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OPTIMAL CONTROL ON THE DOUBLY INFINITE TIME AXIS
FOR WELL-POSED LINEAR SYSTEMS*

MARK R. OPMEER T AND OLOF J. STAFFANS#

Abstract. We study the problem of existence of weak right or left or strong coprime factoriza-
tions in H-infinity over the right half-plane of an analytic function defined and uniformly bounded on
some right half-plane. We give necessary and sufficient conditions for the existence of such coprime
factorizations in terms of an optimal control problem over the doubly infinite continuous-time axis.
In particular, we show that an equivalent condition for the existence of a strong coprime factoriza-
tion is that both the control and the filter algebraic Riccati equation (of an arbitrary well-posed
realization) have a solution (in general unbounded and not even densely defined) and that a coupling
condition involving these two solutions is satisfied.

Key words. Riccati equation, linear quadratic optimal control, infinite-dimensional system,
coprime factorization, input-output stabilization, state feedback

AMS subject classifications. 49N10, 47N70, 47A48, 47A56, 47A62, 93B28, 93C05, 93C25,
93D15, 93D25

1. Introduction. This is the second article in a series of articles where we con-
sider the relationships between linear quadratic optimal control in continuous time,
the factorization approach to control theory and algebraic Riccati equations. The
corresponding discrete-time results were obtained in [6, 7, 8]. We refer the reader to
the introduction of [9], the first article in the series, for the motivation for and an
overview of this project and how it fits within the wider literature.

In [9] we considered a very general class of infinite-dimensional control systems.
In this article, we specialize to the case of well-posed linear systems [10, 12, 11], a
class of infinite-dimensional control systems which has been very well studied over the
last few decades.

In the case of a well-posed transfer function (i.e. a function which is analytic
and uniformly bounded on some open right half-plane), it is natural to require that
the inverse of the “denominator” in a left or right factorization is also well-posed
[11, Section 8.3], a condition which was (naturally) not imposed in [9] where we
considered transfer functions which need not be well-posed. To obtain equivalences
in the well-posed case akin to those obtained in [9] between existence of factorizations
and solvability conditions for the linear quadratic optimal control problem and for
algebraic Riccati equations, some additional “uniformity” assumptions must be made
in the latter two contexts as well.

The remainder of this article is organized as follows. In Section 2 we review that
part of the theory of well-posed linear systems which is needed in this article. Section
3 shows that the notion of (past and future) trajectories as used in [9] is consistent
with the standard notion of trajectories for well-posed linear systems. In Section 4 we
expand on the theory of Riccati equations developed in [9]. Section 5 briefly considers
well-posed right factorizations and the relation with Riccati equations. In Section 6
we turn to the linear quadratic optimal control problem on [0,00) and link this to
right factorizations and Riccati equations. For a function which has a well-posed right
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2 MARK R. OPMEER AND OLOF J. STAFFANS

factorization, in Section 7 we construct a realization with very nice properties. The
various strands are pulled together in Section 8 where we give several necessary and
sufficient conditions for a function to have a well-posed right factorization. In Section
9 we consider (mainly through utilizing duality) the linear quadratic optimal control
problem on (—oo, 0] and left factorizations. Finally, in Section 10, we consider doubly
coprime factorizations and relate this to the linear quadratic optimal control problem
on (—o00, 00).

2. Well-posed linear systems. In this section we very briefly review the con-
cept of a well-posed linear system. We do this from the “operator node” point of view
so as to most easily connect to [9]. We refer to [11] for more background on well-
posed linear systems and in particular for alternative (but equivalent) viewpoints to
this theory.

The following is [9, Definition 2.1].

DEFINITION 2.1. By an operator node on a triple of Hilbert spaces (X,U,Y) we
mean a (possibly unbounded) linear operator S: [77] — Bﬂ with the following prop-
erties. We decompose S into S = [AEB], where A&B = PxS: dom(S) — X and
C&D = PyS: dom (5) — Y. We denote dom (A) = {x € X | [§] € dom (S)}, define
A:dom (A) = X by Az = A&B|[§], and require the following conditions to hold:

(i) S is closed as an operator from [{] to 5] (with domain dom (S)).

(ii) A&B is closed as an operator from [ to X (with domain dom (S)).

(iii) A has a nonempty resolvent set, and dom (A) is dense in X.

(iv) For every u € U there exists a x € X with [;] € dom (5).

We call S a system node if, in addition, A is the generator of a Cy semigroup. The
growth bound of a system node is defined as the growth bound of the semigroup.

Remark 2.2. By [11, Lemma 4.7.7], Definition 2.1 is equivalent to [11, Definition
4.7.2].

We recall some basic properties of operator nodes from [11] which were also al-
ready considered in [9, Section 2]. Let ¥ := ([AZ5];X,U,Y) be an operator node.
We define X! := dom (A) with the graph norm of A, X! := dom (A*) with the
graph norm of A*, and let X! be the dual of X! when we identify the dual of
X with itself. Then X! Cc X C X! with continuous and dense embeddings, and
the operator A has a unique extension to an operator A|x = (4*)* € B(X;x1)
(with the same spectrum as A), where we interpret A* as an operator in B(X}; X).
The operator A € B(X1, X) is called the main operator of ¥. The operator A&B
(with dom (A&B) = dom ([AFB])) can be extended to an operator [Alx B] €
B([]; X~1) (this follows from Remark 2.2). The operator B € B(U, X ') is called
the control operator of ¥. The operator C: X! — Y defined by Cz = C&D [§] is

called the observation operator of ¥. For any A € p(A) we have that [(A_AL’I‘)AB}
maps U into dom ([ A&B |). The transfer function of ¥ is the operator-valued function
()\ — A|X)_1B

(2.1) D(\) = C&D [ )

} , A€ p(A).
We denote C} := {)\ € C: Re(\) > a}, Ct := C§, R :=[0,00) and R~ := (—o0,0].
Furthermore, U, Y and X will always denote Hilbert spaces.

Let X := ([égg] ;X,Z/I,y) be an operator node and assume that p(A) contains
some right half-plane. By p4 o (A4) we denote the (connected) component of p(A)NC*
which is unbounded to the right.

This manuscript is for review purposes only.
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OPTIMAL CONTROL ON THE DOUBLY INFINITE TIME AXIS 3

DEFINITION 2.3. Let ¥ = [ } X, U y) be an operator node and let I C R
be an interval.

. CH(I;X)

(i) A triple {u [ C(I;U) ] is called a classical trajectory of X if for allt € I
C(1;Y)

x(t) A&B z(t)| _ [A&B]| |z(t)
(22) [u(t)} € dom <[C&DD : [y(t) = |lcen| |u(t)]-

z C(I;x)

(ii) A triple [;] S {LIOC(I M)} is called a generalized trajectory of ¥ if there exists
LY, (1Y)

C(I;X)
a sequence of classical trajectories of 3 which converges to [ﬂ m [L?OC(I;U)} .

L (1Y)
If T = RY then we add the adjective “future” (i.e. classical future trajectory and
generalized future trajectory) and when I = R~ then we add the adjective “past” (i.e.

classical past trajectory and generalized past trajectory ).

PROPOSITION 2.4. Let ¥ : ALBY . ¥ 14 V) be a system node. Then for all
C&D
z0 € X andu € W,52(0, o0; L{) with [ 4(0)] € D([AEB]) there exists a unique classical
future trajectory of ¥ with x(0) = x¢.

Proof. This is [11, Lemma 4.7.8]. d

DEFINITION 2.5. Let ¥ = ([A%B];X,U,Y) be an operator node. Then ¥ is
called well-posed if ¥ is a system node and for oll T > 0 there exists a M > 0 such
that for all classical future trajectories there holds

lz(T)|1% + ||y‘|%2(o,T;y) <M (HCCO”%( + HUH%%O,T;L{)) .

Remark 2.6. Definition 2.5 is adapted from [11, Theorem 4.7.13].

PROPOSITION 2.7. Let X : ([égg} ;X,Z/Ly) be a well-posed operator node.
Then for all xy € X and u € LIOC(O,OO;U) there exists a unique generalized future
trajectory with x(0) = xq.

Proof. This follows from Proposition 2.4 by using density combined with well-
posedness. ]

3. Future and past stable trajectories and behaviors. In [9] we used dif-
ferent notions of past and future trajectories than those defined in Definition 2.3. In
this section we show that these notions are however consistent (see Lemma 3.5 for
the case of future trajectories and Lemma 3.9 for the case of past trajectories). The
following two definitions correspond to [9, Definition 3.2] and define the notions of
future trajectories and the future behavior as it was used in [9].

DEFINITION 3.1. Let ¢ be an analytic B(U;Y)-valued function defined on some
open subset Q of CT. By the stable future Q-behavior of ¢ we mean the set of all
. Tu L% (RT5U) . .
pairs [y] € L2(R+1Y) which satisfy
(3.1) IO) = ey, AeQ,

where @ and § are the Laplace transforms of u and y, respectively. We denote this set
by QBQ_(Q), and call u the input component and y the output component of a pair
[4] € WE(Q).

This manuscript is for review purposes only.
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4 MARK R. OPMEER AND OLOF J. STAFFANS

DEFINITION 3.2. Let ¥ := ([AEB ] X,U,Y) be an_operator node with main op-
erator A, observation operator C' and transfer function ©, and let Q) be an open subset
of p(A)NC+.

(i) By the set of stable future Q-trajectories of ¥ we mean the set of all triples

x
[xl?} € [LZ(DW%U)} which satisfy
Y L2RT;Y)

(3.2) gA) =DV a(N) + CA— A)lzy, AeQ,

where 4 and g are the Laplace transforms of u and y, respectively. We denote

this set by W4 (), and call xo the initial state, v the input component, and
y the output component of a triple F;O} € W, ().

(i) By the stable future Q-behavior of ¥ we mean the stable future Q-behavior of
its transfer function ©.

Remark 3.3. The notion of a stable future -trajectory and the stable future Q-
behavior of ¥ is independent of the choice of Q to the following extent. If p(A) N C*
is connected, then 20 (Q;) = W (Q2) and WY (Q) = WY (Q) for all pairs of open
subsets ; and Q9 of p(A)NC*. That this is true follows from (3.2) by using analytic
continuation. If p(A)NC™ is not connected, then only the following weaker statement
is true: 204 (Q1) = W (D) and WY (Q1) = W () whenever Q; and Qs are both
contained in the same (connected) component of p(A) N C*. In the remainder of
this article, we shall refer to this type of independence as “independence within each
(connected) component of p(4) NCH”.

In the well-posed case it is natural to consider generalized trajectories in the sense
of Definition 2.3 instead of Q-trajectories.

