance cost share of investment [%] 

εurbRur minimum required degree of electrification 

equality between urban and rural areas [%]  

εreg minimum required degree of electrification 

equality between different sub-national cells 

[%]  

k Granularity step size for Pareto Front 

MaxLine maximum single transmission line capacity 

as share of total demand [%] 

MaxSol maximum cumulative size of solar plants in 

any cell c [MW] 

MaxVol maximum share of generation technologies 

with volatile electricity output [%] 

MinLine minimum transmission line capacity [MW] 

PDemRt historic ratio of peak power demand to 

annual electricity demand [MW/GWh] 

RM reserve margin as share of peak demand [%] 

TOMSh annual transmission operation and 

maintenance cost share of investment [%] 

  

Parameters 

CFp capacity factor of plant p 

CDisIRc,t average per person investment cost for rural 

distribution infrastructure in cell c in time t 

[mn. USD p.c.] 

CDisIUc,t average per person investment cost for 

urban distribution infrastructure in cell c in 

time t [mn. USD p.c.] 

CDisIROf𝑓𝑐,𝑡 average non-module investment cost for off-

grid technologies in rural areas of cell c in 

time t [mn. USD/GWh] 

CDisIUOf𝑓𝑐,𝑡 average non-module investment cost for off-

grid technologies in urban areas of cell c in 

time t [mn. USD/GWh] 

CGenIp,t investment cost for plant p in time t [mn. 

USD/MW] 

CGenOMp,t annual operation and maintenance cost for 

plant p in time t [mn. USD/GWh] 

CO2Emp Life cycle CO2 emissions of each generation 

plant p [tons/GWh] 

CTrIDisl,t fixed investment cost for transmission line l 

in time t [mn. USD] 

CTrIFixln,t fixed investment cost for previously non-

existent transmission line ln in time t [mn. 

USD] 

CTrIVarl,t variable investment cost for transmission 

line l in time t [mn. USD/MW] 

DFt discount factor in year t 

DemBusc,t annual electricity demand of non-

households (i.e. business) in cell c and time 

t [GWh] 
 

DemRc,t annual electricity demand of  rural households in 

cell c and time t [GWh] 

DemUc,t annual electricity demand of  urban households 

in cell c and time t [GWh] 

DLossl average loss of line l at distribution voltage [%]  

DLossBusc,t average distribution losses to businesses in cell c 

and time t [%] 

DLossUc,t average distribution losses to connect urban 

households in cell c and time t [%] 

DLossRc,t average distribution losses to connect rural 

households in cell c and time t [%] 

EBInl,ld,c 0-1 parameter, equals 1 if electricity flowing in 

direction ld along transmission line l enters cell 

c, and 0 otherwise 

EBOutl,ld,c 0-1 parameter, equals 1 if electricity flowing in 

direction ld along transmission line l exits cell c, 

and 0 otherwise 

ERTart electricity rate target for entire population in time 

t [%] 

ERTarBust electricity rate target for businesses in time t [%] 

ExBusc existing electricity served to non-households 

(businesses) in cell c at baseline time t0 [GWh] 

ExROffc existing electricity served to rural households via 

off-grid technologies in cell c at baseline time t0 

[GWh] 

ExROnc existing electricity served to rural households via 

the grid in cell c at baseline time t0 [GWh] 

ExSupp existing installed generation capacity of plant p at 

baseline time t0 [MW]  

ExUOffc existing electricity served to urban households 

via off-grid technologies in cell c at baseline time 

t0 [GWh] 

ExUOnc existing electricity served to urban households 

via the grid in cell c at baseline time t0 [GWh] 

ExTrl existing capacity of line l at baseline time t0 at 

transmission voltage [MW] 

ExTrDl 0-1 parameter, equals 1 if the connection l 

between two adjacent cells is served through a 

existing line at distribution voltage at baseline 

time t0  

GenEffpon generator efficiency for grid-connected plants pon 

to transfer generated electricity to distribution 

voltage [%] 

MaxEmt maximum allowed carbon emissions in time t 

[tons]  

MinErBust minimum demand which has to be met in crucial 

economic hubs [%] 

MinSizepon minimum required size of plant pon [MW] 

PCMp,c 0-1 parameter matching plants to cells (i.e. equals 

1 if plant p is in cell c, and 0 otherwise) 

PopRc,t rural population in cell c in time t 

PopTott total population in time t 

PopUc,t urban population in cell c in time t 

SPGri𝑑𝑝𝑛𝐺,𝑙𝑛  0-1 parameter indicating the shortest path from a 

plant pnG to the grid as it exists in baseline time t0 

(i.e. equals 1 if line ln is part of the shortest path 

from plant pnG to the grid, and 0 otherwise) 

Supp unexplored generation potential for generation 

plant p at baseline time t0 [MW] 

TLossl average loss of line l at transmission voltage [%]  
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Continuous Variables 

cTotDisI total discounted investment costs for 

distribution infrastructure [mn. USD] 

cTotDisOM total discounted operation and 

maintenance costs for distribution 

infrastrcture [mn. USD] 

cTotGenI total discounted investment costs for 

generation plants [mn. USD] 

cTotGenOM total discounted operation and 

maintenance costs for generation plants 

[mn. USD] 

cTotTrI total discounted investment costs for 

transmission lines [mn. USD] 

cTotTrOM total discounted operation and 

maintenance costs for transmission lines 

[mn. USD] 

disBusc,t annual electricity sent to businesses in cell 

c in time t via distribution lines that 

connect adjacent cells [GWh] 

disRc,t annual electricity sent to rural areas in cell 

c in time t via distribution lines that 

connect adjacent cells [GWh] 

disUc,t annual electricity sent to urban areas in 

cell c in time t via distribution lines that 

connect adjacent cells [GWh] 

elBusc,t electricity dedicated to businesses in cell c 

in time t [GWh] 

elUpc,t electricity converted from distribution to 

transmission voltage in cell c in time t 

[GWh] 

elDownc,t electricity converted from transmission to 

distribution voltage in cell c in time t 

[GWh] 
 

elROffc,t off-grid electricity dedicated to rural households 

in cell c in time t [GWh] 

elROnc,t on-grid electricity dedicated to rural households 

in cell c in time t [GWh] 

elUOffc,t off-grid electricity dedicated to urban households 

in cell c in time t [GWh] 

elUOnc,t on-grid electricity dedicated to urban households 

in cell c in time t [GWh] 

erBusc,t electrification rate of businesses in cell c in time 

t [%] 

erRc,t rural electrification rate of cell c in time t [%] 

erTotc,t total electrification rate of cell c in time t [%] 

erUc,t urban electrification rate of cell c in time t [%] 

genp,t annual electricity generation of plant p in time t 

[GWh] 

genCapp,t newly installed generation capacity of plant p in 

time t [MW] 

genCCp,t cumulative newly installed generation capacity 

of plant p in time t [MW] 

transl,ld,t annual electricity at transmission voltage sent 

along line l in direction ld in time t [GWh] 

transCapl,t newly installed transmission capacity on line l in 

time t [MW] 

transCCl,t cumulative newly installed transmission capacity 

on line l in time t [MW] 

transDl,ld,t annual electricity at distribution voltage sent 

along line l in direction ld in time t [GWh] 

  

Binary variables 

𝑥𝐺𝑒𝑛𝑝𝑜𝑛,𝑡  1 if generation plant pon is built in time t, and 0 

otherwise 

𝑥𝑇𝑟𝑎𝑛𝑠𝑙𝑛,𝑡  1 if transmission line ln is built in time t, and 0 

otherwise 
 

 

 

1. INTRODUCTION 

The United Nations has defined universal access to electricity as one of its Sustainable 

Development Goals to be reached by 2030. Approximately 675 million people in sub-Saharan 

Africa (SSA) live without access to electricity, equating to more than half of all un-electrified 

people globally [1]. As most research on energy planning optimisation has been conducted in 

and applied to countries with well-developed power infrastructure, there is an alarming paucity 

of approaches designed for developing countries with low initial electrification rates. A recent 

review failed to identify any such long-term energy planning optimisation research applied to a 

case in SSA [2], as the objectives and challenges of a multifold national electrification rate 

increase differ markedly from planning objectives in developed countries.  
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1.1 Long-term national-level energy planning optimisation background 

A suitable formulation of the long-term Generation Expansion Planning (GEP) problem is 

required to assist decision makers in designing cost-efficient energy system [3]. A solution to 

the problem yields the optimal type and size, location, as well as construction timing for new 

generation capacity over a long planning horizon to satisfy an expected energy demand. A 

planning horizon can be considered to be long-term if it spans 15 years or more [4].  

Several review studies have discussed methods and trends for generation expansion as well as 

transmission expansion planning. Zhu et al. [5] as well as, more recently, Koltsaklis and 

Dagoumas [6] analyse the GEP literature, Latorre et al. [7] as well as Lumbreras and Ramos [8] 

review the transmission planning problem, while Hemmati et al. [9] discuss various combined 

generation and transmission planning approaches. Mathematically, the complete long-term GEP 

problem is a Mixed Integer Nonlinear Programming (MINLP) problem with multiple decision 

criteria and uncertainties. MINLP formulations have been used by Yuan et al. [10], as well as 

by Hemmati et al. [11], with the latter incorporating energy storage and environmental factors 

into their GEP model. In addition, various metaheuristic methods have been proposed as 

powerful alternatives to classical optimisation methods to deal with non-linearities and non-

convexities. These can arise when studying optimal operational conditions of power plants [12], 

associated components such as converters [13] or complex electricity demand forecasting [14]. 

Kaboli et al. provide an informative visual classification overview of such metaheuristics [15]. 

If transmission is addressed, further nonlinearities exist if Kirchoff’s Second Law is explicitly 

modelled. For instance, Zhang et al. formulated a MINLP planning problem considering 

transmission infrastructure [16]. Rider et al.’s proposed MINLP approach for generation and 

transmission planning combined heuristics and interior point approaches to solve their nonlinear 

sub-problems [17].  

However, especially in those cases where the GEP problem has been applied to long-term case 

studies, avoiding the considerable computational complexity associated with such non-linear 

methods has led to highly insightful results. Recent advances have focused on considerably 

broadening the scope and level of analysis of the long-term GEP problem [8], which in turn 

required different assumptions to simplify the model. The consequential diversification of the 

GEP literature has integrated such issues as various risk assessments, a variety of new decision 

criteria beyond pure economic optimality, operational power system aspects, the inclusion of 

interdependencies with other systems such as water supply, energy storage and security of 

supply, as well as policy design. This has improved the understanding of the GEP’s multi-
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facetted nature [6]. Associated simplified solution approaches have included mathematical 

optimisation techniques such as Linear Programming (LP), various decomposition approaches, 

Mixed Integer Linear Programming (MILP) as well as meta-heuristic approaches. For instance, 

in their long-term energy planning study, Thangavelu et al. used an LP formulation to 

incorporate security of supply concerns with an environmental objective of low emissions [18]. 

Guo et al. similarly used an LP formulation to study the effect of different operational time scales 

as part of the Chinese power system under a cap-and-trade carbon scheme [19]. However, due 

to their potential to model binary investment decisions as well as fixed cost functions, MILP 

approaches have been a dominant method to expand the GEP problem. Pozo et al. proposed a 

three-level MILP model which integrates generation and transmission expansion planning [20]. 

Other scholars have used MILP models to account for reliability measures [21], different types 

of problem-inherent uncertainties [22] and scheduling decision making [23]. Meta heuristic 

approaches have frequently been argued to allow for a more comprehensive study of long-term 

energy planning [24]. Proposed algorithms include the hybrid  Genetic Algorithms (GA) / 

dynamic programming approach developed by Park et al. [25], the adaptive Simulated 

Annealing (SA) algorithm proposed by Yildirim et al. [26], and Particle Swarm Optimisation 

(PSO) based algorithms [24], which have also been successfully used for transmission planning 

[27]. Some models were specifically designed to handle uncertainties through approaches such 

as stochastic programming [28] or interval-parameter linear programming [29]. 

This paper focuses on the subset of problems which related to national-level expansion planning. 

While some studies, such as Chen et al.’s work on China [30], do not divide their national power 

system into distinct cells, a number of recent works have done so.to study sub-national 

implications of their planning models. For example, Guo et al. in their long-term energy planning 

study of the Chinese power system deployed a linear levelised cost approach for their objective 

function, dividing the Chinese system into ten geographic cells [19]. Guerra et al. integrated 

generation and transmission capacity planning in their MILP formulation applied to the 

Colombian power system, which they divided into five sub-national cells [31]. Georgiou 

formulated an MILP model to solve the long-term energy planning problem for the Greek 

national electricity system [32]. The author similarly modelled the system using five different 

geographic cells and studied optimal transmission requirements between these cells. Sharan and 

Balasubramanian presented a single-period MILP model which includes power and fuel 

transportation costs and apply it to the case of Southern India, modelled via 48 demand nodes 

[33]. These last three works argue for the benefits of simultaneously optimising generation and 
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transmission infrastructure. In general, the GEP problem can be formulated as either driven by 

a centralised monopoly-utility or by a deregulated market with several market participants [23].  

The different types of decision criteria associated with generation and transmission planning 

imply that multi-objective models are well-suited for energy planning [8], an assertion which 

has been similarly made in the context of different market designs [34] and for renewable energy 

integration [35]. To be able to obtain solutions for a long-term national-level planning problem 

with reasonably high geographic resolution or multiple periods, multi-objective expansion 

planning using classical optimisation techniques has been dominated by assumptions which 

allow for linear methods.  Ren et al. formulate a Multi-Objective Linear Programming (MO-LP) 

model for  the planning of distributed energy systems and their environmental impact [36], while 

Luz et al. [37] as well as Zhang et al. [35] use MO-LP formulations to plan systems with high 

renewable energy penetration. Among the most prominent approaches for this type of problem 

are Multi-Objective Mixed Integer Linear Programming (MO-MILP) methods [38]. For 

instance, Muis et al. use a MO-MILP formulation to assess renewable energy integration in the 

presence of a carbon emission reduction target [39]. Antunes et al. similarly use a MO-MILP 

formulation for their environmentally informed GEP model instance [40]. In terms of the types 

of optimisation criteria studied, previous multi-objective approaches have most commonly 

considered the trade-off between costs and environmental impact. For instance, Koltsaklis et al., 

in their spatial MO-MILP energy planning model applied to the Greek system, included an 

environmental constraint in terms of carbon emissions, and solved their problem for different 

levels of maximum-allowed emission levels, effectively yielding non-dominated solutions in the 

cost-versus-emissions space [4]. In addition to minimising costs and environmental impact, 

Meza et al. modelled minimum imported fuel and energy price risks objectives [41, 42], 

Unsihuay-Vila et al. considered a technical objective of diversifying the generation mix as part 

of their MO-MILP model [43], Luz et al. maximised generation at peak load [37], while Trotter 

et al. minimised different political risk factors of the Southern African Power Pool [44] and a 

continental African case [45].  