DEFINITION 3.4. Let ¥ := ([AEB]:X,U,Y) be a well-posed operator node.
(i) By the set of stable future trajectories of ¥ we mean the set of all triples

xr X x
[ 510)} € [LQ(HV;U)} where {Z] is a generalized future trajectory of 3. We

v L2(R*;Y)
denote this set by W, and call xo the initial state, u the input component,
and y the output component of a triple [?} eW, .
2 (Rt
(ii) By the stable future behavior of ¥ we mean the set of all pairs [y] € {;Eﬁ:l)’g }I

for which [;ﬂ € W,. We denote this set by QHS)F, and call u the input com-

ponent and y the output component of a pair [y] € QBS)F.

For well-posed systems there is a close connection between Definitions 3.2 and
3.4.

LEMMA 3.5. Let X := ([égg] ;X,L{,y) be a well-posed operator node with main

operator A. Let Q be an open subset of pyoo(A). Then Wy = W, (Q) and WY, =

Proof. We denote the growth bound of ¥ by « and let oy = max{«,0}. Then
C;Z C pioo(A).

x 2(Rt.

Assume first that {Z} is a classical future trajectory of ¥ with ] € Hzgﬁ +jg{}; }

Since ¥ has growth bound a, for every 8 > a; we have that there exists a M > 0

such that for all t > 0 there holds ||z(t)|| < MePt. It follows that [%] is Laplace

This manuscript is for review purposes only.
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transformable and we obtain from (2.2) that for A € (C;g

457 e )

N ~C&D| |u( M)
This is equivalent to (see e.g. [2])
EN] _ (A= A)72(0) + (A = Alx) "' Ba())
o A5 R R e

Since 3 > a, was arbitrary, we obtain the above equality for all A € CZ ,» and since

P+oo(A) is connected, by analytic continuation (3.3) holds for all A € py(A). In
particular, (3.3) holds for all A € 2, and thus {mgo)] € W, ().
y

Zo

Next suppose that [ u } € 2,. Then [y] € [L2(R+;u)

2 (R*;y)} and there exists a gener-

alized future trajectory [ﬂ of ¥ with z(0) = zo. For each n € Z*, define

u(r)| dr, teRT.
y(7)

w®] e [2(7)
)
)l

By [2] each [%Z} is a classical future trajectory of ¥, and by standard properties

of approximate identities (see, e.g., [3]), [y2] — [y] in [fiéﬁiz” and e Mz, () —

Tn .
e~ Mz(t) uniformly on Rt for every \ € Ct,. Since the solutions {Z"} are classical,

& &n &5 (A)
the equations (3.3) hold with [u} replaced by {un ] The Laplace transforms |:ﬁn()\)}
Yy Yn ?;/n(/\)
(N
converge to {ﬁ(k)} as n — oo for every A € C{, . In addition z,,(0) — z(0) = 2 in
9(N)

X as n — oo. This implies that (3.3) holds with (0) = 2o for every A € C}_, and
therefore by analytic continuation, for all A € py(A). In particular, (3.3) holds with

x(0) = g for all A € Q, and thus [%0] € 20, (). This proves that 2, C W, (Q).
Conversely, suppose that P;O} € W, (N), ie., [y] € {izgﬁigﬂ and (3.2) holds

for all A € Q. Let [;Z} be the generalized future trajectory of ¥ with initial state xg
and input function u (existence and uniqueness of which follows from Proposition 2.7).
Then [zﬂ €W, C W, (Q). Consequently, it follows from (3.2) that g1 (A) = g(A) for
all A € Q. It follows from the uniqueness theorem for Laplace transforms that y; = y.
Thus [z” € 20, . This proves that 20, (£2) C 204, and consequently 2, (Q) = ..

That also 209 (Q) = 209 follows from Definitions 3.2 and 3.4 and the fact that
W, (Q) =2, d

The following two definitions correspond to [9, Definition 3.8] and define the

notions of past trajectories and the past behavior used in [9].

DEFINITION 3.6. Let ¢ be an analytic B(U;Y)-valued function defined on some
open subset Q of CT. For each A\ € CT we denote the function t — e, t € R™, by
€e).

This manuscript is for review purposes only.
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6 MARK R. OPMEER AND OLOF J. STAFFANS

(i) By the classical exponential past Q-behavior of ¢ we mean

T2 (@) := span { [exfﬁg“‘l

NeQ, u eu} c {LZ(R_;U)] .

L?*(R™;))

We call u the input component, and y the output component of a pair [y] €
B0 (Q).
(ii) By the (generalized) stable past Q-behavior of ¢ we mean the closure in

[;Ei:?};] of B2 (Q). We denote this set by 2% (Q).

DEFINITION 3.7. Let ¥ := ([égg] ;X,Z/{,y) be_an operator node with main op-
erator A, control operator B and transfer function ®, and let 2 be an open subset of
p(A)NnCTt.

For each A € Ct we denote the function t — e, t € R™, by ey.

(i) By the set of classical stable past exponential Q-trajectories of ¥ we mean

(3.4)
()\ — A|X)_1B’U,0 X
P_ () := span e\t ANEQ, upelU p C |LAR;U)
exD(Nug L?(R™;))

We call xo the final state, v the input component, and y the output compo-
x
u } €V_(Q).
(i) By the set of generalized stable past Q-trajectories of ¥ we mean the closure
x
in | L2@R™U) | of B_(2). We denote this set by W_(Q).
L*(R7:Y)
(iii) By the classical exponential past Q-behavior of 3 we mean the classical ex-
ponential past Q-behavior of its transfer function .
(iv) By the stable past Q-behavior of ¥ we mean the stable past Q2-behavior of its
transfer function ®©.

nent of a triple [

In the well-posed case it is natural to consider generalized trajectories in the sense
of Definition 2.3 which “vanish at —oo” instead of past 2-trajectories.

DEFINITION 3.8. Let 3 := ([égg] ;X,Z/I,y) be a well-posed operator node.

1 e notation U_ stands for the set of a Iuo) where |u| is a generalized
Th DY ds for th fall [ y
Yy

past trajectory of X with compact support.
(i) By the set of generalized stable past trajectories of ¥ we mean the closure
X

in | L°R™U) | of W_. We denote this set by 25_.
L2(R™;Y)

(iii) The notation B2 stands for the set of all [}] € [LL;((]I]?:;;;{)} (with compact
support) with the property that [Eﬂ €U_ for some xg € X.

(iv) By the stable past behavior of ¥ we mean the closure in [ijgﬁ:;{” of B .
We denote this set by 25 .

For well-posed systems there is a close connection between Definitions 3.7 and
3.8.

LeEMMA 3.9. Let ¥ := ([égg] ;X,U,y) be a well-posed operator node and let
be an open subset of pioo(A). Then W_ =W_(Q) and WO = W (Q).

This manuscript is for review purposes only.
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Proof. Define Q* := {\: A € Q} and ©f := ([égg}* ; X, V,U). We will add a
qualifier to the various sets of trajectories to indicate whether they are considered for
the operator node X or for its adjoint . By [9, Lemma 3.16] we have that 20 (£2; )
is the annihilator of 27, (*; ©T) (with respect to the duality pairing given there) and
that 20° (Q; ¥) is the annihilator of 209 (Q*; £T). By [11, Section 6.2], we have that
20_ (%) is the annihilator of 20, (1) and that 20° (X) is the annihilator of 209 (7).
From Lemma 3.5 and uniqueness of annihilators we obtain the desired result. 0

4. Riccati equations. In [9] we used the concept of a normalized solution of
a Riccati equation. It is often however more convenient to replace the normalization
condition by a (more general) invertibility assumption. In this section we first recall
the concept of a normalized solution from [9] (Definition 4.1), then introduce the
alternative solution notion (Definition 4.2) and subsequently show that these two
solution notions are consistent (Lemma 4.3). Finally, we show that the feedback
operator which appears in the definition of the Riccati equation is (up to multiplication
by a unitary operator) uniquely determined by the solution of the Riccati equation
(Lemma 4.6).

The following is [9, Definition 5.1].

DEFINITION 4.1. Let ¥ := ([AEB];X,U, ) be an operator node with main op-
erator A and control operator B, and let A € p(A) NC*T. By a A-normalized solution
of the continuous time control Riccati equation induced by [égg] we mean a form q
on X with the following properties:

(i) q is a closed nonnegative sesquilinear symmetric form on X with domain Z;

(ii) A= A)"1Z2 C Z;

(iii) (A — Alx)"*BU C Z;

(iv) There exists an operator [K&F|x: [15] — U with

(41)  dom ([K&F]) = {[‘m € dom ({éigb

and a self-adjoint operator Wy € B(U) such that the following identity holds:

xo € Z and
A&B[lez |’

(4.2) )
2Req [A&B {Zﬂ ,xo} + HC’&D Bﬂ y + [luollZ
= (e |12) e [22]) L[ < dom (s,
and
(4.3) (K&F], {(A - /ﬂj‘)lB] = 1.

It will be convenient to replace the normalization condition (4.3) in Definition 4.1
by an invertibility condition. The resulting concept of a Riccati equation is formalized
in Definition 4.2. Subsequently, in Lemma 4.3, we show that this concept is essentially
the same as that in Definition 4.1.

DEFINITION 4.2. Let 3 := ([égg] ;XJ/{,J)) be an operator node with main op-
erator A and control operator B, and let Q be an open subset of p(A) N Ct. By
an Q-solution of the continuous time control Riccati equation induced by [égg] we

mean a form q on X with the following properties:

This manuscript is for review purposes only.
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(i) q is a closed nonnegative sesquilinear symmetric form on X with domain Z;
(ii) There ezists an operator K&F': Y] — U with domain given by

(44)  dom(K&F) = {[zﬂ € dom ([éiﬁ]) ZZ;Z[UG?Z z} ,

such that the following identity holds:

2
2Req [[A&B] Eﬂ 7m0] + HC&D Eﬂ + JluolZ
(4.5) ,
= HK&F [IO] : [IO] € dom (K&F) .
() u ()

(iii) For all A € Q the following conditions hold:
(a) N—A)"1Z2cC Z;
(b)) (\—Alx)"'BU C Z;
(¢) The operator
-1
(4.6) FO\) := K&F [“ —Alx) B]
1u
1s bounded and boundedly invertible.
An Q-solution quin is called the minimal Q-solution if qumin < q for all Q-solutions q
(the inequality qmin < q meaning that D(q) C D(gmin) and ¢min[To, o] < qlxo, 0] for
all zg € D(q)).

LEMMA 4.3. Let ¥ := ([AEB]; X,U,Y) be an operator node with main operator
A and control operator B.

(i) Let Q2 be an open subset of p(A)NC™T, and let q be an Q-solution of the contin-
wous time control Riccati equation with corresponding operator K& F. Then
for any XA € Q, q is a A-normalized solution of the continuous time control
Riccati equation with [K&F]y == —F(A\)"*K&F and Wy := F(A\)*F()\).

(ii) Conversely, let X € p(A)NC™T, and q be a A-normalized solution of the contin-
uous time control Riccati equation with corresponding operators [K&F]y and
Wy, and let Q be an open subset of the (connected) component of p(A) NCT
which contains . Then q is an Q-solution of the continuous time control
Riccati equation with corresponding operator K&F := —Wi/Q[K&F],\.

Proof. (i) Assume that ¢ is an Q-solution of the continuous time control Riccati
equation, where ) is an open subset of p(A)NC*. Parts (i), (ii) and (iii) of Definition
4.1 are clearly satisfied. From the above definition of [K&F]y, the fact that F()) is
invertible and (4.4) we obtain (4.1). From the definitions of [K& F]y and W) we have
for [40] € dom ([K&F]y) = dom (K&F) that

<[K&F] A Bﬂ WAIK&F) [iﬂ >u

} JFO) FO)FO) T LK&F [zo] >u = HK&F [‘50}

2

)

0 0] Iz

so that (4.2) follows from (4.5). We also obtain (4.3) since

[K&F]s [(A - A"‘“B] - A= ﬁ"‘)lB] — FO) RO = Lo

1 (
I —FO\)'K&F [ )

This manuscript is for review purposes only.
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OPTIMAL CONTROL ON THE DOUBLY INFINITE TIME AXIS 9

where we have used (4.6).

(ii) Now assume that ¢ is an A-normalized solution where A € p(4) NCT. Let Q°
be the (connected) component of p(A) N C* which contains A. Part (i) of Definition
4.2 is clearly satisfied. We obtain (4.4) from the definition of K&F', (4.1) and the fact

that, by [9, Theorem 5.6], W) is boundedly invertible. We obtain (4.5) from the fact
that
o] ||” 1/2 z0]|? x x
K&F |7 = ||[W\°[K&F]\ |70 = ( [K&F)\ |7°], Wa[K&F]y | > ,
[“0] u H i b L‘J u <[ h L‘O ol h Yol /y

and (4.2). We have

—1 -1

u u
where in the last equality we have used (4.3). It follows that for the A specified in
the statement of the lemma, we have part (iii) of Definition 4.2. However, by [9,
Theorem 5.9] we have that ¢ is a S-normalized solution for all 3 € Q°. Therefore (iii)
of Definition 4.2 in fact holds for all A € Q°, and consequently also for all A € Q. O

Remark 4.4. Tt follows from Lemma 4.3 that the notion of an 2-solution of the
continuous time Riccati equation is independent of the choice of Q within each (con-
nected) component of p(A) NC™T (in the same sense as in Remark 3.3).

The following technical lemma will be used in the proof of Lemma 4.6.

LEMMA 4.5. Assume that T1,T5 : H — U are surjective operators with common
domain Z which satisfy ||Tix| = |Taz|| for all x € Z. Then there exists a unitary
operator W € B(U) such that To = WT;.

Proof. Let x1,29 € Z be such that Tyxy = Tixe. Then Ti(x; — 22) = 0 and
therefore, by the assumed equality of norms, To(x1 — x2) = 0. Hence Thx; = Thas.

Let y € U. By surjectivity there exists a * € Z such that y = Tix. Define
Wy = Tha. By the above paragraph, this is well-defined (i.e. does not depend on the
choice of x). Since [|[Wyl|| = ||Tzz|| = ||T1z|| = |ly||, this operator W is an isometry.
We clearly have T, = WT;. Since T is surjective this implies that also W is surjective,
and since W is also an isometry, we obtain that W is unitary. |

LEMMA 4.6. Let ([égg] ;X,L{,y) be an operator node, let Q0 be an open subset
of p(A) NCT, let q be an Q-solution of the continuous time control Riccati equation
induced by [égg] , and let K&F' be an operator satisfying the conditions in Definition
4.2. Then the operator K&F' is determined uniquely by q, 0, and [éﬁg] up to the
multiplication by a unitary operator in U to the left in the following sense:

(i) if K&F is an operator satisfying the conditions in Definition 4.2 and if W
is a unitary operator in U, then WK&F is also an operator satisfying the
conditions in Definition 4.2, and,

(ii) if K&F1 and K&Fo are two operators which satisfy the conditions in Defi-
nition 4.2, then there exists a unitary operator W in U such that K&Foy =
WK&F;.

Proof. The first statement is clear. So assume that K&F; and K&F'5 are two
operators which satisfy the conditions in Definition 4.2. From (4.4) we have that
K&F; and K&F'5 have the same domain and by (4.5) we have that |[K&Fy[5] ] =
|IK&F[5] ]| for all [§] in this domain. It follows from part (iiic) of Definition 4.2
that K&F1 and K&F'5 are surjective. Lemma 4.5 with 71 := K&Fq, Ty := K&Fo,
H =[] and Z the common domain of K&F; and K&F then gives the result. 0O
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10 MARK R. OPMEER AND OLOF J. STAFFANS

5. Right factorizations. The following definition adds an extra well-posedness
condition on M~! to [9, Definition 5.8] which is relevant in the well-posed case (con-
ditions (i)—(iii) below are the same as in [9, Definition 5.8]).

DEFINITION 5.1. Let ¢ be an analytic B(U;Y)-valued function defined on some

open subset Q of CT.

(i) ¢ has a right H>(C") factorization valid in Q if there exist two functions
M e H>®(CT; BU)) and N € H>®(CT; BU;Y)) such that M(\) has a bounded
inverse and p(\) = N(A)M(X) ™! for all X € Q.

(i) The factorization in (i) is normalized if [,\'\H is inner, i.e., the multiplication
by [M] is an isometric operator from H*(CT;U) to H*(C*; [Y]).

(iii) The factorization in (i) is weakly (right) coprime if the range of the multipli-
cation operator in (ii) is equal to the Laplace transform of the future behavior
09 (Q) defined in Definition 3.1.

(iv) The factorization in (i) is well-posed if there exists some o > 0 such that
M(A) has a bounded inverse for all A € CL and M~1 € HOO((C;F; BU)) for all
8> a.

(v) If the factorization in (i) is well-posed, then the growth bound of this factor-
ization is the infimum over all « for which the condition in (iv) holds. (If the
factorization is not well-posed, then its growth bound is +00.)

The following lemma shows how the minimal solution of the control Riccati equa-
tion gives rise to a normalized weakly coprime right H°(C*) factorization (which
need not be well-posed in general).

LEMMA 5.2. Let & ::A([égg] ;X,L{,y) be an operator node with main operator
A and transfer function ©. Let Q be an open set which is contained in some (con-
nected) component of p(A) NCT. Assume that there exists a minimal Q-solution q
of the continuous time control Riccati equation induced by [ AEB]. Let K&F be an

operator satisfying the conditions in Definition /.2 and define F by (4.6). Define
(5.1) M) :=FA)™, N :=DAMOR),  Aeq.

Then M and N can be extended to H-functions over (Cj, and ® = NM~! is a
normalized weakly coprime right H>(CT) factorization of ® wvalid in .

Proof. This follows from [9, Theorem 5.10 part (ii)]; the details are as follows.
By Remark 4.4 we may, without loss of generality, assume that € is connected (we
may, e.g., replace £ by the component of p(A) N C* which contains Q). Fix a € Q.
By Lemma 4.3, solutions of the Riccati equations according to Definitions 4.1 and 4.2
coincide and therefore ¢ coincides with the ¢ in [9, Theorem 5.10]. Let [K&F], and
W,, be as in Definition 4.1 (by [9, Theorem 5.6 part (ii)] these operators are uniquely

determined by ¥, ¢ and «). The operator F, () appearing in [9, Theorem 5.10] is
_ -1
Fo()\) = [K&F), {(A ‘?'X) B} :

u

From Lemma 4.3 and the uniqueness up to a unitary operator of K&F' from Lemma
4.6 we obtain that WémFa()\) = —WF()) for some unitary W.

From [9, Theorem 5.10 part (ii)] we have that
(5.2) Ma(A) := —[WL2F,(M)] 7, No(A) := D(A)Mo(A), A€ Q,

have the properties desired of M and N. By the above relation between F, and F we
have M(A) = My (A)W. It then follows that N(A) = N, (A\)W. From this we see that
M and N also have the desired properties. 0
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6. The future optimal control problem. As in [9] (but now for the well-
posed case), we obtain in this section equivalence of (i) a “cost condition” for the
future optimal control problem being satisfied; (ii) solvability of the control Riccati
equation; (iii) existence of a weakly coprime right factorization. In comparison to [9],
each of these three equivalent statements has an additional “uniformity” condition.
The above equivalence is precisely formulated in Theorem 6.10. The first part of
this section (up to and including Lemma 6.6) briefly recalls relevant notions from [9].
Definition 6.7 introduces the relevant “uniform” version of the cost condition.

DEFINITION 6.1. Let 3 := ([égg] ;X,L{,y) be an operator node with main op-
erator A and let Q be an open subset of p(A) NC™T.
(i) A vector xg € X is said to have finite future Q-cost if it is the initial state
of a generalized stable future Q-trajectory of . The future Q-cost of such a
vector xq is the infimum of the future cost functional

6.1) Jras (w0, 10) = / () + lw)13) de

over all generalized stable future Q-trajectories [zﬂ of . We denote this
cost by ||zo|F,¢ -

(i) If ¥ is well-posed, then a vector xy € X is said to have finite future cost if
it is the initial state component of a stable future trajectory. The future cost
of such a vector xq is the infimum of the future cost functional (6.1) over

all generalized stable future trajectories ﬁﬂ of ¥. We denote this cost by

[EN

Remark 6.2. By [9, Theorem 3.7], the infimum in part (i) of Definition 6.1 is
actually achieved by a unique minimizing generalized stable future Q-trajectory of X,
and ||-[|f,; ¢ is a closed quadratic form in X'. By Remark 3.3, ||[|3,; ¢, is independent of
Q in the following sense: If ; and s are two open subsets p(A) N C* both of which
are contained in the same (connected) component of p(A) N C*, then [|-|3, o, =
||~||%ut,92. An analogous result is true for well-posed systems: the infimum in part
(ii) of Definition 6.1 is achieved by a unique minimizing generalized stable future
trajectory of ¥, and [|-||Z,, is a closed quadratic form in X. (The proof is essentially
the same as the proof of the Q-version.)

Parts (i) and (ii) of Definition 6.1 are related to each other by the following lemma.

LEMMA 6.3. Let X := ([éﬁg] ;X,U,y) be a well-posed operator node with main
operator A, and let ) be an open subset of pyoo(A). Then a vector xy € X has a
finite future cost if and only if xo has a finite future Q-cost, and ||zol|F,. o = l|lzol|fy;-

Proof. This follows from Lemma 3.5. O

The following is essentially [9, Definition 5.7] (see Remark 6.5 for the connection).

DEFINITION 6.4. Let ¥ := ([égg] ;X,Z/{,y) be an operator node with main op-
erator A and control operator B, and let Q be an open subset of p(A) NCT.