Different methods exist for solving multi-objective optimisation problems [46]. In the context 

of the GEP, popular approaches have included weighted sum methods (see [43] as well as [42]), 

compromise programming based on minimising the Chebyshev distance between the multi-

objective solution and the (infeasible) ideal solution of the single-objective cases (see for 

instance [36] and [38], different variations of the ε-Constraint method (see for instance [35] and 
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[37]) where all but one of the objectives are introduced as constraints, and Fuzzy Decision 

Theory [47].  

 

1.2 Long-term energy planning in developing countries with low electrification rates: 

problem characteristics and literature gaps 

Applying the long-term GEP to developing countries alters the problem in several fundamental 

ways when compared to its conventional formulation. This is due to the fact that in many 

developing countries, electricity access rates are considerably below 100%. In sub-Saharan 

Africa, the average access rate is below 40%. In Uganda, it is roughly 20% [48]. It is crucial to 

have robust planning methods in place for sub-Saharan Africa which cover the next two decades 

in order to efficiently overcome the energy access challenges there [49]. Specifically, three 

crucial aspects which characterise the long-term energy planning problem in developing 

countries have not yet been addressed in the mainstream GEP literature. Namely, these are (1) 

the presence of substantial planned suppressed demand due to insufficient initial power 

infrastructure, (2) the challenge of dealing with highly unequal access to electricity on a sub-

national level, and (3) the importance of integrating on-grid and off-grid electrification options 

into an expansion planning optimisation model. The following paragraphs explain these three 

issues and the literature gaps associated with them in turn, while section 1.3 explains this paper’s 

novel contributions to the literature by specifically addressing these three gaps. 

First, while demand for electricity exists throughout a given developing country, the power 

infrastructure may only cover small parts of the country. SSA is home to 18 of the 19 countries 

worldwide which have reported an electrification rate of below 30% in 2016 [1]. Hence, a static 

constraint to meet all demand in a country which is the way the long-term energy planning 

problem has commonly been formulated in the literature is not a sensible modelling approach in 

a developing country context. Rather, most African governments have set electrification rate 

targets below 100% for the next one to two decades. To assist the associated infrastructure 

expansion decision-making process, a long-term national-level planning model needs to model 

demand as meeting this electrification rate target throughout the planning horizon, hence 

allowing for planned suppressed demand. 

Second, electricity access is distributed in highly unequal ways throughout SSA [50]. While it 

is accepted that such social implications have often been fundamental to whether or not 

electrification in developing countries has succeeded or not [2], to the best of our knowledge, 

they have not yet been explicitly modelled in long-term national-level generation and 
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transmission planning optimisation models. Lumbreras and Ramos in their review article note 

that social acceptance of new transmission corridors is an important optimisation objective in 

transmission expansion planning, but do not identify works which have modelled it explicitly 

[8]. A few energy-related multi-objective optimisation studies, however, have demonstrated 

their relevance in SSA. For instance, Pérez-Fortes et al. in their MO-MILP model of biomass 

energy systems in specific small areas in Ghana used the maximisation of job creation across 

communities as one of their objectives [51]. Arndt et al. included a measure for employment 

reduction to socially evaluate different decarbonisation strategies of South Africa’s energy sector 

[52]. Beck et al. included a social score based on the potential to contribute to rural electrification 

and evaluated a bio-energy network in the Kwazulu Natal region in South Africa [53]. The issue 

of sub-national electrification inequality, however, has not yet been modelled as an objective. 

SSA is the only major world region where there is a more than threefold gap between rural and 

urban electrification (Figure 1, see also [50]). Similar inequalities exist for different sub-national 

regions of the same country. As a consequence, electrification has turned into a political good in 

SSA: Incumbents have frequently promised to provide access to their political supporters during 

electoral campaigns (see [54] and more recently [45]). Decision makers are thus faced with the 

challenge of electricity access being a deeply socio-political issue, and energy planning efforts 

would do well to consider such dimensions. 

 

Figure 1: Rural and urban electrification in major world regions in 2016 (data source: [1]) 

 

Third, while the traditional GEP focuses on generation expansion, expanded by some scholars 

to transmission planning [9], the low number of connections in many African countries warrants 

the inclusion of distribution planning. This is necessary to capture where exactly new 

connections are provided, which in turn yields the actual, non-suppressed demand the network 
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needs to meet. What is more, in addition to the traditional on-grid focus of the GEP, off-grid 

solutions have been found to be cheap electrification alternatives in many African countries and 

thus need to be part of an integrated planning approach, at least as a bridge technology to achieve 

widespread electrification in the next decades [55]. Several planning studies have used 

geographic information system (GIS) software to determine the cost-optimal mode of 

electrification in developing countries. Cases include village-level studies [56], country-level 

assessments in Kenya [57], Burkina Faso [58] and Senegal [59] as well as on a continental 

African scale for rural [60] and for all households [61]. These GIS-based studies proposed 

different approximations to calculate the costs of different electrification alternatives for a 

certain spatial area and then choose the cheapest alternative per spatial area. Interactions between 

each of these spatial areas are limited or non-existent in most of these studies. Mentis et al.’s 

work is notable for their continental scale, the quality of their GIS data and their usage of small 

spatial units of 1 km2 [61]. They found a high penetration of standalone technologies as part of 

the preferred power system, especially for low per capita demand scenarios. Other scholars have 

used the pre-defined cost-minimisation planning model of the Network Planner software to 

determine the least-cost choice between grid and off-grid electrification in African cases, namely 

for Nigeria [62] and Ghana [63]. However, while such approaches allow for choosing a high 

spatial resolution due to limited computational complexity, all these studies treat grid extension 

as a black box, attributing an assumed overall cost rather than explicitly modelling electricity 

flows, the implications for the optimal on-grid generation mix or respective generation plant 

locations and timing. These studies were also largely focused on household access to electricity 

and often not concerned with non-domestic demand which usually makes up around three 

quarters of overall demand. 

 

1.3 Novelty of the presented model 

This paper is the first to expand the long-term GEP such that it can readily be used for developing 

country cases with limited initial electricity infrastructure. It contributes to the trends of 

broadening the GEP problem and the usage of MO-MILP methods evident in the literature 

review in section 1.1. Specifically, this paper presents a novel long-term, spatially explicit, 

multi-period MO-MILP energy planning model, featuring the following three main novel 

generalisations, each addressing one of the three literature gaps identified in section 1.2.: 

 The design and application of a national-level energy planning optimisation tailored 

towards developing countries with limited initial power infrastructure, imposing the 
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demand-side constraint of meeting a given overall electrification rate target which can 

be set to any number between 0 and 100% at any time period. Hence, the model is able 

to choose to meet demand in some sub-national areas, and supress it in others. This 

constitutes a generalisation of the conventional generation and transmission expansion 

planning problem where demand has to be met at all nodes and times. 

 The model defines sub-national electrification inequalities (both urban versus rural and 

regional access differences) as a separate optimisation criteria. The model’s multi-

objective approach yields the optimal trade-off between minimising system costs and 

different types of sub-national electrification inequalities expressed in a spatially explicit 

way, considering a significant number (> 100) of sufficiently small discrete geographic 

cells. 

 In addition to integrated generation and transmission expansion planning, the model 

includes an aggregated formulation of distribution infrastructure to indicate where new 

connections are planned. Crucially, the model integrates both on-grid and off-grid 

electrification options to provide energy access, with the latter being projected to play an 

important part in electrifying developing countries. This integrated model is able to 

derive implications for the optimal split between off-grid and on-grid electrification of 

people without access, as well as derive the implicit load implications on the grid. 

Furthermore, the model’s application is novel as it constitutes the first energy optimisation study 

of any kind of the Ugandan network. As all data used is real-life data, the paper is able to compare 

its solutions with official Ugandan energy expansion policies and offer improvements over 

current plans.  

The remainder of this paper is structured as follows. Section 2 presents the problem statement 

to describe the overall structure and key assumptions of the model. Section 3 mathematically 

defines the model, section 4 provides the solution approach. Section 5 briefly introduces the 

method used for modelling result validation while data requirements for the Ugandan case are 

briefly discussed in section 6. Section 7 presents the solution of the model and tests the least-

cost network via an indicative load flow analysis, section 8 shows the significant differences 

between the model results and Uganda’s official national energy plan. Finally, a conclusion is 

offered in section 9. 
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2. PROBLEM STATEMENT  

The problem is stated in terms of the following factors and assumptions: 

i. Overall structure and objectives: The MO-MILP model performs long-term energy 

planning by dividing the system into a number of distinct geographic cells c over multiple 

time periods t. It is tailored towards cases with low initial electrification rates, and 

minimises the discounted system costs, consisting of the investment as well as operation 

and maintenance cost of generation, transmission and distribution infrastructure. 

Furthermore, it includes objectives to minimise urban versus rural and regional 

electrification inequality within a country (or other unit of analysis). 

ii. Demand: The model includes three kinds of demands, namely urban household, rural 

household and non-household (i.e. business and public sector) demand, each aggregated 

per cell c and time period t. Both an annual electricity demand (in GWh) and a peak load 

demand with a minimum capacity reserve margin (in MW) have to be met. In accordance 

with the decision problem commonly faced by planners, the main demand constraints are 

formulated in terms of meeting minimum national-level electrification rates. The model 

is thus free to choose which sub-national cells it electrifies (fully or partially) to meet 

these targets. To account for uncertainty in demand forecasts, different demand scenarios 

are considered. 

iii. Generation: The available on-grid generation options g include both renewable energy 

sources (solar PV, solar concentrated power (CSP), wind, biomass, hydro and 

geothermal) as well as non-renewables (natural gas, coal, oil and nuclear). Furthermore, 

several off-grid generation options (solar PV with storage, mini-hydro and diesel) are 

considered, however they are limited to provide domestic demand only as industrial 

demand is assumed to require grid-connected electricity. Generation potentials for each 

technology are aggregated per geographic cell c, and together with their associated 

capacity factors depend on the endowments in each cell. While all on-grid plants must at 

least be of a specific positive minimum capacity size if built (binary decision variables 

required), any fractional installed capacity is allowed for off-grid technologies as they 

are readily scalable down to several Watts (no binary decision variables required). 

Generation resilience constraints include a maximum capacity percentage from volatile 

on-grid sources, a minimum reserve margin requirement at peak power demand and a 

minimum geographical spread of solar plants to balance weather fluctuations.  
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iv. Carbon emissions: The model limits annual carbon emissions from generation. In the 

specific country case of Uganda, the limit was set according to Uganda’s intended 

contributions as part of the Paris Agreement. 

v. Transmission: Each neighbouring cells c1 and c2 can be connected via a transmission line 

l. Each line l is assumed to connect the centroids of c1 and c2, and is assumed to be 20% 

longer than the straight-line distance between these centroids due to geographic barriers. 

A line l either exists in baseline time t0 (if an existing transmission line connects c1 and 

c2), or can be built from scratch. The model allows for upgrading the capacity for existing 

lines. Distances between geographic cells are assumed to be large enough that 

constructing lines at distribution voltage (33 kV and below) between them is always sub-

optimal to constructing transmission lines.2 Furthermore, the model ensures that all new 

power plants to be built in unconnected cells are being connected to one continuously 

interconnected grid using a shortest path to the grid heuristic (see Appendix A).  

vi. Distribution: The model includes existing distribution infrastructure between cells 

(mostly 33 kV), enabling the model to transmit electricity at low voltage. While such 

low-voltage are sub-optimal when compared to transmission lines, they nevertheless 

frequently exist in developing countries and covering considerable distances. The model 

furthermore considers distribution infrastructure within each cell to determine the 

optimal choice of an on-grid versus off-grid electrification strategy for households by 

calculating average urban and rural distribution costs per person. The different 

distribution line length requirements in urban and rural areas located in each cell c which 

are necessary to estimate the per person distribution costs follow from a simple tree-type 

network approximation (see van Ruijven et al. (2012) [64]) which mainly depends on 

average household size and density in urban and rural areas (see Appendix B). Within-

cell distribution cost for businesses are neglected due to the considerably larger amount 

of household connections and their low variability between cells. 

vii. Market-type: Generation and transmission planning is often done in a centralised way in 

developing countries, with a governmental body being responsible (similar to what 

Unsihuay-Vila et al. have argued for the Brazilian case [43]). The model thus assumes a 

simple monopoly-type market setting. 

                                                 

2 For the cost data in the Ugandan case, the distance where constructing 132 kV transmission lines becomes cost-

optimal vis-à-vis constructing 33 kV distribution lines over their lifetime is roughly 5 km. The minimum length of 

any potential transmission line in the 112 district Ugandan case example is 9 km. 



14 

 

3. MATHEMATICAL FORMULATION 

This section presents the novel MO-MILP model laid out in section 2. First, the objective 

functions are discussed in section 3.1. The subsequent sections address the constraints 

surrounding demand (section 3.2), energy balances (section 3.3), generation and environmental 

impact (section 3.4), transmission (section 3.5), distribution (section 3.6) and network resilience 

(section 3.7). The solution approach, based on applying an ε-constraint method to the non-

monetary objective functions, is detailed in section 4. 

 

3.1 Objective functions 

This model considers three different objective functions, namely (1) total discounted cost 

minimisation, (2) urban versus rural electrification inequality minimisation, and (3) regional 

electrification inequality minimisation. Objective function (1) sums the discounted generation, 

transmission and distribution investment costs, cTotGenI, cTotTrI and cTotDisI, respectively, as 

well as the discounted generation, transmission and distribution operation and maintenance 

(O&M) costs, cTotGenOM, cTotTrO and cTotDisOM. Expression (2) minimises the maximum 

discrepancy of urban electrification rate erUc,t versus rural electrification rate erRc,t in any 

geographic cell c at final planning time horizon period T. The maximum discrepancy of the total 

electrification rate erTotc,t between any two regions, i.e. cells 𝑐1, 𝑐2 ∈ 𝐶, in final period T is 

minimised in (3): 

min 𝑓𝑐𝑜𝑠𝑡 =𝑐𝑇𝑜𝑡𝐺𝑒𝑛𝐼 +  𝑐𝑇𝑜𝑡𝐺𝑒𝑛𝑂𝑀 +  𝑐𝑇𝑜𝑡𝑇𝑟𝐼 +  𝑐𝑇𝑜𝑡𝑇𝑟𝑂𝑀 +  𝑐𝑇𝑜𝑡𝐷𝑖𝑠𝐼 +  𝑐𝑇𝑜𝑡𝐷𝑖𝑠𝑂𝑀  (1) 

min 𝑓𝑢𝑟𝑏𝑟𝑢𝑟 = max
𝑐∈𝐶

(|𝑒𝑟𝑈𝑐,𝑇 − 𝑒𝑟𝑅𝑐,𝑇|)  (2) 

min 𝑓𝑟𝑒𝑔 = max
𝑐1,𝑐2∈𝐶

(𝑒𝑟𝑇𝑜𝑡𝑐1,𝑇 − 𝑒𝑟𝑇𝑜𝑡𝑐2,𝑇)  (3) 

3.1.1 Cost objective function 

3.1.1.1 Generation investment and O&M costs 

The total discounted investment costs of all newly installed generation capacity are calculated 

by summing the product of newly installed generation capacity genCapp,t and their associated 

costs CGenIp,t over all potential generation plants p and time periods t, multiplied by discount 

factor DFt. Similarly, the total discounted O&M costs follow from summing the product of 
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generated electricity genp,t from the plant as well as time-specific O&M costs, CGenOMp,t as 

follows: 

𝑐𝑇𝑜𝑡𝐺𝑒𝑛𝐼 =∑[𝐷𝐹𝑡 ∙∑(𝑔𝑒𝑛𝐶𝑎𝑝𝑝,𝑡 ∙ 𝐶𝐺𝑒𝑛𝐼𝑝,𝑡)

𝑝

]

𝑡

  (4) 

𝑐𝑇𝑜𝑡𝐺𝑒𝑛𝑂𝑀 =∑[𝐷𝐹𝑡 ∙∑(𝑔𝑒𝑛𝑝,𝑡 ∙ 𝐶𝐺𝑒𝑛𝑂𝑀𝑝,𝑡)

𝑝

]

𝑡

  (5) 

3.1.1.2 Transmission investment and O&M costs 

The fixed transmission investment costs CTrIFixln,t are multiplied with binary decision variable 

xTransln,t, a variable equal to 1 if previously non-existent transmission line ln is built between 

two adjacent geographic cells in time t, and 0 otherwise. The variable investments costs 

CTrIVarl,t  are multiplied with the newly added transmission line capacity transCapl,t on line l 

in time t. The O&M costs of transmission for lines at transmission voltage are calculated by 

assuming a fixed O&M cost share of investment, TOMSh, to occur every time t. Hence, TOMSh 

is multiplied with the installed capacity on line l (the sum of already existing capacity at baseline 

time period t0, ExTrl, and the cumulative newly added line capacity transCCl,t between t1 and t) 

and the associated investment costs per line, CTrIVarl,t. Furthermore, where distribution lines 

exist between cells in time t0, i.e. where parameter ExTrDl is equal to 1, their maintenance cost 

is included in equation (7) via their O&M cost share of investment, DOMSh, multiplied by the 

original investment cost of the line, CTrIDisl,t. 