(i) ¥ satisfies the input finite future Q-cost condition if (A — A|x )~ Bug has a

finite future Q-cost for every A € Q and every ug € U.

(i) ¥ satisfies the state finite future Q-cost condition if every initial state in X

has a finite future Q-cost.

Remark 6.5. In this remark we assume that the subset €2 in Definition 6.4 is
contained in some (connected) component of p(A) N Ct. Then it follows from [9,

This manuscript is for review purposes only.
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12 MARK R. OPMEER AND OLOF J. STAFFANS

Theorem 5.9] that (A — A|x) ! Bug has a finite future Q-cost for every A € Q and
every ug € U if and only if (A — A|x) ! Bug has a finite future Q-cost for some \ €
and every ug € U. Thus, in this case it is possible to replace “every A € Q0”7 by “some
A €  in condition (i) above.

Under the same additional assumption on €2, if ¥ satisfies the input finite future Q-
cost condition, then ||-[|7, ¢ is the minimal Q-solution of the control algebraic Riccati
equation by [9, Theorem 5.9] (combined with Lemma 4.3). Conversely, if the control
algebraic Riccati equation has an {2-solution, then ¥ satisfies the input finite future
Q-cost condition by [9, Theorem 5.9] (combined with Lemma 4.3).

The following result was never explicitly stated in [9], but follows easily from the
results presented there. We recall that a sesquilinear form ¢ on X is called bounded if
its domain equals X and there exists a M > 0 such that |g[zo, z0]| < M||zollx 20|l x
for all zg, 20 € X.

LEMMA 6.6. Let ¥ := ([égg] ;X,Z/{,y) be an operator node with main operator
A and let Q be an open subset of a connected subset of p(A)NCT. The following are
equivalent:

(i) X satisfies the state finite future Q-cost condition;

(i) the quadratic form H||%th giving the optimal future Q-cost is bounded;

(i) the control Riccati equation has a bounded Q-solution.
If these equivalent conditions hold, then ||-|[3, o is equal to the minimal nonnegative
Q-solution of the control Riccati equation.

Proof. Since the state finite future Q-cost condition trivially implies the input
finite future Q-cost condition, we have by [9, Theorem 5.9] combined with Lemma 4.3
that (i) implies that [-[|7, o is equal to the minimal nonnegative Q-solution of the
control Riccati equation. Using [9, Theorem 5.9] combined with Lemma 4.3 we also
obtain that (iii) implies that |||, ¢ is equal to the minimal nonnegative Q-solution
of the control Riccati equation.

(i) = (ii) follows since ||-[|7,; ¢ is closed by [9, Lemma 3.6] and since by the state
finite future Q-cost condition it is everywhere defined, it must then be bounded.

(il) = (i) is trivial.

(ii) = (iii). We have already shown that if (ii) holds, then so does (i). We
have also already seen that then ||~H?ut’Q is the minimal nonnegative 2-solution of the
control Riccati equation. Since by assumption ||-[|f,; o, is bounded, (iii) holds.

(iii) = (ii). We saw above that if (iii) holds, then ||-|[§, o is the minimal non-
negative (2-solution of the control Riccati equation. Since existence of a bounded
Q-solution of the control Riccati equation implies that the minimal nonnegative Q-
solution is also bounded, it follows that ||-||3,; o, is bounded. d

The following strengthens [9, Definition 5.7] to the notion relevant in the well-
posed case. Note that what is added is an estimate on the size of the cost (see Remark
6.8 for further comments on this).

DEFINITION 6.7. Let 3 := ([égg] ;X,Z/{,y) be an operator node with main op-
erator A and control operator B, and let Q be an open subset of p(A) NCT. ¥ is
said to satisfy the uniform input finite future Q-cost condition if 3 satisfies the input
finite future Q-cost condition, and if there exist constants a« > 0 and M > 0 such that
CH cQ and

M

(62) [0 =2 B0 < g5y

HU()H2, Ug € Z/{, A€ (C;r

This manuscript is for review purposes only.
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Remark 6.8. Condition 6.7 can be interpreted as a strengthened version of the
condition

_ 2 M =
(6.3) [[(A=A)" Buolly,, o < Rel) ([[uoll* + 1D Nuol®),  wo €U, X CF,
which has the following interpretation. For each A € CI and wg € U the past cost
T A—A “1Bu
of the classical stable past exponential trajectory [ uo} = [( é’fio 0] in (3.4) is
Y ex®(MNug
equal to

0
1 ~
Tpast(To, u) = / (lu@®z + ly@)3) dt = = (lluoll + D (N)uo|*) -
e Re(A)

Therefore, (6.3) says that the optimal future cost of the initial state (A — A)~!Bug
is bounded by a constant times the past cost it takes to reach that state with input
e)\ug.

Clearly (6.2) implies (6.3). If ¥ is well-posed and the growth bound of X is at
most «, then D is uniformly bounded on C}, and the converse implication holds as
well.

Whereas it is immediately clear that the state finite future €2-cost condition im-
plies the input finite future Q2-cost condition, it is not immediately clear that it implies
the uniform input finite future cost condition. The following lemma shows that in the
well-posed case this is in fact true.

LEMMA 6.9. Let ¥ := ([AZB];X,U, ) be a well-posed operator node with main
operator A, and let Q be an open subset of pioo(A) which contains some right half-
plane. If ¥ satisfies the state finite future cost condition, then X also satisfies the
uniform input finite future Q2-cost condition.

Proof. By Lemma 6.3, the assumption that 3 satisfies the state finite future cost
condition implies that 3 satisfies the state future 2-cost condition and therefore the
input finite future 2-cost condition as well.

Fix any « > 0 such that the growth bound of ¥ is less than o« — 1, and such that
CI c Q. By [11, Proposition 4.2.9], there exists a My > 0 such that

My

_ 2
I =47 Buolly < oy — a1

luollZ,  uo €U, AeCL.

Since Re(A)/(Re(A) — a + 1) < max{1,a} for all A € CI, this implies that

M

(6.4) [0 = 7 Buolly < g ol

up €U, N CY,
where M; = max{1,a}My. From Lemma 6.6 we obtain that [-[|7, o is bounded, i.e.
there exists a My > 0 such that
2l < Mafl2]?, ze X
In particular,
65 (= A Buglldug < Mallr — A Bugl?,  wo €U, AeC

Combining (6.4) and (6.5) we get (6.2) with M := M;Ms. Thus, the uniform input
finite future Q-cost condition holds. O

This manuscript is for review purposes only.
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14 MARK R. OPMEER AND OLOF J. STAFFANS

THEOREM 6.10. Let ¥ := ([A€B]:X,U,Y) be an operator node with main op-
erator A and transfer function ©. Assume that p(A) contains some right half plane
and let Q be an open subset of pioo(A) which contains some right half-plane. Then
the following conditions are equivalent: R

(i) ¥ satisfies the uniform input finite future Q-cost condition and ® is uniformly

bounded on some right half-plane;

(i) the control Riccati equation for ¥ has an Q-solution for which the function F
in (4.6) is uniformly bounded on some right half-plane;

(iii) the control Riccatli equation for ¥ has a unique minimal Q-solution, and the
function F in (4.6) corresponding to this solution is uniformly bounded on
some right half-plane;

(iv) © has a well-posed normalized weakly coprime right H>(C") factorization
valid in €.

Proof. We first show that each of the conditions (i), (ii), and (iv) implies that
there exists a minimal nonnegative Q-solution of the control Riccati equation. Indeed,
according to [9, Theorem 5.9] conditions (i), (ii), and (iv) are equivalent if we drop
the word “uniform” and the uniform boundedness condition on ® in (i), drop the
uniform boundedness condition on F in (ii), and drop the word “well-posed” in (iv),
and these three equivalent weaker conditions imply that the control Riccati equation
has a minimal Q-solution. Thus under all four conditions in the theorem we have a
minimal -solution ¢ of the control Riccati equation.

Let A € Q and ug € U. Substituting [(A—A&EIB“U} in the control Riccati equation

gives
(6.6) 2Re(N) q[(A — A) "' Bug, (A — A) "' Bug| + 1D (Aol + |Juol|® = |F(N)uo|?.

This substitution is allowed since {(A*A)_lB“O} € dom ([égg}) and we have that
Uo

both (A — A)~!Bug € dom(q) and A&B {()‘*A%:BUO} =AA—A)"'B € dom(q). We
use (6.6) to complete the proof.

(i) <= (ili). We recall from Lemma 6.6 that [-[|f, o is equal to the mini-
mal nonnegative {2-solution of the control Riccati equation. From (6.6) with ¢[(A —
A)~'Bug, (A = A) 7' Bug] = [|(A — A) 7' Bug |3, we see that F is uniformly bounded
on some right half-plane if and only if (a) © is uniformly bounded on the same right
half-plane and (b) condition (6.3) holds on the same right half-plane.

(iii) = (ii). This is trivial.

(ii) = (i). This follows from (6.6) since ||~H%ut,Q is the minimal -solution of
the control Riccati equation, and hence |[(A = A) ™" Buo|[3,;. < q[(A = A) ™" Bug, (A —
A)_IB’LLO}.

(iii) = (iv) follows from Lemma 5.2.

(iv) = (iii). Let (N, M) be a well-posed normalized weakly coprime right factor-
ization of ®. Since a normalized weakly coprime right factorization is unique up to
multiplication by a unitary operator, we obtain using Lemma 5.2 that there exists a
U € B(U) unitary such that F(A\)~! := M(A)U for all A € Q. Since M~! is assumed
to be uniformly bounded on some right half-plane it follows that F has the same
property. 0

7. LQ future normalized realizations. In this section we construct a real-
ization with particularly nice properties for a function which has a well-posed right
H>(C™") factorization. This realization is analogous to an “output normalized real-

This manuscript is for review purposes only.



UL W N =

~N ] ~ = = ~J =~ =

o v v Ot Ot Ot Ot Ot U

OPTIMAL CONTROL ON THE DOUBLY INFINITE TIME AXIS 15

ization” [11, Section 9.5] (relevant for H>°(C") functions) and to an “optimal real-
ization” [11, Section 11.8],[1] (relevant for contractive H>(C™) functions). (All these
realizations are unique up to a unitary similarity transformation in the state space.)

DEFINITION 7.1. Let 3 := ([égg] ;X,Z/{,y) be an operator node with main op-
erator A and let Q be an open subset of p(A) N C*T. Then ¥ is called LQ future
Q-normalized if

(i) ¥ is Q-controllable in the sense that \/, .o img (A — A)"'B) = X;

(ii) ¥ satisfies the state finite future Q-cost condition, and for each xo € X the

optimal future Q-cost of g is equal to ||zol|% .
If ¥ is well-posed, then it is called LQ future normalized if

(i’) 3 is controllable (in the sense of [11, Definition 9.1.2]);

(ii’) ¥ satisfies the state finite future cost condition, and for each xy € X the

optimal future cost of zq is equal to ||xol%

Remark 7.2. The notion “LQ future Q-normalized” is independent of 2 within
each (connected) component of p(A) NCT (in the same sense as in Remark 3.3). See
also Remarks 4.4 and 6.2.