𝑐𝑇𝑜𝑡𝑇𝑟𝐼 =∑𝐷𝐹𝑡 ∙ (∑𝑥𝑇𝑟𝑎𝑛𝑠𝑙𝑛,𝑡 ∙ 𝐶𝑇𝑟𝐼𝐹𝑖𝑥𝑙𝑛,𝑡
𝑙𝑛

+∑𝑡𝑟𝑎𝑛𝑠𝐶𝑎𝑝𝑙,𝑡 ∙ 𝐶𝑇𝑟𝐼𝑉𝑎𝑟𝑙,𝑡
𝑙

)

𝑡

  (6) 

𝑐𝑇𝑜𝑡𝑇𝑟𝑂𝑀 =∑𝐷𝐹𝑡 ∙∑((𝑡𝑟𝑎𝑛𝑠𝐶𝐶𝑙,𝑡 + 𝐸𝑥𝑇𝑟𝑙) ∙ 𝐶𝑇𝑟𝐼𝑉𝑎𝑟𝑙,𝑡 ∙ 𝑇𝑂𝑀𝑆ℎ + 𝐸𝑥𝑇𝑟𝐷𝑙 ∙ 𝐶𝑇𝑟𝐼𝐷𝑖𝑠𝑙,𝑡 ∙ 𝐷𝑂𝑀𝑆ℎ)

𝑙𝑡

  (7) 

3.1.1.3 Distribution investment and O&M costs 

Cost parameters CDisIUc,t and CDisIRc,t denote the average per-person investment cost for on-

grid distribution infrastructure in urban areas and rural areas of cell c, respectively (see section 

5 for details). The number of people with new access to electricity through the grid follows from 

multiplying urban and rural populations in each cell and time, popUc,t and popRc,t, with the 

annual electricity distributed in cell c and time t, elUOnc,t in urban and elROnc,t in rural areas, 

lowered by distribution losses DLossUc,t and DLossRc,t, and divided by the respective electricity 
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demand DemUt and DemRt respectively. In addition, non-module investment costs of off-grid 

technologies are included (such as logistics costs to provide modules to remote households). 

They follow from multiplying the newly generated off-grid electricity in cell c time t, elUOffc,t 

– elUOffc,t-1 for urban and elROffc,t – elROffc,t-1 for rural areas, by an assumed non-module 

investment unit cost, CDisIUOffc,t and CDisIUOffc,t. The consumed electricity in baseline period 

t0 is known and modelled as an input parameter in accordance to the right-hand side of equations 

(9) – (12).  

𝑐𝑇𝑜𝑡𝐷𝑖𝑠𝐼

=∑𝐷𝐹𝑡 ∙∑((
𝑒𝑙𝑈𝑂𝑛𝑐,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑈𝑐,𝑡)

𝐷𝑒𝑚𝑈𝑡
∙ 𝑝𝑜𝑝𝑈𝑡 −

𝑒𝑙𝑈𝑂𝑛𝑐,𝑡−1 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑈𝑐,𝑡−1)

𝐷𝑒𝑚𝑈𝑡−1
∙ 𝑝𝑜𝑝𝑈𝑡−1) ∙ 𝐶𝐷𝑖𝑠𝐼𝑈𝑐,𝑡

𝑐𝑡

+ (
𝑒𝑙𝑅𝑂𝑛𝑐,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑅𝑐,𝑡)

𝐷𝑒𝑚𝑅𝑡
∙ 𝑝𝑜𝑝𝑅𝑡 −

𝑒𝑙𝑅𝑂𝑛𝑐,𝑡−1 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑅𝑐,𝑡−1)

𝐷𝑒𝑚𝑅𝑡−1
∙ 𝑝𝑜𝑝𝑅𝑡−1) ∙ 𝐶𝐷𝑖𝑠𝐼𝑅𝑐,𝑡

+ (𝑒𝑙𝑈𝑂𝑓𝑓𝑐,𝑡 − 𝑒𝑙𝑈𝑂𝑓𝑓𝑐,𝑡−1) ∙ 𝐶𝐷𝑖𝑠𝐼𝑈𝑂𝑓𝑓𝑐,𝑡 + (𝑒𝑙𝑅𝑂𝑓𝑓𝑐,𝑡 − 𝑒𝑙𝑅𝑂𝑓𝑓𝑐,𝑡−1) ∙ 𝐶𝐷𝑖𝑠𝐼𝑅𝑂𝑓𝑓𝑐,𝑡) 

(8) 

𝑒𝑙𝑈𝑂𝑛𝑐,𝑡0 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑈𝑐,𝑡0) = 𝐸𝑥𝑈𝑂𝑛𝑐 ∀𝑐 (9) 

𝑒𝑙𝑅𝑂𝑛𝑐,𝑡0 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑅𝑐,𝑡0) = 𝐸𝑥𝑅𝑂𝑛𝑐 ∀𝑐 (10) 

𝑒𝑙𝑈𝑂𝑓𝑓𝑐,𝑡0 = 𝐸𝑥𝑈𝑂𝑓𝑓𝑐 ∀𝑐 (11) 

𝑒𝑙𝑅𝑂𝑓𝑓𝑐,𝑡0 = 𝐸𝑥𝑅𝑂𝑓𝑓𝑐 ∀𝑐 (12) 

Analogously to (7), equation (13) multiplies the O&M cost share of investment DOMSh with 

the cumulative distribution investment until time period t, and then sums over all cells and 

planning time periods. All O&M costs for off-grid technologies are considered as part of the 

generation O&M costs and thus do not feature in (13). 

𝑐𝑇𝑜𝑡𝐷𝑖𝑠𝑂𝑀 =∑𝐷𝐹𝑡 ∙ 𝐷𝑂𝑀𝑆ℎ

𝑡

∙∑(
𝑒𝑙𝑈𝑂𝑛𝑐,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑈𝑐,𝑡)

𝐷𝑒𝑚𝑈𝑡
∙ 𝑝𝑜𝑝𝑈𝑡 ∙ 𝐶𝐷𝑖𝑠𝐼𝑈𝑐,𝑡 +

𝑒𝑙𝑅𝑂𝑛𝑐,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑅𝑐,𝑡)

𝐷𝑒𝑚𝑅𝑡
∙ 𝑝𝑜𝑝𝑅𝑡

𝑐

∙ 𝐶𝐷𝑖𝑠𝐼𝑅𝑐,𝑡) 

 (13) 
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3.1.2 Electrification inequality objective functions 

The objective functions considering electrification inequalities are expressed in terms of annual 

rural, urban and total electrification rates. These follow from dividing the total distributed on-

grid electricity, elUOnc,t for urban and elROnc,t for rural areas, as well as the associated off-grid 

electricity elUOffc,t and elROffc,t in cell c and time t, the former lowered by distribution losses 

DLossUc,t and DLossRc,t, by the respective demands in cell c and time t, DemUc,t and DemRc,t. 

The total electrification rate of a cell at a certain time is a population-weight sum of urban and 

rural electrification. The model furthermore includes an explicit upper bound on all 

electrification rates of 100. 

𝑒𝑟𝑈𝑐,𝑡 = 100 ∙
𝑒𝑙𝑈𝑂𝑛𝑐,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑈𝑐,𝑡) + 𝑒𝑙𝑈𝑂𝑓𝑓𝑐,𝑡

𝐷𝑒𝑚𝑈𝑐,𝑡
 ∀𝑐, 𝑡 (14) 

𝑒𝑟𝑅𝑐,𝑡 = 100 ∙
𝑒𝑙𝑅𝑂𝑛𝑐,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑅𝑐,𝑡) + 𝑒𝑙𝑅𝑂𝑓𝑓𝑐,𝑡

𝐷𝑒𝑚𝑅𝑐,𝑡
 ∀𝑐, 𝑡 (15) 

𝑒𝑟𝑇𝑜𝑡𝑐,𝑡 =
𝑒𝑟𝑈𝑐,𝑡 ∙ 𝑝𝑜𝑝𝑈𝑐,𝑡 + 𝑒𝑟𝑅𝑐,𝑡 ∙ 𝑝𝑜𝑝𝑅𝑐,𝑡

𝑝𝑜𝑝𝑈𝑐,𝑡 + 𝑝𝑜𝑝𝑅𝑐,𝑡
 ∀𝑐, 𝑡 (16) 

 

3.2 Demand constraints 

3.2.1 Domestic demand 

The model generalises the common demand constraint in GEP. It requires meeting an overall 

domestic electrification rate target ERTart which is calculated as a population-weighted sum of 

individual cell urban and rural electrification rates (17). Where ERTart = 100, all demand would 

need to be met at all nodes and all times as is the case in conventional planning model 

formulations. However, as ERTart < 100 is usually the case for the coming decades in sub-

Saharan African countries, the options of the model to meet demand rises exponentially with the 

cardinality of the set of cells |𝐶|. Hence, this generalisation complicates the model as its degrees 

of freedom are considerably increased. 

∑ 𝑒𝑟𝑈𝑐,𝑡 ∙ 𝑝𝑜𝑝𝑈𝑐,𝑡 + 𝑒𝑟𝑅𝑐,𝑡 ∙ 𝑝𝑜𝑝𝑅𝑐,𝑡𝑐

𝑝𝑜𝑝𝑇𝑜𝑡𝑡
≥ 𝐸𝑅𝑇𝑎𝑟𝑡 ∀𝑡 (17) 

Furthermore, all previously served demand in urban and rural areas through on and off-grid 

technologies in baseline time period t0, ExUOnc, ExROnc, ExUOffc, and ExROffc respectively, 
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has to be met in subsequent time periods (considering average distribution losses within cell c 

in time t in urban and rural areas, DLossUc,t and DLossRc,t,): 

𝑒𝑙𝑈𝑂𝑛𝑐,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑈𝑐,𝑡) ≥ 𝐸𝑥𝑈𝑂𝑛𝑐 ∀𝑐, 𝑡 (18) 

𝑒𝑙𝑅𝑂𝑛𝑐,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑅𝑐,𝑡) ≥ 𝐸𝑥𝑅𝑂𝑛𝑐 ∀𝑐, 𝑡 (19) 

𝑒𝑙𝑈𝑂𝑓𝑓𝑐,𝑡 ≥ 𝐸𝑥𝑈𝑂𝑓𝑓𝑐 ∀𝑐, 𝑡 (20) 

𝑒𝑙𝑅𝑂𝑓𝑓𝑐,𝑡 ≥ 𝐸𝑥𝑅𝑂𝑓𝑓𝑐 ∀𝑐, 𝑡 (21) 

3.2.2 Business demand 

Similarly, meeting business demand is modelled by requiring at least a certain overall fraction 

of total demand, ERTarBust, to be met in year t without specifying the geographical areas where 

this demand fraction should be met. Each rate erBusc,t follows from dividing elBusc,t, lowered 

by distribution losses DLossBusc,t, with the business demand. The overall business electrification 

rate is then calculated by weighing each cell’s rate with its fraction of total business demand. 

𝑒𝑟𝐵𝑢𝑠𝑐,𝑡 = 100 ∙
𝑒𝑙𝐵𝑢𝑠𝑐,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝐵𝑢𝑠𝑐,𝑡)

𝐷𝑒𝑚𝐵𝑢𝑠𝑐,𝑡
 ∀𝑐, 𝑡 (22) 

∑ 𝑒𝑟𝐵𝑢𝑠𝑐,𝑡 ∙ 𝑑𝑒𝑚𝐵𝑢𝑠𝑐,𝑡𝑐

∑ 𝑑𝑒𝑚𝐵𝑢𝑠𝑐,𝑡𝑐

≥ 𝐸𝑅𝑇𝑎𝑟𝐵𝑢𝑠𝑡 ∀𝑡 (23) 

Furthermore, at least the business demand served in baseline time t0 has to be met in all cells at 

all times: 

𝑒𝑙𝐵𝑢𝑠𝑐,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝐵𝑢𝑠𝑐,𝑡) ≥ 𝐸𝑥𝐵𝑢𝑠𝑐  ∀𝑐, 𝑡 (24) 

3.2.3 Total peak demand 

The total demand in GWh served through the grid is converted to peak power demand in MW 

by multiplying it with scalar PDemRt which denotes the historically observable ratio between 

peak power and annual electricity demand. Constraint (25) requires that the total on-grid 

installed capacity in each time t, modelled as the sum over all newly added and pre-existing grid-

connected capacity, genCCpon and ExSuppon, is greater than peak demand by at least the reserve 

margin RM. 
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∑(𝐸𝑥𝑆𝑢𝑝𝑝𝑜𝑛 + 𝑔𝑒𝑛𝐶𝐶𝑝𝑜𝑛,𝑡)

𝑝𝑜𝑛

≥ 𝑅𝑀 ∙ 𝑃𝐷𝑒𝑚𝑅𝑡

∙∑(𝑒𝑙𝑈𝑂𝑛𝑐,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑈𝑐,𝑡) + 𝑒𝑙𝑅𝑂𝑛𝑐,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑅𝑐,𝑡) + 𝑒𝑙𝐵𝑢𝑠𝑐,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝐵𝑢𝑠𝑐,𝑡))

𝑐

 

∀𝑡 (25) 

 

3.2.4 Socio-economically motivated demand 

Any given electrification rate in each cell c must be at least sustained in two subsequent periods, 

as a reduction in domestic electrification rates in any district should be avoided. Moreover, 

constraint (27) considers the fact that certain districts cec may be fundamental economic hubs of 

a country where a specific, large share MinErBust of business demand must be met. In Uganda, 

this is the case for the capital city Kampala which has a unique role both economically and 

politically.  

𝑒𝑟𝑇𝑜𝑡𝑐,𝑡 ≥ 𝑒𝑟𝑇𝑜𝑡𝑐,𝑡−1 ∀𝑐, 𝑡 (26) 

𝑒𝑟𝐵𝑢𝑠𝑐𝑒𝑐,𝑡 ≥ 𝑀𝑖𝑛𝐸𝑟𝐵𝑢𝑠𝑡  ∀𝑐𝑒𝑐 ∈ 𝐶𝑒𝑐 , 𝑡 (27) 

 

3.3 Energy balance constraints 

3.3.1 Transmission voltage on-grid energy balance 

For each cell c, electricity input must equal electricity output in each time period t. Each cell 

receives electricity via transmission transl,ld,t if parameter EBInl,ld,c equals 1, i.e. if transmitted 

electricity flowing along line l in direction ld enters cell c. Similarly, transmission leaves cell c 

where parameter EBOutl,ld,c equals 1. All incoming transmission is reduced by loss parameter 

TLossl. Furthermore, each cell may get electricity input at the transmission level if some 

electricity elUpc,t is generated in cell c and then converted upward to transmission voltage to be 

sent elsewhere. Alternatively, electricity transmitted from elsewhere may be converted down to 

distribution voltage, hence variable elDownc,t is included on the right-hand side of equation (28). 

Again, conversion losses CLkV are multiplied for electricity input. 

∑∑𝑡𝑟𝑎𝑛𝑠𝑙,𝑙𝑑,𝑡 ∙ 𝐸𝐵𝐼𝑛𝑙,𝑙𝑑,𝑐
𝑙𝑑𝑙

∙ (1 − 𝑇𝐿𝑜𝑠𝑠𝑙) + 𝑒𝑙𝑈𝑃𝑐,𝑡 ∙ (1 − 𝐶𝐿𝑘𝑉)
⏟                                          

𝑖𝑛

=∑∑𝑡𝑟𝑎𝑛𝑠𝑙,𝑙𝑑,𝑡 ∙ 𝐸𝐵𝑂𝑢𝑡𝑙,𝑙𝑑,𝑐
𝑙𝑑𝑙

+ 𝑒𝑙𝐷𝑜𝑤𝑛𝑐,𝑡
⏟                            

𝑜𝑢𝑡

 
∀𝑐, 𝑡 (28) 
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3.3.2 Distribution voltage on-grid energy balance 

At the distribution voltage level, all generated electricity in a cell plus incoming electricity from 

other cells after losses must equal outflowing electricity plus electricity used for distribution 

within the cell to meet demand. Losses incurred to convert generated electricity genpon,t from 

plant pon to distribution voltage are captured through efficiency parameter GenEffpon. Parameter 

PCMpon,c matches generation plants pon to cells c by being equal to 1 if pon is in c, and 0 otherwise. 

As intercell distribution lines may exist in time t0, equation (29) contains terms of distribution 

transDl,ld,t which models electricity exchange at distribution level between cells, incurring a loss 

DLossl > TLossl . These terms are multiplied with parameter ExTrDl, thereby limiting them to 

already existing lines in baseline time t0. Electricity converted down from transmission to 

distribution voltage in cell c, elDownc,t, is an input, while electricity converted upwards, elUpc,t 

is an output. Furthermore, variables elBusc,t, elUOnc,t and elROnc,t denote the electricity used via 

the distribution grid within cell c in time t to serve business, urban and rural demand, 

respectively. 

∑𝑔𝑒𝑛𝑝𝑜𝑛,𝑡 ∙ 𝐺𝑒𝑛𝐸𝑓𝑓𝑝𝑜𝑛 ∙ 𝑃𝐶𝑀𝑝𝑜𝑛,𝑐
𝑝𝑜𝑛

+∑∑𝑡𝑟𝑎𝑛𝑠𝑑𝑙,𝑙𝑑,𝑡 ∙ 𝐸𝐵𝐼𝑛𝑙,𝑙𝑑,𝑐
𝑙𝑑𝑙

∙ 𝐷𝐿𝑜𝑠𝑠𝑙 ∙ 𝐸𝑥𝑇𝑟𝐷𝑙 + 𝑒𝑙𝐷𝑜𝑤𝑛𝑐,𝑡 ∙ (1 − 𝐶𝐿𝑘𝑉)

⏟                                                                        
𝑖𝑛

=∑∑𝑡𝑟𝑎𝑛𝑠𝐷𝑙,𝑙𝑑,𝑡 ∙ 𝐸𝐵𝑂𝑢𝑡𝑙,𝑙𝑑,𝑐
𝑙𝑑𝑙

∙ 𝐸𝑥𝑇𝑟𝐷𝑙 + 𝑒𝑙𝑈𝑝𝑐,𝑡 + 𝑒𝑙𝐵𝑢𝑠𝑐,𝑡 + 𝑒𝑙𝑈𝑂𝑛𝑐,𝑡 + 𝑒𝑙𝑈𝑂𝑛𝑐,𝑡
⏟                                                      

𝑜𝑢𝑡

 

∀𝑐, 𝑡 (29) 

3.3.3 Off-grid energy balance 

For off-grid generation technologies, the associated energy balance is simply that the sum of off-

grid generation genpoff,t equals the electricity consumed from off-grid sources in urban and rural 

areas in each cell c and time t, elUOffc,t and elROffc,t, respectively.  

∑ 𝑔𝑒𝑛𝑝𝑜𝑓𝑓,𝑡 ∙ 𝑃𝐶𝑀𝑝𝑜𝑓𝑓,𝑐
𝑝𝑜𝑓𝑓⏟                

𝑖𝑛

= 𝑒𝑙𝑈𝑂𝑓𝑓𝑐,𝑡 + 𝑒𝑙𝑅𝑂𝑓𝑓𝑐,𝑡⏟              
𝑜𝑢𝑡

 
∀𝑝, 𝑡 (30) 

 

3.4 Generation constraints 

3.4.1 Generation supply potential 

The cumulative newly added capacity of a plant p in t, genCCp,t, is the sum of all newly added 

capacity in certain time period t, genCapp,t, up until t (31). Note that genCCp,t0 = 0. The supply 
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potential Supp for each plant is the upper bound for genCapp,t, lowered in time t > t1 by any 

capacity which may have been added planning periods prior to t (32). 

𝑔𝑒𝑛𝐶𝐶𝑝,𝑡 = ∑ 𝑔𝑒𝑛𝐶𝑎𝑝𝑝,𝜏

𝑡

𝜏=𝑡1

 ∀𝑝, 𝑡 (31) 

𝑔𝑒𝑛𝐶𝑎𝑝𝑝,𝑡 ≤ 𝑆𝑢𝑝𝑝 − ∑ 𝑔𝑒𝑛𝐶𝐶𝑝,𝜏

𝑡−1

𝜏=𝑡0

 ∀𝑝, 𝑡 (32) 

3.4.2 Generation plant size and timing 

Big-M type constraints impose bounds on newly added capacity genCappon,t. They multiply the 

binary decision variable xGenpon,t which is 1 if grid-connected plant pon is built with some positive 

capacity in time t, with minimum required plant size MinSizepon (33) and with an upper bound, 

either set to the maximum potential of each plant, Suppon for non-solar plants (34), or to a certain 

maximum capacity size MaxSol for solar plants (35) (see section 3.7). 

𝑔𝑒𝑛𝐶𝑎𝑝𝑝𝑜𝑛,𝑡 ≥ 𝑥𝐺𝑒𝑛𝑝𝑜𝑛,𝑡 ∙ 𝑀𝑖𝑛𝑆𝑖𝑧𝑒𝑝𝑜𝑛 ∀𝑝𝑜𝑛 (33) 

𝑔𝑒𝑛𝐶𝑎𝑝𝑝𝑜𝑛,𝑡 ≤ 𝑥𝐺𝑒𝑛𝑝𝑜𝑛,𝑡 ∙ 𝑆𝑢𝑝𝑝𝑜𝑛 ∀𝑝𝑜𝑛 ∈ 𝑃𝑜𝑛/𝑃𝑜𝑆 (34) 

𝑔𝑒𝑛𝐶𝑎𝑝𝑝𝑜𝑆,𝑡 ≤ 𝑥𝐺𝑒𝑛𝑝𝑜𝑆,𝑡 ∙ 𝑀𝑎𝑥𝑆𝑜𝑙 ∀𝑝𝑜𝑆 (35) 

Moreover, a subset PI of all on-grid generation plant Pon can only be built once during the 

planning horizon at a fixed capacity. Large-scale hydro dams or fossil fuel plants may serve as 

examples of such plants. This is modelled as follows: 

∑𝑥𝐺𝑒𝑛𝑝𝐼,𝑡
𝑡

≤ 1 ∀𝑝𝐼  (36) 

3.4.3 Electricity generation 

Annual electricity generation in each plant p in any time t, genp,t cannot exceed the installed 

capacity of plant p in time t, calculated as the cumulative newly added capacity during the 

planning horizon until time t, genCCp,t, plus the existing capacity parameter in time t0, ExSupp, 

multiplied by the plant’s capacity factor CFp as shown in constraint (37).  

𝑔𝑒𝑛𝑝,𝑡 ≤ (𝑔𝑒𝑛𝐶𝐶𝑝,𝑡 + 𝐸𝑥𝑆𝑢𝑝𝑝) ∙ 𝐶𝐹𝑝 ∙ 8760
ℎ

𝑎
 ∀𝑝, 𝑡 (37) 
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3.4.4 Environmental impact / carbon emission limit 

The sum of carbon emissions in all time periods t, calculated as the product of annual generation 

genp,t and life cycle CO2 emissions CO2Emp of plant p, is required to be below allowed emission 

limit MaxEmt (38): 

∑𝑔𝑒𝑛𝑝,𝑡 ∙ 𝐶𝑂2𝐸𝑚𝑝

𝑝

≤ 𝑀𝑎𝑥𝐸𝑚𝑡  ∀𝑡 (38) 

 

3.5 Transmission constraints 

3.5.1 Transmission line capacity 

Similarly to expression (31), the cumulative transmission capacity on a line l between two 

adjacent cells, transCCl,t, is calculated as the sum of newly added transmission capacity 

transCapl,t on line l up until time t. 

𝑡𝑟𝑎𝑛𝑠𝐶𝐶𝑙,𝑡 = ∑ 𝑡𝑟𝑎𝑛𝑠𝐶𝑎𝑝𝑙,𝜏

𝑡

𝜏=𝑡1

 ∀𝑙, 𝑡 (39) 

Similar to expressions (33) – (35), big-M constraints impose minimum and maximum capacities 

on transCapl,t. Binary decision variable xTransln,t is multiplied by minimum capacity parameter 

MinLine (40), and  by an upper bound, set to the maximum allowable share MaxLine of the 

greatest occurring average power demand, calculated as the maximum value of combined served 

business and domestic demand in any time t, divided by the number of hours in a year times an 

average transmission line capacity factor CFTrans (41): 

𝑡𝑟𝑎𝑛𝑠𝐶𝑎𝑝𝑙𝑛 ,𝑡 ≥ 𝑥𝑇𝑟𝑎𝑛𝑠𝑙𝑛 ,𝑡 ∙ 𝑀𝑖𝑛𝐿𝑖𝑛𝑒 ∀𝑙𝑛 (40) 

𝑡𝑟𝑎𝑛𝑠𝐶𝑎𝑝𝑙𝑛 ,𝑡 ≤ 𝑥𝑇𝑟𝑎𝑛𝑠𝑙𝑛 ,𝑡 ∙ 𝑀𝑎𝑥𝐿𝑖𝑛𝑒 ∙ max𝑡
{
𝐸𝑅𝑇𝑎𝑟𝐵𝑢𝑠𝑡 ∙ ∑ 𝐷𝑒𝑚𝐵𝑢𝑠𝑐,𝑡𝑐 + 𝐸𝑅𝑇𝑎𝑟𝑡 ∙ ∑ (𝐷𝑒𝑚𝑈𝑐,𝑡 + 𝐷𝑒𝑚𝑅𝑐,𝑡)𝑐

8760
ℎ
𝑎
∙ 𝐶𝐹𝑇𝑟𝑎𝑛𝑠

} ∀𝑙𝑛 (41) 

Furthermore, it is assumed that it is optimal to build a certain transmission line ln only once 

during the planning horizon (42): 

∑𝑥𝑇𝑟𝑎𝑛𝑠𝑙𝑛,𝑡
𝑡

≤ 1 ∀𝑝𝐼  (42) 
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3.5.2 Electricity transmission 

The annual electricity transmitted transl,ld,t, is bounded by its line capacity, calculated as the sum 

of added cumulative capacity transCCl,t and previously existing capacity ExTrl (43).3  

𝑡𝑟𝑎𝑛𝑠𝑙,𝑙𝑑,𝑡 ≤ (𝑡𝑟𝑎𝑛𝑠𝐶𝐶𝑙,𝑡 + 𝐸𝑥𝑇𝑟𝑙,𝑡) ∙ 𝐶𝐹𝑇𝑟𝑎𝑛𝑠 ∙ 8760
ℎ

𝑎
 ∀𝑙, 𝑙𝑑, 𝑡 (43) 

3.5.3 Continuous grid 

All power plants pnG located in a non-connected cell cn at baseline time t0 are required to be 

connected to the national grid via the shortest path SPGridpnG,ln from cn to any cell which is 

connected to the transmission grid in time t0 (see Appendix A for details). Let SP be the set of 

all (pnG,ln) tuples where SPGridpnG,ln = 1. If a plant pnG is built in time t, i.e. if binary variable 

xGenpnG,t is 1, then the model forces at least one variable xTransln,t up until time t to be 1 where 

line ln is part of the shortest path from pnG to the grid: 

∑ 𝑥𝑇𝑟𝑎𝑛𝑠𝑙𝑛 ,𝜏

𝑡

𝜏=𝑡1

≥ 𝑥𝐺𝑒𝑛𝑝𝑛𝐺,𝑡 ∀(𝑝𝑛𝐺 , 𝑙𝑛)  ∈ 𝑆𝑃, 𝑡 (44) 

 

3.6 Distribution constraints 

3.6.1 Intercell distribution capacity limit 

To define the electricity sent to businesses, urban and rural households via distribution lines 

which connect different adjacent cells at baseline time t0, denoted by disBusc,t, disUc,t, and disRc,t, 

their sum is equated to the difference between incoming and outgoing intercell distribution 

transDl, ld,t. It is sufficient to declare equation (45) only for cells cn which are not connected via 

transmission lines at transmission voltage in baseline time t0 as it is always optimal to use higher-

voltage transmission lines for long-range electricity exchange between cells rather than low-

voltage distribution (see section 2). Following the same logic, the demand served through 

disBuscn,t, disUcn,t, and disRcn,t in cells cn is limited by what has been previously served in baseline 

                                                 

3 Electricity can potentially flow in two directions ld, either from one specific adjacent cell to the other or vice 

versa. However, at any one set time, flow is only possible in one direction. As all transmission incurs a loss, it 

cannot be cost-optimal to have an electricity flow in both directions ld at the same time which is why no additional 

constraints are required to enforce this physical limit. 
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time t0 (46) – (48), variable transDl, ld,t equals 0 where ExTrl equals 1 (49), and disBusc,t, disUc,t, 

and disRc,t are 0 in connected cells (50) – (52). 