We also note that the definitions of LQ future normalized and LQ future -
normalized are consistent in the sense that a well-posed operator node is LQ future
normalized if and only if it is LQ future Q-normalized for some (equivalently: for all)
open subset Q of pyo(A). This follows from Lemma 6.3 (for equivalence of (ii) and
(ii”)) and [11, Corollarly 9.6.5] (for equivalence of (i) and (i’)).

The following lemma shows uniqueness (up to a unitary similarity transformation
in the state space) of LQ future -normalized realizations of a given transfer function.

LEMMA 7.3. For j € {1,2}, let ¥; := ([ggg]j;xj,u,y) be an operator node
with main operator Aj. Assume that p(A1)Np(A2) NCT is non-empty and let 2 be an
open subset of p(A1)Np(A2)NCT. Further assume that the restrictions of the transfer
functions of 31 and X to Q are equal. If 31 and 35 are LQ future Q-normalized,
then they are unitarily similar (i.e., there exists a unitary U € B(Xy, Xs) such that

U o _ U o
[0 11,{] S1 =52 [0 11/{])‘

Proof. Let f € Q, let j € {1,2} and consider the (internal) Cayley transform

with parameter § of ¥, (as defined in e.g. [9, Section 4]) and denote this by E?.

From [9, Theorem 4.5] we obtain that Ef satisfies the discrete-time equivalent of
(ii) in Definition 7.1. The proofs of [11, Lemmas 9.6.3 and 12.2.6] show that 2?

is controllable. Hence X7 is discrete-time LQ future normalized (as defined in [8,
Definition 2.8]) noting that observability follows from the fact that the norm equals
the optimal future cost.

On a neighborhood of zero, the transfer functions of Ef and 25 are equal. From
8, Lemma 2.11] we conclude that %9 and £ are unitarily similar. It follows that ¥4
and Y5 are unitarily similar as well. ]

The following theorem uses the notion of a strongly stabilizable well-posed linear
system from [11, Definition 8.2.4], that of a controllable well-posed linear system
from [11, Definition 9.1.2] and that of a minimal well-posed linear system from [11,
Definition 9.1.2].

THEOREM 7.4. Let ¢ be an analytic B(U; Y)-valued function defined on some right
half-plane. Then
(i) @ has a well-posed LQ future normalized realization ¥ if and only if ¢ has a
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16 MARK R. OPMEER AND OLOF J. STAFFANS

well-posed right H®(CT) factorization valid in some right half-plane.
If the above equivalent conditions hold, then the realization ¥ of ¢ in (i) has the
following additional properties:

(ii) 3 is minimal.

(iii) 3 is determined uniquely by ¢, up to a unitary similarity transformation in
the state space.

(itv) Denote the growth bound of ¥ by ws,. Then max{ws,0} = max{w,,0},
where wy, is the growth bound of an arbitrary normalized weakly coprime right
H>(C™) factorization (N,M) of .

(v) X is strongly stabilizable.

(vi) If a generalized future trajectory {gt] of ¥ satisfies [Y] € L*(RT; [?j]), then
z(t) = 0 as t — oo (in particular, x is bounded).

Proof. We first show that every function ¢ which has a well-posed right H>(CT)
factorization valid in some right half-plane has a well-posed LQ future normalized
realization.

Suppose that ¢ has a well-posed right H>°(C") factorization. Then ¢ also has
a well-posed normalized weakly coprime right H>(C™") factorization (N, M) by [5,
Theorem 1.1]. Since [ ] is inner, it has a minimal well-posed strongly stable energy
preserving realization by e.g. [11, Theorem 11.8.1 (i)]. We denote this operator node
by ¥ = (S, X, U, [5]) We note that the transfer function from the input to the
second output of ¥ is M which by assumption has an inverse which is uniformly
bounded on some right-half plane CI, where a > 0. By [11, Theorems 6.6.1 and
10.3.5], we obtain a well-posed operator node Yoy = (Sext; X, U, [2{;]) with growth
bound at most a by considering the second output of ¥ as the input of ¥yt and

the input of X as the second output of Xoy;. We have the following relation between
T

generalized future trajectories of 3 and Yext: {[1{]]} is a generalized future trajec-
u
xr

tory of ¥ if and only if | (5, | is a generalized future trajectory of ¥.. We define
y y [¥] g J

w
the system ¥ = (S; X,Z/l,y) by dropping the second output of Yeyi. We will show
that this ¥ has the properties claimed in the theorem. It follows from the above that
Y is well-posed with growth bound at most a.
We next show that the system X constructed above satisfies condition (vi). Since
the state and output of a well-posed system are uniquely determined by the initial
state and input, there is a one-to-one correspondence between the trajectories of

xr
3 and the trajectories of Yoy, i.e., if [[5]] is a generalized future trajectory of
w

Yext then [%] is a generalized future trajectory of X, and conversely, if [12] is a

generalized future trajectory of X, then there exists a unique w € L%OC(R*‘;L{) such
x

that [ [ Y ] } is a generalized future trajectory of Yey. As we noticed above, there is also
w

a one-to-one correspondence between the trajectories of Yoyt and the trajectories of

3. However, we also need an one-to-one correspondence between stable generalized
x

future trajectories, which can be establish as follows. Let [Z] be a stable generalized

future trajectory of ¥, so that v € L?(RT;U) and y € L?(R*;)). Let {[ly”]} be
u
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)

x
the corresponding generalized future trajectory of . We shall prove that [[Z]}

u

is stable as well, i.e. that additionally w € L?(R*;U). We can write the trajectory
x x1 T

as the sum of two trajectories: [['{jﬂ = [[791]] + {[{/‘z]} where z1(0) = x(0) and
u2

u ul
the input function of the first of these trajectories is zero, and z3(0) = 0. Since ¥
is strongly stable we have x1(t) — 0 as ¢ — oo and since 3 is strongly stable and
energy-preserving, by e.g. [11, Theorem 11.3.4] we have [41] € L*(R*; [} ]). From the
assumption that [¥] € L2(RT;[}]) and the just established [{1] € L*(R*;[}]) we
obtain that [2] € L*(RT; [}]). Since #2(0) = 0 we have [#2] = [ 5} ] w, where |3} ]
is the causal shift-invariant operator with symbol [} ]. Since (N, M) is weakly right
coprime, from [#2] € L2(R™; [}]) we obtain w € L*(R*;U). Since £ is strongly
stable and energy preserving, by [11, Theorem 11.3.5] it is strongly input/state stable
(in the sense of [11, Definition 8.1.1 (iib)]) and since the input w giving rise to zo
is in L2(RT;U) it follows that z3(t) — 0 as t — oo. We conclude that z(t) =
21(t) + z2(t) = 0 as t — co. Hence we obtain that the constructed ¥ satisfies (vi).

We now prove that ¥ satisfies condition (ii’) in Definition 7.1. Let {ﬂ be a stable

generalized future trajectory of X. By the above, there exists a unique w such that

u

we obtain for all £ > 0

71 el + / ly(r)|3 dr + / lu(r) |3 dr = 2(0)]% + / ()| dr.

Letting ¢ — oo and using that z(¢) — 0 by the above established (vi), we obtain

xr
[[’é’]} is a stable generalized future trajectory of 3. Since ¥ is energy preserving

oo

(7.2) / Tyl dr + / ) dr = 2(0)% + / leo(r) 2,

From this we see that the infimum over all stable generalized future trajectory of ¥ of
I Ny ()13 dr + [y |lu(r)||% dr is obtained for w = 0 and equals [|z(0)||%. Therefore
we obtain condition (ii’) in Definition 7.1.

We now prove that ¥ is controllable (this is condition (i’) in Definition 7.1). We
have that ¥ is controllable (in the sense of [11, Definition 9.1.2]). By [11, Lemma
9.9.2] (where the first input space is taken to be the trivial vector space) we then obtain
that eyt is controllable. Since dropping an output does not affect controllability, it
follows that 3 is controllable.

According to Definition 7.1, ¥ is a well-posed LQ future normalized realization
of .

Conversely, suppose that ¥ is a well-posed LQ future normalized realization of
. We proceed to prove that ¢ has a well-posed right H*(C¥)-factorization valid in
some right half-plane, and that this realization has the additional properties (ii)—(vi).
In the remainder of the proof we denote the main operator of ¥ by A, the control
operator by B, the transfer function by ©, and the growth bound of ¥ by wy.

We begin by proving (ii). If [986} is a generalized future trajectory of 3, then the
optimal future cost of x(0) is clearly zero and from condition (ii’) in Definition 7.1 we
then obtain that [|z(0)||3 = 0, so that = 0. Hence X is observable. A well-posed
system which is both controllable and observable is minimal.

We next prove that ¢ has a well-posed right H°(C™)-factorization valid in some
right half-plane. Let o > max{ws, 0}, and denote Q := C}. By Lemma 6.6 combined
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18 MARK R. OPMEER AND OLOF J. STAFFANS

with Definition 7.1 and Remark 7.2, the inner-product in X is the minimal 2-solution
of the continuous time control Riccati equation (with domain &’). Hence we have that
there exists an operator K&F : dom(S) — U such that

(7.3)

2Re < [A&B] m x> + HC&D m

and such that the operator F(A) := K&F {O‘_Al‘;f)le} has a bounded inverse for all

A € Q. From Lemma 5.2 we obtain that M(X) := F(A)™', N(A) := @(A)M(X) gives
rise to a normalized weakly coprime right H°(CT) factorization of ®. From (7.3)
we see that K&F' is continuous with respect to the graph norm of S and therefore

2

2
+ [lull = HK&:F m
y U

- 2] doms).

u

A&B . :
Yext 1= ([IC;&&Z??] s XU, [5]) is a system node. We now prove that Y. is well-posed.
Let [ij}]} be a classical trajectory of Yex. From (7.3) we obtain by integrating that

(7.1) holds. Since ¥ is well-posed, for all T' > 0 there exists a M > 0 such that for all
tel0,T]

(7.4) le(@®)% + / ly(r)|I3 dr < M(nz(mi + / lu(r) 2 dr).