 

∑∑𝑡𝑟𝑎𝑛𝑠𝑑𝑙,𝑙𝑑,𝑡 ∙ 𝐸𝐵𝐼𝑛𝑙,𝑙𝑑,𝑐𝑛
𝑙𝑑𝑙

∙ 𝐷𝐿𝑜𝑠𝑠𝑙 ∙ 𝐸𝑥𝑇𝑟𝐷𝑙 −∑∑𝑡𝑟𝑎𝑛𝑠𝐷𝑙,𝑙𝑑,𝑡 ∙ 𝐸𝐵𝑂𝑢𝑡𝑙,𝑙𝑑,𝑐𝑛 ∙ 𝐸𝑥𝑇𝑟𝐷𝑙
𝑙𝑑𝑙

= 𝑑𝑖𝑠𝐵𝑢𝑠𝑐𝑛,𝑡 + 𝑑𝑖𝑠𝑈𝑐𝑛,𝑡 + 𝑑𝑖𝑠𝑅𝑐𝑛,𝑡 

∀𝑐𝑛 , 𝑡 (45) 

𝑑𝑖𝑠𝐵𝑢𝑠𝑐𝑛,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝐵𝑢𝑠𝑐𝑛,𝑡) ≤ 𝐸𝑥𝐵𝑢𝑠𝑐𝑛 , 𝑡 ∀𝑐𝑛 , 𝑡 (46) 

𝑑𝑖𝑠𝑈𝑐𝑛,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑈𝑐𝑛,𝑡) ≤ 𝐸𝑥𝑈𝑂𝑛𝑐𝑛 , 𝑡 ∀𝑐𝑛 , 𝑡 (47) 

𝑑𝑖𝑠𝑅𝑐𝑛,𝑡 ∙ (1 − 𝐷𝐿𝑜𝑠𝑠𝑅𝑐𝑛,𝑡) ≤ 𝐸𝑥𝑅𝑂𝑛𝑐𝑛 , 𝑡 ∀𝑐𝑛 , 𝑡 (48) 

𝑡𝑟𝑎𝑛𝑠𝑑𝑙,𝑙𝑑,𝑡 ∙ 𝐸𝑥𝑇𝑟𝑙 = 0 ∀𝑙, 𝑙𝑑, 𝑡 (49) 

𝑑𝑖𝑠𝐵𝑢𝑠𝑐𝑐,𝑡 = 0 ∀𝑐𝑐 , 𝑡 (50) 

𝑑𝑖𝑠𝑈𝑐𝑐,𝑡 = 0 ∀𝑐𝑐 , 𝑡 (51) 

𝑑𝑖𝑠𝑅𝑐𝑐,𝑡 = 0 ∀𝑐𝑐 , 𝑡 (52) 

3.6.2 Electricity distribution continuity 

The model requires that any amount of electricity distributed for household consumption in a 

cell c in time t has to be at least as high as in previous time period t – 1. 

𝑒𝑙𝑈𝑂𝑛𝑐,𝑡 ≥ 𝑒𝑙𝑈𝑂𝑛𝑐,𝑡−1 ∀𝑐, 𝑡 (53) 

𝑒𝑙𝑅𝑂𝑛𝑐,𝑡 ≥ 𝑒𝑙𝑅𝑂𝑛𝑐,𝑡−1 ∀𝑐, 𝑡 (54) 

𝑒𝑙𝑈𝑂𝑓𝑓𝑐,𝑡 ≥ 𝑒𝑙𝑈𝑂𝑓𝑓𝑐,𝑡−1 ∀𝑐, 𝑡 (55) 

𝑒𝑙𝑅𝑂𝑓𝑓𝑐,𝑡 ≥ 𝑒𝑙𝑅𝑂𝑓𝑓𝑐,𝑡−1 ∀𝑐, 𝑡 (56) 

 

3.7 Network resilience constraints 

3.7.1 Maximum share of volatile electricity sources 

The model imposes a limit MaxVol on the grid-connected installed capacity share from volatile 

sources (namely solar PV and wind) of total installed capacity in time t, calculated as the sum of 
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newly added cumulative capacity until time t, genCCpon,t and the previously existing capacity 

ExSuppon at baseline time t0: 

𝑀𝑎𝑥𝑉𝑜𝑙 ∙∑(𝑔𝑒𝑛𝐶𝐶𝑝𝑜𝑛,𝑡 + 𝐸𝑥𝑆𝑢𝑝𝑝𝑜𝑛,𝑡)

𝑝𝑜𝑛

≥ ∑(𝑔𝑒𝑛𝐶𝐶𝑝𝑣𝑜𝑙,𝑡 + 𝐸𝑥𝑆𝑢𝑝𝑝𝑣𝑜𝑙,𝑡)

𝑝𝑣𝑜𝑙

 ∀𝑡 (57) 

3.7.2 Geographical spread of solar plants 

Most developing countries in Africa and South Asia are endowed with abundant solar insulation. 

In order to spread the volatility of solar irrigation over different parts of a country, the model 

imposes a maximum on-grid solar capacity MaxSol on the cumulative generation capacity in any 

cell, genCCp,t: 

𝑔𝑒𝑛𝐶𝐶𝑝,𝑡 ≤ 𝑀𝑎𝑥𝑆𝑜𝑙 ∀𝑝 ∈ 𝑃𝑜𝑆 , 𝑡 (58) 

 

4. SOLUTION APPROACH 

To solve the presented MO-MILP model, an ε-constraint approach is implemented. The idea is 

to convert both non-cost objective functions f2 and f3 to constraints by requiring them to not 

exceed a certain finite value ε2 and ε3, respectively. The model is then solved repeatedly for 

different ε2 and ε3 combinations to yield a Pareto Front of non-dominated solutions of the original 

MO-MILP problem.  

While for some MO-MILP problems, ε-constraint approaches can be problematic, it is well-

suited for the model presented in this paper for three main reasons. Firstly, both non-cost 

objective functions can be written as constraints which are naturally bounded between 0 and 

100, with a straight-forward interpretation of the ε values, as follows: let 𝜀𝑢𝑟𝑏𝑅𝑢𝑟 = 100 − 100 ∙

𝜀2 be the minimum required degree of electrification equality measured as the difference 

between urban and rural electrification rates in any cell c in final time T. Furthermore, let 𝜀𝑟𝑒𝑔 =

100 − 100 ∙ 𝜀3 be the minimum required degree of electrification equality measured as the 

difference between the electrification rate of any two different cells 𝑐1, 𝑐2 ∈ 𝐶 in final time T. 

Then, the ε-constraints can be written as follows:  

𝑒𝑟𝑈𝑐,𝑇 − 𝑒𝑟𝑅𝑐,𝑇 ≤ 100 − 𝜀𝑢𝑟𝑏𝑅𝑢𝑟 ∀𝑐 (59) 

𝑒𝑟𝑅𝑐,𝑇 − 𝑒𝑟𝑈𝑐,𝑇 ≤ 100 − 𝜀𝑢𝑟𝑏𝑅𝑢𝑟 ∀𝑐 (60) 
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𝑒𝑟𝑇𝑜𝑡𝑐1,𝑇 − 𝑒𝑟𝑇𝑜𝑡𝑐2,𝑇 ≤ 100 − 𝜀𝑟𝑒𝑔 ∀𝑐1, 𝑐2 ∈C (61) 

By definition of the electricity rate variables, the entire solution space is covered for 

𝜀𝑢𝑟𝑏𝑅𝑢𝑟 , 𝜀𝑟𝑒𝑔 ∈ [0,100]. Crucially, this fact overcomes a weakness associated with the ε-

constraint method where a sensible range of ε values is often not readily available a priori. Here, 

a value of 0 for εurbRur and εreg implies that the model requires the theoretically possible minimum 

sub-national electrification equality, whereas a value of 100 implies that the theoretically 

possible maximum electrification equality is enforced.  

Secondly, this formulation rids the model of not continuously differentiable functions: The 

maximum functions in (2) and (3) are replaced with simple linear upper bound constraints. 

Furthermore, constraints (59) and (60) in combination replace the absolute value function in (2). 

Thirdly, as sub-national electrification equality requirements are increased, the solution space 

becomes monotonically increasingly constrained. Hence, any optimal solution with a stricter 

sub-national electrification equality requirement is an upper bound for the optimal solution of a 

problem with a lower such requirement. This property is used in the solution algorithm, 

presented in Figure 2. It first solves an MILP, defined by expressions (1), (4) – (61), with a single 

cost objective for the case where electrification equality requirements are strictest (i.e. 𝜀𝑢𝑟𝑏𝑅𝑢𝑟 =

𝜀𝑟𝑒𝑔 = 100), and then uses the solution as an initial solution for a case where the electrification 

equality requirements are slightly relaxed by a fraction 𝑘 ∈ [0,100]. Scalar k can be chosen 

depending on the desired granularity of the resulting Pareto Front as it corresponds to the step 

change in electrification equality requirements between different solutions that visualise the 

Pareto Front. To cover the four outer edges of the Pareto Front where εurbRur or εreg are either 100 

or 0, k is best chosen such that (100 mod 𝑘) = 0, e.g. 𝑘 = 50, 33. 3̅, 25, 20,…. The initial 

solutions are updated as the ε values are updated to use the best available initial solutions in 

every run. Except for runs where either εurbRur or εreg are equal to 100, the algorithm provides 

two initial solutions to the MILP, one which was obtained from solving the MILP with εurbRur 

being fraction k greater than in the current run, and one with εreg being fraction k greater than in 

the current run. The smaller the k value chosen, the more single-objective MILP models have to 

be solved, however, the quality of initial solutions in each MILP solution run monotonically 

improves with smaller k values. 
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Figure 2: ε-constraint solution approach for MO-MILP problem 

 

 

5. VALIDATION METHOD: INDICATIVE LOAD FLOW ANALYSIS 

To indicate that the proposed energy networks for Uganda are valid, the Power Systems Analysis 

Toolbox (PSAT) 2.1.10 was used to conduct load flow analyses [65]. The networks of 
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generation, loads and transmission lines obtained from the results of the optimiser were 

translated into the Matlab model format required for PSAT using a Python script. PSAT was run 

using Matlab 2016b. The only change was the addition of the slack bus to the model to enable the 

solver to converge. Load flow analysis has been used extensively to analyse power networks 

[66], usually where detailed network data is available, and it has been used in this work to 

examine the voltage profiles of the optimized networks. 

For the case studied in this paper, the load flow model includes both the existing as well as the 

newly added generation and transmission line capacities for all 112 districts in Uganda in 2040, 

and demand loads for all 112 districts. Each district is defined as a bus in the network. A steady 

state power flow analysis (DC) was completed in PSAT, yielding the resulting voltage variations. 

The Newton Raphson Solver was used throughout. Per unit resistance and inductance values were 

also implemented for the transmission lines, and the system was simulated on a per unit basis 

throughout. As most of the lines do not exist yet, several load flow analyses were run with slight 

variations of resistance and inductance values. The model was constructed using phase estimates 

for the future demand loads, however these can be replaced by real values as the network 

develops over time. The load flow analysis should therefore be treated as indicative and useful 

for initial validation. 

 

 

6. DATA: UGANDA CASE STUDY 

To the best of our knowledge, this paper is the first to apply a long-term energy planning 

optimisation of a national electricity system considering generation and transmission to any sub-

Saharan African country with low initial levels of power infrastructure. Hence, data for 

geospatial generation potentials, demand and demographics, costs and existing infrastructure 

had to be pooled from a variety of sources: To populate the model for the case of Uganda 

presented in this paper, 40 different sources providing data and/or relevant assumptions were 

used. Table 1 and Table 2 list the data sources for all scalars and parameters, respectively. 

Several parameters were not readily available and had to be calculated based on different data 

sources. To study implications for different generation options, the demand projections for the 

main case in this paper are comparably high, albeit significantly lower than Uganda’s official 

development policy, Vision 2040 (see Appendix B for further details). The value for the discount 
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factor DFt follows from solving 𝐷𝐹𝑡 =
1

(1+𝑖)𝑡−𝑡1
. Assuming an interest rate of 𝑖 = 5% and 𝑡1 =

2020, then 𝐷𝐹2020 = 1,𝐷𝐹2021 = 0.952,… , 𝐷𝐹2040 = 0.377. 

As of 2016, Uganda had roughly 35 million inhabitants and an available installed on-grid 

capacity of roughly 750 MW, with over 90% coming from hydropower at the source of the River 

Nile in Central Uganda [67]. Figure 3 shows Uganda’s grid-connected power plants and 

operational transmission and distribution lines as of baseline time 2016, hinting at the existing 

electrification inequality in the country. Total transmission line length stood at 1,200 km, 

practically all of these lines had a voltage level of 132 kV [68]. Grid-connected electricity 

consumption was 2,567 GWh, 23% of which serviced domestic and 77% served 

business/industrial demand [69]. While not offering all technical details, geospatial data for the 

current power infrastructure (generation, transmission and distribution) is of comparably good 

quality in Uganda after Ugandan public sector stakeholders and German development agency 

GIZ published their GIS working group datasets in 2017 [68]. Uganda’s electricity rate stood at 

roughly 20%, with stark electrification inequalities between urban (> 50 %) and rural (< 10 %) 

areas as well as between different regions (roughly 50 % in Central Uganda including Kampala, 

below 10 % in Northern Uganda) [1, 68]. The government has set an official target of 80% 

electrification rate by 2040, but has not specified which areas it intends to electrify and which 

not. It aims to attain middle-income status by 2040, increasing its per capita electricity 

consumption by a factor of 50 [70]. 
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Figure 3: Uganda’s on-grid power plants, transmission and distribution lines in 2016 (data 

source: [68]) 

 

Table 1: Data values and sources for model scalars 

Scalar Value Source 

CFTrans 90 % [71] 

CLkV 1 % [71] 

DOMSh 2 % [61, 72] 

εurbRur 0 – 100 - 

εreg 0 – 100 - 

k 33.3̅ (this paper) 

MaxLine 25 % (this paper) 

MaxSol 500 MW (this paper) 

MaxVol 15 % [73] 

MinLine 28 MVA [68] 

PDemRt 0.000162 [67] 

RM 150 %4 (this paper) 

TOMSh 2 % [61, 72] 
 

 

                                                 

4 Relatively high value of reserve margin chosen due to the high share of renewables, especially hydro, in Uganda’s 

power system and the consequential low average availabilities during peak demand. 
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Table 2: Data and assumption sources for model parameters 

Parameter Source Parameter Source Parameter Source 

CFp [74-78] DemUc,t [1, 67, 69] ExUOnc [67, 68, 71] 

CDisIRc,t [64, 71, 79, 80] DLossl [67, 71] ExTrl [68] 

CDisIUc,t [64, 71, 79, 80] DLossBusc,t [67, 71] ExTrDl [68] 

CDisIROf𝑓𝑐,𝑡 [68, 81] DLossUc,t [67, 71] GenEffpon [78] 

CDisIUOf𝑓𝑐,𝑡  [68, 81] DLossRc,t [67, 71] MaxEmt [82] 

CGenIp,t [74-76, 83] EBInl,ld,c [68] MinErBust [67, 71] 

CGenOMp,t [74-76, 83] EBOutl,ld,c [68] MinSizepon [68, 78] 

CO2Emp [84, 85] ERTart [70] PCMp,c [68] 

CTrIDisl,t [71, 79, 80, 86, 87] ERTarBust [67, 70] PopRc,t [1, 70, 88, 89] 

CTrIFixl,t [71, 79, 80, 86, 87] ExBusc [67, 68, 71] PopTott [1, 70, 88, 89] 

CTrIVarl,t [71, 79, 80, 86, 87] ExROffc [68] PopUc,t [1, 70, 88, 89] 

DFt (this paper) ExROnc [67, 68, 71] SPGri𝑑𝑝𝑛𝐺,𝑙𝑛  [44] 

DemBusc,t [1, 67, 69, 70] ExSupp [68] Supp [61, 67, 68, 74-76, 

78, 83, 90-102] 

DemRc,t [1, 67, 69] ExUOffc [68] TLossl [44, 68, 71] 

 

To analyse sub-national electrification inequalities, the spatial units were chosen to be relatively 

small. Uganda was divided into 112 cells corresponding to its 112 administrative districts. The 

average area of these cells is 1780 km2 (roughly equalling a square with 42 km side length). As 

discussed in section 1, previous national-level generation planning studies have used a 

considerably smaller number of cells to divide a country’s power system, usually ranging 

between 5 and 10 cells [4, 19, 31]. The subsequent results section presents results for both a 10-

district case of Central Uganda as well as the national 112-district case, the latter allowing for a 

comparison with official Ugandan governmental targets for generation expansion. The year 2016 

is set as baseline time t0 and the year 2040 which coincides with Uganda’s national development 

policy Vision 2040 [70] is set to final time T. In 2016, only 35 of the 112 districts featured 

transmission lines. To reduce computational complexity, the model was implemented using 5-

year time periods.5  

 

 

7. RESULTS AND DISCUSSION 

This section first presents the results of a case of 10 districts in Uganda in section 7.1, thus falling 

into the 5 – 10 cell interval used in recent long-term energy problem research [4, 19, 31]. Section 

7.2 then discusses the results from the national-level, 112-district instance of Uganda. Section 

                                                 

5 As a consequence, the O&M cost equations are adjusted by a linear interpolation of generation, transmission and 

distribution infrastructure to accurately count every year within the 5-year time periods, multiplied with an annual 

discount factor. 
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7.2 closes with an indicative load flow analysis of the least-cost network to suggest the validity 

of the model results. 

 

7.1 10-district model instance 

The illustrative 10-district instance includes adjacent districts from Central and Eastern Uganda, 

ranging from Wakiso in the West to Jinja in the East and Nakasongola in the North (see Figure 

4). The districts are centred around the two main demand centres in Uganda, Kampala and 

Wakiso, home to almost 40% of the entire urban population of Uganda in 2016. Five of the 10 

districts were connected via transmission lines in 2016. A fictional electrification rate target for 

households and businesses was set to 50% in 2040. The instance includes 18 different potential 

new transmission lines between adjacent districts and 49 different potential new plants within 

the districts to meet any demand combination which meets the overall electrification rate targets. 

 

 

Figure 4: Uganda’s 112 districts, and the ones selected for the illustrative 10-district instance 

(note that the capital Kampala is itself a district)  

 

Using the solution approach described in section 4, the MO-MILP problem for the 10-district 

instance was solved to global optimality in 45 seconds using CPLEX 12.8 on a standard desktop 
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computer with an Intel Core i5 3.30 GHz processor and 16 GB RAM for a granularity value 𝑘 =

33. 3̅ (resulting in solving 16 MILP subsequently). Figure 5 shows the resulting comprehensive 

Pareto Front, interpolated between the 16 calculated solutions. Figure 6 provides the 

corresponding district-level and urban versus rural electrification rates for different 

electrification equality requirements. Non-surprisingly, it is cost-optimal to continue (and even 

increase) electrification inequality due to high population densities in Kampala and Wakiso vis-

à-vis the other districts (Figure 6A). As εreg and εurbrur increase, regional as well as urban versus 

rural electrification rates converge.  

 

Figure 5: Entire Pareto Front for 10-district instance 

 

Notably, the Pareto Front indicates that achieving electrification equality between urban and 

rural areas within the 10 districts, as well as overall between the 10 districts, is possible at 

comparably small overall discounted cost increases of 2.1%. There are four main reasons for 

this, namely (1) the dominance of generation over transmission costs, (2) the abundance and 

cost-efficiency of different types of solar energy (Figure 7), (3) the low cost of off-grid 

generation due to cost reductions until 2040, and (4) comparably high population densities in 

Uganda, especially in the selected 10 districts for the illustrative case. As these reasons are 

shown to remain valid for the full country case, they are discussed in more detail in section 7.2. 
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A: Regional and urban versus rural rates for 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 0% 

 

  
B: Regional and urban versus rural rates for 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 33. 3̅% 

 

  
C: Regional and urban versus rural rates for 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 66. 6̅% 

 

  
D: Regional and urban versus rural rates for 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 100% 

 

Figure 6: Electrification rates for increasing regional and urban versus. rural equality 

requirements for the 10-district case 
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A: Optimal installed capacity for 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 0% B: Optimal installed capacity for 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 100% 

 

Figure 7: Optimal installed capacity for 10-district instance for no (A) and full (B) 

electrification equality requirements 

 

7.2 112-district model instance 

The full national case of Uganda features 112 distinct geographical cells, 278 different potential 

transmission lines connecting adjacent districts, and 483 different potential power plants within 

the districts to be built at time t meet any kind of demand combination which yields a given 

country-wide electrification rate at any time t. Consequentially, an extremely high combination 

of potential network configurations exists. Many of the feasible solutions are characterised by 

marginal cost differences between electrifying one specific district over another at a certain time. 

As for the 10-district case, the granularity value was set to 𝑘 = 33. 3̅, and CPLEX 12.8 was used 

to solve the problem on the same machine as described in section 7.1. CPLEX solved the first 

MILP of the solution approach described in section 4, i.e. the case where 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 =

100% and no initial solution exists to be utilised, to within 1% of global optimality within 

roughly 25 minutes of runtime, while all other 15 MILPs where at least one feasible initial 

solution was provided were solved to within 1% of global optimality at the root node within 90 

seconds of runtime. An optimality gap of 0.5%, a value significantly below the degree of 

uncertainty present in the available data (see section 6), was set to ensure practical solution times. 
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7.2.1 Non-dominated solutions of multi-objective problem  

The resulting Pareto Front is presented in Figure 8, the corresponding, steadily converging 

electrification rates for different regions and urban versus rural areas are shown in Figure 9. As 

these figures show, it is cost-optimal for high electrification inequality to continue (and in the 

first decade, even increase) in Uganda if no electrification inequality minimisation criterion is 

imposed. This result is consistent with the consequences of Uganda’s current electrification 

approach which is biased towards those households who already are close to the national grid 

[103]. The modelling results suggest that in the purely cost-minimal case, the capital Kampala 

is immediately fully electrified in 2020, Eastern Uganda which is home to most of the generation 

today is electrified next, while electrification rates in Northern and Western Uganda increase 

much more slowly until 2040. If, however, the model forces increasing electrification equality 

(i.e. 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 and  𝜀𝑟𝑒𝑔 approach 100%), then the electrification rates converge for all regions 

much quicker. In this case, between 2035 and 2040, almost all new connections are located in 

rural areas and urban population growth outpaces urban connection rates. 

However, the resulting cost increase incurred through forcing sub-national electrification 

equality in Uganda of roughly 3% is comparably low. Similarly to the 10-district case, this is 

due to four main reasons. It is important to note that several of which are highly specific to the 

Ugandan case. Firstly, in the cost-minimal solution, the discounted total generation costs make 

up 84% of the total system costs of roughly 24 bn. USD. Hence, the model chooses a similar 

generation mix independent of where the electricity had to be sent to achieve higher 

electrification equality (see section 7.2.2). Specifically, switching away from cheap but fixed-

location hydro, biomass, fossil fuel or geothermal plants is more expensive than incurring 

additional transmission costs to connect these sources to the grid. Where these resources are 

comparably far removed from the grid, there is an added benefit of building new transmission 

lines to be used to electrify districts between the plants and the grid.  

Secondly, the abundance of solar insolation in Uganda allows the model to incur similar 

generation costs for different generation locations by shifting solar PV, CSP plant and solar off-

grid capacities from one district to another at little extra cost (see section 7.2.3 and Table A in 

Appendix C). For instance, the cost-optimal solution with no electrification equality requirement 

turns Kasese district, located at the boarder to the Democratic Republic of Congo in Western 

Uganda and endowed with high solar insolation, into an important generation hub for Southwest 

Uganda, installing 398 MW solar PV, 353 MW CSP and 71 MW solar off-grid. Achieving full 

electrification equality with all districts having an 80% electrification rate in 2040 implies 
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shifting some of this capacity elsewhere: For 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 100%, solar PV in Kasese is 

reduced to 382 MW, CSP is reduced to 241 MW and solar off-grid to 53 MW (Table A). For 

instance, in Nakasongola district, the optimal CSP capacity increases from 159 MW to 226 MW. 

As the abundance of solar resources and the rapidly falling costs of solar PV and especially CSP 

(see Appendix B) lead to high shares of both technologies in the optimal solution, this is a cost-

effective strategy to help achieve electrification equality in Uganda.  

Thirdly, off-grid technologies are projected to continue their significant cost decrease. As current 

cost levels already render them a cost-competitive mode of electrification in many rural areas 

today, they play a key factor in helping to close the cost gap between urban and rural 

electrification going forward. The projected cost reductions significantly decrease the cost of 

forcing electrification equality in 2040. In the optimal solution, the model chooses 15% of all 

electricity consumed in Uganda to come from off-grid sources in 2040. The requirement of 

electrification equality can be met in a cost-efficient way by increasing the off-grid share and, 

even more so, heavily shifting around off-grid capacity between districts (Table A).  

Fourthly, Uganda’s comparably high population density of 208 people per square km is 

projected to almost double by 2040, further decreasing the per person cost of electrification. 

These results indicate that the Ugandan government and its international development partners 

can dramatically reduce electrification inequality in Uganda at little extra total system cost if 

they allocate spending accordingly. Shifting solar capacities as well as transmission and 

distribution expansion to regions with low access today, and significantly increasing off-grid 

electrification present cost-efficient measures to curtail inequality and provide more equal 

opportunities to all Ugandans. 
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Figure 8: Entire Pareto Front for full national Ugandan case 
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A: Regional and urban versus rural rates for 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 0% 

 

  
B: Regional and urban versus rural rates for 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 33. 3̅% 

 

  
C: Regional and urban versus rural rates for 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 66. 6̅% 

 

  
D: Regional and urban versus rural rates for 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 100% 

 

Figure 9: Electrification rates for increasing regional and urban versus. rural equality 

requirements for full national case 
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7.2.2 Optimal installed capacity (high demand case) 

Figure 10 highlights the optimal installed capacity over time. As Appendix B suggests, the 

demand assumptions for both households and businesses are comparably high (albeit much 

lower than Ugandan official electricity consumption targets). The resulting capacity addition 

merit order, however, is mainly independent of demand estimations: At first, Uganda’s cheapest 

generation option is to develop its hydro resources on the River Nile, a resource which offers 

roughly 2.5 GW in addition to what is installed already. The next cheapest options are biomass 

(roughly 350 MW), geothermal (roughly 440 MW), the limited wind energy in Northeastern 

Uganda (roughly 140 MW), and solar PV (significantly higher potential than any conceivable 

demand). As solar PV is constrained by its intermittency, CSP with storage is the next cheapest 

option capable of providing 24 hour baseload, again with almost unlimited potential compared 

to any reasonable demand forecast. In the example demand scenario presented in Figure 10, 

falling CSP prices lead to a surge of CSP installations from 2035. While the Ugandan 

government’s current focus of hydro is supported by this paper, the importance of solar PV, and 

especially CSP as well as off-grid technologies are at odds with the government’s plans to 

expand nuclear energy (see section 8). 

 

  

 
A: Optimal installed capacity for 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 0% B: Optimal installed capacity for 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 100% 

 

Figure 10: Optimal installed capacity for full national case for no (A) and full (B) 

electrification equality requirements 

 

7.2.3 On-grid versus off-grid connection results 

Figure 10 also shows a significant amount of off-grid capacity in Uganda. Falling prices in the 

off-grid sector, especially for small and medium-sized solar systems sufficient to power any 
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household appliance, imply that these systems are already cost-competitive with, and in most 

cases in the future, cheaper than grid-expansion. Table 3 presents the total number of household 

connections throughout the planning horizon, split by main region and on-grid versus off-grid. 

These figures include roughly 1 million existing connections in 2017. While exact cost 

developments are difficult to predict, the results indicate that the share of off-grid connections 

is set to rise significantly in all regions and all years. Pushed by the continued cost decrease of 

solar off-grid systems and Uganda’s strong population growth, the projected overall cost-optimal 

share reaches two-thirds by 2040. These results strongly challenge the Ugandan government’s 

official electrification policy which focuses heavily on grid-expansion (see [70] and [67]). 

 

Table 3: Total number of household connections on-grid and off-grid in cost-minimal solution 

[million] 

 2020 2025 2030 2035 2040 

Region On-grid Off-grid On-grid Off-grid On-grid Off-grid On-grid Off-grid On-grid Off-grid 

Northern 0.10 0.04 0.32 0.05 0.37 0.24 0.40 1.03 0.42 1.75 

Western 0.15 0.08 0.53 0.18 0.56 0.51 0.57 0.98 0.58 1.64 

Eastern 0.13 0.12 0.34 0.85 0.38 1.78 0.38 2.60 0.38 2.88 

Central 0.73 0.04 0.97 0.04 1.11 0.41 1.26 0.69 1.32 1.21 

Kampala 0.45 0.00 0.62 0.00 0.83 0.00 1.09 0.00 1.10 0.31 

Sum 1.57 0.28 2.78 1.12 3.26 2.94 3.70 5.30 3.80 7.78 

Share [%] 85 15 71 29 53 47 41 59 33 67 

Electrification 

rate [%]1 

25 40 55 70 80 

1 The electrification rate was set as a modelling parameter a priori (see section 3.2), the 80% in 2040 match Uganda’s 

official electrification target in the governmental Vision 2040 policy [70] 

 

7.2.4 Network design and indicative load flow analysis 

Figure 11 and Figure 12 illustrate the resulting optimal network design for no and full 

electrification equality requirements in Uganda in 2040, respectively. In addition, Table A in 

Appendix C lists the optimal installed generation capacity in 2040 for all 112 districts by 

technology for the cases of forcing no electrification equality, i.e. 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 0%, and for 

full electrification equality, i.e. 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 100%.  