From (7.1) we obtain

/0 lo(r) |2 dr < @)% + / ly(r)II3 dr + / lu(r) |2 dr,

which combined with (7.4) gives

IIfC(t)Ilvar/O ||y(T)H§;dT+/O lw(T)lig dr < (2M+1)<||x(0)|3<+/0 lu(r)lI dT),

which shows that ey is well-posed. The growth bound of Y.y is the same as the
growth bound wy; of ¥ (equal to the growth bound of the evolution semigroup of X).
In particular, this implies that the transfer function F from the input to the second
output of Yy is bounded in Cf. Since F = M~! this implies that M~! is bounded
in CI. Consequently, the factorization (N,M) of @ is well-posed, and the growth
bound of this factorization is at most a. Since « is an arbitrary number satisfying
a > max{wsy, 0} we see that the growth bound of the factorization (N, M) is at most
max{ws,0}. This proves that ¢ has a well-posed right H*(C")-factorization valid
in some right half-plane (and also proves one half of (iv)).

We next prove (v). As we noticed above, the transfer function from the input to
the second output of Y.y equals F whose inverse M is well-posed. By [11, Theorem
6.6.1] we obtain a well-posed operator node ¥ = (S X, U, [?ﬂ) by considering
the second output of Yeyt as input of ¥ and the input of Xy as second output of
3. The transfer function of £ is [,\'\H From (7.1) we obtain that ¥ is energy-
preserving. Since ¥ is controllable, Yoy is controllable and using [11, Lemma 9.9.2],
¥ is controllable. From [11, Theorem 11.3.3] we then obtain that ¥ is additionally
strongly stable and observable. Therefore 3" has the properties assumed in the first
part of this proof; additionally, 3, ¥ and ¥ are related as in that first part of
this proof. By [11, Chapter 7], the operator K& F' is an admissible state feedback for
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3 with closed-loop system . Since ¥ is well-posed and strongly stable, it follows
that X is strongly stabilizable, i.e. that (v) holds.

We note that (iii) follows from Lemma 7.3.

In the first part of the proof we showed that the system X constructed there
satisfes condition (vi). It therefore follows from (iii) that all well-posed LQ future
normalized systems ¥ must satisfy (vi).

The only property left to be established is (iv). All normalized weakly comprime
right H°°(C™) factorizations of ¢ are determined uniquely up to the multiplication
from the right by an unitary operator, and hence they all have the same growth
bound, which we may denote by w,. Likewise, all well-posed LQ future normalized
realizations ¥ of ¢ have the same growth bound since they are unitarily similar. We
denote this common growth bound by wy. It follows from the construction in the
first part of the proof that max{ws,0} < max{w,,0}, and as we saw above, also the
converse inequality is true. Thus max{ws;, 0} = max{w,,0}. O

The following lemma gives a necessary and sufficient condition for a LQ future
Q-normalized operator node to be well-posed (and hence LQ future normalized).

LEMMA 7.5. Let ¥ := ([égg] ;X,?/{,y) be an operator node with main operator
A and transfer function ®©. Then the two following conditions are equivalent:

(i) X is well-posed and LQ future normalized.

(i) The following conditions hold:

(a) p(A) contains some right half-plane;

(b) ¥ is LQ future Q-normalized for some (or equivalently, for every) open
subset Q of pyoo(A);

(¢) D has a well-posed right H*(C™T) factorization valid in Q (with Q as in
(b))-

Proof. Suppose first that ¥ is well-posed and LQ future normalized. Then (a)
holds. By Remark 7.2 ¥ is LQ future Q-normalized for every open subset 2 of p . (4).
By Theorem 7.4 ® has a well-posed right H°°(C™) factorization valid in some right
half-plane. By analytic continuation, this factorization is actually valid in py.o(A),
and hence also valid in every open subset Q of pi(4).

Conversely, suppose that conditions (a)-(c) in (ii) hold (where we in (b) fix Q to
be some open subset of pio(A)). Since D has a well-posed right H>(C") factor-
ization valid in 2, it also has a well-posed normalized weakly right coprime H*(C¥)
factorization (N, M) valid in © (cf. the proof of Theorem 7.4). By analytic contin-
uation, D(A)M(A) = N(A) for all A € p;(A), and consequently the factorization
D(A) = N(A)M(N) 7! is valid everywhere in pioo(A) where M()) is invertible. The
well-posedness assumption on the factorization means that M()) is invertible in some
right half-plane, and thus the factorization D(\) = N(A)M(\)~! is also valid in some
right half-plane Cf.

By Theorem 7.4, © has a well-posed LQ future normalized realization ¥;, and
by Remark 7.2 3 is also LQ future CI-normalized. By Lemma 7.3 ¥ and X; are
unitarily similar. Since ¥ is well-posed and LQ future normalized, also X is therefore
well-posed and LQ future normalized. O

8. Realization theory. By collecting several results from the previous sections,
we obtain the following theorem.

THEOREM 8.1. Let X ::/\([ééjg] ;X,U,y) be an operator node with main opera-
tor A and transfer function ®. Assume that p(A) contains some right half plane, let
Q be an open subset of pyoo(A) which contains some right half-plane, and denote the
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20 MARK R. OPMEER AND OLOF J. STAFFANS

restriction of’}s to Q2 by . Then the following conditions are equivalent:
(i) X satisfies the uniform input finite future Q2-cost condition and @ is uniformly
bounded on some right half-plane;

(ii) the control Riccati equation for ¥ has an Q-solution for which the function F
in (4.6) is uniformly bounded on some right half-plane;

(#ii) the control Riccati equation for ¥ has an Q-solution, and the function F in
(4.6) corresponding to the minimal Q-solution is uniformly bounded on some
right half-plane;

(iv) ¢ has a well-posed realization for which the control Riccati equation has a
bounded (C;t -solution for some a > 0;

(v) ¢ has a well-posed realization which satisfies the state finite future cost con-
dition;

(vi) @ has a well-posed stabilizable realization;

(vii) ¢ has a well-posed strongly stabilizable realization;

(viii) ¢ has a well-posed LQ) future normalized realization;

(iz) ¢ has an well-posed right H>(C™T) factorization;

(x) @ has a well-posed normalized weakly coprime right H>(CT) factorization.

Proof. (i) < (ii) < (iii) <= (x) follows from Theorem 6.10.

(x) = (ix) is trivial.

(ix) = (viii) follows from Theorem 7.4.

(viii) = (vii) follows since the LQ future normalized realization is well-posed
and strongly stabilizable by Theorem 7.4.

(vil) = (vi) is trivial.

(vi) = (v) follows since any stabilizable realization satisfies the state finite future
cost condition.

(v) <= (iv) follows from Lemma 6.3 and Lemma 6.6 with Q replaced by C}
where « is taken to be large enough so that CF is contained in the resolvent set of
the main operator.

(v) = (x) follows from Lemma 6.9 and Theorem 6.10 applied to the realization
in (v). |

Remark 8.2. We note that the equivalence of (v),(vi),(vii),(ix),(x) in Theorem
8.1 had already been proven by Kalle Mikkola in [5]. In [4] he also proved that those
conditions are equivalent to some modified version of (iv) involving integral Riccati
equations.

9. The past optimal control problem and left factorizations. In this sec-
tion we consider the past optimal control problem and left factorizations. Several
results follow in a relatively straightforward way from previous sections by duality.

DEFINITION 9.1. Let ¥ := ([égg] ;X,Z/{,y) be an operator node with main op-
erator A, and let Q be an open subset of p(A) N C*. By an Q-solution of the con-
tinuous time filter Riccati equation induced by [é(‘%g] we mean an Q*-solution of

the continuous time control Riccati equation induced by the adjoint system xt =
([&€B]7; 2, 9,U), where 0 :={A € C: X € Q}.

DEFINITION 9.2. Let ¥ := ([égg] ;XJ/{,J)) be an operator node with main op-
erator A and let Q be an open subset of p(A) N C™T.

(i) A vector xg € X is said to have finite past Q-cost if it is the final state

component of a generalized stable past Q-trajectory. The past Q-cost of such
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a vector xg is the infimum of the past cost functional

0
(0.1) Tows(oo,0) = [ (Ol + (o)1)
over all generalized stable past Q-trajectories [?} of ¥. We denote this cost

by H‘TOH;Z)ast,Q'
(ii) If 3 is well-posed, then a vector xy € X is said to have finite past cost if it is
the final state component of a stable past trajectory. The past cost of such a

vector xq is the infimum of the past cost functional (9.1) over all generalized
xr

stable past trajectories [ ZD} of . We denote this cost by ||2o||2.s -

Remark 9.3. By [9, Theorem 3.12], the infimum in part (i) of Definition 9.2 is
actually achieved by a unique minimizing generalized stable past Q-trajectory of X,
and |- ||;2>ast,(2 is a closed quadratic form in X'. Also the infimum in part (ii) of Definition
9.2 is achieved by a unique minimizing generalized stable past trajectory of X, and
[[[|24s¢ is & closed quadratic form in X as well. By Lemma 3.9, if X is well-posed and
if 2 is an open subset of py..(A), then 2y € X has a finite past Q-cost if and only if

o has a finite past cost, and ||-[[2. o = /|20t

The following definition is essentially a reformulation of [9, Definition 6.2] (the
connection is similar to what is mentioned in Remark 6.5 in connection to the future
optimal control problem).

DEFINITION 9.4. Let 3 := ([égg] ;X,U,y) be an operator node with main op-
erator A and observation operator C, and let Q be an open subset of p(A) N CT.
(i) ¥ satisfies the output coercive past 2-cost condition if for every A € Q there
exists a constant M > 0 such that

9.2) |CO = A) a3, < Mo 2si0

for every xg € X with a finite past Q2-cost.
(i) ¥ satisfies the state coercive past Q-cost condition if there exists a constant
M > 0 such that

(9-3) lzoll% < Mllzol3ast.c

for every xqg € X with a finite past Q2-cost.

The following result was never explicitly stated in [9], but follows easily from the
results presented there.

LEMMA 9.5. Let ¥ := ([égg] ;X,L{,y) be an operator node with main operator
A and let Q be an open subset of a connected subset of p(A) NC¥. The following are
equivalent:
(i) X satisfies the state coercive past Q2-cost condition;
(it) the quadratic form ||-||%, o giving the optimal past Q-cost is bounded away
from zero;
(i) the filter Riccati equation has a bounded Q-solution.
If these equivalent conditions hold, then ||‘H;2)ast,§z is equal to the inverse of the minimal
nonnegative Q-solution of the filter Riccati equation (in the sense of [9, Lemma 3.17]).

Proof. The proof is analogous to the proof of Lemma 6.6 with [9, Theorem 5.9]
replaced by [9, Theorem 6.5]. d
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The following strengthens the notion of output coercive past 2-cost condition.

DEFINITION 9.6. Let ¥ := ([AEB];X,U,Y) be an operator node with main op-
erator A and observation operator C, and let Q be an open subset of p(A)NCT. X
is said to satisfy the uniform output coercive past €2-cost condition if ¥ satisfies the

output coercive past Q-cost condition and there constants o > 0 and M > 0 such that
CH cQ and

(9.4) o = A)tag |, < AeCh

M 2
RT()\)HJ?OHpast,Qa

for every xg € X with a finite past Q)-cost.