In either case, the main power highways stretch from the various large-scale hydro dams along 

the River Nile towards the industrial epicentres in Central Uganda and Kampala, specifically. 

The relative dominance of these lines becomes more pronounced the lower the total demand 

projection is. CSP in Central Uganda as well as solar PV in Eastern Uganda are found to act as 

crucial technologies to combine demand centres with close-by generation to minimise 
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transmission requirements and associated losses. Crucially, in contrast to current governmental 

efforts to expand medium-voltage distribution lines [69], this paper finds the expansion of high-

voltage transmission lines to be superior in most cases due to lower loss implications of high-

cost generation. Furthermore, off-grid technologies, greatly dominated by solar PV and battery 

combined systems, play an instrumental role in nearly all districts in the cost-optimal solutions, 

crucially decreasing the need for distribution infrastructure. This effect becomes slightly more 

pronounced as electrification equality is forced as more rural households are being electrified 

with off-grid solar rather than urban households who rely more strongly on grid electrification. 

Due to reasons discussed in section 7.2.1, it is not surprising that the networks in Figure 11 and 

Figure 12 are similar. 

 

 

 

Figure 11: Optimal network configuration for no electrification equality requirements (i.e. 

𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 0%) 
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B: Optimal installed capacity for 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 100% 

Figure 12: Optimal network configuration for full electrification equality requirements 

(i.e. 𝜀𝑢𝑟𝑏𝑟𝑢𝑟 = 𝜀𝑟𝑒𝑔 = 100%) 

 

Finally, the results from an indicative load flow analysis as described in section 5 are shown in 

Figure 13. The steady state power flow analysis (DC) was performed on the least-cost network 

shown in Figure 11. The network model converged and the resulting voltage variation, which 

arise from the phases estimates for the network, was limited: The p.u. minimum voltage of those 

districts connected to the network was 0.950 and the maximum p.u. voltage was 1.046. Changing the 

resistances and inductances assumed for the newly constructed lines had no noteworthy effect 

on the voltage profile of the network. District 24 is completely disconnected from the network, 

with no transmission lines through, or connection to the main network, and hence shows up as 

zero voltage. Given the long-term planning horizon until 2040 and the associated uncertainty, 
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the network model is simplified given the paucity of empirical data, hence the associated voltage 

profile results should be treated as being indicative. 

 

 

Figure 13: Per unit voltage magnitude profile for all buses (districts) from indicative load flow 

analysis 

 

8. COMPARISON WITH UGANDA’S OFFICIAL GENERATION EXPANSION PLAN 

To compare the official capacity targets from Uganda’s governmental development policy 

“Vision 2040” [70] with the model presented in this paper, an additional demand scenario is 

studied. This demand scenario follows from assuming the Uganda’s official policy target of a 

3,668 kWh per capita consumption case in 2040.  

Figure 14 compares Uganda’s Vision 2040 capacity targets with the model results using this 

demand scenario. The higher total installed capacity resulting from the model is due to the lower 

average capacity factor of the generation mix suggested by the model compared to the one from 

the governmental target generation mix. It should be noted that this high-end demand scenario, 

although it is the official governmental target, is highly unlikely to be attainable as it would 

require an average 20% per annum electricity consumption increase in every year between 2018 

and 2040. Yet even if this high-demand scenario were to be realised, the model results differ 

fundamentally from the official governmental targets. Most dramatically, while the government 

plans to have a noteworthy 24 GW of nuclear energy installed in Uganda in 2040, the model 

does not find nuclear to be optimal in any demand scenario. In fact, the governmental plan is 
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found to be infeasible by the model as it far exceeds a realistic estimation of nuclear potential 

(and, to a lesser degree, the fossil fuel potential) in Uganda by 2040. CSP is found to be a cheaper 

baseload option for Uganda (see also Appendix B). In addition, CSP is a favourable technology 

in terms of environmental risk, local content potential (as mirrors and solar tracking devices can 

be manufactured locally), the technology’s potential to foster electrification equality and market 

opportunity due to its projected global growth in the coming decades.  

The model also shows that in addition to the requirement to expand the grid, a significant degree 

of off-grid solutions are cost-optimal to electrify mainly rural areas in Uganda. The model results 

indicate that off-grid technologies are the dominant form of electrification in rural Uganda. Due 

to its cost reductions, this remains true despite the country’s comparably high population density 

in 2040. These findings furthermore challenge Uganda’s official electrification plans which aim 

to achieve its 80% electrification rate almost exclusively by expanding the grid [70]. The 

widespread underrepresentation of off-grid technologies has recently been shown to by systemic 

among many developing countries [104]. By expanding electricity planning to incorporate both 

the generation and transmission system as well as different distribution options, this paper lends 

further support to the call for national energy plans to place more emphasis on off-grid 

electrification in sub-Saharan Africa. 

In summary, if we assume that Uganda’s official Vision 2040 capacity target was feasible, the 

model solution with CSP and off-grid technologies presented in this paper could be estimated to 

save roughly $ 4 – 6 bn. in discounted overall system cost compared to the Vision 2040 plan.6   

In addition, while Ugandan policies have heavily focused on generation capacity additions, it is 

crucial to note that for Uganda to realise widespread electrification, there needs to be a greater 

emphasis on expanding transmission infrastructure. The current goals of transmission line 

additions fall considerably short of what is needed, especially in the time until 2025. The 

transmission company UETCL is known for being underfunded. Ironically, despite the cost 

dominance of generation versus transmission technology, the evacuation of power is a prime 

concern in Uganda at the moment [105]. 

 

                                                 

6 This number would be higher if the full cost reduction potential of CSP as projected by IRENA materialises, see 

appendix B1. 
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Figure 14: Uganda’s official capacity target (“Vision 2040”) versus model results for similar 

annual kWh demand assumptions in 2040 

 

 

9. CONCLUSION 

National power systems in many developing countries are characterised by substantial 

suppressed electricity demand due to low connection rates, highly unequally distributed energy 

access, and the relevance of both on-grid and off-grid electrification approaches. This study 

designed the first integrated, multi-criteria optimisation model for long-term national-level 

energy planning tailored to developing countries with low initial electricity infrastructure. The 

model successfully generalised the generation expansion planning problem in three areas: 

Firstly, by reformulating the demand constraints in terms of electrification rates which can take 

any value between 0 and 100%, the model was able to accommodate and plan for suppressed 

demand. Second, the model defined sub-national electrification inequalities as a simultaneous 

optimisation objective to cost minimisation. Thirdly, it integrated generation and transmission 

planning with a linear distribution approximation to determine the optimality of on-grid versus 

off-grid electrification aggregated at the level of a geographical cell. The paper suggested a 

solution algorithm based on the ε-constraint method which utilises the nature of the 

mathematical formulation of the social (i.e. non-monetary) objectives. The model’s application 

to the case of the Ugandan national power system showed that the model is able to accommodate 

the specific challenges of this problem. The proposed solution algorithm was found to perform 
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well and was able to indicate the problem’s entire Pareto Front of non-dominated solutions. A 

load flow analysis has indicated the feasibility and stability of the resulting network designs. 

The model results of the numerical case example of Uganda have generated a number of novel 

insights. In contrast to the government’s focus on grid-extension which would imply sub-

national electrification inequality to remain high in Uganda, the model results have shown that 

widespread electrification equality can be achieved in Uganda at comparably little extra relative 

total system cost: Forcing an electrification rate of 80% in all urban and rural areas throughout 

the country increases the total discounted system costs by only 3% compared to the case where 

no electrification inequality restrictions are in place. This is driven by the dominance of 

generation over transmission and distribution costs, the abundance of cheap solar energy, 

significantly decreasing costs of off-grid technologies up until 2040, as well as Uganda’s 

comparably high projected population density in 2040. Uganda’s strategic priority of on-grid 

over off-grid electrification mirrors a more general trend in developing countries [104]. Yet, this 

paper suggests that it is cost-optimal to provide a two-thirds of connections by off-grid 

technologies by 2040, despite the fact that the assumed per capita demand is comparably high. 

Furthermore, this paper has shown that Uganda’s official generation expansion targets are 

infeasible and, if they had been feasible, would be cost-inefficient. If one were to use Uganda’s 

official per capita demand targets, replacing the government’s planned nuclear expansion with 

solar concentrated power and focusing more strongly on off-grid electrification would lead to 

savings of 4 – 6 bn. USD in total discounted system costs until 2040.  

In general terms, this paper has shown that improving planning approaches by using spatially 

explicit models that consider generation, transmission and distribution comprehensively, can 

reveal cheaper and more equal ways of electrification for countries with low electrification 

access rates. Further improvements regarding the geospatial resolution and the accuracy of 

demand estimations are required in developing countries to best plan national power systems for 

the long term.  
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APPENDIX A – SHORTEST PATH HEURISTIC 

To ensure a silo-free grid, all plants pnG which the model chooses to newly build in a cell that 

was not served through the transmission grid in baseline period t0 (the year 2016 in the numerical 

examples) need to be connected to the national grid. The shortest path heuristic requires all plants 

pnG to be connected via all lines l which form the shortest path from the plant’s cell to any cell 

which is connected to the grid in t0. (implemented in equation (45)). The shortest path problem 

is a classic optimisation problem which has been described in great detail before [106] and can 

be solved efficiently as a separate LP for all combinations of pnG and all connected cells cc to 

find the shortest path from each plant pnG to the grid. The results are then used as an input 

parameter to the MO-MILP problem. The results are then used as an input parameter SPGridpnG,ln 

to the present MO-MILP problem which is 1 if transmission line ln is part of this shortest path 

to the grid, and 0 otherwise. Reference [44] describes this approach in mathematical detail and 

applies it to another energy planning problem. While this heuristic can lead to the model 

suggesting building two separate lines from two close, un-electrified districts to the grid where 

in fact, only one line would be required, it considerably reduces the numerical complexity of the 

problem. Namely, it avoids a model structure where the optimal transmission lines required for 

newly built plant pnG depend on the status of all other transmission lines ln.  
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APPENDIX B – DATA DETAILS  

B.1 Cost data 

Generation investment as well as O&M cost data for all major on-grid and off-grid technologies 

in Africa are available from IRENA (see Table 2). IRENA’s forecast for module cost 

development have been adopted. Where data for Uganda specifically was not available, Eastern 

African or sub-Saharan African averages were used. It is noteworthy that a recent IRENA report 

cites dramatic cost decreases for CSP [83]. Indeed, the 2017 auction for the Copiapó Solar 

Project in Chile produced a winning bid of 0.063 USD/kWh for a 260 MW 24-hour baseload 

CSP plant. Later in 2017, another Chilean auction received a CSP bid for under 0.05 USD/kWh. 

While similarly assuming a rapid cost decline for CSP, the reductions used in this study are more 

conservative than what follows from the IRENA figures. This study assumes an equivalent 

levelised cost of electrification of 0.09 – 0.105 USD/kWh for 24-hour CSP in Uganda in 2040, 

depending on solar insolation levels. 

Transmission costs were obtained through personal communication with Uganda’s transmission 

company UETCL and distribution company UMEME Ltd. On average, 1 km of a 132 kV double 

circuit line with 70 MVA in Uganda costs 180,000 USD (a number that is similar to figures 

given by the International Energy Agency [87]), with a significant part of this number 

independent of the installed capacity due to land right and tower construction costs.  

Distribution costs are modelled per grid-electrified person. Following Nerini et al. (2016), the 

tree-like network structure model by van Ruijven et al. (2012) [64] was used to estimate the 

required medium-voltage (MV) and low-voltage (LV) line length of the distribution grid per 

person as well as any fractional substation costs. The resulting costs heavily depend on the 

population density as lower densities imply higher per person investment requirements to expand 

the grid. Average costs for the required lines are available from a variety of sources, this paper 

used the numbers from Mentis et al. (2017) for Africa. Adding these costs in accordance to van 

Ruijven et al.’s model, and multiplying by the average household size in Uganda gives a value 

of roughly 1,200 USD per grid-connection per rural household, a similar albeit slightly lower 

number than what Lenz et al. (2017) have found to be the case for neighbouring Rwanda’s grid 

rollout programme [107]. In terms of off-grid electrification, additional costs (other than module 

costs) are considered as part of the distribution costs, namely the extra infrastructure investment 

cost incurred to transport the off-grid to its final household location. In case of larger systems, 

this can require the building of a new road as well as establishing new distribution channels [81]. 

It is assumed that these non-module cost are proportional to the log of population density in an 



50 

 

area, and are not incurred anymore in urban areas with population densities over 2,000 people. 

At most, these average additional distribution costs are assumed to be 50% of module costs, 

while cases of mini-grids in remote areas exist where the non-module cost can exceed module 

cost [81]. The resulting cost range for the year 2020 of 1300 - 2000 USD for a 250 W off-grid 

solar home system with battery which is able to provide Tier-3 type electricity is similar to 

current offerings in the Ugandan market. 

 

B.2 Demand data 

Domestic demand in future time periods is assumed to depend on the number of urban and rural 

people in a geographic cell and the average per capita demand. Rural and urban population sizes 

are available for all of Uganda’s 112 districts from [88]. Future population sizes are estimated 

by applying a population growth rate (initially matching Uganda’s 2016 rate of 3.0% and then 

slightly decreasing to 2.0% in 2040) to the current population distribution. Furthermore, 

Uganda’s high urbanisation rate of almost 5% in 2016 is factored into the calculation, with the 

capital city Kampala growing 20% faster than any other city due to Uganda’s centralised layout. 

Urban and rural area size was estimated by matching geospatial population data with Uganda’s 

official urban and rural population data per district to yield population densities for urban and 

rural areas in each cell. For the latter, a Tier-3 type of electricity demand (which allows to power 

most home appliances, see [72]) of 160 kWh per person and year in 2040 is assumed for the 

main demand scenario. This figure is considerably above the average demand for newly 

connected rural households during their first years of consumption, but considerably below the 

target demand the Ugandan government has set in its Vision 2040 policy. To study the 

implications of the per capita demand the government of Uganda officially aims for as part of 

its Vision 2040, a second, high-demand scenario sets this figure to a Tier-5 type of electricity 

(which allows to power refrigeration and cooking devices as well as small air conditioning units) 

demand of 900 kWh per person and year.  

No spatially explicit non-household demand data exists in Uganda. To estimate it, as rural 

businesses are known to consume little electricity compared to urban and semi-urban industrial 

businesses in East Africa [107], demand is assumed to be directly proportional to the share of 

the urban population in a cell compared to the national urban population. Hence, most business 

demand occurs in Kampala and Wakiso, while comparably little demand exists in Northern 

Uganda, assumptions which are verified by distributor UMEME’s dispatch data [71]. In the main 

demand scenario studied in the paper, the share of business to total demand is assumed to 



51 

 

decrease slightly from 77% today to 72 % in 2040 [67]. It should be noted that this constitutes a 

highly optimistic estimation as commercial demand would almost rise as quickly as household 

demand, with the latter benefitting from a large increase in new connections. Business demand 

is assumed to rapidly increase in the high-demand scenario to match the official total per capita 

electricity consumption target of the Ugandan government in 2040 of roughly 3800 kWh p.c. 