Thus, Definition 9.6 imposes an extra uniformity condition in some right half-
plane on the constant M in (9.2).
The following lemma is the “uniform” equivalent of [9, Lemma 6.3].

LEMMA 9.7. Let ¥ = ([égg] ;X,Z/{,Ji) be an operator node and let Q be an
open subset of p(A) N CT. Then X satisfies the uniform output coercive past Q-cost
condition for some constants « > 0 and M > 0 if and only if the adjoint system
wt = ([égg]* 1 X, YV, U) satisfies the uniform input finite future Q*-cost condition for
the same constants o and M, where * := {2 € C: z € Q}.

Proof. First assume that the uniform output coercive past Q-cost condition for
holds and let @ > 0 and M > 0 be as in Definition 9.6. By [9, Theorem 3.18] we have
for all zy € X with finite future Q*-cost for X that

||360||fuc,9* = sup |<$0,ZO>X|-
[Izollpast, @ <1
Applying this with zg := (A — A)~*C*yo where yg € Y and X € Q* (by [9, Lemma
6.3], this xo indeed has finite future cost for $) we obtain

H(/\—A)_*C*yo sup |<()‘_A)_*O*y0>ZO>X’

llz0llpast, 2 <1

= sup [y, C(A=A) " z0)y| < llwolly  sup [C(A = A) " zolly.

HZOHpast,le ZO”past,QS]-

Hfut,Q* =

By the uniform output coercive past Q-cost condition for ¥ we then obtain for A € C}

e 112 M
H()‘_ A)C yo”fut,ﬂ* B m HyO”%%

which shows that the uniform input finite future Q*-cost condition for X holds.

Now assume that the uniform input finite future Q*-cost condition for £ holds
and let @ > 0 and M > 0 be as in Definition 6.7 (applied to ©f). Let x¢ have finite
past Q-cost for ¥. By [9, Theorem 3.18] we have

lzollpast,o =  sup  [{zo, 20) x|
120 ll fut, 0 <1

Take zp := \/RET()‘)()\ — A)7*C*yo where A € CI and yg € Y satisfies ||yolly < 1.
From the uniform input finite future Q*-cost condition for ¥ we then obtain that
lzollfutt < 1. Hence

folasr > ) o[G0, (8~ 4 C o] = 4/ R (O~ A) a0, oy |
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Since yo € Y with |lyolly < 1 was arbitrary we then obtain

Re(A) Re

||$0||past,9 > N |<C()\ - A) xoayo> |

llyolly <1

||C )\ A CUOH)J

This precisely shows that the uniform output coercive past 2-cost condition for X
holds. O

The following is the left version of Definition 5.1 and the well-posed version of [9,
Definition 6.4].

DEFINITION 9.8. Let ¢ be an analytic B(U; Y)-valued function defined on some
open subset Q of CT.
(i) ¢ has a left H®°(C™T) factorization valid in Q if there emist two functions
M e H®(C*t; B(Y)) and N € H"O((C“‘ B(U;Y)) such that M()) has a bounded
inverse and p(X) = M(A)"IN(XA) for all A € Q.
(i) The factorization in (i) is called normalized if the operator

U ~  ~7 |4 H*(C—;U _

M = P |-N M) M : [HQEC‘;J?H ~HACY)
18 co-isometric.

(#ii) The factorization in (i) is weakly (left) coprime if the kernel of the operator
in (i) is equal to the (past time) Laplace transform of the stable past behavior
20° (Q) defined in Definition 5.6.

(iv) The factorization in (i) is well-posed if there exists some o > 0 such that
M()) has a bounded inverse for all A € CL and M~ € H°°((C+ B(Y)) for all
8> a.

(v) If the factorization in (i) is well-posed, then the growth bound of this factor-
ization is the infimum over all o for which the condition in (i) holds. (If the
factorization is not well-posed, then its growth bound is +00.)

DEFINITION 9.9. Let ¥ := ([éﬁ;g] ;X,L{,y) be an operator node with main op-
erator A and let Q be an open subset of p(A) N CT. Then X is called LQ past
Q-normalized if

(i) ¥ is Q-observable in the sense that NS, ker(C(A — A)~") = {0} for some

e Q;
(i) X satisfies the state coercive past Q-cost condition, and for each xy € X the
optimal past Q-cost of xg is equal to ||zo|% -
If ¥ is well-posed, then it is called LQ past normalized if

(i) 3 is observable (in the sense of [11, Definition 9.1.2]);

(ii’) X satisfies the state coercive past cost condition, and for each xo € X the

optimal past cost of xo is equal to ||zo||%-

Remark 9.10. Remark 7.2 with the obvious substitutions applies to “LQ past
normalized” as well.

The following follows from Theorem 7.4 by duality.

THEOREM 9.11. Let ¢ be an analytic B(U;Y)-valued function defined on some
right half-plane. Then
(i) ¢ has a well-posed LQ past normalized realization % if and only if ¢ has a
well-posed left H®(C") factorization valid in some right half-plane.
If the above equivalent conditions hold, then the realization ¥ of ¢ in (i) has the
following additional properties:
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945 (i) ¥ is minimal.
946 (iii) ¥ is determined uniquely by @, up to a unitary similarity transformation in
947 the state space.

e

948 (iv) Denote the growth bound of ¥ by ws. Then max{ws,0} = max{w,,0},
949 where wy, 15 the growth bound of an arbitrary normalized weakly coprime left
950 H®>(C™T) factorization of .

951 (v) 3 is strongly x-detectable, i.e., there exists an output injection operator which
952 makes the closed-loop system obtained by output injection strongly co-stable
953 (in the sense that its dual system is strongly stable).

954 The following follows from Theorem 8.1 and duality using Lemma 9.7.

955 THEOREM 9.12. Let ¥ := égg] ;X,U,y) be an operator node with main op-
956 erator A and transfer function ©. Assume that p(A) contains some right half plane,
957 let Q0 be an open subset of pi(A) which contains some right half-plane, and denote
958 the restriction of ® to Q by ¢. Then the following conditions are equivalent:

(i) X satisfies the uniform output coercive past Q2-cost condition and ¢ is uni-
formly bounded on some right half-plane;

(=

961 (ii) the control Riccati equation for X1 has an Q*-solution for which the function
962 F in (4.6) is uniformly bounded on some right half-plane;

963 (iii) the control Riccati equation for 1 has an Q*-solution, and the function F in
964 (4.6) corresponding to the minimal 2*-solution is uniformly bounded on some
965 right half-plane;

966 (iv) ¢ has a well-posed realization for which the filter Riccati equation has a
967 bounded (C;[|r -solution for some a > 0;

968 (v) ¢ has a well-posed realization which satisfies the state coercive past cost con-
969 dition;

970 (vi) ¢ has a well-posed detectable realization;
971 (vii) ¢ has a well-posed strongly x-detectable realization;

972 (viii) ¢ has a well-posed LQ past normalized realization;
973 (iz) ¢ has an well-posed left H>(C") factorization;
974 (x) @ has a well-posed normalized weakly coprime left H*(CT) factorization.

975 10. Doubly coprime factorizations. In this section we consider doubly co-
976  prime factorizations and as in [9] relate it to an optimal control problem on the whole

977 real axis.
978 The following are [9, Definition 7.1 and 7.2].
979 DEFINITION 10.1. Let q and r be two closed symmetric nonnegative sesquilinear

980  forms on the Hilbert space X. Then we say that r dominates ¢ if dom (r) C dom (q)
981 and there exists a constant M > 0 such that q[z,z] < Mr[z,z] for all x € dom (r).

982 DEFINITION 10.2. Let X := ([A¥B];X,U,Y) be an operator node with main
983 operator A, and let Q be an open subset of p(A) NCT.

984 (i) ¥ is said to satisfy the past Q-cost dominance condition if the optimal future
985 Q-cost ||||f,.q is dominated by the optimal past Q-cost ||-||?.q o

986 (ii) If 3 is well-posed, then it is said to satisfy the past cost dominance condition
987 if the optimal future cost ||-||3,, is dominated by the optimal past cost ||-||2
988 Remark 10.3. The past Q2-cost dominance condition and the past cost dominance

989 condition are consistent by Remarks 6.2 and 9.3.

990 The following result on the past cost dominance condition and duality had not
991  been considered in [9].
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LEMMA 10.4. Let ¥ := ([AEB ] X,U,Y) be an operator node with main operator
A, and let Q be an open subset of p(A)NCT. If ¥ satisfies the past Q-cost dominance
condition, then 1 satisfies the past Q*-cost dominance condition.

Proof. Let M > 0 be such that ||z||ft,0 < M||2||past,o for all z with finite past
cost for X. By [9, Theorem 3.18] we have that the domain of [|-||2,. - for X7 is
characterized by

DIl Fastr.or) = {z" € X+ sup  [{z,2")] < oo},

12l fus,2 <1

and that the domain of [|-||3 ; . is characterized by

D(|lfur o) ={e' € X+ sup  |(z2")] < oo},

[zl past, <1
For 2t € X we have

sup (22N x| < sup [z 2Nal S M osup (22l

2]l past,@ <1 2]l fut,@ <M 1Z]]fus, <1
Hence D(H'”;Q)asﬁ,m) C D(H'H?MT,Q*)' We further see from the above calculation using
that

||ZT||futT,Q* = sup |<272T>|’ ”ZT”pastT,Q* = sup ‘<ZaZT>|7

ll2llpast <1 |2l fus,0 <1
that for 21 € D(|[|12 1 o)
”ZT”futT,Q* < M”ZT pastt,Q*-

Hence the past Q*-cost dominance condition for £ holds. 0

The following is the “uniform” equivalent of [9, Lemma 7.3].

LEMMA 10.5. Let ¥ = ([égg] ;X,Z/{,y) be a well-posed operator node. If %
satisfies the past cost dominance condition, then it satisfies both the uniform input
finite future cost condition and the uniform output coercive past cost condition.

Proof. Let a > 0 be such that CI C p(A) and define  := Cf. By Remarks
6.2, 9.3 and 10.3 we have that the well-posed cost conditions and the corresponding
Q-cost conditions are equivalent.

From Remark 6.8 we see that in the well-posed case, the past cost dominance
condition implies the uniform input finite future cost condition. By Lemma 10.4, the
past cost dominance condition for ¥ with respect to §2 implies the past cost dominance
condition for ¥ with respect to Q*. Hence, using Remark 6.8 again, we obtain the
uniform input finite future cost condition for X7 with respect to Q*. From Lemma

9.7 we then obtain the uniform output coercive past cost condition for ¥ with respect
to Q. d

The following strengthens [9, Definition 7.4] to the notion relevant in the well-
posed case. Note that what is added compared to [9, Definition 7.4] is a well-posedness
assumption on the denominators.

DEFINITION 10.6. Let ¢ be an analytic B(U;YV)-valued function defined on some
open subset Q of CT.
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(i) A right H*(C") factorization [\] valid in Q is strongly coprime if there
exist two functions X € H®(C*; BU)) and Y € H>®(Ct; B(Y;U)) such that
X(AMM) = YAN(A) = 1y for all A € C+.

(i) A left H®(C") factorization [M,N] valid in € is strongly coprime if there
ezist two functions X € H*(Ct; B(Y)) and Y € H>®(C*; B(U;Y)) such that
M(AX(A) = N(AY(A) = 1y for all A € CT.

(i1i) ¢ has a doubly coprime H*(C™)-factorization valid in Q if there exist func-
tions M € H>(C*;BU)), N € H>®(CH;BU;Y)), X € H*®(C*H;BU)),
Y € H¥(CHB:iU), M € H=(CH;B(Y)), N € H®(CH;BU:Y)), X €
H>(CT;B(Y)) and Y € H®(C*; B(U;Y)) such that [} ] is a right H*(C™)
factorization valid in 0, [M,N] is a left H*(C") factorization valid in 0 and

(10.1)
M Y X Y] [ X =Y][M Y] [1x4 O
N X]|-N M| |[-N M N X|]7 [0 1y]
on Ct. JO
(iv) The factorization in (iii) is well-posed if both [} ] and [M,N] are well-posed.

It is well-know that any strongly coprime factorization is weakly coprime in the
corresponding sense (right/left) and that a transfer function has a strongly right
coprime factorization if and only if it has a strongly left coprime factorization if and
only if it has a doubly coprime factorization, see e.g. [5].

LEMMA 10.7. Let o > 0 and define Q := CL. Let ¢ be an analytic B{U;))-
valued function which is uniformly bounded on 2. Then every strongly coprime right
H®>(C™) factorization valid in Q of ¢ is well-posed.

Proof. We will show that M~1 € H°(C}; B(U)), which implies well-posedness.
For A € C* we have by strong coprimeness that X(A)M(X) — Y(A)N(X) = 1. Since
M(}) is invertible for A € Q and p(A) = N(A)M(A)~! for A € Q, we obtain from
this that X(A) — Y(A\)p(A) = M(A)~! for all A € Q. Since the left-hand side is in
H>(Ct; B(U)), it follows that the right-hand side is. d

The following theorem is the well-posed equivalent of [9, Theorem 7.5] and involves
the notion of the inverse of a quadratic form as defined in [9, Lemma 3.17] and
the notion of a jointly stabilizable and detectable well-posed linear system from [11,
Definition 8.2.4].

THEOREM 10.8. Let ¥ := égg] ;X,L{,y) be an operator node with main op-
erator A and transfer function ©. Assume that p(A) contains some right half plane,
let Q be an open subset of pi(A) which contains some right half-plane, and denote
the restriction of © to Q by ¢. Then the following conditions are equivalent:

(i) ¥ satisfies the past Q-cost dominance condition and ¢ is uniformly bounded

on some right half-plane;
(i) the control Riccati equation for X has an Q-solution q for which the function
F in (4.6) is uniformly bounded on some right half-plane, the control Riccati
equation for X1 has an Q*-solution p for which the function F in (4.6) is
uniformly bounded on some right half-plane and q is dominated by the inverse
of p;

(#ii) the control Riccati equation for ¥ has an Q-solution q and the function F in
(4.6) corresponding to the minimal Q-solution is uniformly bounded on some
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right half-plane, the control Riccati equation for X7 has an Q*-solution p and
the function F in (4.6) corresponding to the minimal Q-solution is uniformly
bounded on some right half-plane and q is dominated by the inverse of p;
(iv) ¢ has a well-posed realization for which the control Riccati equation has a
CI-solution q for some a > 0, the filter Riccati equation has a (C‘ﬁ|r -solution q
for some B > 0 and q is dominated by the inverse of p;
(v) ¢ has a well-posed realization which satisfies the past cost dominance condi-
tion;
(vi) ¢ has a well-posed realization for which the control Riccati equation has a
bounded Q2-solution and the filter Riccati equation has a bounded 2-solution;
(vit) ¢ has a well-posed realization which satisfies the state finite future cost con-
dition and the state coercive past cost condition;
(viii) @ has a well-posed realization which is stabilizable and detectable;
(iz) @ has a well-posed realization which is jointly stabilizable and detectable;
(z) ¢ has a well-posed doubly coprime H>(C™T) factorization valid in €.

Proof. (x) = (ix) is [11, Theorem 8.4.1 (ii)].

(ix) = (viii) is trivial.

(viil) = (vii) follows since stabilizability implies the state finite future cost
condition and (by duality) therefore detectability implies the state coercive past cost
condition.

(vii) = (vi) follows from Lemma 6.6 applied to both the realization and its dual
noting that the state coercive past {)-cost condition is equivalent to the state finite
future 2*-cost condition for the dual by [9, Lemma 6.3].

(vi) = (v). Since the optimal future Q-cost is the minimal Q-solution to the
control Riccati equation by Lemma 6.6, we have that there exists a M, > 0 such
that [|z]|ft,0 < Myl|z| for all z € X. Existence of a bounded Q-solution of the filter
Riccati equation is equivalent to the state coercive past Q2-cost condition by Lemma 6.6
applied to the dual system. Hence there exists a M, > 0 such that M, ||z|| < ||z||past.o
for all z € X which are the final state of a generalized stable past 2-trajectory of
Y. It follows that ||2]|fut,0 < %Hzﬂpast@ for all z € X which are the final state of
a generalized stable past Q-trajectory of X, i.e. the past 2-cost dominance condition
holds. By Remark 10.3, this is equivalent to the past cost dominance condition.

(v) <= (iv) follows from [9, Theorem 7.5] applied to this realization (and Lemma
4.3).

(v) = (x). That the past Q-cost dominance condition (which by Remark 10.3
is equivalent to the past cost dominance condition) implies the existence of a doubly
coprime H*>(C™) factorization valid in © follows from [9, Theorem 7.5]. The addi-
tional well-posedness assumption on the realization implies through Lemma 10.7 that
this factorization is well-posed.

(x) = (i). That the existence of a doubly coprime H>(C™") factorization valid in
Q of the transfer function implies that X satisfies the past Q2-cost dominance condition
follows from [9, Theorem 7.5]. The additional well-posedness assumption on the
factorization implies that ¢ is uniformly bounded on some right half-plane.

(i) = (x). That ¥ satisfying the past Q-cost dominance condition implies the
existence of a doubly coprime H>(CT) factorization valid in Q of its transfer function
follows from [9, Theorem 7.5]. That uniform boundedness of ¢ on some right half-
plane implies well-posedness of this factorization follows from Lemma 10.7.

(i) <= (ii) <= (iii). Equivalence of the past Q-cost dominance condition with
the existence of ¢ and p combined with the dominance of ¢ by the inverse of p fol-
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lows from [9, Theorem 7.5]. The additional uniform boundedness claims follow using
Theorem 6.10 applied to both ¥ and XT. 0

11. An example. An example without a doubly coprime factorization (with in
fact a well-posed transfer function) was given in [9, Section 8]. Here we give a simple
PDE example which does have a doubly coprime factorization. We additionally use
this example to illustrate LQ future and past normalized realizations.

Consider the partial differential equation with boundary control:

ow ow
E(tag) = o
w(t, 1) = u(t), t>0.

(t,9), t>0, £€(0,1),

We define x by z(t) = £ — w(t,€) and we define the output by y := x. The above
partial differential equation can then be described by the operator node on X =
L2(0,1), U =R, Y = L?(0,1) given by

) o {Efe] o)

This operator node is in fact well-posed and C* C p(A). We will therefore take
Q= C*. Similar to the calculation in [13], it is straightforward to compute that the
future optimal control is zero and that the optimal future cost is given by

1
o2, = / Lo (€ de.

The continuous-time control Riccati equation has the bounded sesquilinear form

1
alo, 20 = / € 20(€) 20(£) de.
0
as solution with
K&F Bﬂ = v/2u,

since for [32] € D(S)

1 1
2 / € 2(€) wo(€) de + / 20 (E) de + fuol® = [v/2uo .
0 0

The past optimal control problem has the optimal control and output

B 0 t< —1 N 0 t‘+’§ ¢ [071]
U(t)_{xo(t) te[-1,0) y(t’g)_{xo“*@ treeloll

and therefore the optimal past cost is

1
o2t = / (2 — &) o &) de.

The adjoint of S can be calculated to be

i R I e N o R
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The continuous-time filter Riccati equation has the bounded sesquilinear form

1
ploo.aal = [ 57 ol 20(6) ds.

as solution with

K&F [‘;s] =& 2i5x0(5)+y0(f),

since for [39] € D(S*)

2 [ 5 bl + (@) o€ de + ao()F + [ luo(€) e

29

We see that condition (vi) from Theorem 10.8 is satisfied and therefore so are all of
the other equivalent conditions mentioned in that theorem. In particular, the transfer
function of S has a doubly coprime factorization. The transfer function of S can be

calculated to be (see [13])

~

D) =& MY,

and, similarly as in [9, Section 8], using the above solutions of the Riccati equations

we can calculate a normalized strongly coprime right factorization

M) =1, NQX) =D,

and a normalized strongly coprime left factorization

JOY !

M(\)y = € — y(€) —

with corresponding Bezout factors

1
X(/\)yﬁw/(f)ﬂe“/E ;ﬁ

where to obtain N(A) we solved the boundary value problem

Az(§) — '(§) + () =0, (1) =1,

1
2-¢

to obtain M(X) we solved the boundary value problem

, 1 1 _
Aa() = o'(6) + 5ol = 5=gule).  a(1) =0,
and to obtain X(\) we solved the boundary value problem
1
Nal§) = a'(€) = 5gu(©).  al1) =0
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From the above expression for [zo||2, for the past cost we see that when we
consider S instead on the state space

Xpast = L2(07 L; (2 - 5) df),

then we obtain an LQ past normalized realization of the transfer function of S. Note
that since the weight 2 — ¢ and its inverse are both in L*°(0,1) we have that z¢ €
L?(0,1) if and only if xg € L?(0,1; (2 — £) d¢) (but the norm of x( in the two spaces
is different).

From the above expression for |lz||?,, for the future cost we see that when we
consider S instead on the state space

Xrug = L?(0,1;£ dE),

then we obtain an LQ future normalized realization of the transfer function of S.
Note that since the weight ¢ is in L>°(0, 1), but its inverse is not, we have L?(0,1) <
L?(0,1;£d€), but we do not have the reverse inclusion. For example x(§) = %

satisfies xg ¢ L2(0,1) and zo € L*(0, 1; £ d€).
For precisely those state spaces X for S with

L*(0,1) = X — L*(0,1;£ d€),

we have that the finite future cost condition and the state coercive past cost condition
are satisfied.
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