(i.e. all electricity consumed in Uganda divided by the expected number of people in Uganda in 

2040). For the dominating economic hub of Kampala [67, 71], it was assumed that a minimum 

of 95% of business demand has to be met in 2040. 

 

B.3 Supply data 

Data for all existing and several planned power plants as well as transmission and distribution 

infrastructure are available from Uganda’s GIS working group which in 2017 for the first time 

published comprehensive geospatial data for Uganda’s energy system as well as several 

demographic indicators [68]. Geospatial solar insolation, wind speed, hydro potential, biomass 

potential and fossil fuel reserves follow from various freely available GIS sources (see Table 2). 

For potential solar and wind plants, annual geospatial capacity factors as well as generation 

potentials follow directly from these maps following the calculations laid out by Andrews and 

Jelley (2017) [78], more general values for average capacity factors were used based on the 

International Renewable Energy Agency’s (IRENA) analyses of African power generation 

plants (see IRENA references in Table 2) where Ugandan-specific capacity factors were not 

available. For concentrated solar power, only those districts with easily accessible water 

resources (like seas or large rivers) were considered due to the cooling requirements of CSP 

plants. This constitutes a conservative approach as air cooling systems for CSP may become 

cheaper options of cooling in the coming decades, alleviating the need for water cooling. 

Detailed geospatial potential on-grid hydropower plant data was taken from [68], while 

geospatial micro-hydro potential is based on the results calculated be Mentis et al. (2017) for 

Uganda. Building on a number of Uganda-specific documents on geothermal energy potential 

and feasibility, the total geothermal potential of 440 MW in Uganda has been divided among the 

four potential sites in Uganda in accordance to the estimated feasibility at the sites. This has led 

to an assumption of a potential of 60 MW in Nebbi, 100 MW in Bundibugyo, 130 MW in Hoima, 

and 150 MW in Kasese district. For biomass generation potential, several sources (see Table 2) 

indicate that for Uganda, bagasse presents the most promising crops for electricity generation 

and was thus focused on in the analyses. The potentials were estimated based on global bagasse 
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yield datasets and land as well as irrigation restrictions in Uganda, leading to a total of roughly 

500 MW potential spread over 35 districts. 

In terms of non-renewables, Uganda currently operates two medium-sized oil-fired plants as the 

only fossil fuel plants in the country. Uganda is endowed with oil as well as small natural gas 

reserves which have been discovered in the early 2000s but are yet to be extracted. There are 

currently no major natural gas or coal imports into Uganda. Recent natural gas discoveries in 

Tanzania and Mozambique are likely to be used for oversea export and internally, thereby 

rendering large-scale natural gas or coal-fired power plants unlikely to materialise in Uganda 

until 2040. As it commonly is more economical to turn coal into electricity close to where the 

coal is located and transmit it via high-voltage lines rather than shipping the coal to a third 

country and generate the electricity locally, the model assumes that Uganda has no coal-fired 

potential until 2040. Natural gas potential is limited to 100 MW in Hoima from its limited 

domestic resources starting in 2030, as well as relying on imports from neighbouring countries 

to run 250 MW plants in Hoima and in Tororo. It is furthermore assumed that most of Uganda’s 

oil will be used for export as this is a more economical way than investing in expensive oil-fired 

power plants. Hence, it is assumed that no additional oil-fired potential exists in Uganda other 

than potentially keeping the two plants in Tororo and Mukono operational until 2040 (the 

government plans to close them before this date) [67]. Lastly, Uganda has invested a 

considerable amount of institutional capacity in building up nuclear energy [92]. While the 

government’s official policy goal is to have 24 GW of nuclear capacity installed by 2040, 

Uganda’s Ministry of Energy takes a more conservative approach and aims to have 2.3 GW of 

nuclear online during the 2030s [92]. Potential plant locations discussed are Buyende and 

Lamwo, hence the model used in this paper assigns a theoretical 1.2 GW nuclear potential in 

these two districts from 2035 each. However, as the model results show, other baseload 

electrification options such as hydro, geothermal and concentrated solar power are cheaper than 

nuclear, and no instance of the model under investigation produced a positive nuclear installed 

capacity for Uganda at any point. 

 

B.4 Transmission and distribution loss data 

The long-term timeframe as well as the size of the model prohibit an explicit modelling of 

voltage drop losses based on Kirchhoff’s Second Law due to the inherent numerical complexities 

arising from non-linearities. As the purpose of the model, rather, is to provide a high-level 

overview of how the Ugandan power system could look like in 2040, transmission losses are 
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instead modelled as simple percent losses per unit of line length. As virtually all existing 

transmission lines in Uganda have an operating voltage of 132 kV, this voltage is assumed for 

newly built lines. The current average transmission losses in Uganda equate to roughly 1.1% per 

100 km [71]. For 33 kV distribution lines, an average loss value of 1.8% per 10 km for the Dog 

conductor was used. For within-cell distribution losses, average per-cell distribution losses for 

urban and rural areas are calculated by defining a range of within-district distribution losses 

based on current reported UMEME losses: Distribution losses were roughly 18% on average in 

2016, ranging between 5% in some districts and reaching 40% in others [71]. The required 

average per-person line length requirements as explained in Appendix B1 is then used to place 

districts on this loss interval using an exponential regression loss function to account for the 

exponentially increasing losses per added unit of line length. Its minimum appears in the 

densely-populated capital city Kampala (assumed 5% within district distribution loss) and its 

maximum appears in rural areas of the sparsely populated Bududa district (assumed 40% loss). 
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APPENDIX C – OPTIMAL GENERATION CAPACITY BY DISTRICT  

Table A: Optimal installed capacity in MW for forcing no equality (NE) and full equality (FE) 

of regional and urban versus rural electrification for all 112 districts in Uganda 

 Fossil Hydro Geoth. Biomass Solar PV CSP Wind Off-grid Total 

District NE FE NE FE NE FE NE FE NE FE NE FE NE FE NE FE NE FE 

Abim 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 2 10 

Adjumani 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 21 5 21 

Agago 0 0 0 0 0 0 10 10 0 0  0 0 0 0 3 21 13 31 

Alebtong 0 0 0 0 0 0 5 5 0 0 0 0 0 0 26 21 31 26 

Amolatar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 15 19 15 

Amudat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 10 13 10 

Amuria 0 0 0 0 0 0 8 8 0 0 0 0 0 0 2 25 10 33 

Amuru 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17 1 17 

Apac 0 0 0 0 0 0 9 9 0 0 50 50 0 0 41 33 100 92 

Arua 0 0 11 11 0 0 0 0 0 0 0 0 0 0 81 64 92 75 

Budaka 0 0 0 0 0 0 1 1 0 0 0 0 0 0 23 19 24 20 

Bududa 0 0 0 0 0 0 0 0 78 78 0 0 0 0 21 6 99 84 

Bugiri 0 0 0 0 0 0 3 3 0 0 0 0 0 0 43 35 46 38 

Buhweju 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 1 12 

Buikwe 0 0 0 0 0 0 10 10 0 0 500 500 0 0 48 35 558 545 

Bukedea 0 0 0 0 0 0 3 3 0 0 0 0 0 0 21 17 24 20 

Bukomansimbi 0 0 0 0 0 0 2 2 0 0 0 0 0 0 18 15 20 17 

Bukwo 0 0 15 15 0 0 0 0 0 0 0 0 0 0 9 7 24 22 

Bulambuli 0 0 7 7 0 0 0 0 79 199 0 0 0 0 18 14 104 220 

Buliisa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 11 13 11 

Bundibugyo 0 0 5 5 100 100 0 0 0 0 0 0 0 0 24 18 129 123 

Bushenyi 0 0 1 1 0 0 0 0 0 0 0 0 0 0 28 23 29 24 

Busia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 27 36 27 

Butaleja 0 0 0 0 0 0 2 2 0 0 0 0 0 0 27 22 29 24 

Butambala 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2 10 3 11 

Buvuma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 9 11 9 

Buyende 0 0 0 0 0 0 0 0 0 0 108 84 0 0 38 31 146 115 

Dokolo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 16 20 16 

Gomba 0 0 0 0 0 0 5 5 0 0 0 0 0 0 2 16 7 21 

Gulu 0 0 0 0 0 0 10 10 0 0 0 0 0 0 45 31 55 41 

Hoima 350 350 24 24 130 130 0 0 0 0 0 0 0 0 63 52 567 556 

Ibanda 0 0 3 3 0 0 0 0 0 0 0 0 0 0 8 26 11 29 

Iganga 0 0 0 0 0 0 3 3 0 0 0 0 0 0 54 41 57 44 

Isingiro 0 0 41 41 0 0 0 0 0 0 0 0 0 0 7 49 48 90 

Jinja 0 0 778 778 0 0 53 53 0 0 0 0 0 0 43 30 874 861 

Kaabong 0 0 0 0 0 0 0 0 43 24 0 0 69 69 18 15 130 108 

Kabale 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59 48 59 48 

Kabarole 0 0 12 12 0 0 0 0 0 0 0 0 0 0 52 44 64 56 

Kaberamaido 0 0 0 0 0 0 5 5 0 0 50 50 0 0 24 19 79 74 

Kalangala 0 0 0 0 0 0 2 2 0 0 0 0 0 0 7 6 9 8 

Kaliro 0 0 0 0 0 0 12 12 0 0 0 0 0 0 26 21 38 33 

Kalungu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 18 14 18 

Kampala 0 0 0 0 0 0 0 0 0 0 0 0 0 0 118 94 118 94 

Kamuli 0 0 0 0 0 0 5 5 0 0 0 0 0 0 53 42 58 47 

Kamwenge 0 0 18 18 0 0 0 0 0 0 0 0 0 0 3 41 21 59 

Kanungu 0 0 13 13 0 0 0 0 0 0 0 0 0 0 7 26 20 39 

Kapchorwa 0 0 4 4 0 0 0 0 23 23 0 0 0 0 11 8 38 35 

Kasese 0 0 61 61 150 150 0 0 398 382 353 241 0 0 71 53 1033 887 

Katakwi 0 0 0 0 0 0 7 7 10 0 0 0 0 0 17 14 34 21 

Kayunga 0 0 0 0 0 0 5 5 0 0 500 500 0 0 41 33 546 538 

Kibaale 0 0 51 51 0 0 13 13 0 0 0 0 0 0 6 76 70 140 

Kiboga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 15 4 15 

Kibuku 0 0 0 0 0 0 1 1 0 0 0 0 0 0 22 18 23 19 
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Kiruhura 0 0 0 0 0 0 14 14 0 0 0 0 0 0 3 32 17 46 

Kiryandongo 0 0 698 698 0 0 10 10 0 0 0 0 0 0 30 25 738 733 

Kisoro 0 0 0 2 0 0 0 0 0 0 0 0 0 0 32 25 32 27 

Kitgum 0 0 0 0 0 0 0 0 0 0 0 0 1 1 5 19 6 20 

Koboko 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 5 4 5 

Kole 0 0 0 0 0 0 3 3 0 0 0 0 0 0 27 21 30 24 

Kotido 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 17 3 17 

Kumi 0 0 0 0 0 0 0 0 247 161 0 0 0 0 26 21 273 182 

Kween 0 0 20 20 0 0 0 0 0 0 0 0 0 0 10 8 30 28 

Kyankwanzi 0 0 0 0 0 0 7 7 0 0 0 0 0 0 26 19 33 26 

Kyegegwa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 29 5 29 

Kyenjojo 0 0 0 0 0 0 7 7 0 0 0 0 0 0 8 42 15 49 

Lamwo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 14 4 14 

Lira 0 0 0 0 0 0 4 4 0 0 0 0 0 0 42 31 46 35 

Luuka 0 0 0 0 0 0 2 2 0 0 0 0 0 0 27 21 29 23 

Luwero 0 0 0 0 0 0 7 7 0 0 0 0 0 0 46 39 53 46 

Lwengo 0 0 0 0 0 0 3 3 0 0 0 0 0 0 32 26 35 29 

Lyantonde 0 0 0 0 0 0 3 3 0 0 0 0 0 0 2 9 5 12 

Manafwa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 23 39 23 

Maracha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 17 22 17 

Masaka 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 25 17 25 

Masindi 0 0 350 350 0 0 26 26 0 0 0 0 0 0 11 28 387 404 

Mayuge 0 0 0 0 0 0 2 2 0 0 500 500 0 0 52 33 554 535 

Mbale 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 23 50 23 

Mbarara 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 40 25 40 

Mitooma 0 0 3 3 0 0 0 0 0 0 0 0 0 0 23 18 26 21 

Mityana 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 31 5 31 

Moroto 0 0 0 0 0 0 0 0 0 0 0 0 70 70 12 9 82 79 

Moyo 0 0 7 7 0 0 0 0 0 0 0 0 0 0 1 12 8 19 

Mpigi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 25 6 25 

Mubende 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 66 5 66 

Mukono 49 49 0 0 0 0 0 0 0 0 310 310 0 0 65 47 424 406 

Nakapiripirit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 14 18 14 

Nakaseke 0 0 0 0 0 0 11 11 0 0 0 0 0 0 8 20 19 31 

Nakasongola 0 0 0 0 0 0 11 11 0 0 159 226 0 0 3 16 173 253 

Namayingo 0 0 0 0 0 0 0 0 0 0 138 101 0 0 25 20 163 121 

Namutumba 0 0 0 0 0 0 3 3 0 0 0 0 0 0 28 23 31 26 

Napak 0 0 0 0 0 0 0 0 38 31 0 0 0 0 3 13 41 44 

Nebbi 0 0 0 0 60 60 0 0 0 0 0 0 0 0 41 31 101 91 

Ngora 0 0 0 0 0 0 2 2 112 112 0 0 0 0 14 12 128 126 

Ntoroko 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 7 3 7 

Ntungamo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 48 7 48 

Nwoya 0 0 844 844 0 0 0 0 0 0 0 0 0 0 2 12 846 856 

Otuke 0 0 0 0 0 0 5 5 0 0 0 0 0 0 1 10 6 15 

Oyam 0 0 0 0 0 0 7 7 0 0 0 0 0 0 43 35 50 42 

Pader 0 0 112 112 0 0 0 0 0 0 0 0 0 0 2 16 114 128 

Pallisa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 35 43 35 

Rakai 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 50 3 50 

Rubirizi 0 0 8 8 0 0 0 0 0 0 0 0 0 0 15 12 23 20 

Rukungiri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 31 39 31 

Serere 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 25 31 25 

Sheema 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 22 26 22 

Sironko 0 0 0 0 0 0 0 0 113 113 0 0 0 0 25 19 138 132 

Soroti 0 0 0 0 0 0 4 4 0 0 0 0 0 0 31 23 35 27 

Ssembabule 0 0 0 0 0 0 8 8 0 0 0 0 0 0 2 25 10 33 

Tororo 336 336 0 0 0 0 4 4 0 0 0 0 0 0 58 46 398 386 

Wakiso 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65 44 65 44 

Yumbe 0 0 20 20 0 0 0 0 0 0 0 0 0 0 53 34 73 54 

Zombo 0 0 4 4 0 0 0 0 0 0 0 0 0 0 24 18 28 22 

Total 735 735 3110 3112 440 440 316 316 1142 1124 2668 2561 141 141 2642 2863 11193 11292 
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